WorldWideScience

Sample records for brassica waste compost

  1. Activity of cellulase from Thermoactinomycetes and Bacillus spp. isolated from Brassica waste compost Atividade de celulase de Termoactinomicetos e Bacillus spp. isolados de resíduos derivados de compostos de Brassica

    Directory of Open Access Journals (Sweden)

    Chen-Chin Chang

    2009-06-01

    Full Text Available Plant wastes present a high cellulose content, which is an ideal organic material for composting. Five strains of thermophiles from processed Brassica waste were isolated, and the hydrolytic activity on various cellulosic biomass substrata and their temperature profiles were determined. 16S rRNA sequencing identified these strains as Thermoactinomyces and Bacillus spp. Maximal cellulase activity corresponded to 2.3 U mL-1 of enzyme. The application of these strains on Brassica rapa residues demonstrates increased total nitrogen content. TA-3, a Thermoactinomycetes sp. strain, performs best among all inoculants, increasing the nitrogen content from 0.74 to 0.91%, and decreasing the carbon content from 15.4 to 12.2%, showing its high efficiency and bioactivity during compositing.Resíduos vegetais apresentam alta concentração de celulose, que é um material orgânico ideal para preparação de composto. Cinco linhagens de termófilos foram isoladas de resíduos processados de Brassica e a atividade hidrolítica em vários substratos contendo celulose e seus padrões de temperatura foram determinados. O seqüenciamento de rRNA 16S permitiu a identificação dessas isolados como Thermoactinomyces e Bacillus spp. A atividade máxima de celulase foi determinada como de 2,3 U mL-1 de enzima. O uso dessas linhagens em resíduos de Brassica rapa resultou em um aumento total do conteúdo de nitrogênio. TA-3, uma linhagem de Thermoactinomycetes sp., apresentou melhor desempenho entre os inoculantes, aumentando o conteúdo de nitrogênio de 0,74 para 0,91%, e diminuindo o conteúdo de carbono de 15,4 para 12,2%, mostrando sua alta eficiência e bioatividade durante a compostagem.

  2. FACTORS INFLUENCING COMPOSTING POULTRY WASTE

    Directory of Open Access Journals (Sweden)

    Michał Kopeć

    2015-11-01

    Full Text Available Organic recycling of waste, taking into account sanitary safety, should be a fundamental method for recovering the nutrients present in the waste for plants and organic matter. It also refers to by-products of animal origin, which are not intended for consumption by humans. In the present research , composting of hydrated poultry slaughterhouse waste with maize straw was carried out. A combination with fodder yeast and post-cellulose lime was also introduced, which modified chemical and physico-chemical properties of the mixtures. The experiment was carried out by recording the biomass temperature for 110 days in 1.2×1.0×0.8 m reactors with perforated bottoms enabling active aeration. The following parameters were taken into consideration in the composted material: carbon, nitrogen, sulfur, respiratory activity, microorganisms, fractions of compost obtained after washing on sieves. Small amounts of fodder yeast favoured the development of microorganisms and caused a sanitary risk in the final product. At the initial stage, the temperature of raw compost in that object was several degrees lower than in the case of the composted mass without yeast addition. The addition of post-cellulose lime at ratios 6.5:1:6.5 (maize straw: poultry slaughterhouse waste: post-cellulose lime caused a change in the time of microbiological activity, and led to its inhibition in the final process. In comparison to objects with poultry waste, the highest degree of hygienization was found in the compost with post-cellulose lime (with pH close to neutral. By adjusting the ratios of substrates we can influence the microbiological activity, but the amounts of individual substrates should be determined taking into account the quality of the obtained compost.

  3. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  4. Evolution of Biochemical Parameters During Composting of Various Wastes Compost

    Directory of Open Access Journals (Sweden)

    N. Saidi

    2008-01-01

    Full Text Available In Tunisia the most treatment waste is landfill (50% of wastes were land filled and only 5% are composted. And since our soil become more and more poor in organic matter, green waste can be a significant source of organic matter; in parallel we cited the domestic waste and dead posodonia collected from beaches. All these wastes coming from various origins can be exploited to produce stable compost able to correct the deficiency of soil. Exploiting waste could lead at different quality of mature compost. We are not interested in only the quality of the mature compost but we are interested in the time of the composting cycle. The goals of this study were to characterize the maturity and the sanitary quality of compost in relation with the feed stock source (green waste (C1, green waste mixed with Posidonia (C2 and municipal solid waste (C3. The results obtained showed that the duration of the cycle of composting depends on the nature of the substrate. The longest cycle (200 days was observed with the feed stock source C3. The C/N ratios ranged between 22 and 27 at the beginning of the cycle of composting and decreased notably during time of composting. NH4-N decreased over the progress cycle and at the end of composting progress, all wastes presented a content of NH4-N not exceeding the maximal value recommended for mature compost (400 mg kg-1. The CO2 released by C1 was of approximately 6000 mg C-CO2 DM kg-1 at the start of the cycle and it reached at the end of the cycle of composting 2300 mg C-CO2 DM kg-1. Nevertheless, the deshydrogenase activity (DHA recorded was important during the thermophilous phase at the level of the three piles C1, C2 and C3, where it reached the respective values of 5.9; 6.2 and 4 TPFS/TPF/g of DM. Maturity stage showed the values of 0.3; 0.8 and 0.4 TPFS/TPF/g of DM, respectively. Salmonella appeared only at the level of the piles C2 et C3 at the beginning of composting. After 40th days composting these bacteria are

  5. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  6. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  7. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.

  8. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  9. Effect Various Combination of Organic Waste on Compost Quality

    National Research Council Canada - National Science Library

    Hapsoh; Gusmawartati; Muhammad Yusuf

    2015-01-01

    .... They can be used as compost row materials. The purpose of the research was to get an optimum combination of both wastes to improve compost quality, to meet the Indonesian National Standard 19-7030-2004...

  10. Optimization of control parameters for petroleum waste composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as theactivity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5-59.5, 7.0-8.5 and 55%-60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.

  11. Phytotoxicity of composted herbal pharmaceutical industry wastes.

    Science.gov (United States)

    Suthar, Surindra; Singh, Deepika

    2011-08-01

    This work demonstrates the phytotoxicity screening of composted herbal pharmaceutical industry waste (HPIW) using seed bioassay method. The composted industrial waste should be tested at lab scale prior to recommendation for land application. HPIW was mixed with soil to produce four treatments: T(1) (1:1), T(2) (1:2), T(3) (1:3), and T(4) (1:0) for toxicity screening using Pisum sativum seeds. After 72 h relative seed germination (RSG), relative root growth (RRG) and germination index (GI) were recorded. Seedlings were observed for further plant growth and tissue biochemistry (chlorophyll, soluble sugar, starch, carotenoid, and protein) estimation. RSG, RRG, and GI values were better in T(1) and T(2) than others. GI was in the ranges of 36.62 % (T(4)) to 170.38 % (T(2)). The seedling growth and biochemical parameters were better in seedling obtained from potting media containing low proportion of HPIW (i.e., T(1) and T(2)). Results clearly suggested that composted HPIW may be utilized effectively for crop production after dilution under sustainable farming system program.

  12. Drum composting of municipal solid waste.

    Science.gov (United States)

    Kalamdhad, Ajay S; Khwairakpam, Meena; Kazmi, A A

    2012-01-01

    The high initial C/N ratio (> 30) found in Indian municipal solid waste (MSW) leads to more time required for composting (> 3 months), with poor-quality compost production. Therefore, the effects of MSW amended with cattle manure (trial 1) and tree leaves (trial 2) were compared with unamended MSW (control) in a rotary drum composter. The initial C/N ratios of trial 1 and trial 2 were kept at 22, as compared to 32 for the MSW control sample. It was observed that trial 1 produced high-quality and stable compost within 20 days. It showed higher final total nitrogen (2.2%), final total phosphorus (3.2 g/kg) and low electrical conductivity (2.7 dS/m). At the end of 20 days, higher degradation caused lower final oxygen uptake rate (OUR) (1.8 mg/g volatile solids (VS)/day), final CO2 evolution (1.0 mg/g VS/day) and final C/N ratio (7.8). Trial 2 produced good-quality and stable compost resulting in 1.9% of total nitrogen, 2.7% of total phosphorus and low OUR (2.0 mg/g VS/day), CO2 evolution (1.5 mg/g VS/day) and C/N ratio (10.1) after 20 days ofcomposting. However, the control sample with an initial C/N ratio of 32 showed higher OUR (3.6 mg/g VS/day) and CO2 evolution (2.6 mg/g VS/day) comprising a lower concentration of total nitrogen (1.6%) and total phosphorus (2.3 g/kg), which indicated an unstable and low-quality product as compared to trials 1 and 2. Therefore, results showed that the characteristics of MSW amended with cattle manure and tree leaves significantly influence the compost quality and process dynamics in a rotary drum composter.

  13. Composting of Municipal Solid Wastes in the United States.

    Science.gov (United States)

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  14. Anaerobic composting of pyrethrum waste with and without effective ...

    African Journals Online (AJOL)

    user

    laboratory scale experiment involved composting of the waste as substrate mixed with EM at different .... The arrangement consists of 5 L plastic cane for anaerobic .... and Documentation Project on Recycling of Domestic Solid Waste.

  15. A Cost Analysis of Food Waste Composting in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2016-11-01

    Full Text Available Taiwan’s Environmental Protection Administration (EPA has enacted a food waste recycling policy since 2003 as an alternative of landfill and incineration for the final disposal of municipal solid waste. Recycled food waste is currently seen as a valuable material, especially when appropriate technology is developed. This paper conducts a cost/benefit analysis based on six cases of food waste composting plants in Taiwan, finding that (1 the composting of food waste may yield the most net benefit compared to other applications of today; (2 the production cost of compost ranges from NT$ 2897–23,117/tonne; (3 the adoption of more automatic technology may reduce operation costs and, thus, a closed composting system with mechanical aeration may be more cost effective; (4 the output is a determinant of affecting production costs and private firms are more competitive in production costs than government-affiliated composting units; (5 all of the government-affiliated composting units face a negative profit and thus they are required to make use of the market value of the produced compost to achieve economic viability; and (6 a subsidy to the compost producer is needed to expand the market demand as the food waste recycled can save the disposal cost of municipal solid waste (MSW incineration.

  16. [Characteristics of organic nitrogen mineralization in organic waste compost-amended soil].

    Science.gov (United States)

    Zhang, Xu; Xi, Bei-Dou; Zhao, Yue; Wei, Zi-Min; Li, Yang; Zhao, Xin-Yu

    2013-06-01

    A laboratory aerobic incubation experiment was conducted under a constant temperature to investigate the differentiation rule of nitrogen form among soils amended with different organic wastes composted with food waste, chicken manure, cow manure, domestic waste, vegetable residue, sludge, turf and tomato residue. Experiment utilized soils amended with 0%, 5% and 50% (m/m) of eight organic waste composts. The purpose was to understand the effect of different organic wastes on nitrogen mineralization in soil. This study deals with eight organic waste compost treatments could rapidly increase NH4(+) -N concentrations, reduce the NO3(-)-N concentrations and promote nitrogen mineralization in soil after 3-4 weeks incubation. All parameter tended to be stable. The improved amplitude of the same compost-amended soil: 30% compost treatments > 15% compost treatments > 5% compost treatments. Within the same proportion, chicken manure compost, turf compost and sludge compost product treatments' relative N mineralization was higher than other compost product treatments, and the chicken manure compost treatment's relative N mineralization was significantly higher than other compost product treatments. Food waste compost and vegetable residue compost product treatments' mineralization was low, the lowest was domestic waste compost product treatment. All compost treatments could significantly improve the values of potentially mineralizable nitrogen(N(0)), mineralization rate (k), and promote nitrogen mineralization in soil. The results illustrated that the effect of organic waste compost on the mineralization of nitrogen varied with types of compost and the amount of input compost.

  17. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    Science.gov (United States)

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.

  18. Household food-waste composting using a small-scale composter

    Directory of Open Access Journals (Sweden)

    Daniele Vital Vich

    2017-09-01

    Full Text Available Household food-waste composting is an attractive alternative for Brazilian waste management; however, there are few programs or studies regarding the implementation or management of this small-scale process. This study investigates the performance of food waste composting using a simple and small-scale domestic composter. Three composting trials were conducted using food waste and wood chips in 10 L plastic bins using different filling schemes. In the first trial, the composter was filled weekly over two months. In the second, the composter was filled once with a mixture of food waste and 100% of the used wood chips from the previous trial. In the last third trial, the composter was filled with food waste and wood chips (50% of wood chips used in the second trial and 50% of untreated wood chips. The physical chemical parameters of the compost were monitored and the total coliforms and E. coli were measured. In all trials, the temperature varied between 26.7°C and 46.2°C throughout the process. The reduction in wet mass was 58-69%, while the reduction in dry mass was 37-61%. The pH value, the contents of carbon and nitrogen and the C/N ratio were in accordance with the values recommended in norm 25 (July, 2009 adopted by Brazil's Agriculture Ministry. Only the compost from Trial 2, which had 1900 MPN g-1total solids, did not meet the E. coli standards; this was likely due to the fact that when the temperatures did not reach the thermophilic phase, the relatively long time the waste remains in the composter allows these pathogenic microorganisms to decay naturally.

  19. Composting of spent mushroom compost, carnation wastes, chicken and cattle manures.

    Science.gov (United States)

    Kulcu, Recep; Sönmez, Ilker; Yaldiz, Osman; Kaplan, Mustafa

    2008-11-01

    This study has purposed to determine the optimum mixture ratio of used mushroom compost, chicken manure, cattle manure and carnation waste for composting. For this purpose, these materials have been mixed in seven various ratios (R1-R7) and composted in the experimental composting reactors. The highest dry material losses and temperature values have been obtained by the R4 which contains 50% carnation waste, 25% chicken manure and 25% spent mushroom compost. Beside R4, mixtures of R2, R5 and R6 have also provided high process temperature and dry material loss values. The lowest dry material loss and temperature values have been obtained in the R7 which contains only carnation wastes. In the study, it has also seen that FAS (free air space) parameter is effective on the process and must be in the interval of 24-32%.

  20. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  1. Compostable cutlery and waste management: an LCA approach.

    Science.gov (United States)

    Razza, Francesco; Fieschi, Maurizio; Innocenti, Francesco Degli; Bastioli, Catia

    2009-04-01

    The use of disposable cutlery in fast food restaurants and canteens in the current management scenario generates mixed heterogeneous waste (containing food waste and non-compostable plastic cutlery). The waste is not recyclable and is disposed of in landfills or incinerated with or without energy recovery. Using biodegradable and compostable (B&C) plastic cutlery, an alternative management scenario is possible. The resulting mixed homogeneous waste (containing food waste and compostable plastic cutlery) can be recycled through organic recovery, i.e., composting. This LCA study, whose functional unit is "serving 1000 meals", shows that remarkable improvements can be obtained by shifting from the current scenario to the alternative scenario (based on B&C cutlery and final organic recovery of the total waste). The non-renewable energy consumption changes from 1490 to 128MJ (an overall 10-fold energy savings) and the CO(2) equivalents emission changes from 64 to 22 CO(2) eq. (an overall 3-fold GHG savings).

  2. Effect Various Combination of Organic Waste on Compost Quality

    Directory of Open Access Journals (Sweden)

    Hapsoh

    2015-01-01

    Full Text Available Municipal solid waste and agricultural waste have different ratio C/N and nutrients contents. They can be used as compost row materials. The purpose of the research was to get an optimum combination of both wastes to improve compost quality, to meet the Indonesian National Standard 19-7030-2004. Composting process use pots. The treatments were twelve combination of municipal solid waste (garbage market, household waste, restaurant waste and agricultural waste (rice straw, empty fruit bunches of oil palm, cassava peel, banana skin with a ratio of 1:1 and enriche by chicken manure, cow manure, wood ash and cellulolytic microorganisme. The treatment were replicated three times. The results showd that the nutrients content of compost were 0.77 to 1.19% nitrogen, 0.23 to 0.30% phosphorus, 0.46 to 0.69% potassium and 15.48 to 34.69% organic matter. The combination of agricultural waste and municipal solid waste affected the quality of compost. Compost that meets SNI 19-7030-2004 is a combination of rice straw+market waste that contains 1.12% nitrogen, 0.28% phosphorus, 0.63% potassium, ratio C/N 19.50, pH 7.42, and organic matters 37.65%.

  3. Optimization of food waste compost with the use of biochar.

    Science.gov (United States)

    Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I

    2017-06-18

    This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH4(+)) and nitrate (NO3(-)). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH4(+) by 37.8-45.6% and NO3(-) by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH4(+) and NO3(-) were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ash in composting of source-separated catering waste.

    Science.gov (United States)

    Koivula, Niina; Räikkönen, Tarja; Urpilainen, Sari; Ranta, Jussi; Hänninen, Kari

    2004-07-01

    Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had

  5. Variation in temperature during composting of food and vegetable waste.

    Science.gov (United States)

    Yadav, Kunwar D; Mistry, N J; Ganvit, Bhupesh; Pandya, Daxesh

    2013-10-01

    Composting is one of the suitable method for disposal of organic waste and convert it in to organic fertilizer. For effective composting, role of temperature within the composting heap is important. Variation of temperature in the composting heap is the indicator of type of microbial biomass present during the composting. Present study was conducted to find out the minimum volume of waste for effective composting. The present study was conducted in two phases. The first phase of study was conducted to monitor the temperature variation in different volume of composting heap and second phase of study was conducted to study the leachate production in food and vegetable waste. The results of the present study revealed that minimum 80 and 100 kg of food and vegetable waste required maintaining the thermophilic and mesophilic stage. To attain the thermophilic stage the minimum volume should be around 0.5 m3 and minimum height 0.6m. Leachate was produced at initial stage of degradation and it was more in vegetable waste compared to food waste.

  6. Environmental Aspects Of Home Composting Of Organic Household Waste

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund

    2011-01-01

    Six composting units were monitored during a two-year long experimental campaign. Data regarding chemical compositions of waste inputs and outputs, gaseous emissions and leachate productions were collected, organized in mass balances and assessed by means of LCA. The management of the home...... composting unit was very relevant for the environmental performance of home composting, as the turning frequency influence the emissions of CH4 which is the main responsible for potential impacts on global warming. Results showed that overall home composting has low environmental impacts (between -2 and 16 m...

  7. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    Science.gov (United States)

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Aerobic Food Waste Composting: Measurement of Green House Gases

    Science.gov (United States)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  9. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  10. Emission of Gases during Composting of Solid Waste

    Directory of Open Access Journals (Sweden)

    Dajana Kučić

    2017-10-01

    Full Text Available Composting is a biochemical process converting organic components into stable compost with release of heat, water, CO2 and NH3. The objective of this work was to determine the amount of CO2 and NH3 in the exhaust gases during composting of tobacco waste (TW and mixture of tobacco and grape waste (TGW. The cumulative evolved CO2 during 21 days of composting of TW and TGW, per mass of volatile matter, was 94.01 g kg−1 and 208.18 g kg−1, respectively, and cumulative evolved NH3 during composting of TW and TGW, per mass of volatile matter, was 504.81 mg kg−1 and 122.45 mg kg−1, respectively.

  11. Exploring the sustainability of composting as a solid waste ...

    African Journals Online (AJOL)

    Exploring the sustainability of composting as a solid waste management ... the aim of providing information on its economic, social and environmental sustainability. ... holds great potentials for sustainable waste management practice in Nigeria, ... data management on solid waste by relevant agencies and stakeholders, ...

  12. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Food Waste Composting Study from Makanan Ringan Mas

    Science.gov (United States)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  14. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    Science.gov (United States)

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  15. Sequential extraction of heavy metals during composting of urban waste

    Institute of Scientific and Technical Information of China (English)

    Ayari F.; Chairi R.; Kossai R.

    2008-01-01

    In urban waste (the first matter of compost), elements such as copper, nickel and lead may be found in metallic state (wire, pile, accumulator, etc.), which is considered as non-dependent state. The work undertaken at the laboratory of composting of the INRST in Henchir Lihoudia (Tunis) showed that the produced compost does not contain any mobile metallic element and the portion related to organic fraction (bioavailable) is tiny in size. We sup-posed that many reactions involving decomposition and complexation from elements related to the matrix compo-nents occurred during composting. The existence and importance of this phenomenon can be evaluated by studying the evolution of metal contents in the different fractions extracted sequentially during composting process.

  16. Critical evaluation of municipal solid waste composting and potential compost markets.

    Science.gov (United States)

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  17. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost.

  18. Fungal community dynamics and driving factors during agricultural waste composting.

    Science.gov (United States)

    Yu, Man; Zhang, Jiachao; Xu, Yuxin; Xiao, Hua; An, Wenhao; Xi, Hui; Xue, Zhiyong; Huang, Hongli; Chen, Xiaoyang; Shen, Alin

    2015-12-01

    This study was conducted to identify the driving factors behind fungal community dynamics during agricultural waste composting. Fungal community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis combined with DNA sequencing. The effects of physico-chemical parameters on fungal community abundance and structure were evaluated by least significant difference tests and redundancy analysis. The results showed that Cladosporium bruhnei, Hanseniaspora uvarum, Scytalidium thermophilum, Tilletiopsis penniseti, and Coprinopsis altramentaria were prominent during the composting process. The greatest variation in the distribution of fungal community structure was statistically explained by pile temperature and total organic carbon (TOC) (P composting.

  19. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    Science.gov (United States)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  20. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    Science.gov (United States)

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  1. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  2. Two stages kinetics of municipal solid waste inoculation composting processes

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou1; HUANG Guo-he; QIN Xiao-sheng; LIU Hong-liang

    2004-01-01

    In order to understand the key mechanisms of the composting processes, the municipal solid waste(MSW) composting processes were divided into two stages, and the characteristics of typical experimental scenarios from the viewpoint of microbial kinetics was analyzed. Through experimentation with advanced composting reactor under controlled composting conditions, several equations were worked out to simulate the degradation rate of the substrate. The equations showed that the degradation rate was controlled by concentration of microbes in the first stage. The degradation rates of substrates of inoculation Run A, B, C and Control composting systems were 13.61 g/(kg·h), 13.08 g/(kg·h), 15.671 g/(kg·h), and 10.5 g/(kg·h), respectively. The value of Run C is around 1.5 times higher than that of Control system. The decomposition rate of the second stage is controlled by concentration of substrate. Although the organic matter decomposition rates were similar to all Runs, inoculation could reduce the values of the half velocity coefficient and could be more efficient to make the composting stable. Particularly. For Run C, the decomposition rate is high in the first stage, and is low in the second stage. The results indicated that the inoculation was efficient for the composting processes.

  3. Possibilities of composting disposable diapers with municipal solid wastes

    OpenAIRE

    Colón Jordà, Joan; Ruggieri, Luz; Sánchez Ferrer, Antoni; González Puig, Aina; PUIG VENTOSA, Ignasi

    2011-01-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process per...

  4. Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar.

    Science.gov (United States)

    Rodríguez-Vila, Alfonso; Covelo, Emma F; Forján, Rubén; Asensio, Verónica

    2014-10-01

    The soils at a depleted copper mine in Touro (Galicia, Spain) are chemically degraded. In order to determine the effect of amendments and vegetation on the chemical characteristics of a mine soil and on the plant uptake of metals, a greenhouse experiment was carried out for 3 months. A settling pond soil was amended with different percentages of a compost and biochar mixture and vegetated with Brassica juncea L. The results showed that the untreated settling pond soil was polluted by Cu. Amendments and planting mustards decreased the pseudototal concentration of this metal, reduced the extreme soil acidity and increased the soil concentrations of C and TN. Both treatments also decreased the CaCl2-extractable Co, Cu and Ni concentrations. However, the amendments increased the pseudototal concentration of Zn in the soil, provided by the compost that was used. The results also showed that mustards extracted Ni efficiently from soils, suggesting that B. juncea L. is a good phytoextractor of Ni in mine soils.

  5. Ammonia emissions from the composting of different organic wastes : dependency on process temperature

    OpenAIRE

    Pagans i Miró, Estel·la; Barrena Gómez, Raquel; Font Segura, Xavier; Sánchez Ferrer, Antoni

    2006-01-01

    Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wast...

  6. Co-composting of horticultural waste with fruit peels, food waste, and soybean residues.

    Science.gov (United States)

    Choy, Sing Ying; Wang, Ke; Qi, Wei; Wang, Ben; Chen, Chia-Lung; Wang, Jing-Yuan

    2015-01-01

    Horticultural waste was co-composted with fruit peels, food waste, and soybean residues individually to evaluate the effects of these easily available organic wastes in Singapore on the composting process and product quality. Each co-composting material was mixed with horticultural waste in the wet weight ratio of 1:1 and composted for 46 days. Results showed that all co-composting materials accelerated the degradation of total carbon and resulted in higher nutrients of nitrogen (N), phosphorous (P), and potassium (K) in the final product compared with horticultural waste alone. Mixture with fruit peels achieved the fastest total carbon loss; however, did not reach the minimum required temperature for pathogen destruction. The end product was found to be the best source for K and had a higher pH that could be used for the remediation of acidic soil. Food waste resulted in the highest available nitrate (NO3-N) content in the end product, but caused high salt content, total coliforms, and slower total carbon loss initially. Soybean residues were found to be the best co-composting material to produce compost with high N, P, and K when compared with other materials due to the highest temperature, fastest total carbon loss, fastest reduction in C/N ratio, and best conservation of nutrients.

  7. Effects of earthworm casts and zeolite on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2015-05-01

    Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21days with the optimized two-stage composting method rather than in the 90-270days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  8. Environmental Aspects Of Home Composting Of Organic Household Waste

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund

    2011-01-01

    Six composting units were monitored during a two-year long experimental campaign. Data regarding chemical compositions of waste inputs and outputs, gaseous emissions and leachate productions were collected, organized in mass balances and assessed by means of LCA. The management of the home compos...

  9. THE USE OF POULTRY SLAUGHTERHOUSE WASTE TO PRODUCE COMPOST

    Directory of Open Access Journals (Sweden)

    Michał Kopeć

    2014-10-01

    Full Text Available Poultry industry generates large amounts of waste, which in the biological treatment process creates a number of problems. One of them is a high amount of fat and creatine which is hard to decompose. Composting process was carried out with the waste from poultry farms and abattoirs mixed with maize straw, which was used to improve the structure and to increase the amount of carbon in the substrate. The chemical composition of composts from poultry waste involving maize straw meets the minimum requirements for organic fertilizers. It seems that recycling of organic waste from the poultry industry should be the primary method of nutrient recovery for plants and organic matter contained in them, however on condition that the health safety is preserved.

  10. A FEASIBILITY STUDY OF PLANT FOR COMPOSTING ORGANIC WASTE IN THE CITY OF KRAGUJEVAC

    Directory of Open Access Journals (Sweden)

    Nebojša Jovičić

    2009-09-01

    Full Text Available Growing of waste quantity, its harmful influence on natural environments and world experiences has had so far impose the necessity for the analyses of techno-economic possibilities of the processes for treating the organic fraction of municipal solid waste stream, in our region. In this paper, problematic of treatment solid waste and composting process, which represents one of the most acceptable options for the processing of solid waste, are given. Composting involves the aerobic biological decomposition of organic materials to produce a stable humus-like product. Base of composting process, review of composting feedstock, use of compost, benefits of composting process and concrete proposal for composting process realization, with techno-economic analysis for the construction of composting plant on territory community Kragujevac, are given in this paper, too.

  11. Composting of Disposal Organic Wastes: Resource Recovery for Agricultural Sustainability

    Institute of Scientific and Technical Information of China (English)

    Mohammad H. Golabi; Peggy Denney; Clancy Iyekar

    2006-01-01

    One of the major problems of agricultural soils in the tropical regions of the Pacific is the low organic matter content. Because of the hot and humid environment, the soil organic matter (SOM) is minimal due to rapid decomposition.Composted organic material is being applied on agricultural fields as an amendment to provide nutrients and enhance the organic matter content for improving the physical and chemical properties of the cultivated soils. In addition land application of composted material as a fertilizer source effectively disposes of wastes that otherwise are buried in landfills. In our soil program at the University of Guam, we are evaluating the use of organic material as an alternative to synthetic fertilizers. Its goal is to develop management strategies and use available resources for improving crop production while conserving resources and preserving environmental quality. Our case study project is designed to improve soil fertility status by using composted organic wastes and assessing how the nitrogen and other essential nutrients contribute to long-term soil fertility and crop productivity without application of synthetic fertilizers. In our pilot project, compost is produced from wood chips,grinded typhoon debris mixed with animal manure, fish feed, shredded paper and other organic wastes. Mature compost is then applied on the field at the rates of 0, 5, 10 and 20 t/ha as a soil amendment on the eroded cobbly soils of southern Guam.Corn is planted and monitored for growth performance and yield. The effect of land application of composted material on the SOM content and overall soil quality indices are being evaluated in this pilot study.

  12. Co-composting of green waste and food waste at low C/N ratio.

    Science.gov (United States)

    Kumar, Mathava; Ou, Yan-Liang; Lin, Jih-Gaw

    2010-04-01

    In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12days. The TVS reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.

  13. Research on municipal solid waste composting with coal ash

    Institute of Scientific and Technical Information of China (English)

    曾光明; 袁兴中; 李彩亭; 黄国和; 李建兵; 尚谦; 陈耀宁

    2003-01-01

    Considering the fact that there is much coal ash in the municipal solid waste (MSW) in some cities of China, the feasibility of composting in this situation was studied and the effect of content of the coal ash on the composting process and some basic relative technological parameters were investigated. The values of the moisture, the total organic matter, the content of coal ash, the C/N ratio and the ventilation were suggested to be 50%-60%, 40%-60%, 40%-60%, (25∶1)-(35∶1) and 0.05-0.20m3/(min*m3), respectively.

  14. Performance of compostable baby used diapers in the composting process with the organic fraction of municipal solid waste.

    Science.gov (United States)

    Colón, Joan; Mestre-Montserrat, Maria; Puig-Ventosa, Ignasi; Sánchez, Antoni

    2013-05-01

    In modern societies, disposable diapers constitute a significant percentage of municipal solid wastes. They have been traditionally landfilled or incinerated as only limited recycling processes are being implemented in some parts of Europe. With the implementation of separated collection systems for the organic fraction of municipal solid wastes (OFMSWs) and the need to preserve the environment, compostable diapers have appeared in the market to avoid the main environmental impacts associated to non-biodegradable disposable diapers. In this study, a full-scale composting of door-to-door collected OFMSW with a 3% (w/w) of compostable diapers has also been carried out. Previously, lab-scale experiments confirmed that almost 50% of carbon of compostable diapers is emitted as CO2 under aerobic controlled conditions. The results obtained at full-scale demonstrate that both the composting process and the final end product (compost) are not altered by the presence of compostable diapers in crucial aspects such as pathogenic content, stability and elemental composition (including nutrients and heavy metals). The main conclusion of this study is that the collection of the OFMSW with compostable diapers can be a new way to transform this waste into high-quality compost.

  15. Water state changes during the composting of kitchen waste.

    Science.gov (United States)

    Shen, Dong-Sheng; Yang, Yu-Qiang; Huang, Huan-Lin; Hu, Li-Fang; Long, Yu-Yang

    2015-04-01

    Changes in water states during the composting of kitchen waste were determined. Three experiments, R(55), R(60), and R(65), with different initial moisture contents, 55%, 60%, and 65%, respectively, were performed. Three water states, entrapped water (EW), capillary water (CW), and multiple-molecular-layer water (MMLW), were monitored during the experiments. Changes only occurred with the EW and CW during the composting process. The percentage of EW increased, and the percentage of CW decreased as the composting process progressed. The R(60) experiment performed better than the other experiments according to changes in the temperature and carbon-to-nitrogen ratio (C/N). The percentage of EW correlated well (P<0.05) with the dissolved organic carbon content (DOC), electrical conductivity (EC), pH, and C/N, and was affected by the hemicellulose and cellulose contents.

  16. White spruce response to co-composted hydrocarbon-contaminated drilling waste: effects of compost age and nitrogen fertilization.

    Science.gov (United States)

    Choi, Woo-Jung; Chang, Scott X; Hao, Xiying

    2005-01-01

    There are growing interests to use co-composted drilling wastes contaminated with hydrocarbons as growth media for planting in land reclamation. However, such use of the compost may have potential problems such as inherent toxicity of residual hydrocarbon and microbial N immobilization due to high compost C to N ratios. We investigated the growth, biomass production, N uptake, and foliar delta13C of white spruce (Picea glauca [Moench] Voss) seedlings in a pot experiment using 1-, 2-, 3-, and 4-yr-old composts (with different hydrocarbon concentrations and C to N ratios) and a local noncontaminated soil with (200 kg N ha(-1)) or without N fertilization. Growth and N content of seedlings (particularly N content in roots) were lower when grown in the compost media as compared with those grown in the soil. Within the compost treatments seedling growth was affected by compost age, but the magnitude of growth reduction was not linearly proportional to hydrocarbon concentrations. Plant N uptake increased with compost age, which corresponds with an increase in indigenous mineral N concentration. Effects of N fertilization on N uptake were curtailed by the presence of indigenous mineral N (e.g., in the 4-yr-old compost) and by fertilization-induced stimulation of microbial activities (e.g., in the 1-yr-old compost). The differences in foliar delta13C values between seedlings grown in compost and soil (P < 0.05) suggest that limitations on water uptake caused by the residual hydrocarbon might have been the predominant factor limiting seedling growth in the compost media. This study suggests that water stress caused by residual hydrocarbons may be a critical factor for the successful use of co-composted drilling wastes as a growth medium.

  17. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Li, Guoxue, E-mail: yangfan19870117@126.com [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Shi, Hong; Wang, Yiming [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China)

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  18. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  19. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes.

  20. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  1. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  2. Composting Assessment for Organic Solid Waste at Fort Polk, Louisiana

    Science.gov (United States)

    2014-04-01

    disadvantage is that the compost would not be available for use at Ft. Polk. 7.1.2 Partnerships with Local Communities Ms. Lorna Hanes is the Ft...Ecosystem biomass , carbon, and nitrogen five years after restoration with municipal solid waste. Agronomy Journal 104:1305-1311. Watts, D. B., F. J...are capable of decomposing into carbon dioxide, methane, water and inorganic compounds or biomass in which the primary mechanism is the enzymatic

  3. Mass balances and life cycle inventory of home composting of organic waste

    DEFF Research Database (Denmark)

    Andersen, Jacob Kragh; Boldrin, Alessio; Christensen, Thomas Højlund

    2011-01-01

    A comprehensive experimental setup with six single-family home composting units was monitored during 1year. The composting units were fed with 2.6–3.5kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life...... wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3–0.6% of the total loss of C and 1......-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63–77% in the six composting units...

  4. Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality.

    Science.gov (United States)

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Keener, Harold M; Klingman, Michael; Dick, Warren A

    2012-12-01

    Melamine resin (MR) is introduced to the environment from many industrial effluents, including waste paint sludge (WPS) from the automobile industry. Melamine resin contains a high nitrogen (N) content and is a potential N source during composting. In this study, two carbon sources, waste paper (WP) and plant residue (PR), were used to study their effects on composting of WPS. Additional work tested the WPS-composts effects on plant growth and soil water quality. After 84 days of composting, 85% and 54% of the initial MR was degraded in WP- and PR-composts, respectively. The limiting factor was that the MR created clumps during composting so that decomposition was slowed. Compared to the untreated control, both WP- and PR-composts increased growth of cucumber (Cucumis sativus), radish (Raphanus sativus) and lettuce (Lactuca sativa). Concentrations of trace elements in plants and soil water did not rise to a level that would preclude WPS-composts from being used as a soil amendment.

  5. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.

    Science.gov (United States)

    Bustamante, M A; Paredes, C; Marhuenda-Egea, F C; Pérez-Espinosa, A; Bernal, M P; Moral, R

    2008-06-01

    The aim of this work was to study the viability of recycling the solid wastes generated by the winery and distillery industry by means of co-composting with animal manures, as well as to evaluate the quality of the composts obtained. Two piles, using exhausted grape marc and cattle manure or poultry manure, respectively (at ratios, on a fresh weight basis, of 70:30), were composted by the Rutgers static pile composting system. Throughout the composting process, a number of parameters were monitored, such as pH, electrical conductivity, organic matter, water-soluble carbon, water-soluble polyphenols, different forms of nitrogen (organic nitrogen, ammonium and nitrate) and humification indices (humification ratio, humification index, percentage of humic acid-like C, polymerisation ratio and cation exchange capacity), as well as the germination index. Organic matter losses followed first-order kinetics equation in both piles, the highest organic matter mineralisation rate being observed with exhausted grape marc and cow manure. On the other hand, the mixture with the lowest C/N ratio, using exhausted grape marc and poultry manure, showed the highest initial ammonium contents, probably due to the higher and more labile N content of poultry manure. The increase in the cation exchange capacity revealed the organic matter humification during composting. In contrast, other humification parameters, such as the humification ratio and the humification index, did not show the expected evolution and, thus, could not be used to assess compost maturity. Composting produced a degradation of the phytotoxic compounds, such as polyphenols, to give composts without a phytotoxic character. Therefore, composting can be considered as an efficient treatment to recycle this type of wastes, due to composts presented a stable and humified organic matter and without phytotoxic effects, which makes them suitable for their agronomic use.

  6. Improving the quality of municipal organic waste compost.

    Science.gov (United States)

    Tognetti, C; Mazzarino, M J; Laos, F

    2007-03-01

    The effects of different municipal organic waste (MOW) management practices (shredding, addition of carbon-rich materials and inoculation with earthworms) on organic matter stabilization and compost quality were studied. Four static piles were prepared with: (i) shredded MOW; (ii) shredded MOW+woodshavings; (iii) non-shredded MOW; and (iv) non-shredded MOW+woodshavings. After 50 days, a part of each pile was separated for vermistabilization, while the rest continued as traditional thermophilic composting piles. At different sampling dates, and in the finished products, the following parameters were measured: pH, electrical conductivity, carbon dioxide evolution, and concentrations of organic matter, total nitrogen, water-soluble carbon, nitrate nitrogen, ammonium nitrogen, and extractable phosphorus. Shredded treatments exhibited faster organic matter stabilization than non-shredded treatments, evidenced specially by earlier stabilization of carbon dioxide production and shorter thermophilic phases. Woodshavings addition greatly increased quality of final products in terms of organic matter concentration, and pH and electrical conductivity values, but decreased total nitrogen and available nutrient concentrations. Vermicomposting of previously composted material led to products richer in organic matter, total nitrogen, and available nutrient concentrations than composting only, probably due to the coupled effect of earthworm activity and a shorter thermophilic phase.

  7. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    Science.gov (United States)

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that labour availability should be used to estimate

  8. BIOHUMUS PRODUCTION BY WORMS’ COMPOSTING OF SOME FOOD WASTES

    Directory of Open Access Journals (Sweden)

    DANIELA SUTEU

    2012-06-01

    Full Text Available A laboratory set-up scale application of a simple worms’ composting technology is presented together with the waste and biohumus characterization, description of technological process and operational conditions. The laboratory application is not a complicated one, when the optimum conditions necessary for the digestion process are accomplished and is recommended in the farms where the biodegradable wastes are produced and accumulated in moderate quantities. The main product, biohumus, can be used as fertilizer for the soil, in agriculture or flower cropping.

  9. Waste composting and proving fish for production the organic fertilizers

    Directory of Open Access Journals (Sweden)

    Fernanda San Martins Sanes

    2015-06-01

    Full Text Available The volumes of waste generated in the fishing activity are increasing due to the increase in demand for these products. This implies the need for fast processing and cycling of these materials. Thus, the aim of this study was to evaluate the use of waste generated in the fishing activity as a source of organic fertilizers in agricultural production systems familiar ecological basis. The experiment was conducted at the Experimental Station Cascade / Embrapa Temperate Climate was assessed throughout the composting process and the fermentation of fish waste, identifying the main points that enable the use of these fertilizers in farming systems ecological base. The composting process of rice husk revealed be incomplete during the experiment. The compound prepared with fish waste and exhausted bark of acacia presents itself as a good source of nutrients for crops, which may be suitable as organic fertilizer for production of ecologically-based systems. For liquid organic fertilizer, the conditions under which the experiment was conducted, it is concluded that the compound resulting from aerobic or anaerobic fermentation of fish waste, present themselves as a viable source of nutrients for productive systems of ecological base. However, further studies need to be conducted to better understanding and qualification of both processes.

  10. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    Science.gov (United States)

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  11. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting.

  12. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  13. Process and Economic Feasibility of Using Composting Technology to Treat Waste Nitrocellulose Fines

    Science.gov (United States)

    1991-03-31

    Clasification ) | NPROCESS AVND ECONOMIC FEASIBILITY OF USING COMPOSTING TECHNOLOGY TO TREAT WASTE NITROCELI,.JLOSE PINES . PERSONAL. AUT-1e)R(S) .. C...tons of high protein horse feed, 254 tons of sawdust, 1414 tons of sewage sludge, and 300 tons of alfalfa. The compost retention time required to destroy...operative. (b) High- protein horse feed, $240/ton quoted from same source as I alfalfa above. Composting Technology to U.S. Army Treat Waste NC Fines 3-19

  14. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    Science.gov (United States)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  15. Household, hotel and market waste audits for composting in Vietnam and Laos.

    Science.gov (United States)

    Byer, Philip H; Hoang, Chi Phuong; Nguyen, Thi Thuc Thuy; Chopra, Sangeeta; Maclaren, Virginia; Haight, Murray

    2006-10-01

    In Da Nang and Ha Long, Vietnam and in Vientiane, Laos, there was interest by local authorities in separating and composting waste in order to reduce environmental and health problems at the local landfills and to produce a soil conditioner for local agricultural use. To assist in the planning of composting projects, three studies were carried out to estimate waste quantities and composition. 1. A 9-day audit of waste from 45 vendors in a market in Vientiane, the capital of Laos. The total quantity of waste and the quantity in each of nine categories were estimated for each of six different types of vendors. 2. A 7-day audit of waste disposed by three hotels in the tourist area of Ha Long, Vietnam. Waste quantities were estimated in total, on a per guest basis, and in three main categories: compostables, recyclables and miscellaneous. 3. A 7-day audit of waste collected from 74 households in Da Nang, the fourth largest city in Vietnam. Waste from each household was separated into compostable and non-compostable waste. Over 60% of each waste source comprised compostable waste and this was considered significant enough to warrant further planning of composting operations.

  16. Shifts in Bacterial Community Structure in the Process of Composting of Organic Wastes

    Directory of Open Access Journals (Sweden)

    Polina Galitskaya

    2016-04-01

    Full Text Available Using 454 pyrosequencing, changes in the community structure of composting bacteria were estimated over 270 days. The compost contained the organic fraction of municipal solid waste, sawdust polluted by oil, and sewage sludge. All of these wastes are typical for a Russian city and they were obtained in Kazan (Tatarstan Republic, Russia. In the initial stage of composting, the taxa Lactobacialles, Rhodospiralles, Burkholderiales, and Xanthmonadales dominated in the compost. By the end of the thermophilic stage, the dominant species changed: typical compost inhabitants belonging to the taxa Flavobacteriales, Chitinophagaceae, and Bacterioidetes, as well as non-typical taxa Ectothiorhodospiraceae and Parvibaculum sp., were observed in the compost. The presence of the latter two taxa may be explained by the presence of oil-polluted sawdust in the composting mixture. In the later stage, the dominant taxa remained the same; however, their relative abundance declined.

  17. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    Science.gov (United States)

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  18. Evaluation of an Organic Waste Composting Device to Household Treatment

    Directory of Open Access Journals (Sweden)

    C. Alejandro Falcó

    2015-09-01

    Full Text Available The performance of a plug-flow automated aerobic digester for the composting of the biodegradable organic waste (BOW from a typical family at its generation rhythm was evaluated. During 13 month assessment, 179.7 kg of BOW were treated and 106.7 kg of compost were obtained with a C:N ratio of 12 and an average concentration of N of about 2.72%. Additional tests enabled to assess the generation of stable and good quality compost according to the considered standards, suitable for using as organic fertilizer and other uses, such as biotreatments. The design, location and operational characteristics of the device have determined reduced leachate emissions, the absence of unpleasant odour generation and incidence of insects or other vectors, implying the viability of their use without affecting the user´s quality of life. It could be an efficient alternative treatment for household BOW, from a technical, economic, energy, cultural and environmental point of view, easy to implement for users lacking in special training. 

  19. Assessing the addition of mineral processing waste to green waste-derived compost: an agronomic, environmental and economic appraisal.

    Science.gov (United States)

    Jones, D L; Chesworth, S; Khalid, M; Iqbal, Z

    2009-01-01

    The overall aim of this study was to evaluate the benefit of mixing two large volume wastes, namely mineral processing waste and source-segregated green waste compost, on the growth performance of plants targeted towards high (horticulture/agriculture) and low (amenity/restoration) value markets. The secondary aims were to evaluate the influence of mineral waste type on plant growth performance and to undertake a simple economic analysis of the use of mineral-compost mixtures in land restoration. Our results showed that in comparison to organic wastes, mineral wastes contained a low available nutrient content which reduces compost quality. This is supported by growth trials with tomato, wheat and grass which showed that, irrespective of mineral source, plants performed poorly in compost blended with mineral waste in comparison to those grown in green waste or peat-based compost alone. In terms of consumer confidence, unlike other wastes (e.g. biosolids and construction/demolition waste) the mineral quarry wastes can be expected to be free of potentially toxic elements, however, the production costs of compost-mineral waste mixtures and subsequent transport costs may limit its widespread use. In addition, handling of the material can be difficult under wet conditions and effective blending may require the purchase of specialist equipment. From our results, we conclude that mineral fines may prove useful for low quality, low value landscaping activities close to the source of production but are unsuited to high value markets.

  20. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-10-01

    The composting of lignocellulosic waste into compost is a potential way of sustainably disposing of a waste while generating a useful product. The current study determined whether the addition of sugarcane bagasse (SCB) (at 0, 15, and 25%) and/or exhausted grape marc (EGM) (at 0, 10, and 20%) improved the two-stage composting of green waste (GW). The combined addition of SCB and EGM improved composting conditions and the quality of the compost product in terms of temperature, water-holding capacity, particle-size distribution, coarseness index, pH, electrical conductivity, water-extractable organic carbon and nitrogen, microbial numbers, enzymatic activities, polysaccharide and lignin content, nutrient content, respiration, and phytotoxicity. The optimal two-stage composting and the best quality compost were obtained with the combined addition of 15% SCB and 20% EGM. With the optimized two-stage composting method, the compost matured in only 21days rather than in the 90-270days required for traditional composting.

  1. Demonstration of Combined Food and Landscape Waste Composting at Fort Leonard Wood, MO: Fort Leonard Wood Installation Strategic Sustainable Plan

    Science.gov (United States)

    2016-01-01

    university postconsumer food wastes . Compost Science and Utilization 6:75-81. Epstein, E. 1997. The Science of Composting. Lancaster, PA: Technomic...Sustainability Innovations (CASI) ERDC/CERL TR-16-1 January 2016 Demonstration of Combined Food and Landscape Waste Composting at Fort Leonard Wood, MO...amendments and organic fertilizers using simple composting technologies, less than 3% of food wastes are recovered and recycled and the remainder are

  2. Co-composting of solid and liquid olive mill wastes: management aspects and the horticultural value of the resulting composts.

    Science.gov (United States)

    Aviani, I; Laor, Y; Medina, Sh; Krassnovsky, A; Raviv, M

    2010-09-01

    Successful co-composting of solid and liquid olive mill wastes (OMW) and obtaining a product of horticultural value may increase the viability of this recycling approach. Two composting cycles were performed, in which olive mill solid wastes (OMSW) were used to form five mixtures, wetted either with fresh water or with olive mill wastewater (OMWW). Up to approximately 0.3m(3) of OMWW could be applied to each m(3) of the raw materials without negatively affecting the chemical, physical and horticultural properties of the resulted composts. A growing media composed of perlite amended with 25-33% OMW-composts showed higher suppressiveness against Fusarium oxysporum f. sp. melonis as compared to equivalent perlite:peat moss mixtures. The yields of tomato plants grown in peat moss amended with 20% (v:v) of OMW-composts were not significantly different than plants grown in unamended peat. The viability of co-composting as a treatment approach for OMWW is discussed in the context of management aspects and the horticultural value of the final product.

  3. FERTILISER VALUE AND TRACE ELEMENT CONTENT OF COMPOSTS PRODUCED FROM DIFFERENT WASTES

    Directory of Open Access Journals (Sweden)

    Edward Meller

    2015-09-01

    Full Text Available Composting process provides a valuable material improving physical and chemical properties of soil. The quality of the obtained compost depends to a great extent on the kind of material subjected to stabilisation. Composting biodegradable products may result in the end product exceeding heavy metal limits that cannot be used in agriculture. The studies included composts produced in the compost plant in Kołobrzeg, the Municipal Waste Recovery and Storage Plant in Leśno Górne and the Waste Managemant Plant in Wardyń Górny. Composts were made from municipal solid waste, sewage sludge with straw and sawmill waste, and from urban green waste. The following determinations were determined: morphological composition, total content of macroelements and microelements and the level of these elements soluble in HCl at the concentration of 0.5 mol∙dm-3. The examined composts contained the amounts of total Pb, Ni and Cd allowing for their use in agriculture and the compost from sewage sludge, straw and sawmill waste, turned out to have the best utilisation properties.

  4. Turnover and loss of nitrogenous compounds during composting of food wastes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Few people have so far explored into the research of the dynamics of various nitrogenous compounds (including water-soluble nitrogen) in composting of food wastes.This study aimed to investigate the solid-phase nitrogen,water-soluble nitrogen,nitrogen loss together with ammonia volatilization in the process of food wastes composting.A laboratory scale static aerobic reactor in the experiment was employed in the composting process of a synthetic food waste,in which sawdust was used as the litter amendment.In the experiment,oxygen was supplied by continuous forced ventilation for 15 days.The results have shown that the concentrations of total nitrogen and organic nitrogen decrease significantly in the composting process,whereas NH4+-N concentration increases together with little fluctuation in NO3--N.After composting,the total content of the water-soluble nitrogen compounds in the compost greatly increased,the total nitrogen loss amounted to 50% of the initial nitrogen,mainly attributed to ammonia volatilization.56.7% of the total ammonia volatilization occurred in the middle and late composting of the thermophilic stage.This suggested that the control at the middle and late composting of thermophilic stage is the key to nitrogen loss in the food waste compost.

  5. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    Energy Technology Data Exchange (ETDEWEB)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    2015-08-15

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.

  6. Data summary of municipal solid waste management alternatives. Volume 9, Appendix G: Composting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting`s contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  7. Windrow composting as horticultural waste management strategy - A case study in Ecuador.

    Science.gov (United States)

    Gavilanes-Terán, Irene; Jara-Samaniego, Janneth; Idrovo-Novillo, Julio; Bustamante, Ma Angeles; Moral, Raúl; Paredes, Concepción

    2016-02-01

    In Ecuador, enormous quantities of vegetable wastes are produced annually from the horticultural industries. Composting can be a feasible treatment to stabilise horticultural wastes and, thus, to improve their properties for use as organic fertilisers. In this study, two different piles were prepared, using laying hen manure and sawdust mixed with broccoli or tomato waste, respectively, and composted by the turned windrow composting system. Throughout the composting process, the temperature of the mixtures was monitored and physico-chemical and chemical properties and the degree of maturity were determined. Also, principal component analysis was used to interpret the data set of compost characteristics. In both piles, the temperature exceeded 55°C for more than 2weeks, which ensured maximum pathogen reduction. Organic matter (OM) losses followed a first-order kinetic equation in both piles. The final composts showed a suitable degree of stability and maturity and an absence of phytotoxins, as observed in the evolution and final values of the total organic carbon/total nitrogen ratio (Corg/NT50%) and cation exchange capacity (CEC>67meq (100g OM)(-1)). As well, the evolution of different humification indexes during composting was a good indicator of the OM humification process. The type of vegetable waste used influenced OM and NT mineralisation and the final properties of the composts, showing the mixture with tomato waste a higher fertilising capacity and less environmental problems.

  8. Soil chemical properties and nutrients in maize fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2017-06-01

    Full Text Available Urban waste compost has a potential to be used as an organic fertilizer in agriculture, but field studies are required to define the recommendable rates for crops. This study aimed at evaluating the effect of fertilization with urban waste compost on the soil chemical properties, yield, nutrient and heavy metal contents, in maize leaves and grains. The field experiment was carried out in a randomized complete block design, with seven treatments and four replications. The treatments consisted of six urban waste compost doses (0 Mg ha-1, 5 Mg ha-1, 10 Mg ha-1, 20 Mg ha-1, 30 Mg ha-1 and 40 Mg ha-1, applied in the planting furrow, plus an additional control treatment, with NPK mineral fertilization and no waste compost application. Fertilization with up to 40 Mg ha-1 of urban waste compost improves soil fertility. Fertilization with urban waste compost increases grain yield and the N, P and K contents in leaf tissue and maize grains, without inducing plant contamination with heavy metals. The application of 30 Mg ha-1 of urban waste compost can replace mineral fertilization in maize cultivation.

  9. Changes of parameters during composting of bio-waste collected over four seasons.

    Science.gov (United States)

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2016-11-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  10. Organized and optimized composting of agro-waste some important considerations and approaches.

    Science.gov (United States)

    Tripathi, Shilpa

    2013-01-01

    In the modern industrialized society, generation of solid waste, such as agricultural waste, yard waste, waste paper and food waste is increasing at an alarming rate. In countries, like India, a common method of their disposal adopted by farmers, agro- industries, municipal workers and contracting agencies is to burn such waste on site or in incinerators leading to emission of green house gases and release of pollutants directly into atmosphere. In developed countries, these solid wastes are disposed of through landfilling, which are clogging under ever-increasing load. Emission of gases from land- fills poses yet another environmental challenge. Today, composting offers a promising solution to disposal of agro-waste with minimum harmful impact on environment. Need of the hour is to carry out composting in an organized and controlled manner to derive maximum benefits with minimum undesirable effects and researchers are attempting to compost agro-wastes with these objectives in mind.

  11. Composting of municipal solid wastes in Jujuy (Argentina); Compostaje de residuos solidos urbanos en la provincia de Jujuy, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Santos Romero, E. E.; Boccardo, R.; Kosir, A.; Altamirano, F.; Figliolo, C.; Arias, P.; Aguado, R.; Zankar, G. [Universidad de Jujuy. Argentina (Argentina); Gonzalez Carcedo, S. [Universidad de Burgos (Spain)

    1999-11-01

    The results from a first experience of composting of urban solid waste in Jujuy (Argentine) were shown. The organic part of a solid waste collected from the city San Salvador, was composted during 3 months experience in windrow piles and physico-chemical properties were monitored. The time of composting was diminished by the application of an aqueous aminoacid solution. (Author) 10 refs.

  12. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  13. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    Science.gov (United States)

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste - a compost maturity analysis perspective.

    Science.gov (United States)

    Raut, M P; Prince William, S P M; Bhattacharyya, J K; Chakrabarti, T; Devotta, S

    2008-09-01

    An investigation was carried out in the laboratory to find out the microbial dynamics and enzyme activities during rapid composting of municipal solid waste (MSW). Various treatments such as aeration (A), addition of chemical agents (glucose (G) and acetic acid (AA) and application of cellulolytic microbial (M) inoculum (Phanerochaete chrysosporium and Trichoderma reesei) were used to facilitate the decomposition of MSW. The result of the present investigation revealed that the degradation of organic substrates were quick (within 9-12 days) in case of rapid composting as indicated by the reduction (below 20) in C/N ratio. Whereas, normal composting took more than 20 days to attain C/N ratio of below 20. Estimation of selected enzymes (amylase, protease, phosphatase and cellulase) provided information on the substrate specific degradation profiles of various labile substrates contained in organic waste.

  15. Carbon decomposition by inoculating Phanerochaete chrysosporium during drum composting of agricultural waste.

    Science.gov (United States)

    Varma, V Sudharsan; Ramu, Kamma; Kalamdhad, Ajay S

    2015-05-01

    The effect of Phanerochaete chrysosporium inoculation during drum composting of agricultural waste was performed at different composting stages. Three trials were carried out with (5:4:1) combination of vegetable waste, cattle manure, and sawdust along with 10 kg of dried leaves with a total mass of 100 kg in a 550 L rotary drum composter. Trial 1 was a control without inoculation of fungus, while trial 2 was inoculated during the initial day (0th day of composting), and trial 3 was inoculated after the thermophilic phase, i.e., on the 8th day of composting period. The inoculation of fungus increased the volatile solids reduction by 1.45-fold in trial 2 and 1.7-fold in trial 3 as compared to trial 1 without any fungal inoculation. Total Kjeldahl Nitrogen (TKN) was observed with 2.31, 2.62, and 2.59% in trials 1, 2, and 3, respectively, at the end of 20 days of composting period. Hence, it can be concluded that inoculation of white-rot fungus increased the decomposition rate of agricultural waste within shorter time in drum composting. However, inoculation after the thermophilic phase was found more effective than inoculation during initial days of composting for producing more stabilized and nutrient-rich compost.

  16. Development of microbial community in the course of composting of garden waste

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Composting represents one of the technologies of processing of biodegradable municipal waste. Samples collected from composting plants were analyzed chemically, physically and microbiologically. The pH of bio waste samples increased from 6.5 to 8.6. The total carbon to nitrogen ratio in samples of bio waste decreased, in the course of composting, from 40:1 up to the value of 25:1 while the total nitrogen to phosphorus ratio decreased from 10:1 up to 8:1. Indicator groups of microorganisms were monitored in compost samples. Representatives of Enterobacter genus, namely E. cloacae and E. aerogenes were identified in the samples on the basis of biochemical tests. The bacterial groups needed for efficient composting, i.e. order Bacillales and Actinomycetales, were present in appreciable amounts.

  17. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  18. Characterization of MSW and related waste-derived compost in Zanzibar municipality.

    Science.gov (United States)

    Vuai, Said Ali Hamad

    2010-02-01

    The spread of municipal solid waste (MSW) in Zanzibar municipality has been associated with environmental pollution, unpleasant city conditions, contamination of water sources and coastal areas together with harbouring of malaria vectors. The contamination has a close relationship with eruption of diarrhoea, cholera and typhoid which claim the lives of the residents. Most of the wastes are of domestic and market origin and have the potential for compost production. This study examined the possibility of composting MSW from Zanzibar municipality as an alternative way of SW management and assessed the nutrient contents of the compost for application in agricultural production. Two major classes of SW were selected for the study: municipal solid waste and rice milling by-products. The samples were composted aerobically and anaerobically. The results showed that aerobic composting reduced about 60% of the waste volume. This volume reduction suggests that composting can be a promising SW management technique by reducing the large demand of space for landfilling. Municipal solid waste composted under anaerobic conditions produced compost with relatively higher concentrations of dissolved species than that produced under aerobic conditions. The trace metal contents were higher in MSW than in rice milling by-products. It was found that the unmanaged compost collected from the dumping site had low nutrient contents and was enriched with trace metals. Generally, physico-chemical characteristics, nutrients and trace metal levels suggest that Zanzibar municipal solid waste can produce high-quality compost for application to a wide range of soil types to improve their fertility, under proper management.

  19. Phytoavailability and fractions of iron and manganese in calcareous soil amended with composted urban wastes.

    Science.gov (United States)

    Gallardo-Lara, Francisco; Azcón, Mariano; Polo, Alfredo

    2006-01-01

    Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.

  20. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    Science.gov (United States)

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    Science.gov (United States)

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  2. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    Science.gov (United States)

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  3. Waste compost effect on macronutrients in haplorthox soil

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Composting is a controlled aerobic process to treat and stabilize organic wastes, transforming them into organic fertilizers. It is environmentally friendly (by treating polluting wastes and recycling nutrients and materials, sanitary (by breaking the cycle of diseases and eliminating vectors and socially beneficial (by generating jobs and improving crop yields. The use of compost from urban waste (the product obtained by composting the organic part of solid household wastes can improve soil fertility without harming the environment. This study aimed to evaluate the effect of levels of organic fertilizer (waste compost - WC on soil macronutrient contents. The experiment was performed at the Animal Nutrition and Pasture Center – Instituto de Zootecnia – Nova Odessa, SP, between January and June 2013, in a Haplorthox soil (pHCaCl2= 4.9, cultivated with piatagrass (Brachiaria brizantha, Stapf, without liming. The treatments involved five rates of WC application: 0, 2.0, 4.0, 6.0, 8.0 and 10.0 Mg ha-1, mixed with soil before sowing the grass. The experimental design was randomized blocks, with five replications, in pottery vessels (3.34 dm3. Soil samples were collected prior to the experiment (original soil and after cultivation of the grass (60 days after application. The samples were air dried and passed through sieves with 2 mm mesh and analyzed chemically. The macronutrients (P, S, in mg kg-1 and K, Ca and Mg mmolc kg-1 were quantified. The method to measure P, Ca, Mg and K was atomic emission spectrophotometry, after extraction with ion exchange resin, and the S concentration was measured by turbidimetry. The data were analyzed by the mixed procedure of SAS V. 9.2. The degrees of freedom related to the five rates (quantitative treatment were decomposed into orthogonal polynomials to obtain the best equation to fit the data. In the original soil, the concentrations of the macronutrients analyzed were considered low. The application of the WC

  4. Biodegradation of paper waste under controlled composting conditions.

    Science.gov (United States)

    Alvarez, J V López; Larrucea, M Aguilar; Bermúdez, P Arraiza; Chicote, B León

    2009-05-01

    The presence of paper in municipal solid waste (MSW) interferes with the efficiency of composting plants. The compost feedstock to these plants is between 12% and 27% paper on a dry weight basis, with an initial C:N ratio ranging from 32:1 to 57:1. Tests of the last aerobic biodegradability (LAB) of the type of paper present in paper and cardboard packaging were carried out, following UNE-EN 14046 standards. The results obtained, measured through the quantity of CO(2) generated over 45 days, compared with the maximum that could be produced (ThCO(2)), showed that the presence of paper retards, to a great degree, the biodegradation of organic material in general. Specifically, the presence of papers with a degradation D (%) >60% at 45 days (white (W) and recycled paper (R)) could be allowed, but always in proportions that did not exceed 27% in dry weight. These results can be achieved with an industrial level process, pre-treated by trituration.

  5. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  6. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    Science.gov (United States)

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. OrganicWaste for Compost and Biochar in the EU: Mobilizing the Potential

    Directory of Open Access Journals (Sweden)

    Daniel Meyer-Kohlstock

    2015-06-01

    Full Text Available While several EU member states have working compost markets, only about one third of the bio-waste, around 35 Mio tons is used to produce compost, and to some degree, biogas. The major part is still incinerated or landfilled together with other waste. This paper proposes the improvement of existing and the creation of new compost markets based on the integration of biochar and the implementation of obligatory recycling targets with flexible implementation approaches. Based on a literature review, the production of compost with biochar reduces some of the nitrogen and carbon losses and accelerates the composting process. This indicates economical benefits for the compost producer and the farmer, as well as reduced greenhouse gas emissions. An obligation to recycle organic waste, may it be on a national or on EU level, together with the implementation of appropriate collection systems, could provide the economic and societal base to mobilize the currently unused bio-waste. Should this scenario be realized, the annual amount of biochar-compost out of bio-waste could be used to serve around 3.7% of all arable land in the EU. This would demand no large-scale application, but instead specific uses for specific soil-crop constellations.

  8. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum.

    Science.gov (United States)

    Manu, M K; Kumar, Rakesh; Garg, Anurag

    2017-06-01

    Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study on mechanisms of biosurfactant-enhanced composting technology for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.Y.; Huang, G.H.; Chen, B.; Xi, B.D.; Maqsood, I. [Regina Univ., SK (Canada)

    2003-07-01

    Composting is increasingly being used for solid waste treatment. The efficiency of solid waste composting might be enhanced using biosurfactants produced by microbial activities. This study was conducted to characterize the effect of biosurfactant on solid waste biodegradation throughout the composting process. The method employed involves shredding solid waste, followed by a treatment in an 8-litre (L) batch reactor. Biosurfactant production was monitored daily along with characteristics and maturity degree. Surface tension and emulsification capacity were of particular concern. The measurement of indices such as humic acid carbon (CHA) and fulvic acid carbon (CFA) were used to evaluate the maturity degree. The results indicated that the highest level of biosurfactant concentration was achieved on the third day, and within two days, related emulsification capacity reached its peak. This study confirmed the presence of biosurfactants and their function during the composting process. 16 refs., 2 tabs., 4 figs.

  10. The determinants for the adoption of compost from household waste ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences ... Both descriptive statistics and logit model are used to analyze the data collected from 108 farmers ... Keywords: Adoption, compost users, logit model, non compost users, odds ratio.

  11. Influence of lime on struvite formation and nitrogen conservation during food waste composting.

    Science.gov (United States)

    Wang, Xuan; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study aimed at investigating the feasibility of supplementing lime with struvite salts to reduce ammonia emission and salinity consequently to accelerate the compost maturity. Composting was performed in 20-L bench-scale reactors for 35days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis), and Mg and P salts (MgO and K2HPO4, respectively). Nitrogen loss was significantly reduced from 44.3% to 27.4% during composting through struvite formation even with the addition of lime. Lime addition significantly reduced the salinity to less than 4mS/cm with a positive effect on improving compost maturity. Thus addition of both lime and struvite salts synergistically provide advantages to buffer the pH, reduce ammonia emission and salinity, and accelerate food waste composting.

  12. Anaerobic composting of waste organic fraction. Compostaje anaerobico de la fraccion organica de los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Baere, L. de; Verdonck, O.; Verstraete, W.

    1994-01-01

    The dry anaerobic composting can be carried out in mesophilic and thermophilic conditions. Gas production of 6,2 and 8.5 m''3 biogas m''3 daily in laboratory fermenters was obtained. The quality of waste is higher than obtained in aerobic process. The streptococcus sludge was destroyed. This experimental can be applied for big scale and it permits energy recovery and organic compost of municipal solid wastes. (Author)

  13. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste.

    Science.gov (United States)

    Jurado, M M; Suárez-Estrella, F; Vargas-García, M C; López, M J; López-González, J A; Moreno, J

    2014-01-15

    Many alternatives for the proper disposal of horticultural plant wastes have been studied, and composting is one of the most attractive due to its insignificant environmental impact and low cost. The quality of compost for agronomical use is related to the degree of organic matter maturation and stabilization. Traditional parameters as well as temperature, ratio C/N, cationic exchange capacity, extractable carbon, or evolution of humificated substances have been successfully used to assess compost maturity and stability. However, microorganisms frequently isolated during composting release a wide range of hydrolytic enzymes, whose activity could apparently give interesting information on the rate of decomposition of organic matter and, therefore, on the product stability. The aim of this work was to study the evolution of some important enzymatic activities during composting of agricultural wastes and their comparison with other chemical parameters commonly employed as quality and maturity indexes, to establish a relationship between the degradation intensity of specific organic carbon fractions throughout the process. In this work, the chemical and biochemical parameters of plant wastes were studied along a composting process of 189 days to evaluate their importance as tools for compost characterization. Results showed an intense enzymatic activity during the first 2-3 weeks of composting (bio-oxidative phase), because of the availability of easily decomposable organic compounds. From a biological point of view, a less intense phase was observed between second and third month of composting (mesophilic or cooling phase). Finally, chemical humification parameters were more closely associated with the period between 119 and 189 days (maturation phase). Significant correlations between the enzymatic activities as well as between enzyme activities and other more traditional parameters were also highlighted, indicating that both kind of indexes can be a reliable tool to

  14. The effect of palm wastes compost as peat substitute on cultivation of Dieffenbachia amoena ornamental plant

    Directory of Open Access Journals (Sweden)

    S. H. Nourani

    2013-10-01

    Full Text Available This research was conducted in order to investigate the possibility of using palm wastes compost as substrate for cultivation of Dieffebnbachia amoena at five levels (ratio of 0, 25, 50, 75 and 100% v/v as substitute for peat and peat: perlite (4:1 treatment as control, as a randomized complete blocks design with three replications. Chemical and biological properties of palm wastes compost, physico-chemical characteristics of growth media and growth indices after 7 months were evaluated and measured. Results showed that carbon to nitrogen ratio (C/N=18 and germination test (71.25% indicated that the palm wastes compost is mature and stable. Nutrients content, pH and electrical conductivity of compost was higher than peat. The physico-chemical characteristics of substrates showed that 75% compost ratio was in the ideal range. Evaluation of the growth indices such as plant height, stem diameter, fresh and dry weight of shoots, and fresh weight of roots shows that the highest and the least growth rate was obtained from 75% and 100% compost treatments, respectively. In general, palm wastes compost is a suitable substrate for growth of Dieffenbachia and could be replaced up to 75% with imported peat in peat-perlite mediums.

  15. Microbiological biodiversity in poultry and paddy straw wastes in composting systems

    Directory of Open Access Journals (Sweden)

    Sunita Devi

    2012-03-01

    Full Text Available Immense quantity of waste is generated in association with poultry meat egg and crop production. The potential risks due to disposal of these wastes are magnified as a result of dense refinement of poultry production and the decreasing amount of land available for waste disposal. The study aims at studying the microbiological biodiversity of poultry waste and paddy straw based co-composting system. The predominant microflora of the poultry manure were bacteria, fungi, enteric bacteria and spore forming bacteria whose population was high at the initiation of composting but decreased significantly as the compost approached maturity. The initial load of inherent enteric groups of bacteria in poultry waste, that also includes some pathogenic ones, is considerably reduced and some new vital groups contributed to compost quality as the microbiological biodiversity sets in the system and becomes stable. Major fraction of nitrogen of poultry waste was subjected to ammonia volatilization and a fraction of it conserved by co-composting it in conjunction with wastes having low nitrogen contents. In the treatment T1 and T5, where poultry manure and paddy straws alone were composted, 60 and 30 percent of organic carbon, respectively, was lost over a period of six months. Whereas in treatments T2,T3 and T4, poultry manure and paddy straw were co-composted in the ratio of 3:1, 2:2 and 1:3, respectively, 51.4,45.0 and 37.0 percent of carbon, respectively, was lost during decomposition. The C: N ratio in all the treatments decreased significantly to 18.3 for T1, 24.7 for T2, 27.0 for T3, 34.9 for T4 and 38.5 for T5 at the end of composting period.

  16. Characterization of explosives processing waste decomposition due to composting

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Tyndall, R.L.; Stewart, A.J.; Ho, C.H.; Ironside, K.S.; Caton, J.E.; Caldwell, W.M.; Tan, E.

    1991-11-01

    Static pile and mechanically stirred composts generated at the Umatilla Army Depot Activity in a field composting optimization study were chemically and toxicologically characterized to provide data for the evaluation of composting efficiency to decontaminate and detoxify explosives-contaminated soil. Characterization included determination of explosives and 2,4,6,-trinitrotoluene metabolites in composts and their EPA Synthetic Precipitation Leaching Procedure Leachates, leachate toxicity to Ceriodaphnia Dubia and mutagenicity of the leachates and organic solvent extracts of the composts to Ames bacterial strains TA-98 and TA-100. The main conclusion from this study is that composting can effectively reduce the concentrations of explosives and bacterial mutagenicity in explosives -- contaminated soil, and can reduce the aquatic toxicity of leachable compounds. Small levels of explosive and metabolites, bacterial mutagenicity, and leachable aquatic toxicity remain after composting. The ultimate fate of the biotransformed explosives, and the source(s) of residual toxicity and mutagenicity remain unknown.

  17. Composting of tobacco plant waste by manual turning and forced aeration system

    Directory of Open Access Journals (Sweden)

    Nonglak Saithep

    2009-05-01

    Full Text Available The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a 3-HP air pump with a flow rate of 19 litres min-1 for 15 minutes every morning and evening. The completely randomised design of turned and force-aerated piles was performed in triplicate. The composting activity of both systems during the composting period was measured by several parameters: temperature, pH, moisture content, C/N ratio, growth of microorganisms, cellulase activity, and nicotine degradation in the set-up piles. Both systems had similar temperature, pH, and moisture content conditions in the piles during the composting process. However, the forced aeration system was more advantageous for the growth of mesophilic and thermophilic microorganisms, for cellulase activity from cellulase-producing microorganisms, and for nicotine degradation, when compared to the manual turning system. In conclusion, the forced aeration system was more efficient than the manual turning system in composting and is a viable alternative method for the composting process.

  18. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  19. Application of organic waste composts when producing forest planting material

    Directory of Open Access Journals (Sweden)

    Romanov Evgeny M.

    2016-01-01

    Full Text Available Most seedlings and saplings of woody plants in the Russian Federation are produced in the open ground in forest nurseries. In order to produce high quality planting material it is necessary to support and preserve soil fertility, which can be obtained by using organic wastes and organic-based fertilizers. Our research is aimed at the assessment of the influence of non-conventional organic fertilizers on fertility of podzols and on the growth rate of seedlings and saplings of woody plants in forest nurseries. Our research shows, that the application of non-conventional organic fertilizers does not result in any accumulation of heavy metal salts in podzols, but optimizes hydro physical and agrochemical properties of the ploughed horizon. The efficiency of non-conventional organic fertilizers depends on their composition, physical and chemical characteristics of the original components, their doses applied and original fertility of soils. A combined application of non-conventional organic fertilizers and sand results in the optimization of practically all soil fertility parameters in middle clay-loam soils, while application of non-conventional organic fertilizers and clay is optimal for application on light soils. The optimal application dose of non-conventional fertilizers depends on soil texture, woody species and the fertilizer composition. An optimal application dose for Norway spruce on a light clay-loam soil is 50-80 tons/ha, and on a middle clay-loam soil is 149-182 tons/ha. It is 50 tons/ha for Scots pine growing on a sandy loam soil, and 100 tons/ha for the same species growing on a sandy soil or a light clay-loam. For Siberian larch growing on a light clay-loam soil the dose of fertilizer applied should be 150 tons/ha. It is recommended to apply composts containing over 50% (by weight of Category II wastes (substrate for the amelioration of light soils, and composts containing over 40% (by weight of Category I wastes (filler for the

  20. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    Science.gov (United States)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  1. Experimental Studies on Co-composting of Municipal Solid Waste with Paper Mill Sludge.

    Science.gov (United States)

    Manjula, G; Meenambal, T

    2014-07-01

    In this study, a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with paper mill sludge at different C/N ratios. About 10 kg of shredded waste containing paper mill sludge, saw dust and municipal solid waste was placed in reactors in different proportions and 100 mL of effective microorganisms was added to it. The variation in physical and chemical parameters was monitored throughout the process. The results indicate that co-composting of paper mill sludge with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.

  2. Composting as Final Alternative to Solid Waste from Ceasa Curitiba/PR

    Directory of Open Access Journals (Sweden)

    Cleverson V. Andreoli

    2010-06-01

    Full Text Available Solids waste (SW have been a municipal government concern. Centrais de Abastecimento (CEASA, the wholesale markets, are examples of SW potential generators. The CEASA localized in Curitiba city generates about 25 ton of SW per day corresponding to 20 ton of organic solid waste, consisting mainly of leftover or surplus of products marketed in the unit. The alternatives for this waste class are landfill, incineration, biodigesters and composting. The aim of the present work was to evaluate the composting as an alternative to disposal of waste based on the diagnosis made previously in the Program of Waste Management. It was found the composting is the cheaper solution available, ranging form U$ 6 to U$ 10 for natural method and U$ 20 to U$ 90 per ton for the accelerated method. It has suggested the compost from the composting method should be sold at CEASA with the objective to decrease the value paid by storekeeper to form a cycle: The farmer produces foods to market at CEASA and receive the compost to be applied partial or overall to substitute the chemical additives in his fields and turn to CEASA as foods and son on, encouraging the farmers to use natural nutrients and reduce their dependence on artificial inputs.

  3. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  4. Developing Optimal Combination of Bulking Agents in an In-Vessel Composting of Vegetable Waste

    Directory of Open Access Journals (Sweden)

    C. C. Monson

    2010-01-01

    Full Text Available The objective of the study is to determine the optimum combination of feed stock components for composting the organic solid waste, a prerequisite for effective microbial degradation and for obtaining quality compost. Combination of dry leaves with locally available bulking agents like sawdust, wood shavings, paddy straw, sugarcane bagasse and rice husk are composted along with vegetable waste in a laboratory scale reactor for the study. The central core of composting process is replicated in controlled conditions in the in-vessel by keeping initial feed stock C/N ratio fixed between 30 and 35. The study is monitored for 14 days for the variations in temperature, pH, moisture and macronutrients C and N of the compost. It is found that composting vegetable waste with the combination of paddy straw and dry leaves provided best results of C/N ratio of 17.58 confirming that, if right feedstock components are provided, an effective environment for the growth of microorganisms is achieved to accelerate the process to produce a resultant C/N ratio acceptable to be used as compost.

  5. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste.

    Science.gov (United States)

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-01

    Efficient composting process requires set of adequate parameters among which physical-chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min(-1). During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a "mirror image" of the oxygen concentration curve while the peak values of the temperature were occurred 9.5h after the peak oxygen consumption.

  6. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    Directory of Open Access Journals (Sweden)

    Ogefere, H. O.

    2010-01-01

    Full Text Available Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of composting significantly (p<.0.05 affected microbial counts as the counts decreased from the initial value at week zero to much lower value at week 40. A total of 274 bacterial and fungal isolates were recovered from the composting waste and majority (60.58% were isolated from the open heap. Bacillus subtilis, Pseudomonas aeruginosa and Aspergillus flavus were the predominant isolates recovered (9.49% each, and were the only isolates recovered throughout the period of composting irrespective of the composting technique. Staphylococcus aureus and Salmonella typhimurium were the least isolated (1.09% each. Vermicomposting technique was recommended on health and environmental grounds.

  7. Evaluation of physical, chemical and heavy metal concentration of food waste composting

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Aeslina

    2017-01-01

    Full Text Available In this study, food waste composting with rice husk and coconut fibre as compost medium were carried out. Two types of different fermentation liquids were prepared which were fermented liquid (banana peel and fermented liquid from fermented soybeans. During the composting process, a compost samples for a twenty week duration at an interval time of two weeks. Among the physico-chemical parameters that were tested were temperature, moisture content, pH value, Total Nitrogen, Total Phosphorous, Potassium and Total Organic Carbon and Carbon Nitrogen ratio. Heavy metals such as copper, cadmium, lead, nickel and arsenic were observed and analysed. From this study, it was found that, the temperature increased during the thermophilic phase while there was gradually increase of Total Nitrogen, Total Phosphorous and Potassium from the beginning till the end of the composting process. It was also found that the total organic carbon (TOC and the carbon nitrogen ratio decreased significantly during the decomposition process. Traces amounts of heavy metals were also detected and remains below the standard Malaysian Environmental regulations. It was concluded that, the composting process was faster with processed food waste followed by combination of processed food waste and raw. Raw food waste were demonstrated the lowest degradation rate.

  8. Risks to farm animals from pathogens in composted catering waste containing meat.

    Science.gov (United States)

    Gale, P

    2004-07-17

    Uncooked meat may contain animal pathogens, including bovine spongiform encephalopathy, foot-and-mouth disease virus, African swine fever virus and classical swine fever virus, and to prevent outbreaks of these diseases in farm animals, the disposal of meat from catering waste is controlled under the Animal By-Products Regulations. This paper estimates the risks to farm animals of grazing land on to which compost, produced by the composting of catering waste containing meat, has been applied. The factors controlling the level of risk are the separation of the meat at source, the efficiency of the composting process, and the decay and dilution of the pathogens in soil. The net pathogen destruction by the composting process is determined largely by the degree of bypass, and to accommodate the possibility of large joints or even whole carcases being discarded uncooked to catering waste, a time/temperature condition of 60 degrees C for two days is recommended. Where data are lacking, worst-case assumptions have been applied. According to the model, classical swine fever virus constitutes the highest risk, but the assessment shows that a two-barrier composting approach, together with a two-month grazing ban, reduces the risk to one infection in pigs every 190 years in England and Wales. This work defined the operational conditions for the composting of catering waste as set out in the Animal By-Products Regulations 2003 (SI 1482).

  9. Toward zero waste: composting and recycling for sustainable venue based events.

    Science.gov (United States)

    Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E

    2015-04-01

    This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.

  10. Toward zero waste: Composting and recycling for sustainable venue based events

    Energy Technology Data Exchange (ETDEWEB)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 370 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States); Bilec, Melissa M., E-mail: mbilec@pitt.edu [University of Pittsburgh, Civil and Environmental Engineering, 153 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15261-3949 (United States); Brown, Nicholas R., E-mail: nick.brown@asu.edu [Arizona State University, University Sustainability Practices, 1130 East University Drive, Suite 206, Tempe, AZ 85287 (United States); Landis, Amy E., E-mail: amy.landis@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 375 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States)

    2015-04-15

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night

  11. Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies.

    Science.gov (United States)

    Siles, J A; Vargas, F; Gutiérrez, M C; Chica, A F; Martín, M A

    2016-07-01

    Although recent research has demonstrated that waste orange peel (WOP) is a potentially valuable resource that can be transformed into high value products, heat generation, biomethanisation and composting might be considered the most feasible alternatives in terms of yield. This study revealed that WOP can be successfully valorised through combustion. However, a previous drying step, which generates hazardous wastewater, is required and harmful NOx are emitted with the flue gases. In contrast, a high yield of renewable methane (280LSTPCH4/kg added COD, chemical oxygen demand) and an organic amendment can be obtained through the thermophilic biomethanisation of WOP following the removal of valuable essential oils from the peel. Co-composting of WOP combined at different proportions (17-83%) with the organic fraction of municipal solid waste (OFMSW) was also demonstrated to be suitable. Moreover, a 37% reduction in odour generation was observed in co-composting of WOP compared to single composting of OFMSW.

  12. Use of slaughterhouse waste and tannery-based organic compost for management of reniform nematode

    Directory of Open Access Journals (Sweden)

    Guilherme L. Asmus

    2014-07-01

    Full Text Available A greenhouse experiment was carried out with the objective of evaluating the effect of increasing soil amendments (1, 3, 9, 15 and 30%, v/v of organic compost produced from slaughterhouse waste and tannery residues on the reproduction of reniform nematodes and cotton development. The addition of organic composts to soil proportionately reduced the number of nematodes per gram of root and the reproduction factor. However, depending on the concentration of the compost, there was a reduction of height and dry mass of cotton shoots. We concluded that the organic compost produced with slaughterhouse and tannery waste has potential for controlling reniform nematodes, but requires dose adjustments or improvements in its composition to reduce the risk of phytotoxicity.

  13. Allergic bronchopulmonary aspergillosis in garden waste (compost) collectors--occupational implications.

    Science.gov (United States)

    Poole, C J M; Wong, M

    2013-10-01

    The separation of rotting garden material from general domestic waste and its collection for processing in industrial composting sites is a relatively new industry in the UK. Two cases of allergic bronchopulmonary aspergillosis and the results of health surveillance are described in a team of 28 garden waste (compost) collectors. A few cases of extrinsic allergic alveolitis due to Aspergillus fumigatus have previously been reported in compost workers. In the absence of any guidance from research and to prevent similar cases of a potentially serious illness, we advise that new starters to the job of collecting or processing compost are screened for asthma and aspergillus sensitivity, cystic fibrosis, bronchiectasis and immunodeficiency if their exposure to high levels of Aspergillus sp cannot be controlled. Annual health surveillance for these workers is also recommended.

  14. Fluorescence characteristic changes of dissolved organic matter during municipal solid waste composting

    Institute of Scientific and Technical Information of China (English)

    WEI Zi-min; XI Bei-dou; WANG Shi-ping; XU Jing-gang; ZHOU Yu-yan; LIU Hong-liang

    2005-01-01

    Dissolved organic matter(DOM) of municipal solid waste(MSW) consists of minerals, water, ash and humic substances, and is known to enhance plant growth. In this study, inoculating microbes (Z J, MS) were used in municipal solid wastes composting, and composting implemented a industrialized technology. During composting, dissolved organic matter was extracted from the compost and purified. The spectral characteristics of dissolved organic matter was determined by fluorescence emission, excitation, and synchronous spectroscopy. Fluorescence emission, excitation, and synchronous spectra characterized by different relative fluorescent intensities and peaks over time. Fluorescence spectra were similar to that of fulvic acid in sewage sludge, indicating the presence of dissolved organic matter with aromatic structures and a high degree of molecular polymerization. Compared with the controls with no microbial inoculation,the microbe-inoculated treatments exhibited the increase of aromatic polycondensation, in the following order: MS + ZJ > ZJ > MS >CK.

  15. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid.

    Science.gov (United States)

    Wei, Zimin; Xi, Beidou; Zhao, Yue; Wang, Shiping; Liu, Hongliang; Jiang, Youhai

    2007-06-01

    Municipal solid waste (MSW) compost contains a significant amount of humic substances. In this study, the compost consisted of residual MSW with the metal, plastic and glass removed. In order to enhance degradation processes and the degree of composting humification, complex microorganisms (Bacillus casei, Lactobacillus buchneri and Candida rugopelliculosa) and ligno-cellulolytic (Trichoderma and White-rot fungi) microorganisms were respectively inoculated in the composting process. During the MSW composting, humic acid (HA) was extracted and purified. Elements (C, N, H, O) and spectroscopic characteristics of the HA were determined using elementary analyzer, UV, Fourier transform infrared (FTIR), and fluorescence spectroscopy. The elements analysis, UV, FTIR and fluorescence spectra all led to the same conclusion, that is inoculations with microbes led to a greater degree of aromatization of HA than in the control process (CK) with no inoculation microbes. This indicated that inoculation with microbes in composting would improve the degree humification and maturation processes, in the following order: lingo-cellulolytic>complex microorganisms>CK. And mixed inoculation of MSW with complex microorganisms and lingo-cellulolytic during composting gave a greater degree of HA aromatization than inoculation with complex microorganisms or lingo-cellulolytic alone. But comparing with the HA of soil, the HA of MSW compost revealed a lower degree of aromatization.

  16. Biological nutrient transformation during composting of pig manure and paper waste.

    Science.gov (United States)

    Wong, Jonathan W C; Karthikeyan, Obulisamy P; Selvam, Ammaiyappan

    2017-03-01

    Composting of pig manure is a challenging task that requires appropriate co-substrate and bulking agent to provide optimum composting conditions and reduce nitrogen loss. In this study, paper waste is co-composted with pig manure as well as wood chips as the bulking agents. These raw materials were mixed at three different ratios of paper: pig manure: wood chips = 1:1:0 (pile 1), 3:2:1 (pile 2) and 3:1:1(pile 3), respectively. Each composting pile was about 11 m(3) in size equipped with negative-pressure forced aeration. The temperature of all the three piles ranged between 43 and 76°C and therefore produced pathogen-free compost. The overall total carbon reduction of 39%, 36% and 36% were achieved from pile 1, 2 and 3, respectively. The [Formula: see text] increased with the composting period, indicating the transformation of ammoniacal-N into nitrate by nitrification activity. However, all three piles showed significant variations in soluble [Formula: see text] at different stages of composting, which could be due to the microbial assimilation and mineralization. The results revealed that the co-composting of pig manure, paper along with wood chips was optimum under the mixing ratio of 3:2:1 (pile 2).

  17. Contaminated land clean-up using composted wastes and impacts of VOCs on land.

    Science.gov (United States)

    Williamson, J C; Akinola, M; Nason, M A; Tandy, S; Healey, J R; Jones, D L

    2009-05-01

    This paper describes experiments that demonstrate the effects and potential for remediation of a former steelworks site in Wales polluted with polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Under field conditions, PAH-contaminated soil was composted in-vessel, with or without organic feedstocks, receiving forced aeration for 80 days followed by 4 months maturation. Treatments compared PAH removal in contaminated soil to contaminated soil mixed with three different organic waste mixes after composting and after composts were spread to land. After composting, PAH concentrations declined in all treatments, by up to 38%. Sixteen months after the composts were landspread and vegetation was established, only those containing contaminated soil with organic additions exhibited further PAH removal, by up to 29%. Composting resulted in a decline in the relative concentration of small PAHs, whereas the landspreading-vegetation phase saw a decline in the relative concentration of medium PAHs in two of the three composts exhibiting PAH removal. Under controlled glasshouse conditions, vegetated soil columns of differing depths were exposed to VOCs from beneath. VOC vapour affected both shoot and root growth and soil microbial activity; effects varied with distance from the VOC source. This work demonstrated that on-site remediation of aged PAH-contaminated land can be successfully initiated by in-vessel co-composting followed by land spreading and vegetation, within a practical timeframe.

  18. Oxygen respirometry to assess stability and maturity of composted municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Iannotti, D.A.; Grebus, M.E.; Toth, B.L.; Madden, L.V.; Hoitink, A.J. [Ohio State Univ./Ohio Agricultural Research and Development Center, Wooster, OH (United States)

    1994-11-01

    The stability and maturity of compost prepared from municipal solid waste (MSW) at a full-scale composting plant was assessed through chemical, physical, and biological assays. Respiration bioassays used to determine stability (O{sub 2} and CO{sub 2} respirometry) were sensitive to process control problems at the composting plant and indicated increasing stability with time. Radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) growth bioassays revealed that immature compost samples inhibited growth. Growth of ryegrass in potting mix prepared with cured compost not amended with fertilizer was enhanced as compared to a pest control. Garden cress (Lepidium sativum L.) seed germination, used as an indicator of phytotoxicity, revealed inhibition of germination at all compost maturity levels. The phytotoxicity was though to be salt-related. Spearman rank-order correlations demonstrated that O{sub 2} respirometry, water-soluble organic C, and the water extract organic C to organic N ratio, significantly correlated with compost age and best indicated an acceptable level of stability. Oxygen respirometry also best predicted the potential for ryegrass growth, and an acceptable level of compost maturity. 31 refs., 4 figs., 5 tabs.

  19. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies.

  20. Transformation behavior of lead fractions during composting of lead-contaminated waste

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiao; XU Xiang-min; HUANG Dan-lian; ZENG Guang-ming

    2009-01-01

    The transformation behaviors of Pb fractions during composting of Pb-polluted waste without inoculants and with the inoculants of Phanerochaete chrysosporium were studied. Results show that the active Pb ions with high toxicity and transferability are transformed into the inactive Pb with low toxicity and transferability, confirming that Pb ions can be efficiently immobilized during composting without or with the inoculants. The soluble-exchangeable Pb in composting without inoculants reaches 49.0 mg/kg at day 60, while that with the inoculants is reduced to 0 mg/kg dry mass compost. The higher contents of organic-bound Pb (59.0 mg/kg) and residual Pb (69.2 mg/kg) with low toxicity are found after 60-day composting with inoculants, compared with those without inoculants. The above data indicate the better immobilization effect of Pb and the greater alleviation of Pb hazards in composting with the inoculants of Phanerochaete chrysosporium than without inoculants, which may be due to the more microbial biomass and the higher pH value in composting of Pb-polluted waste with inoculants.

  1. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC).

    Science.gov (United States)

    van Haaren, Rob; Themelis, Nickolas J; Barlaz, Morton

    2010-12-01

    This study compared the environmental impacts of composting yard wastes in windrows with using them in place of soil as alternative daily cover (ADC) in landfills. The Life Cycle Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial for the environment than windrow composting. ADC use is also a less costly means of disposal of yard wastes. This finding applies only in cases where there are sanitary landfills in the area that are equipped with gas collection systems and can use yard wastes as alternative daily cover. Otherwise, the environmentally preferable method for disposal of source-separated yard wastes is composting rather than landfilling.

  2. Composting of biological waste. Processes and utilisation; Bioabfallkompostierung. Verfahren und Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for procesing and utilisation of biological waste by means of composting and spreading on agricultural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises all three reports. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die genannten drei Teilberichte. (orig./SR)

  3. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste

    Energy Technology Data Exchange (ETDEWEB)

    Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-15

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.

  4. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  5. Quality of compost from urban solid wastes; Calidad del compost de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, M.; Dobao, M.M. [Universidad de Sevilla. Sevilla (Spain); Benitez, C; Gonzalez, J. L. [Universidad de Cordoba. Cordoba (Spain)

    1998-12-31

    The stability, maturity and quality of MSW compost are discussed in this paper. The higher or lower stability is related to the microbial activity, but the maturity is related with the absence of phitotoxic substances. The MSW compost quality is fixed, besides of its stability/maturity, by other parameters (heavy metals contents, granulometric composition, etc...) Likewise, this paper shows a revision about the chemist, physics and biologic methods for the definition of this concepts. (Author) 51 refs.

  6. Centralized management of sewage sludge and agro-industrial waste through co-composting.

    Science.gov (United States)

    Gutiérrez, M C; Serrano, A; Siles, J A; Chica, A F; Martín, M A

    2017-07-01

    In this research study, the co-composting process of a waste mixture containing strawberry extrudate, fish waste, sewage sludge and bulking agent (SEFW, 190:1:22:90 ratio) was carried out in a dynamic-solid respirometer at pilot scale. The aerobic biodegradability of the mixture was previously ensured in a static-liquid respirometer. The advantages and drawbacks of the SEFW co-composting process were subsequently identified through the determination of respirometric activity and the physical-chemical characterization of the waste, as well as the monitoring of odor emissions. The evolution of the physical-chemical variables showed that pH increased slightly and that the organic matter concentration, expressed as volatile solids (VS, %) or oxidable organic carbon (COXC, %), decreased by around 15% in both cases and by approximately 56% in its biodegradable form (total organic carbon, TOC, %). The low odor emission rate (OER) in the least favorable scenario (the maximum odor generation) during SEFW composting was 1.59 ouE/s, whereas this figure reached 3.52 ouE/s when only the organic fraction of municipal solid waste (OFMSW) was composted. Consequently, the co-composting of SEFW is more favorable in terms of odor emission and permits the simultaneous treatment of different types of waste. Copyright © 2017. Published by Elsevier Ltd.

  7. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  8. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    OpenAIRE

    Neamat Jaafarzadeh Haghighi Fard; Behnam Moradi; Mokhtar Abbasi; Rahman Alivar Babadi; Hossein Bahrani; Azadeh Mirzaie; Ahmad Zare Javid; Maryam Ravanbakhsh

    2015-01-01

    Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio ...

  9. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    Science.gov (United States)

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  10. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting.

    Science.gov (United States)

    Yuan, Jing; Yang, Qingyuan; Zhang, Zhiye; Li, Guoxue; Luo, Wenhai; Zhang, Difang

    2015-11-01

    The effects of adding a bulking agent and chemically pretreating municipal kitchen waste before aerobic composting were studied using a laboratory-scale system. The system used 20-L reactors and each test lasted 28days. The objective was to decrease NH3 and H2S emissions during composting. The bulking agent, dry cornstalks, was mixed with the kitchen waste to give a mixture containing 15% (wet weight) bulking agent. A combined treatment was also conducted, in which kitchen waste mixed with the bulking agent was pretreated with ferric chloride (FeCl3). Less leachate was produced by the composted kitchen waste mixed with bulking agent than by the kitchen waste alone, when the materials had reached the required maturity. The presence of cornstalks also caused less H2S to be emitted, but had little impact on the amount of NH3 emitted. The FeCl3 was found to act as an effective chemical flocculant, and its presence significantly decreased the amounts of NH3 and H2S emitted. Kitchen waste mixed with cornstalks and treated with FeCl3 emitted 42% less NH3 and 76% less H2S during composting than did pure kitchen waste.

  11. Decentralised composting of urban waste--an overview of community and private initiatives in Indian cities.

    Science.gov (United States)

    Zurbrügg, Christian; Drescher, Silke; Patel, Almitra; Sharatchandra, H C

    2004-01-01

    The national waste legislation, introduced in India in 2000, endorses the principle of "Recycle Before Disposal" and clearly stipulates composting as an option for organic waste treatment. It also recommends waste separation as prerequisite for treatment. Although various composting schemes of different scale, type and organisational structure currently exist in the country, a general overview is lacking and very little independent site-specific information is available. This paper presents the results of a study assessing 17 decentralised systems from the cities of Bangalore, Chennai, Pune, and Mumbai. The schemes were classified according to their organisational setup into: (1) citizens' and community initiatives; (2) business and institution initiatives operating on their premises; and (3) small and medium-size private sector initiatives. These categories also coincide with different operational scales. Community initiatives have developed from unreliable collection services, and composting emerged mainly as a spin-off activity from the collection system to reduce waste delivery to the communal containers emptied by the municipal services. The potential to launch and sustain decentralised composting schemes is dependent on the municipal provision of adequate space. This paper summarises further key issues pertaining to the assessed schemes and reveals overall deficiencies in the field of accounting and transparency, composting technique and marketing, as well as municipal authority involvement.

  12. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario.

  13. Hazard to man and the environment posed by the use of urban waste compost: A review

    Energy Technology Data Exchange (ETDEWEB)

    Deportes, Isabelle; Benoit-Guyod, Jean-Louis [Gedexe, Meylan (France); Zmirou, Denis [Public Health Laboratory, School of Medicine and Pharmacy, Joseph Fourier University, La Tronche (France)

    1995-09-29

    This review presents the current state of knowledge on the relationship between the environment and the use of municipal waste compost in terms of health risk assessment. The hazards stem from chemical and microbiological agents whose nature and magnitude depend heavily on the degree of sorting and on the composting methods. Three main routes of exposure can be determined and are quantified in the literature: (1) The ingestion of soil/compost mixtures by children, mostly in cases of pica, can be a threat because of the amount of lead, chromium, cadmium, PCDD/F and fecal streptococci that can be absorbed; (2) Though concern about contamination through the food chain is weak when compost is used in agriculture, some authors anticipate accumulation of pollutants after several years of disposal, which might lead to future hazards; (3) Exposure is also associated with atmospheric dispersion of compost organic dust that convey microorganisms and toxicants. Data on hazard posed by organic dust from municipal composts to the farmer or the private user is scarce. To date, microorganisms are only measured at composting plants, thus raising the issue of extrapolation to environmental situations. Lung damage and allergies may occur because of organic dust, Gram negative bacteria, actinomycetes and fungi. Further research is needed on the risk related to inhalation of chemical compounds

  14. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    Science.gov (United States)

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities.

    Science.gov (United States)

    Friedrich, Elena; Trois, Cristina

    2013-11-01

    GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from -290kg CO2 e (glass) to -19111kg CO2 e (metals - Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  16. Temporal and spatial changes in the microbial bioaerosol communities in green-waste composting.

    Science.gov (United States)

    Pankhurst, Louise J; Whitby, Corinne; Pawlett, Mark; Larcombe, Lee D; McKew, Boyd; Deacon, Lewis J; Morgan, Sarah L; Villa, Raffaella; Drew, Gillian H; Tyrrel, Sean; Pollard, Simon J T; Coulon, Frédéric

    2012-01-01

    In this study, the microbial community within compost, emitted into the airstream, downwind and upwind from a composting facility was characterized and compared through phospholipid fatty acid analysis and 16S rRNA gene analysis using denaturing gradient gel electrophoresis and bar-coded pyrosequencing techniques. All methods used suggested that green-waste composting had a significant impact upon bioaerosol community composition. Daily variations of the on-site airborne community showed how specific site parameters such as compost process activity and meteorological conditions affect bioaerosol communities, although more data are required to qualify and quantify the causes for these variations. A notable feature was the dominance of Pseudomonas in downwind samples, suggesting that this genus can disperse downwind in elevated abundances. Thirty-nine phylotypes were homologous to plant or human phylotypes containing pathogens and were found within compost, on-site and downwind microbial communities. Although the significance of this finding in terms of potential health impact was beyond the scope of this study, it clearly illustrated the potential of molecular techniques to improve our understanding of the impact that green-waste composting emissions may have on the human health.

  17. Composted organic wastes from the pharmaceutical and agro-food industries induce soil bioactivity and nodulation in alfalfa.

    Science.gov (United States)

    Fornes, Fernando; Jaramillo, Claudia X; García-de-la-Fuente, Rosana; Belda, Rosa M; Lidón, Antonio

    2014-11-01

    Environmentally friendly agriculture needs to reduce the use of synthetic fertilizers and to reclaim nutrients from organic wastes. In this study the effect of five doses (0, 12, 24, 48 and 96 t ha(-1) ) of two two-phase olive mill waste (TPOMW)-based composts on the bioactivity and chemical characteristics of an agricultural soil and their potential to fertilize alfalfa (Medicago sativa) and stimulate nodulation were assessed during a two-year incubation experiment. The two composts were prepared either with the olive mill waste alone (compost A), which served as control, or mixed with a liquid fatty-proteinaceous hydrolyzate waste (FPH) from the pharmaceutical industry (compost AH). Compost AH resulted in greater N immobilization than compost A because the former supplied the soil with easily degradable C and N, which increased microbial biomass and activity. Both compost mineralizations during the first year of incubation supplied the soil with more nutrients (mainly N), more so with A than with AH. Nevertheless, plant growth was similar in soils amended with either A or AH. Both composts induced nodulation similarly and the highest dose (96 t ha(-1) ) increased the formation of nodules by a factor of 11 compared with the four lower doses. TPOMW serves as an effective ground material for co-composting with liquid wastes such as FPH. TPOMW supplies key nutrients and stimulates nodulation in alfalfa. © 2014 Society of Chemical Industry.

  18. Effect of organic waste compost on the crop productivity and soil quality

    Science.gov (United States)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase compared to the unfertilized control plot. In the case

  19. Delayed addition of nitrogen-rich substrates during composting of municipal waste

    DEFF Research Database (Denmark)

    Nigatu, Abebe Nigussie; Bruun, Sander; Kuyper, Thomas W.

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen......-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed...... that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N2O emissions by 400-600% compared to single addition. In contrast, single...

  20. The adsorption and degradation of chlorpyriphos-methyl, pendimethalin and metalaxyl in solid urban waste compost.

    Science.gov (United States)

    Baglieri, Andrea; Gennari, Mara; Arena, Maria; Abbate, Cristina

    2011-01-01

    To evaluate the feasibility of using compost to prepare substrates for the disposal of pesticide residues, adsorption and degradation studies were carried out on three widely used agricultural pesticides: chlorpyriphos-methyl, pendimethalin and metalaxyl. Obtained from solid urban waste, this compost has been shown to be able to adsorb high levels of chlorpyriphos-methyl and pendimethalin (85%, 100%) whereas metalaxyl was only adsorbed at a level of 37%. However, adding smectite to the compost increased the adsorption of metalaxyl by 117%. Chlorpyriphos-methyl and pendimethalin degraded quickly with half-lives of 1.7 and 14.5 days, respectively, whereas metalaxyl proved more persistent (a half-life of 84 days). Adding ammonium nitrate to the compost accelerated metalaxyl degradation to a half-life of 15 days.

  1. Greenhouse gas and ammonia emissions from composting of animal manure and other organic waste products

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune

    on human health and ecosystem health. Thus, alternative technologies for recycling manure and utilising it as a nutrient source for crop production, while minimising the environmental costs, are important for the sustainability of the livestock and poultry sectors. Composting of animal manure and other......, but information on its effect on GHG emissions, especially nitrous oxide (N2O), is still limited. This thesis investigated the main processes and factors affecting the physicochemical composition of the compost and emissions of GHG and NH3 during composting of animal manure and other organic waste products....... Laboratory studies showed that differences in the initial physical properties (moisture, bulk density, particle density and air-filled porosity) of separated animal slurry solid fractions (SSF) had a considerable impact on the development of compost maximum temperatures (40-70 o C) and the time required (2...

  2. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-01-01

    Full Text Available In this study white mustard (Sinapis alba plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retarded growth or necrotic changes were not recorded. The performed phytotoxicity tests show that the analyzed composts produced in the composting plant situated on the landfill surface achieved high percentages of the germinating capacity of white mustard (Sinapis alba seeds and can be therefore used in the subsequent reclamation of the concerned landfill.

  3. Variability in physical contamination assessment of source segregated biodegradable municipal waste derived composts.

    Science.gov (United States)

    Echavarri-Bravo, Virginia; Thygesen, Helene H; Aspray, Thomas J

    2017-01-01

    Physical contaminants (glass, metal, plastic and 'other') and stones were isolated and categorised from three finished commercial composts derived from source segregated biodegradable municipal waste (BMW). A subset of the identified physical contaminant fragments were subsequently reintroduced into the cleaned compost samples and sent to three commercial laboratories for testing in an inter-laboratory trial using the current PAS100:2011 method (AfOR MT PC&S). The trial showed that the 'other' category caused difficulty for all three laboratories with under reporting, particularly of the most common 'other' contaminants (paper and cardboard) and, over-reporting of non-man-made fragments. One laboratory underreported metal contaminant fragments (spiked as silver foil) in three samples. Glass, plastic and stones were variably underreported due to miss-classification or over reported due to contamination with compost (organic) fragments. The results are discussed in the context of global physical contaminant test methods and compost quality assurance schemes.

  4. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW.

  5. Effect of urban waste compost application on soil near-saturated hydraulic conductivity.

    Science.gov (United States)

    Schneider, S; Coquet, Y; Vachier, P; Labat, C; Roger-Estrade, J; Benoit, P; Pot, V; Houot, S

    2009-01-01

    Compost application tends to increase soil fertility and is likely to modify soil hydrodynamic properties by acting on soil structural porosity. Two composts, a municipal solid waste compost (MSW) and a co-compost of green wastes and sewage sludge (SGW), have been applied every other year for 6 yr to cultivated plots located on a silt loam soil in the Parisian Basin, France. Four soil zones were defined in the topsoil after plowing: the plowpan located at the base of the plowed layer, compacted (Delta) or noncompacted (Gamma) zones located within the plowed layer, and interfurrows created by plowing and containing a large quantity of crop residues together with the recently-applied compost. To assess the effect of compost application on the near-saturated soil hydraulic conductivity, infiltration rates were measured using a tension disc infiltrometer at three water pressure potentials -0.6, -0.2, and -0.05 kPa in the various zones of the soil profile. Compost addition decreased K((sat)) in the interfurrows after plowing by almost one order of magnitude with average values of 5.6 x 10(-5) m.s(-1) in the MSW plot and 4.1 x 10(-5) m.s(-1) in the SGW plot, against 2.2 x 10(-4) m.s(-1) in the control plot. This effect had disappeared 6 mo after plowing when the average K((sat)) in the control plot had decreased to 1.9 x 10(-5) m.s(-1) while that in the compost-amended plots remained stable.

  6. Simplex-centroid mixture formulation for optimised composting of kitchen waste.

    Science.gov (United States)

    Abdullah, N; Chin, N L

    2010-11-01

    Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally.

  7. Critical components of odors in evaluating the performance of food waste composting plants

    Energy Technology Data Exchange (ETDEWEB)

    Mao, I-F. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: ifmao@ym.edu.tw; Tsai, C.-J. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China); Shen, S.-H. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Lin, T.-F. [Institute of Environmental Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Rd., Tainan, Taiwan (China); Chen, W.-K. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Chen, M.-L. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: mlchen@ym.edu.tw

    2006-11-01

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components - ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene - exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH{sub 3}, amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery.

  8. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    Science.gov (United States)

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems.

  9. Municipal solid wastes composting: Estrela (Brasil); Compostaje de residuos solidos municipales: el ejemplo de Estrela, brasil

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, O.; Bezama, A.; Navia, R.; Lorber, K. E.

    2002-07-01

    In Estrela, Rio Grande do Sul, Brazil, an improved separation system for the municipal solid wastes was implemented. The objective is to enhance the performance of the composting process of the solid wastes. In the original separation system, the fractions corresponding to organic matter, recyclable materials and the light-weight fraction (destined to sanitary landfill) were obtained, where the organic fraction reached a 70%. This fraction was destined to a composting process which after 80 days of processing was still in the thermophilic stage and had to be later stabilized through a worm composting process. In order to improve this situation, a modified system was proposed and implemented. In this way, four fractions were obtained during the separation process: a light fraction destined to sanitary land filling, a recyclable materials fraction and two organic fractions. (Author) 8 refs.

  10. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador

    Science.gov (United States)

    Jara-Samaniego, J.; Pérez-Murcia, M. D.; Bustamante, M. A.; Paredes, C.; Pérez-Espinosa, A.; Gavilanes-Terán, I.; López, M.; Marhuenda-Egea, F. C.; Brito, H.; Moral, R.

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  11. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    Science.gov (United States)

    Jara-Samaniego, J; Pérez-Murcia, M D; Bustamante, M A; Paredes, C; Pérez-Espinosa, A; Gavilanes-Terán, I; López, M; Marhuenda-Egea, F C; Brito, H; Moral, R

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  12. Chemical and Microbial Dynamics during Composting of Herbal Pharmaceutical Industrial Waste

    Directory of Open Access Journals (Sweden)

    Farhan Zameer

    2010-01-01

    Full Text Available A study was performed to analyze the dynamics of chemical, biochemical and microbial parameters during composting of herbal pharmaceutical waste. All the parameters were analyzed at three different intervals of composting (1st, 15th and 60th days. Temperature of the compost pile was initially high (46.2 °C and on 60th day it dropped to 33.3 °C. The pH of the sample was initially acidic (2.39 and with the progress of decomposition gradually changed to neutrality (7.55. Electrical conductivity (EC value was high (3.8 mS during last day of composting compared to other stages. The activity of degradative enzymes namely amylase, invertase and urease were initially high (4.1, 4.79 mg of glucose/g/h and 0.19 mg of ammonia/g/h respectively while it decreased with composting. The beneficial microbial load was initially low and very high at the last stages of decomposition. The bioassay studies using compost extracts revealed that the 60th day old sample was not phytotoxic in nature.

  13. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    Science.gov (United States)

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  14. Effects of Different Addition Amounts of Superphosphate on Vegetable Waste Compost

    Directory of Open Access Journals (Sweden)

    YANG Yan

    2017-01-01

    Full Text Available The effects of different addition amounts of superphosphate on vegetable waste compost were studied. Results showed that, addition of superphosphate improved the temperature during the compost. It had the highest temperature of 64.33℃, when the addition quantity of superphosphate was 10.26% of dry matter weight. At the end of the composting, adding superphosphate had no significant effect on C/N, however, it decreased pH and improved the EC of the compost. The EC values were significantly higher than CK, when the addition amount was be tween 4.10%and 10.26%of dry matter weight. When the addition below 10.26%, the GI values were significantly higher than CK(P<0.01, and the highest value was 105.61%, when the addition was 2.05%(S5. Adding superphosphate significantly reduced the nitrogen loss rate of composting(P<0.05, and the lowest was 23.94%,when the addition was 2.05%, meanwhile, the input-output ratio was 3.93, which was the highest value. Under this experimental condition, adding superphosphate promoted the compost maturity significantly, reduced the nitrogen loss rate, and the optimal addition of superphosphate was 2.05%of dry matter weight.

  15. Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp. FA13.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Mimoto, Hiroshi; Tran, Quyen Ngoc Minh; Oinuma, Akiko

    2015-03-01

    Food waste collected from restaurants, convenience stores, and food-processing factories was mixed with sawdust and subjected to hydrothermal pretreatment at 180°C for 30min to prepare compost raw material. Furan compounds such as 5-HMF (5-hydroxymethyl furfural) and furfural were produced at concentration levels of approximately 8 and 0.5mg/g-ds, respectively, through hydrothermal pretreatment. The furan compounds inhibited the activity of composting microorganisms, thus delaying the start of organic matter degradation during composting. A newly identified fungus, Paecilomyces sp. FA13, which possesses the ability to degrade furan compounds, was isolated and used as an inoculum for the composting of the raw material prepared by hydrothermal pretreatment. By inoculating the FA13 into the compost raw material at 10(5)CFU/g-ds, the degradation of furan compounds was accelerated. As a result, bacterial activity, which contributed to composting, was enhanced, significantly promoting the start of vigorous degradation of organic materials.

  16. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  17. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    Science.gov (United States)

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  18. Source-separated municipal solid waste compost application to Swiss chard and basil.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Warman, Philip R

    2004-01-01

    A growth room experiment was conducted to evaluate the bioavailability of Cu, Mn, Zn, Ca, Fe, K, Mg, P, S, As, B, Cd, Co, Cr, Hg, Mo, Na, Ni, Pb, and Se from a sandy loam soil amended with source-separated municipal solid waste (SSMSW) compost. Basil (Ocimum basilicum L.) and Swiss chard (Beta vulgaris L.) were amended with 0, 20, 40, and 60% SSMSW compost to soil (by volume) mixture. Soils and compost were sequentially extracted to fractionate Cu, Pb, and Zn into exchangeable (EXCH), iron- and manganese-oxide-bound (FeMnOX), organic-matter (OM), and structurally bound (SB) forms. Overall, in both species, the proportion of Cu, Pb, and Zn levels in different fractions followed the sequence: SB > OM > FeMnOX > EXCH for Cu; FeMnOX = SB > OM > EXCH for Pb; and FeMnOX > SB = EXCH > OM for Zn. Application of SSMSW compost increased soil pH and electrical conductivity (EC), and increased the concentration of Cu, Pb, and Zn in all fractions, but not EXCH Pb. Basil yields were greatest in the 20% treatment, but Swiss chard yields were greater in all compost-amended soils relative to the unamended soil. Basil plants in 20 or 40% compost treatments reached flowering earlier than plants from other treatments. Additions of SSMSW compost to soil altered basil essential oil, but basil oil was free of metals. The results from this study suggest that mature SSMSW compost with concentrations of Cu, Pb, Mo, and Zn of 311, 223, 17, and 767 mg/kg, respectively, could be used as a soil conditioner without phytotoxic effects on agricultural crops and without increasing the normal range of Cu, Pb, and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils needs to be carefully considered.

  19. Comparison between Windrow and Pit Composting of Poultry Wastes, Leaves and Garbage of Municipal Solid Waste in Damghan, Iran

    Directory of Open Access Journals (Sweden)

    Yaghmaeian K, Malakootian M, Noorisepehr M

    2005-01-01

    Full Text Available Basic principles of Integrated Solid Waste Management (ISWM are: Reduction, Reuse, Recycling and Recovery (4Rs. Composting as an element of ISWM strategy that can be applied to separately collected or mixed wastes, is a controlled aerobic process carried out by successive microbial populations combining both mesophilic and thermophilic activities and leading to the production of carbon dioxide, water, minerals and stabilized organic matter. In this research, comparing between windrow and pit co-composting methods was studied in the city of Damghan, Iran. Waste proportioning was done based on C/N ratio (about 25:1 and moisture content (about 55%. Mixed wastes were located in windrow and pit with natural aeration tunnel. Sufficient oxygen supply was provided in the piles of compostable materials in two systems through frequent turning of the piles in 7 d intervals during the first month. Temperature reached to maximum level in 10-15 d and then depleted (days: 20-25. It reached to the safety level (about 60˚C based on U.S.EPA and WHO recommendations. Finally, compost was produced with pH=7.7, dark brown color and 30- 35% moisture content. N, P, K, organic matter and organic carbon were measured by standard methods. Results were compared with WHO and U.S.EPA recommendations showing suitable conditions Also it was indicated that pit method was better for maintaining temperature, nitrogen, organic C and organic matter.

  20. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    Directory of Open Access Journals (Sweden)

    A Torres-Climent

    Full Text Available The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques, to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc and animal manures (cattle manure and poultry manure. The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1 and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively, indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  1. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    Science.gov (United States)

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  2. Feedstock optimization of in-vessel food waste composting systems for inactivation of pathogenic microorganisms.

    Science.gov (United States)

    Cekmecelioglu, Deniz; Demirci, Ali; Graves, Robert E

    2005-03-01

    An optimum composting recipe was investigated to reduce pathogenic microorganisms in a forced-aerated in-vessel system (55 liters). The feedstocks used for in-vessel composting were food waste, cow manure, and bulking materials (wood shavings and mulch hay). A statistical extreme vertices mixture design method was used to design the composting experiments and analyze the collected data. Each mixture (nine total) was replicated randomly three times. Temperature was monitored as an indicator of the efficiency of the composting experiments. The maximum temperature values of the mixtures were used as a response for both extreme vertices mixture design and statistical analyses. Chemical changes (moisture content, carbon/nitrogen ratio, volatile solids, and pH) and reductions of indicator (fecal coliforms and fecal streptococci) and pathogenic microorganisms (Salmonella and Escherichia coli O157:H7) were measured by the most-probable-number method before and after a 12-day composting period. Maximum temperatures for the tested compost mixtures were in the range of 37.0 to 54.7 degrees C. Extreme vertices mixture design analysis of the surface plot suggested an optimum mixture containing 50% food waste, 40% manure, and 10% bulking agents. This optimum mixture achieved maximum temperatures of 54.7 to 56.6 degrees C for about 3.3 days. The total reduction of Salmonella and E. coli O157:H7 were 92.3%, whereas fecal coliforms and fecal streptococci reductions were lower (59.3 and 27.1%, respectively). Future study is neededto evaluate the extreme vertices mixture design method for optimization of large-scale composting.

  3. Influence of municipal solid waste compost application on heavy metal content in soil.

    Science.gov (United States)

    Yuksel, Orhan

    2015-06-01

    Municipal solid waste composts (MSWC) are widely used over agricultural lands as organic soil amendment and fertilizer. However, MSWC use may result in various adverse impacts over agricultural lands. Especially, heavy metal contents of MSWC should always be taken into consideration while using in agricultural practices. The present study was conducted to find out heavy metal contents of municipal solid waste compost (MSWC) and to investigate their effects on soils. Experiments were carried out in three replications as field experiments for 2 years. Dry-based MSWC was applied to each plot at the ratios of 0, 40, 80, 120, 160, 200 t ha(-1). Results revealed that heavy metal content of MSWC was within the allowable legal limits. Compost treatments significantly increased Cu, Zn, Ni, Cr, Cd, and Pb content of soils (p compost doses. Although compost treatments significantly increased soil heavy metal contents, the final contents were still within the allowable legal limits. Results showed that MSWC doses over 10 t ha(-1) may create a heavy metal risk in long term for soils with pH ≥ 7. Therefore, in MSWC use over agricultural lands, heavy metal contents should always be taken into consideration and excessive uses should be avoided.

  4. Proposal for the integration of decentralised composting of the organic fraction of municipal solid waste into the waste management system of Cuba.

    Science.gov (United States)

    Körner, I; Saborit-Sánchez, I; Aguilera-Corrales, Y

    2008-01-01

    Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended.

  5. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    Science.gov (United States)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  6. The influence of amendment material on biosolid composting of sludge from a waste-water treatment plant

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2010-06-01

    Full Text Available Aerobic composting employing manual turning was evaluated by using the sludge produced by EMCALI EICE ESP's Cañaverlejo wastewater treatment plant (PTAR-C. Compost (in 1,0 ton piles consisted of sludge, a fixed proportion of bulking agent (10% and amendment material. Sugarcane waste and solid organic (marketplace waste were evaluated as amendment material using 20/80 and 40/60 weight/weight (amendment/sludge ratios. Incorporating the amendment material improved the compost, being reflected in a faster start for the thermophilic phase, higher temperatures beign maintained (>55°C and better C/N ratio obtained in the compost in all treatments compared to the pile which had no amendment added to it. Incorporating the bulking agent improved sludge manageability during composting; the best combination was 54% sludge + 10% sugacane bagasse + 36% liquid sugarcane waste.

  7. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    Science.gov (United States)

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  8. Evaluation of heavy metals in the process of composting organic waste of coca leaves

    Directory of Open Access Journals (Sweden)

    Apaza-Condori Emma Eva

    2015-11-01

    Full Text Available The present study is to evaluate the total concentrations of the heavy metals in waste compost samples from coca leaf. This work was carried out Kallutaca Experimental Center, Biofertilizers module Career Agricultural Engineering at the Public University of El Alto, La Paz municipality of Laja. Posed treatments were: T1 (+ Yogurt Coca wastes; T2 (Coca wastes + whey; T3 (Coca wastes + yeast and T4 (Control. The design was completely randomized with 4 treatments and 3 repetitions. The concentration of heavy metals (cadmium, copper, nickel, lead, mercury and chromium; they were categorized into Class A, for the four treatments according to the classifications established by Moreno & Moral (2008.

  9. Comparative Study of Nirmalya Solid Waste Treatment by Vermicomposting and Artificial Aeration Composting

    Directory of Open Access Journals (Sweden)

    Pallavi S.Chakole

    2014-08-01

    Full Text Available Temple waste normally contains floral offering, leaves and milk product i.e. “Abishek waste water”, and this solid waste management is one of the important issues in the world, because of shortage ofdumping sites and strict environmental legislation. Now days ‘Nirmalyasolid waste’ is generated in large quantity due toincreased in population are commonly treated using different types of bins by the method of composting or vermicomposting. Vermicomposting of solid waste can be done by using different types of earthworms providing natural and artificial aeration along with mixture of cow dung and soil, artificial aeration is carried out by providing diffused aerators or perforated pipes. The parameters like C/N ratio, temperature, moisture contain are carried out. The main objective of this study is to minimize the problem of solid waste management by treating nirmalya solid waste by vermicomposting and suggesting that which method gives good quality of compost at short interval of time comparing artificial and natural aeration composting.

  10. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...... was to determine the seasonal (summer and winter) variation and human health risk assessment of VCs in the ambient air of different processing units in MSOF at composting plant in China. Average concentration of VCs was 58.50 and 138.03 mg/m3 in summer and winter respectively. Oxygenated compounds were found...

  11. Evolution of Microbial Biomasses C and N during the Composting of Municipal solid Wastes

    Directory of Open Access Journals (Sweden)

    Olfa Fourti

    2011-01-01

    Full Text Available Problem statement: The aim of this study was mainly focused on the evolution of microbial biomasses C and N during the composting of municipal solid wastes. Approach: The carbon and the nitrogen of the microbial biomass (BC and BN were studied using the fumigation-extraction method. Results: The dynamics of the BC/BN ratio, index of the chemical composition of the whole microbial population suggested a shift in the composition of microbial populations during the process from prevailing bacteria and actinomycetes to prevailing fungi. Conclusion/Recommendations: Microbial characterization of composting is of importance for the optimization of the process and the quality of the end product.

  12. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    Science.gov (United States)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  13. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Science.gov (United States)

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  14. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guo Xue; Yang, Qing Yuan; Luo, Wen Hai

    2013-10-01

    This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH₄, N₂O, and NH₃) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH₄ and N₂O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO₂-eqt(-1) dry matter) than the other treatments.

  15. Compost Extracts of Vegetable Wastes as Biopesticide to Control Cucumber Mosaic Virus

    Directory of Open Access Journals (Sweden)

    WIWIEK SRI WAHYUNI

    2010-06-01

    Full Text Available In semiaerobic conditions, different composting processes of vegetable wastes have different characteristics. When compost extracts amended with the effective microorganism-4 (EM4, +E and Pseudomonas aeruginosa Ch1 (+B stored for 40 days, the bacteria population and P-content increased. Tobacco plants treated with compost extracts amended with +E+B and [+E+B] directly to organic materials and inoculated with Cucumber mosaic virus (CMV both sprayed or watered applications reduced the disease severity. This is due to the higher bacteria population in the root and rhizosphere, particularly the activities of P. aeruginosa Ch1 as plant growth promoting rhizobacteria (PGPR rather than the activities of bacteria from EM4. The role of P. aeruginosa Ch1 to induce resistance of the plants to CMV was suggested by producing siderophores under the limited Fe conditions,17-20 ppm.

  16. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  17. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  18. Composting of cotton wastes; Compostaje de residuos de algodon

    Energy Technology Data Exchange (ETDEWEB)

    Dobao, M.M.; Tejada, M.; Benitez, C.; Gonzalez, J.L.

    1997-12-31

    In this article a study on the composting process of residuals of cotton gin is presented crushed and not crushed, previous. The analysis of correlation gotten for each one of the treatments reveals that although common correlations between the parameters studied for both treatment exist, they are presented a great number of correlations between this parameters for the treatment of cotton crushed residuals. (Author) 11 refs.

  19. Transformation of organic matters in animal wastes during composting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: hitwk@sina.com [School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment (SKLUWER), Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090 (China); He, Chao [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141 (Singapore); You, Shijie, E-mail: sjyou@hit.edu.cn [School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment (SKLUWER), Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090 (China); Liu, Weijie [School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province (China); Wang, Wei; Zhang, Ruijun [School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment (SKLUWER), Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090 (China); Qi, Huanhuan; Ren, Nanqi [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141 (Singapore)

    2015-12-30

    Highlights: • Transformation of swine, cow and chicken manures during composting was compared. • Evolution of organics was analyzed by element analysis, FTIR, {sup 13}C NMR and Py/GC/MS. • Microbial utilization capacity on various substrates in the manures was evaluated. • Spatial difference of degradation rate inside the manure particle was investigated. - Abstract: The transformation of organic matters in swine, cow and chicken manures was compared and evaluated using elemental analysis, FTIR, {sup 13}C NMR, pyrolysis/GC/MS, Biolog and multiple fluorochrome over 60 days composting. The results revealed that cow manure exhibited the greatest C/N and aromaticity, whereas chicken manure exhibited the highest nitrogen and sulfur contents. O-alkyl-C was predominant carbon structure in the three manures. Alkyl-C and carboxyl-C were decomposed dramatically in initial 10 days, and mineralization of O-alkyl-C dominated the curing stage. During pyrolysis of chicken, cow, and swine manures, the majority products were fatty acids, phenols and cholestene derivatives, respectively, however, phenols and cholestene derivatives were strongly reduced in the mature manures. Furthermore, microorganisms in the raw cow, chicken and swine manure demonstrated the highest degradation capabilities for carbohydrates, lipids and amino acids, respectively. Spatial differences in the contents of solid organics in the manure particles were negligible through detection by multiple staining methods during composting.

  20. Maximising municipal solid waste--legume trimming residue mixture degradation in composting by control parameters optimization.

    Science.gov (United States)

    Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J

    2013-10-15

    Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  2. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  3. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    Science.gov (United States)

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2017-12-01

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Use of organic acids in the composting of municipal solid waste: a pilot-scale study.

    Science.gov (United States)

    Rosal, A; Chica, A F; Arcos, M A; Dios, M

    2012-09-01

    Compost made from municipal solid waste (MSW) contains heavy metals that can interfere with the use of organic amendment in soil. In order to find effective ways to reduce the potential risk of heavy metals, we have investigated a novel approach by use of organic acid during MSW composting. Citric and oxalic acid dissolutions (0.25 mol x (-1)) were used at determined ratios (kg dried MSW: cm(3) acid). Cr and Ni concentrations were similar in compost, independent of acid contribution. By contrast, Cu concentrations decreased by 63% (at citric acid ratio 1:15), 65% (at citric acid ratios 1:20 and 1:40) and 83% (at oxalic acid ratio 1:40); furthermore, Pb concentrations reduced by 71% (at citric acid ratios 1:20 and 1:40 and at oxalic acid ratio 1:40) and Zn concentrations reduced by 67% (at citric acid ratios 1:10 and 1:20) and 70% (at oxalic acid ratio 1:40). The total metal mass decreased by an average of 12% in the compost fraction, whereas the total percentage of the residual fraction increased by an average of 20%. The acid addition in the studied ratios improved compost quality without negatively influencing biostabilization.

  5. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2013-01-01

    Full Text Available Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA, crude fulvic acids (CFA, crude humin (CH, soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants’ diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  6. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Science.gov (United States)

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  7. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    Science.gov (United States)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  8. Composting of pig manure and forest green waste amended with industrial sludge.

    Science.gov (United States)

    Arias, O; Viña, S; Uzal, M; Soto, M

    2017-05-15

    The aim of this research was to study the composting of chestnut forest green waste (FGW) from short rotation chestnut stands amended with sludge resulting from the manufacture of Medium Density Fibreboard (MDFS) and pig manure (PM). Both FGW and MDFS presented low biodegradation potential but different characteristics in granulometry and bulk density that make its mixture of interest to achieve high composting temperatures. PM decreased the C/N ratio of the mixture and increased its moisture content (MC). Three mixtures of MDFS:FGW at volume ratios of 1:1.3 (M2), 1:2.4 (M3) and 0:1 (M4) were composted after increasing its MC to about 70% with PM. A control with food waste (OFW) and FGW (1:2.4 in volume) (M1) was run in parallel. Watering ratios reached 0.25 (M1), 1.08 (M2) 1.56 (M3) and 4.35 (M4) L PM/kg TS of added solids wastes. Treatments M2 and M3 reached a thermophilic phase shorter than M1, whilst M4 remained in the mesophilic range. After 48days of composting, temperature gradients in respect to ambient temperature were reduced, but the mineralization process continued for around 8months. Final reduction in total organic carbon reached 35-56%, depending mainly on the content in MDFS. MDFS addition to composting matrices largely reduced nitrogen losses, which range from 22% (M2) to 37% (M3) and 53% (M4). Final products had high nutrient content, low electrical conductivity and low heavy metal content which make it a valuable product for soil fertilization, right to amend in the chestnut forests and as a pillar of their sustainable management. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Marta García-Albacete

    2014-01-01

    Full Text Available New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste’s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

  10. Study of calendula and Gaillardia growth in two composts prepared from agroindustrial wastes.

    Science.gov (United States)

    Roudsari, O Nouri; Akbari, B

    2007-05-01

    Two composts prepared from agroindustrial wastes were assayed as substrates: C1 from brewing waste (yeast and malt) plus lemon tree pruning and C2 from the solid fraction of olive mill wastewater plus olive leaves. Sixteen substrates were prepared by combining each compost with Sphagnum peat or a Commercial Substrate (CS) in different proportions. The nutrients (N and K) provided by the composts, which acted as slow-release fertilizers, influenced especially the development of calendula, although the physical and physicochemical properties such as total pore space and Electrical Conductivity (EC) were also relevant. On the other hand, in the salt-sensitive Gaillardia hybrid, EC and chloride concentration were the main factors influencing growth. The best results were found in substrates prepared by mixing C1 at up to 75% with peat, or at up to 50% with CS, or by mixing C2 at up to 50% with peat or CS, for calendula. For salt-sensitive species such as Gaillardia, adequate substrates for plant development were found for C1 at up to 50% with peat or CS, but the use of C2 should be limited to 25% in mixtures with peat or CS. Therefore, composts of agroindustrial origin such as these can be used as an alternative to peat and CSs for growing ornamental plants, provided the mixture contains at least 25% peat or CS.

  11. Organic waste composting at the Semple Street Co-op. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Accomplishments in the development of a vermiculture room are described. The purpose of the project is to develop an earthworm composting system for processing organic (food) wastes. The composting room in its completed form consists of an insulated room with exterior access, a utility tub, a grinder and racks to accommodate earthworm pans. As of now, the earthworms are being fed regularly, and are increasing in numbers. The responsibility of finding and scheduling volunteers for feeding has come under the wing of the regular co-op volunteer coordinator and has been institutionalized into the co-op's operations. The present population of earthworms is approximately 10,000, a sufficient number to process one day's organic waste, one day a week. It will require no more than 60,000 earthworms to compost all of the organic waste at the current level of waste generation. At a distribution of 1000 to 2000 worms per pan, it is estimated that the project will operate in its full capacity with between 30 and 60 pans.

  12. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  13. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    Directory of Open Access Journals (Sweden)

    Manjula Gopinathan

    2012-06-01

    Full Text Available Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with dairy waste water at different C/N ratios. About 50 kg of shredded waste containing dairy waste water, saw dust, and organic fraction of municipal solid waste was placed in static piles of different proportions and 500 ml of effective micro-organisms was added to them. The variation in physical and chemical parameters was monitored throughout the process. Results indicate that co composting of dairy waste water with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.963

  14. THE COMPOST – A METHOD TO RESTORE THE ORGANIC WASTE PRODUCTS IN THE NATURAL CIRCUIT

    Directory of Open Access Journals (Sweden)

    Delia Nicoleta VIERU

    2009-03-01

    Full Text Available Half of the quantity of waste products produced by the households is made of foodremainders, vegetable and garden remainders and more of 50% of waste products are organicand they arrive in waste products storehouses, in cesspools or are burned, causing animportant pollution. As an alternative to those, we can transform the organic material througha set of microbial, biochemical, chemical and physical processes into a valuable material witha humus appearance, named compost. To obtain a quality compost we need to lead thecompost process, in accordance with the dimension, the humidity, the structure and thecomposition of residual materials, that these to be fast and efficient available to the microorganisms,making up an ideal substratum rich in nutrients for their development. Thedecomposition agents (bacterium, fungous, mites, Collembola, wooden lice, worms,diplopoda need the azote to build the cells and some food remainders, ripped grass and greenleaves. The chips of wood, the dry leaves and the sawdust are rich in carbon and theyconstitute another energy source for the decomposition agents. The azote sources aredesignated as the „green” elements, and the carbon sources are the „brown” ones. In a pile ofcompost is efficient to maintain a balance between the „brown” elements (carbon and the„green” ones (azote – in percent of 30:1 to offer the decomposition agents a balancednourishment and this thing can be acquired through the alternation of layers of brown andgreen elements. The production of compost in schools can be a way to determine the entireschool community to work together for helping the environment. This means the naturalrecirculation of resources, community education over the benefits of the compost, the changeof the cultural attitude over the garbage in a way that brings benefits to the society, thereduction of the alimentary remainders quantity from the school canteen, the implication ofthe students in extra

  15. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    Science.gov (United States)

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  16. Installation and Setup of Whole School Food Waste Composting Program

    Science.gov (United States)

    Zhang, A.; Forder, S. E.

    2014-12-01

    Hong Kong, one of the busiest trading harbors in the world, is also a city of 8 million of people. The biggest problem that the government faces is the lack of solid waste landfill space. Hong Kong produces around 13,500 tons of waste per day. There are three landfills in Hong Kong in operation. These three landfills will soon be exhausted in around 2020, and the solid waste in Hong Kong is still increasing. Out of the 13,500 tons of solid waste, 9,000 tons are organic solid waste or food waste. Food waste, especially domestic waste, is recyclable. The Independent Schools Foundation Academy has a project to collect domestic food waste (from the school cafeteria) for decomposition. Our school produces around 15 tons of food waste per year. The project includes a sub-project in the Primary school, which uses the organic soil produced by an aerobic food waste machine, the Rocket A900, to plant vegetables in school. This not only helps our school to process the waste, but also helps the Primary students to study agriculture and have greater opportunities for experimental learning. For this project, two types of machines will be used for food waste processing. Firstly, the Dehydra made by Tiny Planet reduces the volume and the mass of the food waste, by dehydrating the food waste and separating the ground food waste and the excessive water inside machine for further decomposition. Secondly, the A900 Rocket, also made by Tidy Planet; this is used to process the dehydrated ground food waste for around 14 days thereby producing usable organic soil. It grinds the food waste into tiny pieces so that it is easier to decompose. It also separates the wood chips inside the ground food waste. This machine runs an aerobic process, which includes O2 and will produce CO2 during the process and is less harmful to the environment. On the other hand, if it is an anaerobic process occurs during the operation, it will produce a greenhouse gas- CH4 -and smells bad.

  17. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    Science.gov (United States)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  18. Comprehensive quality assessment of municipal organic waste composts produced by different preparation methods.

    Science.gov (United States)

    Tognetti, C; Mazzarino, M J; Laos, F

    2011-06-01

    In the first part of this work, the effect of municipal organic waste (MOW) composts on plant growth was evaluated in a greenhouse trial. The treatments included soil amended with 14 different composts (prepared by shredding, adding wood shavings, cocomposting with biosolids or vermicomposting), an inorganically fertilized soil, and a control soil. All of the treatments significantly increased plant growth compared to the control, and yields of three of the amended treatments were as high as that of the inorganic fertilizer treatment. When comparing differently prepared composts to the conventional compost, it was found that cocomposting MOW with biosolids was the method which most positively influenced yields (26-41% yield increases). In the second part of this work, we evaluated the effects of the different preparation methods on compost quality, using a multivariate approach. Three main quality aspects were considered collectively in a principal component analysis: organic matter and nutrient concentrations, degradability and capacity to mineralize these nutrients, and plant growth. The model was restricted to the first and second components (PC1 and PC1) which accounted for 94% of data variance. On the resulting factorial plane, four groups were distinguished. Each of the groups was compared to the reference compost to determine quality increases or decreases. Based on this analysis, it was found that cocomposting MOW with biosolids produced the highest quality products (higher total nutrient and OM concentration, nutrient mineralization potential, and plant growth). Addition of wood shavings increased OM concentration, but reduced quality in terms of the other aspects studied. Shredding was only effective to increase product quality when it was not combined with other methods, whereas vermicomposting only increased quality when MOW was not mixed with biosolids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Composting of selected organic wastes from peri-urban areas of Harare, Zimbabwe

    CSIR Research Space (South Africa)

    Mhindu, RL

    2013-08-01

    Full Text Available is an important source of organic matter. Soil organic matter improves physico-chemical and biological properties and Composting as a waste management strategy has multiple benefits for peri-urban agriculture considering the scarcity of animal manures among small... holder farmers as highlighted by Nzuma and Murwira (2000) and the rapid organic matter mineralization associated sub-Saharan Africa. Clear guidelines on which readily available mate- rials to be used by smallholder farmers, the mixtures...

  20. CO2施肥残渣对菜薹产量和品质的影响%Effects of CO2 Enrichment by Fermentation of Organic Wastes on Yield and Quality of Brassica parachinensis

    Institute of Scientific and Technical Information of China (English)

    徐明喜; 毛久庚; 常义军; 王东升; 王蓓

    2013-01-01

    In order to explore the utilization way of the compost by the fermentation of organic wastes, we designed the commercial organic fertilizer treatment, the compost (CO2 enrichment) treatment and no fertilizer treatment, and studied their effects on the yield and quality of Brassica parachinensis. The results showed that the yield of B. parachinensis was significantly increased by applying the compost, and the main-stalk yields of the compost and commercial organic fertilizer treatments were the same. The nitrate content in B. parachinensis was increased after applying the compost, and it was recommended that a certain amount of potassium fertilizer should be used with the compost to reduce the nitrate content in vegetables.%  为探讨CO2施肥残渣资源化利用的途径,设计了商品有机肥、CO2施肥残渣和不施肥3种处理对菜薹产量和品质的影响。试验结果表明,施用CO2施肥残渣能明显提高菜薹的产量,其中CO2施肥残渣处理下的菜薹主薹产量与商品有机肥处理的相当,施用CO2施肥残渣会提高菜薹硝酸盐含量,因此建议在施用CO2施肥残渣时应配施一定量的钾肥,以降低蔬菜硝酸盐含量。

  1. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    Science.gov (United States)

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.

  2. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications.

  3. Maturity and hygiene quality of composts and hygiene indicators in agricultural soil fertilised with municipal waste or manure compost.

    Science.gov (United States)

    Tontti, Tiina; Heinonen-Tanski, Helvi; Karinen, Päivi; Reinikainen, Olli; Halinen, Arja

    2011-02-01

    Composts produced from municipal source separated biowaste (Biowaste), a mixture of biowaste and anaerobically digested sewage sludge (Biosludge) and cattle manure (Manure) were examined for their maturity and hygiene quality. The composts were applied to a potato crop in 2004 and to a barley nurse crop of forage ley in 2005 in a field experiment. Numbers of faecal coliforms, enterococci, clostridia and Salmonella in field soil were determined 2 weeks and 16 weeks after compost applications. Municipal compost batches chosen based on successful processing showed variable maturity during field application, and the need to evaluate compost maturity with multiple variables was confirmed. The numbers of faecal coliform were similar in all compost types, averaging 4.7 and 2.3 log( 10) CFU g(-1) in the first and second years, respectively. The highest number of enterococci was 5.2 log(10) CFU g(-1), found in Manure compost in the first year, while the highest clostridia numbers were found in Biosludge compost, averaging 4.0 log(10) CFU g(-1) over both years. Except for one case, less than 2.4 log(10) CFU g(-1) of faecal coliforms or clostridia were found in compost-fertilised soil, while the numbers of enterococci were mostly higher than in unfertilised soil (indicator bacteria were present in compost-fertilised potato at harvest. Overall, compost fertilisations caused rather small changes in the counts of hygiene indicators in the field environment.

  4. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Science.gov (United States)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  5. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.

    Science.gov (United States)

    Tsang, Daniel C W; Yip, Alex C K; Olds, William E; Weber, Paul A

    2014-09-01

    In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation.

  6. Sewage sludges compost and organic fraction urban solid waste from selective collection; Compostaje de lodos de depuradora y FORSU procedente de recogida selectiva

    Energy Technology Data Exchange (ETDEWEB)

    Chica, A.; Diaz, M. M.; Mohedo, J.

    2001-07-01

    The organic fraction of urban solid waste (FORSU) from selective collection has been analysed to make a good quality compost for soils an agricultural use. Different mixtures of FORSU, sludge from the municipal water treatment plant, and pruning garden has been composted in turned windrow. The composting process and the obtained refined compost were characterised. The results on evolution of pH, conductivity, C/N relation, P, metals,-organic matter and recovery yield were related. (Author) 15 refs.

  7. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DEFF Research Database (Denmark)

    Andersen, J.K.; Boldrin, Alessio; Christensen, Thomas Højlund

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different....... The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg−1 wet waste (ww...... input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load...

  8. Composting of domestic wastes: development and optimization of reactor continuous; Compostaje domestico : desarrollo y optimizacion de un reactor en continuo

    Energy Technology Data Exchange (ETDEWEB)

    Rad, C.; Gonzalez-Carcedo, S.; Revenga, J. M.; Bustillo-Nunez, J. M.; Marcos-Naveira, L. A. [Universidad de Burgos (Spain); Monje, J. C.; Bustillo-Iglesias, A.

    2002-07-01

    In this work, a mixture of the organic fraction of a domestic waste and wooden chips has been composted using an in vessel composting apparatus with forced aeration and a continuous compost collection system. After three months with a daily addition of a fixed organic charge,temperature and moisture control, five samples of compost were collected and tested in their chemical and biological characteristics. Odour production and low temperatures and moisture contents during the process,high saline concentration and the presence of pathogenic microorganisms in the final product are the main disadvantages of this experience. Although, a good C/N ratio, neutral pH and high levels of nutrients (N and P) in the compost have been achieved,the parameters controlling the process must be improved. (Author) 16 refs.

  9. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment

    NARCIS (Netherlands)

    Hermann, B.G.|info:eu-repo/dai/nl/304837415; DeBeer, L.; De Wilde, B.; Blok, K.|info:eu-repo/dai/nl/07170275X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2011-01-01

    Many life cycle assessments of bio-based and biodegradable materials neglect the post-consumer waste treatment phase because of a lack of consistent data, even though this stage of the life cycle may strongly influence the conclusions. The aim of this paper is to approximate carbon and energy footpr

  10. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  11. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Science.gov (United States)

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  12. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Directory of Open Access Journals (Sweden)

    Devin B Holman

    Full Text Available Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  13. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste.

    Science.gov (United States)

    Voběrková, Stanislava; Vaverková, Magdalena D; Burešová, Alena; Adamcová, Dana; Vršanská, Martina; Kynický, Jindřich; Brtnický, Martin; Adam, Vojtěch

    2017-03-01

    An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    Science.gov (United States)

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  15. Solid-state fermentation and composting as alternatives to treat hair waste: A life-cycle assessment comparative approach.

    Science.gov (United States)

    Catalán, Eva; Komilis, Dimitrios; Sánchez, Antoni

    2017-07-01

    One of the wastes associated with leather production in tannery industries is the hair residue generated during the dehairing process. Hair wastes are mainly dumped or managed through composting but recent studies propose the treatment of hair wastes through solid-state fermentation (SSF) to obtain proteases and compost. These enzymes are suitable for its use in an enzymatic dehairing process, as an alternative to the current chemical dehairing process. In the present work, two different scenarios for the valorization of the hair waste are proposed and assessed by means of life-cycle assessment: composting and SSF for protease production. Detailed data on hair waste composting and on SSF protease production are gathered from previous studies performed by our research group and from a literature survey. Background inventory data are mainly based on Ecoinvent version 3 from software SimaPro® 8. The main aim of this study was to identify which process results in the highest environmental impact. The SSF process was found to have lower environmental impacts than composting, due to the fact that the enzyme use in the dehairing process prevents the use of chemicals traditionally used in the dehairing process. This permits to reformulate an industrial process from the classical approach of waste management to a novel alternative based on circular economy.

  16. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    Science.gov (United States)

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards.

  17. Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting.

    Science.gov (United States)

    Francou, Cédric; Linères, Monique; Derenne, Sylvie; Villio-Poitrenaud, Maelenn Le; Houot, Sabine

    2008-12-01

    The influence of green waste, biowaste and paper-cardboard proportions in initial mixtures on organic matter (OM) evolution during composting in pilot-scale reactors was studied using respirometric procedure, humic substance extraction, crude fiber analysis and Fourier transform infrared spectroscopy. The stabilisation of OM during composting resulted from the degradation of easily biodegradable organic fraction as cellulose and hemicellulose, the relative increase of resistant compounds as lignin, the microbial synthesis of resistant biomolecules, and from humification processes. Little stabilisation of green waste OM during composting was observed, in relation with their large lignin content. With moderate contents of paper-cardboard in initial mixtures (20-40%), cellulose proportion remained favorable to fast OM stabilisation. Larger proportions of paper-cardboard (more than 50%) affected OM stabilisation, probably due to a lack of nitrogen. The influence of biowastes only appeared at the very beginning of composting, because of their large proportions of easily biodegradable OM.

  18. Evaluation of Phytotoxicity for Compost from Organic Fraction of Municipal Solid Waste and Paper & Pulp Mill Sludge

    Directory of Open Access Journals (Sweden)

    Manjula Gopinathan

    2012-03-01

    Full Text Available The compost obtained from composting organic fraction of Municipal solid waste, Paper & Pulp mill sludge and saw dust using different initial mix ratios (1:3, 1:6, 1:9 was used to evaluate phytotoxicity of green gram (Vigna radiata using a seed germination method. The tests were repeated for the compost obtained from organic fraction of MSW and saw dust without the addition of sludge. The control germination test was carried out using deionised water. The results showed that composting generally reduced the phytotoxicity of the mixtures. A germination index was the highest in the mix ratio of 1:9 in the compost obtained from the addition of paper & pulp mill sludge and a germination index was the highest in the mix ratio of 1:6 in the compost obtained without the addition of sludge. The germination percentage, germination index and vigour index values were relatively higher in the compost obtained with the addition of paper & pulp mill sludge. The vigour index was found to be maximal in the mix ratio of 1:3 from the compost obtained with the addition of sludge.DOI: http://dx.doi.org/10.5755/j01.erem.59.1.922

  19. Microbiological study on bioremediation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting.

    Science.gov (United States)

    Chen, Yaoning; Ma, Shuang; Li, Yuanping; Yan, Ming; Zeng, Guangming; Zhang, Jiachao; Zhang, Jie; Tan, Xuebin

    2016-11-01

    This paper studied the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in contaminated soil under composting and natural conditions, respectively. BDE-47 residue in agricultural waste-composting pile was determined during 45-day composting. The microbial communities were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the relationships between the DGGE results and physico-chemical parameters were evaluated by redundancy analysis (RDA) and heatmap-clustering analysis. The results showed that the degradation rate of BDE-47 was significantly higher in agricultural waste-composting pile compared with control group, which was enhanced up to almost 15 % at the end of composting. There were different environmental factors which affected the distribution of composting bacterial and fungal communities. The bacterial community composition was more significantly affected by the addition of BDE-47 compared with other physico-chemical parameters, and BDE-47 had stronger influences on bacterial community than fungal community during the composting. Meanwhile, the most variation in distribution of fungal community was explained by pile temperature.

  20. Experimenting with Different Bulking Agents in an Aerobic Food Waste Composter

    Science.gov (United States)

    Chann, S.

    2016-12-01

    With one third of Hong Kong's solid wastage being food scraps, reducing food waste has become crucial. The ISF Academy, a Hong Kong private school, had an A900 Rocket Food Composter installed in 2013, hoping to reduce its carbon footprint. The 27 metric tons of food wastage produced annually by the school is put through an aerobic process and the wastage is converted into humus. The composter has a capacity of 1750 litres of food and it produces humus every 14 days. The base of the humus consists of a bulking agent and food waste (2:1). A bulking agent is a carbon based material used to absorb moisture and odors, add structure and air and eliminate bugs from humus. This study contains comparative data on a few of the listed bulking agents: Hemp, Kenaf, rapeseed oil straw, miscanthus and shredded cardboard. The aim of this study is to determine an alternative reliable, affordable and suitable bulking agent to wood shavings: the current agent used. The humus produced must pass regulations for "general agricultural use" as it is used for experiential learning and gardening with primary school students. Over 500 children are participating in the school's plantation project, producing legumes for the school cafeteria. ISF pioneers and sets an example for other Hong Kong schools, showing that a composting and plantation scheme, not only proves to have environmental benefits but also educational uses.

  1. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management.

    Science.gov (United States)

    Zhou, Chuanbin; Wang, Rusong; Zhang, Yishan

    2010-06-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD(5) concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  2. Two culture approaches used to determine the co-composting stages by assess of the total microflora changes during sewage sludge and date palm waste co-composting.

    Science.gov (United States)

    El Fels, Loubna; El Ouaqoudi, Fatima-Zahra; Barje, Farid; Hafidi, Mohamed; Ouhdouch, Yedir

    2014-01-01

    Indigenous microflora community changes during six months of co-composting of activated sewage sludge and date palm waste was investigated using two different culture approaches. In order to evaluate the co-composting process evolution for mixture A and B, growth standard media (GSM) and Compost Time Extract Agar (CTEA) are used. Enumeration for indigenous flora abundance on GSM medium shows that the colony-forming unit (CFU) total number was 100 fold higher than on CTEA. The thermophilic phase is determined at 30 day for both mixtures A and B. Nevertheless this stage is limited only at 22 and 30 days, respectively for mixture A and B on CTEA medium, which indicate a similar temperature profile at versus time of co-composting. The results suggest that the GSM medium approach can be used for monitoring the microbial cultivable presence. However, CTEA act as a natural selective medium to enumerate the indigenous functional microflora. This technique was successful in assessing the process evolution and determination of a real succession thermophilic and maturation co-composting stages.

  3. Use of Organic Compost Containing Waste from Small Ruminants in Corn Production

    Directory of Open Access Journals (Sweden)

    Henrique Antunes de Souza

    Full Text Available ABSTRACT Composting is a useful way of transforming livestock waste into organic fertilizer, which is proven to increase soil nutrient levels, and thus crop yield. Remains from production and slaughter of small ruminants can become a source of important elements for plant growth, such as N, after microorganism-driven decomposition.The aim of this investigation was to evaluate the effects of this compost on soil fertility and on the nutritional status and yield of the corn crop. The experiment was conducted in a Haplic Luvisol in a randomized block design with six treatments and five application rates of the organic compound in Mg ha-1: 3 (half the standard rate, 6 (standard rate, 9 (one and a half times the standard rate, 12 (twice the standard rate, and 24 (four times the standard rate and an additional treatment with mineral fertilizers (110, 50 e 30 kg ha-1 of N, P2O5 and K2O, respectively, with four blocks. Evaluations were performed for two harvests of rainfed crops, measuring soil fertility, nutritional status, and grain yield. The compost increased P, K, Na and Zn values in the 0.00-0.20 m layer in relation of mineral fertilization in 616, 21, 114 and 90 % with rate 24 Mg ha-1 in second crop. Leaf N, Mg, and S contents, relative chlorophyll content, and the productivity of corn kernels increased in 27, 32, 36, 20 e 85 %, respectively, of low rate (3 Mg ha-1 to high rate (24 Mg ha-1 with of application of the compost. Corn yield was higher with application of organic compost in rate of 24 Mg ha-1 than mineral fertilizer combination in second crop.

  4. Effect of bio-surfactant on municipal solid waste composting process

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou; LIU Hong-liang; HUANG G H; ZHANG Bai-yu; QIN Xiao-sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains Ⅲ (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains Ⅲ (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains Ⅲ (2),the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains Ⅲ (2) were both higher than those without Strains Ⅲ (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains Ⅲ (2)with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate(PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  5. 园林废弃物好氧堆肥处理技术的研究进展%Research Progress of Composting Treatment Technologies of Garden Waste

    Institute of Scientific and Technical Information of China (English)

    梅娟

    2014-01-01

    从堆肥处理工艺、堆肥过程控制、堆肥机械研制等方面介绍了我国园林废弃物好氧堆肥研究的现状。现有研究存在的问题主要是针对园林废弃物堆肥专用菌剂,以及对园林废弃物与其它易腐有机废弃物混合堆肥工艺和装置的研究较少。%With the rapid development of urban greening, the amount of garden waste is increasing in China cit-ies. The aerobic composting treatment has become an important method of garden waste resource utilization. Garden waste composting has been practiced in several major cities now, and there have been many researches about appropri-ate composting technologies. Research status of garden waste composting treatment in China is introduced in this paper in terms of content, including composting treatment progress, composting progress controlling, and composting equip-ment research and development. The existing problems in previous studies are analyzed and the suggestions are given that more attention should be paid on specific microorganism agent for garden waste composting and the technology and equipment for mixed composting of garden waste with easily degradable waste in the further.

  6. Converting City Waste into compost pilot Nairobi (LNV-BO-10-006-115) : report phase one: inventory and assessment

    NARCIS (Netherlands)

    Kirai, P.; Gachugi, J.; Scheinberg, A.

    2009-01-01

    The ‘Converting City Waste in Compost Project’ is being implemented in an effort to explore options for the development of a viable system of collecting, processing, distribution and marketing of valorized organic city waste material, for application in urban and peri-urban agriculture within East

  7. Converting City Waste into compost pilot Nairobi (LNV-BO-10-006-115) : report phase one: inventory and assessment

    NARCIS (Netherlands)

    Kirai, P.; Gachugi, J.; Scheinberg, A.

    2009-01-01

    The ‘Converting City Waste in Compost Project’ is being implemented in an effort to explore options for the development of a viable system of collecting, processing, distribution and marketing of valorized organic city waste material, for application in urban and peri-urban agriculture within East A

  8. Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment.

    Science.gov (United States)

    Basso, Daniele; Weiss-Hortala, Elsa; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Fiori, Luca

    2015-04-01

    The possibility to apply the hydrothermal carbonization (HTC) process to off-specification compost (EWC 19.05.03) at present landfilled was investigated in this work. The aim was to produce a carbonaceous solid fuel for energy valorization, with the perspective of using HTC as a complementary technology to common organic waste treatments. Thus, samples of EWC 19.05.03 produced by a composting plant were processed through HTC in a batch reactor. Analytical activities allowed to characterize the HTC products and their yields. The hydrochar was characterized in terms of heating value, thermal stability and C, H, O, N, S and ash content. The liquid phase was characterized in terms of total organic carbon and mineral content. The composition of the gas phase was measured. Results show that the produced hydrochar has a great potentiality for use as solid fuel.

  9. Use of pruning waste compost as a component in soilless growing media.

    Science.gov (United States)

    Benito, Marta; Masaguer, Alberto; De Antonio, Roberto; Moliner, Ana

    2005-03-01

    The objective of this work was to study the use of pruning wastes compost (PWC) as a growing media component for ornamental plants. The main physical, chemical and biological characteristics of PWC were analysed in order to evaluate its suitability for use in soil-less cultivation. Six growth substrates were prepared by mixing PWC with peat (P), ground leaves (GL), sand (S) and spent mushroom compost (SMC) in different proportions. Two different pot experiments were carried out to test its characteristics of production using perennial ryegrass (Lolium perenne L.) and cypress (Cupressus sempervirens L.) as indicators and the different media as treatments. The growth experiments showed that PWC required mixing with a nutrient-richer material to produce higher results. Therefore, substrates containing SMC (PWC+P+SMC and PWC+SMC) seems to be the most adequate growing media. After the statistical analysis, we concluded that the PWC could be used as a growing media component.

  10. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil

    Institute of Scientific and Technical Information of China (English)

    Shu-ying ZHANG; Qing-feng WANG; Rui WAN; Shu-guang XIE

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site.Knowledge of changes in microbial structure is useful to identify particular PAH degraders.However,the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown.In this study,anthracene was selected as a model compound.The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis.The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation.Genera Methylophilus,Mesorhizobium,and Terrimonas had potential links to anthracene biodegradation,suggesting a consortium playing an active role.

  11. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity.

  12. Studies concerning recycling by composting organic waste in Tg-Mureş

    Directory of Open Access Journals (Sweden)

    Florica Morar

    2011-12-01

    Full Text Available Recycling organic waste has become a matter of utmost importance for overall healthiness of the Earth, its volume largely interacting with the economic development. The problem tends to become a vital matter of survival for an entire society. In this context, recovery, recycling, physical-chemical treatment, composting or incineration are methods of waste processing, commonly used in most countries of the world. These measures are intended to both environmental protection and rational use and economically efficient. Based on the data regarding the municipal waste generated in Mures County, in previous years, and in Tg-Mures city, in 2007 were calculated the quantities expected to generate by the year 2038. Also, concerning the cleaning recovery it is proposed the pile composting method, being, from our point of view, more Beneficial in the area. In conclusion, at county level but at city level too, there is still working to do, primarily in terms of awareness, not only the population but also the relevant, local bodies, of what means the cleaning recovery of the municipal waste.

  13. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media.

    Science.gov (United States)

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol

    2015-03-01

    This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree.

  14. The effect of an organic waste compost on the agro-chemical characteristics of the soil, and the mineral composition of the sunflower leaves

    National Research Council Canada - National Science Library

    Radu Lăcătușu; Anca-Rovena Lăcătușu; Romeo Căpățână; Mihaela Lungu; Rodica Lazăr; Irina Ramona Moraru

    2017-01-01

    ... in the Romanian Black Sea coast, was used in association with another two organic wastes, farmyard manure from cattle-breeding farms and sewage sludge resulted from the waste water treatment, to produce a compost...

  15. Efficacy of bioconversion of paper mill bamboo sludge and lime waste by composting and vermiconversion technologies.

    Science.gov (United States)

    Sahariah, B; Sinha, I; Sharma, P; Goswami, L; Bhattacharyya, P; Gogoi, N; Bhattacharya, S S

    2014-08-01

    Paper mill bamboo sludge (PMBS) and Paper mill lime waste (PMLW) are extensively produced as solid wastes in paper mills. Untreated PMBS and PMLW contain substantial amount of heavy metals (Zn, Pb, Ni, Cd, Cr) in soluble forms. Efficiency of vermiconversion and aerobic composting with these wastes is reported here. Adopted bioconversion systems enhanced the availability of some essential nutrients (N, P, K and Zn) in various combinations of cow dung (CD) with PMBS and PMLW. Colonization of nitrogen fixing bacteria and phosphate solubilizing bacteria considerably intensified under the vermiconversion system. Moreover, significant metal detoxification occurred due to vermiconversion. Various combinations of bioconverted PMBS and PMLW were applied to tissue cultured bamboo (Bambusa tulda) and chilli (Capsicum annum). Accelerated nutrient uptake coupled with improved soil quality resulted in significant production of chilli. Furthermore, vermiconverted PMBS+CD (1:1) and PMLW+CD (1:3) confirmed as potential enriching substrate for tissue cultured bamboo.

  16. The effect of application of compost from urban solid wastes on the properties of agricola soil; Efecto de la aplicacion de compost de residuos solidos urbanos sobre las propiedades de un suelo agricola

    Energy Technology Data Exchange (ETDEWEB)

    Garci-Gil, J. C.; Soler-Rovira, P.; Alonso, N.; Diaz-Marcote, I.; Polo, A. [C.S.I.C. Madrid (Spain)

    1999-08-01

    A long-term field experiment was conducted to determine the effect of the addition of municipal solid waste (MSW) compost applied at two different rates on a barley crop. In all treatments, values obtained for plants overall weights show increases in comparison to the control, especially with the higher rate of compost. The contents of macronutients in plants were similar in all the treatments. only N showed an increase in both grain and straw with the higher rate of compost during the years of consecutive applications. No heavy metal contamination was observed in plants, but in the compost treatments the contents of Zn increased while Mn decreased. (Author)

  17. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  18. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  19. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application.

  20. Assessment of co-composting process with high load of an inorganic industrial waste.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Reis, Marco S; Quinta-Ferreira, Rosa

    2017-01-01

    This study aims to investigate the co-composting of an inorganic industrial waste (eggshell - ES) in very high levels (up to 60% w/w). Since composting is a process in which solid, liquid and gaseous phases interact in a very complex way, there is a need to shed light on statistical tools that can unravel the main relationships structuring the variability associated to this process. In this study, PCA and data visualisation were used with that purpose. The co-composting tests were designed with increasing quantities of ES (0, 10, 20, 30 and 60%ES w/w) mixed with industrial potato peel and rice husks. Principal component analysis showed that physical properties like free air space, bulk density and moisture are the most relevant variables for explaining the variability due to ES content. On the other hand, variability in time dynamics is mostly driven by some chemical and phytoxicological parameters, such as organic matter decay and nitrate content. Higher ES incorporation (60% ES) enhanced the initial biological activity of the mixture, but the higher bulk density and lower water holding capacity had a negative effect on the aerobic biological activity as the process evolved. Nevertheless, pathogen-killing temperatures (>70°C for 11h) were attained. All the final products obtained after 90days were stable and non-phytotoxic. This work proved that valorisation of high amounts of eggshell by co-composting is feasible, but prone to be influenced by the physical properties of the mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recycling of Vineyard and Winery Wastes as Nutritive Composts for Edible Mushroom Cultivation

    Science.gov (United States)

    Petre, Marian; Teodorescu, Alexandru

    2011-01-01

    Every year, in Romania huge amounts of wine and vine wastes cause serious environmental damages in vineyards as well as nearby winery factories, for instance, by their burning on the soil surface or their incorporation inside soil matrix. The optimal and efficient way to solve these problems is to recycle these biomass wastes as main ingredients in nutritive composts preparation that could be used for edible mushrooms cultivation. In this respect, the main aim of this work was to establish the best biotechnology of winery and vine wastes recycling by using them as appropriate growth substrata for edible and medicinal mushrooms. According to this purpose, two mushroom species of Basidiomycetes, namely Lentinula edodes as well as Pleurotus ostreatus were used as pure mushroom cultures in experiments. The experiments of inoculum preparation were set up under the following conditions: constant temperature, 23° C; agitation speed, 90-120 rev min-1 pH level, 5.0-6.0. All mycelia mushroom cultures were incubated for 120-168 h. In the next stage of experiments, the culture composts for mushroom growing were prepared from the lignocellulose wastes as vine cuttings and marc of grapes in order to be used as substrata in mycelia development and fruit body formation. The tested culture variants were monitored continuously to keep constant the temperature during the incubation as well as air humidity, air pressure and a balanced ratio of the molecular oxygen and carbon dioxide. In every mushroom culture cycle all the physical and chemical parameters that could influence the mycelia growing as well as fruit body formation of L. edodes and P. ostreatus were compared to the same fungal cultures that were grown on poplar logs used as control samples.

  2. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    Science.gov (United States)

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, Pmaterials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S.

    Science.gov (United States)

    Mu, Dongyan; Horowitz, Naomi; Casey, Maeve; Jones, Kimmera

    2017-01-01

    A composting system provides many benefits towards achieving sustainability such as, replacing fertilizer use, increasing the quantity of produce sold, and diverting organic wastes from landfills. This study delves into the many benefits a composting system provided by utilizing an established composting system at Kean University (KU) in New Jersey, as a scale project to examine the composters' environmental and economic impacts. The results from the study showed that composting food wastes in an in-vessel composter when compared to typical disposal means by landfilling, had lower impacts in the categories of fossil fuel, GHG emissions, eutrophication, smog formation and respiratory effects; whereas, its had higher impacts in ozone depletion, acidification human health impacts, and ecotoxicity. The environmental impacts were mainly raised from the manufacturing of the composter and the electricity use for operation. Applying compost to the garden can replace fertilizers and also lock carbon and nutrients in soil, which reduced all of the environmental impact categories examined. In particular, the plant growth and use stage reduced up to 80% of respiratory effects in the life cycle of food waste composting. A cost-benefit analysis showed that the composting system could generate a profit of $13,200 a year by selling vegetables grown with compost to the student cafeteria at Kean and to local communities. When educational and environmental benefits were included in the analysis, the revenue increased to $23,550. The results suggest that in-vessel composting and the subsequent usage of a vegetable garden should be utilized by Universities or food markets that generate intensive food wastes across the U.S. Published by Elsevier Ltd.

  4. Composting Organic Kitchen Waste with Worms for Sustainable Kitchen Waste Management

    Directory of Open Access Journals (Sweden)

    Mehali J. Mehta

    2014-03-01

    Full Text Available India produces around 3000 million tons of organic waste annually. This huge volume of waste(s comes from agriculture, urban and industrial sources and also from domestic activities. Utilization of this waste material for productivity process is important for both economical and environmental reasons. In the present study an effort has been made to assess the efficacy of E. foetida (red tiger worm in utilizing the kitchen waste material, to analyse the waste decomposition process assessed with earthworm activity.

  5. The impact of silver and titanium dioxide nanoparticles on the in-vessel composting of municipal solid waste.

    Science.gov (United States)

    Stamou, Ioannis; Antizar-Ladislao, Blanca

    2016-10-01

    The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP.

  6. Data on biodegradation of total petroleum hydrocarbons using co-composting of cow manure/oily drill wastes

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadi

    2016-12-01

    Full Text Available Oil drill cuttings are challenging wastes in oil sites especially in Khuzestan province, a major oil producing region in Iran. As co- composting is a simple and eco- friendly technique for bioremediation of oil base drill cutting, this data article designed to describe co- composting of oil base drill cutting with cow manure. The data suggest that with optimized mixture of cow manure/oily drill wastes (here, 20:1 could engender more effective treatment of the wastes (with final total petroleum hydrocarbon of 0.01 g/Kg. The data will be informative for oil drilling companies and environmental agencies for choosing it as a practical bioremediation process of soil/wastes polluted by petroleum hydrocarbons.

  7. Monitoring the performances of a real scale municipal solid waste composting and a biodrying facility using respiration activity indices.

    Science.gov (United States)

    Evangelou, Alexandros; Gerassimidou, Spyridoula; Mavrakis, Nikitas; Komilis, Dimitrios

    2016-05-01

    Objective of the work was to monitor two full-scale commingled municipal solid waste (MSW) mechanical and biological pretreatment (MBT) facilities in Greece, namely a biodrying and a composting facility. Monitoring data from a 1.5-year sampling period is presented, whilst microbial respiration indices were used to monitor the decomposition process and the stability status of the wastes in both facilities during the process. Results showed that in the composting facility, the organic matter reduced by 35 % after 8 weeks of combined composting/curing. Material exiting the biocells had a moisture content of less than 30 % (wb) indicating a moisture limitation during the active composting process. The static respiration indexes indicated that some stabilization occurred during the process, but the final material could not be characterized as stable compost. In the biodrying facility, the initial and final moisture contents were 50 % and less than 20 % wb, respectively, and the biodrying index was equal to 4.1 indicating effective biodrying. Lower heating values at the inlet and outlet were approximately 5.5 and 10 MJ/wet kg, respectively. The organic matter was reduced by 20 % during the process and specifically from a range of 63-77 % dw (inlet) to a range of 61-70 % dw. A significant respiration activity reduction was observed for some of the biodrying samples. A statistically significant correlation among all three respiration activity indices was recorded, with the two oxygen related activity indices (CRI7 and SRI24) observing the highest correlation.

  8. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.

    Science.gov (United States)

    Karami, Nadia; Clemente, Rafael; Moreno-Jiménez, Eduardo; Lepp, Nicholas W; Beesley, Luke

    2011-07-15

    Green waste compost and biochar amendments were assessed for their assistance in regulating the mobility of copper (Cu) and lead (Pb) and the resultant uptake of these metals into vegetation. The amendments were mixed with a heavily Cu and Pb contaminated soil (600 and 21,000 mg kg(-1), respectively) from a former copper mine in Cheshire (UK), on a volume basis both singly and in combination in greenhouse pot trials. Ryegrass (Lolium perenne L. var. Cadix) was grown for the following 4 months during which biomass, metals in soil pore water and plant uptake were measured in three consecutive harvests. Very high Pb concentrations in pore water from untreated soil (>80 mg l(-1)) were reduced furthest by compost amendment (compost amendments, respectively during successive harvests. However, because green waste compost singly and in combination with biochar vividly enhanced biomass yields, harvestable amounts of Pb were only significantly reduced by the compost amendment which had reduced shoot Pb levels furthest. The low biomass of ryegrass with biochar amendment meant that this was the only amendment which did not significantly increase harvestable amounts of Cu. Therefore the two amendments have opposing metal specific suitability for treating this contaminated soil regarding whether it is a maximum reduction in plant tissue metal concentration or a maximum reduction in harvestable amount of metal that is required. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. P losses in soil columns amended with compost and digestate from municipal solid wastes

    Science.gov (United States)

    García-Albacete, Marta; Cartagena, M. Carmen

    2013-04-01

    Sludge's, manures and compost applied to agricultural soils in high quantities and long-term application to increase crop productivity, result in accumulation of soil phosphorous (P). Soluble P is directly available to algae (Sonzogni et al., 1982) and thus particularly relevant to water quality degradation. Transport of P from agricultural soils to surface waters has been linked to eutrophication in fresh water and estuaries (Sharpley and Lemunyon, 1998). Almost 50% of stored water in Spain is degraded by eutrophication processes that cause the proliferation of algae and other organisms and a decrease in oxygen content (Environmental Profile of Spain 2005). Fertilizers and biodegradable wastes application rates in agriculture are based on nitrogen requirements. This results in a P supply that is in excess of crops needs since the ratio of P to N in waste use to be greater than required by plants (Smith, 1995). While surface runoff is an important pathway of phosphorus losses from agricultural lands, significant losses can also occur via leaching thought soils. Leaching tests are important for assessing the risk of release of potential pollutants from biodegradable wastes into groundwater or surface water. Percolation tests also get information about the interaction of organic waste with soils. The study was conducted according to the percolation leaching test CEN/TS 14405 "Characterization of waste-Leaching behavior test- Up-flow percolation test" with three different soils mixed with organic wastes from msw (compost and digestato) and an inorganic fertilizer (NaH2PO4). Each soil was amended with the P sources at rates of 100 kg P ha-1. Leachates were collected and analyzed for each column for dissolved reactive P by inductively coupled plasma atomic emission spectroscopy (ICP) following USEPA Method 3050A digestion (USEPA, 1995). The fact that P sorption capacity (Xmax, PSI) of the soils was determined using Langmuiŕs isotherms and the P forms from organic

  10. Full-scale co-composting of hair wastes from the leather manufacturing industry and sewage sludge

    OpenAIRE

    Barrena Gómez, Raquel; Pagans i Miró, Estel·la; Vázquez Lima, Felícitas; Artola Casacuberta, Adriana; Sánchez Ferrer, Antoni

    2007-01-01

    A full-scale cocomposting experiment using hair wastes from the leather manufacturing industry and sewage sludge as cosubstrates was carried out with the aim of producing compost that may be used as an organic amendment in agriculture. A 1:1 weight ratio of hair wastes and sewage sludge was used based on experiments at smaller-scale. The resulting mixture was then amended with pruning wastes acting as bulking agent in a 1:1 volumetric ratio (mixture:pruning wastes). The experiment was carried...

  11. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  12. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  13. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  14. Insects associated with the composting process of solid urban waste separated at the source

    Directory of Open Access Journals (Sweden)

    Gladis Estela Morales

    2010-01-01

    Full Text Available Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae. Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.

  15. Effect of inoculation during different phases of agricultural waste composting on spectroscopic characteristics of humic acid

    Institute of Scientific and Technical Information of China (English)

    黄红丽; 曾光明; 罗琳; 张嘉超; 喻曼; 秦普丰

    2015-01-01

    The white-rot fungus, Phanerochaete chrysosporium (P. chrysosporium), was inoculated during different phases of agricultural waste composting and its effect on the spectroscopic characterization of humic acid (HA) was studied. Three runs were used in this study: Run A was the control without inoculating, and Runs B and C were inoculatedP. chrysosporium during the first and the second fermentation phase, respectively. The elemental analysis, ultra-violet spectroscopy (UV), fluorescence spectra, Fourier transform infra-red (FTIR) and13C nuclear magnetic resonance (13C-NMR) of HA all lead to the same conclusion, that is, the degree of aromatization and polymerization of HA increases after 42 days composting. However, the inoculation during different phases presents different effects.P. chrysosporium increases the degree of aromatization and polymerization of HA when it is inoculated during the second fermentation phase, while it does not produce an obvious change on the humification degree of HA when it is inoculated during the first fermentation phase.

  16. Effect of inoculation during different phases of agricultural waste composting on spectroscopic characteristics of humic acid

    Institute of Scientific and Technical Information of China (English)

    黄红丽; 曾光明; 罗琳; 张嘉超; 喻曼; 秦普丰

    2015-01-01

    The white-rot fungus, Phanerochaete chrysosporium(P. chrysosporium), was inoculated during different phases of agricultural waste composting and its effect on the spectroscopic characterization of humic acid(HA) was studied. Three runs were used in this study: Run A was the control without inoculating, and Runs B and C were inoculated P. chrysosporium during the first and the second fermentation phase, respectively. The elemental analysis, ultra-violet spectroscopy(UV), fluorescence spectra, Fourier transform infra-red(FTIR) and 13 C nuclear magnetic resonance(13C-NMR) of HA all lead to the same conclusion, that is, the degree of aromatization and polymerization of HA increases after 42 days composting. However, the inoculation during different phases presents different effects. P. chrysosporium increases the degree of aromatization and polymerization of HA when it is inoculated during the second fermentation phase, while it does not produce an obvious change on the humification degree of HA when it is inoculated during the first fermentation phase.

  17. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    Science.gov (United States)

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH3) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin)(-1), respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin)(-1) may be applied to control VSCs and NH3 emissions during kitchen waste composting.

  18. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    Science.gov (United States)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  19. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Tortosa, Germán; Castellano-Hinojosa, Antonio; Correa-Galeote, David; Bedmar, Eulogio J

    2017-01-01

    Microorganisms are the main contributing factor responsible for organic matter degradation during composting. In this research, the 454-pyrosequencing of the 16S rRNA gene was used to elucidate evolution of bacterial diversity during mesophilic, thermophilic and maturation composting stages of the two-phase olive mill waste ("alperujo"), the main by-product of the Spanish olive oil industry. Two similar piles were performance composting AL with sheep manure as bulking agent. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the main phyla found in genomic libraries from each composting phase. Shannon and Chao1 biodiversity indices showed a clear difference between the mesophilic/thermophilic and maturation phases, which was mainly due to detection of new genera. PCA analysis of the relative number of sequences confirmed maturation affected bacterial population structure, and Pearson correlation coefficients between physicochemical composting parameters and relative number of genera sequences suggest that Planomicrobium and Ohtaekwangia could be considered as biomarkers for AL composting maturation.

  20. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    Science.gov (United States)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  1. Quality Improvement of Compost from Empty Oil Palm Fruit Bunch by the Addition of Boiler Ash and its effect on Chemical Properties of Ultisols and the Production of Mustard ( Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Sri Mulyani

    2016-09-01

    Full Text Available Productions of crude palm oil (CPO produce waste which include the empty oil palm fruit bunch (EOPFB, palm oil mill effluent, shells, and fiber. The combustions of shell and fiber as boiler feed produce waste in the form of boiler ash. Boiler ash is very potential to use as an additive to improve quality of the EOPFB compost. The objectives of this research were to study : 1 effect of boiler ash on the quality of the EOPFB compost, 2 effect of EOPFB compost on the chemical properties of Ultisol, and the yield of mustard. The first experiment was about quality improvement of compost from EOPFB by the addition of boiler ash. The treatments applied were four dose levels of boiler ash: K1= 0%, K2 = 15%, K3 = 25%, and K4 = 35%. The second experiment was greenhouse pot experiment. This experiment was consisted of thirteen treatments with three replications arranged in completely randomized design (CRD. The treatments applied were: four types of compost from the first experimental results aplied to the soil with four dose levels, i.e : 0, 10, 20 and 30 Mg ha-1. The results showed that the addition of boiler ash at the beginning of the composting process improved the quality of the EOPFB compost: which increased pH, amount of humic acids, macro and micro nutrients content and decreased content of Pb. The aplication of all compost –K1, K2, K3, K4– to Ultisol increased pH H2O, P2O5, organic-C, total-N, exchangeable-Ca, exchangeable-K and yield of mustard and decreased exchangeable-H, exchangeable-Al. Moreover the yield of mustard was increased about 84% (33.9 g plant-1 with K4 at doses 20 Mg ha-1 and 85% (34.1 g plant-1 with K3 at doses 10 Mg ha-1.

  2. Agricultural waste utilisation strategies and demand for urban waste compost: evidence from smallholder farmers in Ethiopia

    NARCIS (Netherlands)

    Nigatu, Abebe; Kuyper, T.W.; Neergaard, de A.

    2015-01-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste alloc

  3. Performance of A Horizontal Cylinder Type Rotary Dryer for Drying Process ofOrganic Compost from Solid Waste Cocoa Pod

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2008-07-01

    Full Text Available Cocoa pod husk is the bigest component of cocoa pod, about 70% of total ht of mature pod, and to potentially used as organic compost source. Poten tial solid waste of cocoa pod husk from a cocoa processing centre is about 15— 22 m3/ha/year. A cocoa plantation needs about 20—30 ton/ha/year of organic matters. One of important steps in compos processing technology of cocoa pod solid waste is drying process. Organic compost with 20% moisture content is more easy in handling, application, storage and distribution. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal cylinder type rotary dryer for drying process of organic compos from solid waste cocoa pod with kerosene burner as energy sources. The objective of this research is to study performance of a horizontal cylinder type rotary dryer using kerosene burner as energy source for drying process of organic compost from solid waste cocoa pod. The material used was solid waste cocoa pod with 70—75% moisture content (wet basis, 70% size particle larger than 4.76 mm, and 30% size particle less than 4.76 mm, 690—695 kg/m3 bulk density. Drying process temperatures treatment were 60OC, 80OC, and 100OC, and cylinder rotary speed treatments were 7 rpm, 10 rpm, dan 16 rpm. The results showed that dryer had capacity about 102—150 kg/h depend on drying temperature and cylinder rotary speed. Optimum operation condition at 100OC drying temperature, and 10 rpm cylinder rotary speed with drying time to reach final moisture content of 20% was 1,6 h, capacity 136,14 kg/ h, bulk density 410 kg/m3, porocity 45,15%, kerosene consumption as energy source was 2,57 l/h, and drying efficiency 68,34%. Key words : cocoa, drying, rotary dryer, compost, waste

  4. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  5. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  6. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2017-08-24

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Application of high-efficient cellulose utilization microorganisms in co-composting of vegetable wastes and flower stalk].

    Science.gov (United States)

    Huang, De-yang; Lu, Wen-jing; Wang, Hong-tao; Zhou, Hui-yu; Wang, Zhi-chao

    2004-03-01

    An inoculation composing 17 species of cellulose utilization microorganisms was used in co-composting of vegetable wastes and flower stalk, and the efficiency of the inoculation on lignocellulose degradation was studied. The experiments result show that at the beginning of the first stage of composting, inoculating cellulose utilization microorganism in the substrates with 0.5% (V/V) can improve the biomass of the microorganisms into the substrates greatly and make them dominant ones. When the temperature was controlled as 55 degrees C, the biomass of cellulose utilization microorganisms can keep between [symbol: see text] 3.84 x 10(9)-1.80 x 10(10) CFU/g. At the beginning of the second stage, inoculating with 1% (V/V) can improve the temperature during this period effectively. Monitoring of the content of lignocelluloses in the substrate shows that the inoculation of cellulose utilization microorganism can accelerate the degradation of cellulose. The degradation efficiency of cellulose under inoculation condition is 23.64% higher than those without inoculation. This shows that inoculating with cellulose utilization microorganisms in each stage of the composting can greatly decompose the lignocellulose in the substrates, accelerate the co-composting process and improve the quality of composting production.

  8. Utilización de azufre micronizado en la corrección del pH de compost de residuos de poda Correction of the pH of pruning waste compost with micronized sulphur

    Directory of Open Access Journals (Sweden)

    L.A. Barbaro

    2010-12-01

    Full Text Available Los compost actualmente son muy utilizados como componentes de sustratos, aunque en algunos casos presentan pH alcalinos y causan problemas nutricionales. Por ello se recomienda hacer una corrección previa a su utilización o luego de elaborar el sustrato. Algunas alternativas para bajar el pH es mezclando el compost con materiales ácidos o mediante la adición de azufre, sulfato ferroso u otros compuestos azufrados. El objetivo de este trabajo fue corregir el pH de un compost de residuos de poda con azufre micronizado y hallar la dosis adecuada para el pH deseado. Se conformaron siete tratamientos, incorporando al compost de poda diferentes dosis de azufre micronizado: 0, 1, 2, 3, 4, 6 y 8 g/litro. Al compost de cada tratamiento se le midió el pH semanalmente y una vez estabilizados se analizó la conductividad eléctrica, concentración de nitrato, calcio, magnesio, potasio y sodio. Para un pH entre 5,3 y 6,2 se necesitaron 2 a 3 g de azufre/litro. El pH del compost disminuyó con el incremento de la dosis de azufre, y la CE aumentó. El azufre micronizado es una alternativa viable para corregir el pH del compost de restos de poda a los valores deseados.Nowadays, composts are widely used for incorporation into substrates and in some cases they present alkaline pH, causing nutritional problems. Therefore, it is suggested that a correction should be made prior to its use or after its preparation. Some alternatives to decrease pH values are mixing compost with acid materials or adding sulphur, ferrous sulphate or other sulphur compounds. The aim of this work was to correct the pH of pruning waste compost with micronized sulphur and find the appropriate dose for the desired pH. Seven treatments were performed incorporating different doses of micronized sulphur: 0, 1, 2, 3, 4, 6 and 8 g per liter of compost. Compost pH was measured weekly in each treatment. Once stabilized, electrical conductivity and concentration of nitrate, calcium, magnesium

  9. Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE).

    Science.gov (United States)

    Quadri, Giorgia; Chen, Xiaosong; Jawitz, James W; Tambone, Fulvia; Genevini, Pierluigi; Faoro, Franco; Adani, Fabrizio

    2008-04-01

    In this work, four surfactant-like humic acids (HAs) obtained from garden lignocellulose wastes and kitchen food wastes mixed with garden-lignocellulose wastes, both before and after composting, were tested for surfactant properties and the ability to solubilize tetrachloroethene (PCE). The waste-derived HAs showed good surfactant properties, lowering the water surface tension from 74 mN m(-1) to 45.4 +/- 4.4 mN m(-1), with a critical micelle concentration (CMC) of 1.54 +/- 1.68 g L(-1), which is lower than many synthetic ionic surfactants. CMC was affected by both waste origin and composting processes. The addition of food waste and composting reduced CMC by adding alkyl-C (measured by CP MAS 13C NMR) and N- and S-HA contents (amide molecules), so that a multistep regression was found [CMC = 24.6 - 0.189 alkyl C - 2.64 (N + S); R2 = 0.77, P < 0.10, n = 6]. The four HAs solubilized PCE at the rate of 0.18-0.47 g PCE/g aqueous biosurfactant. These results were much higher than those reported in the literature for a commercial HA (0.026 g/g), but they were in line with those measured in this work for nonionic surfactants such as Tween-80 (0.69 g/g) and Triton X-100 (1.08 g/g).

  10. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the

  11. Succession of Actinomycetes During Composting Proccess of Dairy-Farm Waste Investigated by Culture-Dependent and Independent Approaches

    Directory of Open Access Journals (Sweden)

    Mukhlissul Faatih1

    2015-11-01

    Full Text Available Mesophilic, thermophilic, and maturation phases were recognized in composting proccess. Temperaturechanges influence the microbial communities in compost within composting proccess. Actinomycetes account for alarger part of compost microbial population. The aim of this research was to study succession of actinomycetescommunity during composting of dairy-farm waste investigated by culture-dependent and independentapproaches.In culture-independent method, the succession of actinomycetes community was analyzed by nestedpolymerasechain reaction of ribosomal intergenic spacer (nested-PCR RISA using spesific primer F243 and primerR23S followed by a second PCR using primers F968 and R23S. In culture-dependent method actinomycetes fromcompost were isolated on selective media, starch-nitrate medium and humic-acid + vitamins medium. DNA ofactinomycetes was extracted and amplified by repetitive sequence-based PCR (rep-PCR using primer BOXA1R. Thebanding patterns were used to generate dendrograms by UPGMA clustering with NTSYS program. Microcosmcontaining sterile rice-straw and water which is inoculated with each actinomycetes isolates was used for examiningthe ability of each isolate in rice-straw degradation.The experiment results showed that succession of both bacteria and actinomycetes was occured withincomposting proccess of dairy-farm waste. Analysed by culture-independent method revealed that the highestcommunity of compost’s bacteria was on mesophilic, thermophilic, and maturation phases, respectively. WhereasPCR-nested RISA resulted the highest population of actinomycetes was on thermophilic, maturation, and mesophilicphases, respectively. By culture-dependent method was obtained 29 actinomycetes isolates from mesophilic phase,23 isolates from thermophilic phase, and 19 isolates from maturation phase. Genetic diversity analysis of the obtainedisolates showed the presence of phylogenetic grouping on each phase of composting proccess. This result

  12. Characterization of explosives processing waste decomposition due to composting. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Tyndall, R.L.; Stewart, A.J.; Ho, C.H.; Ironside, K.S.; Caton, J.E.; Caldwell, W.M.; Tan, E.

    1991-11-01

    Static pile and mechanically stirred composts generated at the Umatilla Army Depot Activity in a field composting optimization study were chemically and toxicologically characterized to provide data for the evaluation of composting efficiency to decontaminate and detoxify explosives-contaminated soil. Characterization included determination of explosives and 2,4,6,-trinitrotoluene metabolites in composts and their EPA Synthetic Precipitation Leaching Procedure Leachates, leachate toxicity to Ceriodaphnia Dubia and mutagenicity of the leachates and organic solvent extracts of the composts to Ames bacterial strains TA-98 and TA-100. The main conclusion from this study is that composting can effectively reduce the concentrations of explosives and bacterial mutagenicity in explosives -- contaminated soil, and can reduce the aquatic toxicity of leachable compounds. Small levels of explosive and metabolites, bacterial mutagenicity, and leachable aquatic toxicity remain after composting. The ultimate fate of the biotransformed explosives, and the source(s) of residual toxicity and mutagenicity remain unknown.

  13. Influence of oxygen flow rate and compost addition on reduction of organic matter in aerated waste layer containing mainly incineration residue

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Asakrura; Kei Nakagawa; Kazuto Endo; Masato Yamada; Yusaku Ono; Yoshiro Ono

    2013-01-01

    Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer,causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter.In this study,efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated.Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR).To effectively accelerate TOC reduction in the waste layer to which compost was added,a high OFR exceeding that by natural ventilation was required.At day 65,the pH of the leachate when OFR was above 102 mol-O2/(day·m3) was lower than that when OFR was below 101 mol-O2/(day·m3).At the same OFR,the pH of waste sample was lower than that of waste sample with compost.Although leachate neutralization could be affected by compost addition,TOC reduction in the waste layer became rather small.It is possible that humic substances in compost prevent the decomposition of TOC in MSWI residue.

  14. Acidulocompost, a food waste compost with thermophilic lactic acid fermentation: its effects on potato production and weed growth

    Directory of Open Access Journals (Sweden)

    Naomi Asagi

    2016-01-01

    Full Text Available Acidulocomposting recycles food wastes by means of thermophilic lactic acid fermentation. This process can decrease ammonia volatilization and odor emission during processing and produce compost with high nitrogen (N content. To compare the yield of potatoes (Solanum tuberosum L. ‘Dansyakuimo’ and the suppression of weeds with acidulocompost (AC and those with conventional composts and inorganic fertilizer (IF, we conducted field experiments in Miyagi Prefecture, northeastern Japan. Potatoes were cultivated in 2008 and 2009 in an Andosol field treated with AC, conventional food waste compost (FWC, poultry manure compost (PMC, cattle manure compost (CMC, IF, or no fertilizer (NF. AC, but not the other treatments, delayed the emergence of potatoes, and suppressed the emergence of weeds, but it did not inhibit potato growth during the late growth stage or yield. Potato N uptake and tuber yield with AC were significantly higher than those with NF and similar to those with FWC, PMC, and IF. The N uptake efficiencies (ratio of difference between N uptake in the treatment and the control to added N for AC (10.4–12.7% in 2008 and 2009 were similar to those for FWC and PMC (10.2–13.1%, higher than those for CMC (–1.3 to 6.3%, but significantly lower than those for IF (30.2–42.3%. Our findings indicate that AC has an N supply capacity similar to those of FWC and PMC and additionally suppresses the emergence and growth of weeds.

  15. Integrated waste management through producers and consumers education: composting of vegetable crop residues for reuse in cultivation.

    Science.gov (United States)

    Maniadakis, K; Lasaridi, K; Manios, Y; Kyriacou, M; Manios, T

    2004-01-01

    As part of the design of an integrated waste management scheme through the use of the PRECEDE/PROCEED model in the area of Crete, data concerning the applicability of composting in various agricultural wastes was considered as necessary. Vegetable residues from tomato, cucumber, eggplant, and pepper crops were collected, shredded and composted either alone or with the use of olive press cake, olive tree leaves, and branches and vine branches as bulking agents. Seven random combinations--mixtures of the above materials were composted using windrows, where additional four similar windrows were made up by approximately 10 m3 of the above mentioned vegetable crop residues. All windrows were turned four times during the eight weeks thermophylic phase, with the help of a mechanical turner. A large number of physiochemical parameters were monitored in the raw materials, at the end of the thermophylic phase and at the end of the maturation phase. The temperature which was monitored daily, recorded the highest values (above 55 degrees C) in the windrows where bulking agents were used. All raw vegetable crop residues and their mixtures presented increased electrical conductivity values (above 5 mS/cm and up to 9.7 mS/cm) resulting to end products with respectively high EC values (above 3 mS/cm and up to 15 mS/cm) probably due to the presence of large amounts of soil, rich in fertilisers, attached to the roots of the plants. There was no detection of any remains of the 13 pesticides for which all 11 composts were tested for. The accuracy of the results was tested through a recovery test of the pesticides in mature compost, resulting to acceptable recovery values.

  16. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air

    Science.gov (United States)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  17. Energy Generation in Compost

    Science.gov (United States)

    Locascio, Katinka; Wolfson, Richard

    2001-03-01

    Composting is a popular and environmentally sound way of disposing of organic waste, while producing a high-quality fertilizing medium for growing plants. But composting also produces energy, which can be used boost plant yields by augmenting solar energy and other sources of greenhouse heating. This work reviews previous experiments to measure energy generation in compost, and describes our recent measurements on Middlebury College's compost mix. Our results are consistent with others', and suggest a sensible heat generation on the order of 200 watts per cubic meter of compost.

  18. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate

  19. Thermophilic composting – a hygienization method of source-separated faecal toilet waste

    OpenAIRE

    Holmkvist, A; Møller, J.; Dalsgaard, A.

    2005-01-01

    Aims: To evaluate the sanitizing effect of thermophilic composting of faecal material from urine diverting toilets as a function of temperature and exposure-time. Methods and Results: A composting lab with reactors imitating centralized in-vessel composting systems was used. The elimination of indicator organisms was investigated at temperatures between 50 and 65C. Salmonella serotype Senftenberg 775W and thermotolerant coliforms were rapidly inactivated during less than one day at all te...

  20. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Palumbo-Roe, Barbara [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom)

    2011-07-15

    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg{sup -1} and 362 mgCu kg{sup -1}) and Pb/Zn mine (4550 mgPb kg{sup -1} and 908 mgZn kg{sup -1}) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. - Graphical abstract: Display Omitted Highlights: > Compost reduced the mobility of Cu, Pb and Zn. > Compost increased the mobility of As. > Earthworms decreased water soluble As and Cu but increased Pb and Zn in porewater. > These effects are explained by the impact of the earthworms and compost on pH and DOC. - The effect of earthworms on metal solubility was due to changes in dissolved organic carbon and pH but was reduced with increasing compost amendments.

  1. From Source to Sink: Carbon Sequestration and Greenhouse Gas Mitigation Potential of Using Composted Manure and Food Waste on California's Rangelands

    Science.gov (United States)

    Vergara, S.; Silver, W. L.

    2016-12-01

    That anthropogenic climate change is irreversible, except in the case of sustained net removal of CO2 from the atmosphere, compels the scientific community to search for terrestrial carbon sinks. The soil is a promising sink: it currently stores more carbon than do the atmosphere and the vegetation combined, and most managed lands are degraded with respect to carbon. The application of compost to rangelands has been shown to enhance carbon uptake by soils, and the production of compost avoids greenhouse gas (GHG) emissions from waste management. Though these two mitigation pathways have been well studied, emissions from the composting process - which should be quantified in order to estimate the net carbon sequestration achieved by applying compost to rangelands - have not. We present a novel approach to quantifying emissions from composting, which we have deployed in Marin County, CA: a micrometerological mass balance set up, using a system of gas and wind towers surrounding a series of composting windrow piles. Real-time greenhouse gas emissions (CO2, N2O, CH4) from the composting waste are measured by a laser spectrometer, and a system of sensors measure conditions within the pile, to identify biogeochemical drivers of those emissions. Understanding these drivers improves our knowledge of the processes governing the production of short-lived climate pollutants, and provides guidance to municipalities and states seeking to minimize their greenhouse gas emissions.

  2. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  3. The Effect of Compost and the Ripe Fruit Waste of Fig on some Physical Properties of Surface Soil

    Directory of Open Access Journals (Sweden)

    zahra dianat maharluei

    2017-02-01

    Full Text Available Introduction: In arid and semi-arid soils, low organic matter is one of the barriers to achieving optimal performance. The soils with more organic matter have a better structure and are more resistant to erosive factors such as water and wind. Soil organic matter has a particular importance and has significant impact on the stability of soil aggregates, the extension of plant root system, carbon and water cycles and soil resistance to erosion. This substance acts as a cementing agent and plays an important role in soil flocculation and formation of resistant aggregates.Also, the addition of organic matter to the soil increases soil porosity and decreases soil bulk density. Materials and Methods: In this research, the effect of the two types of organic matter (compost and the ripe fruit waste of fig on some soil physical properties was studied. A factorial experiment based on completely randomized design, including the four levels of compost and the ripe fruit waste of fig (0, 1, 2 and 4 by weight % and three soil types (loamy sand, loam and silty clay loam with three replications was carried out. The soil samples were collected from the three territories of Fars Province: loamy sand soil from Shiraz, loamy soil from Maharlu and Silty clay loam soil from Zarghan area. The soil samples were air dried and passed through a 2 mm sieve. The physical properties including the bulk density, particle density, porosity, moisture content and soil crust strength was measured. In this research, the soil texture by hydrometer method, Electrical conductivity of the soil saturated paste extract by electrical conductivity meter, saturated paste pH by pH meter, seedling emergence test, soil crust strength by a pocket penetrometer (HUMBOLDT MFG.CO. bulk density by cylindrical sample and particle density by pycnometer method were measured. The fig fruit treatments were prepared by thoroughly mixing the dried powder of ripe fig fruit passed through a 2 mm sieve (with

  4. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@ljmu.ac.u [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M.; Riby, Philip [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Leese, Elizabeth; Morton, Jackie [Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN (United Kingdom); Lepp, Nicholas W., E-mail: nickandeileenlepp@hotmail.co [35 Victoria Road, Formby L37 7DH (United Kingdom)

    2010-12-15

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  5. Use of Fertigation and Municipal Solid Waste Compost for Greenhouse Pepper Cultivation

    Directory of Open Access Journals (Sweden)

    Nikos Tzortzakis

    2012-01-01

    Full Text Available Municipal solid waste compost (MSWC and/or fertigation used in greenhouse pepper (Capsicum annuum L. cultivation with five different substrates with soil (S and/or MSWC mixtures (0–5–10–20–40% used with or without fertigation. Plants growth increased in 10–20% MSWC and fertigation enhanced mainly the plant height. Fruit number increased in S : MSWC 80 : 20 without fertilizer. Plant biomass increased as MSWC content increased. There were no differences regarding leaf fluoresces and plant yield. The addition of MSWC increased nutritive value (N, K, P, organic matter of the substrate resulting in increased EC. Fruit fresh weight decreased (up to 31% as plants grown in higher MSWC content. Fruit size fluctuated when different MSWC content used into the soil and the effects were mainly in fruit diameter rather than in fruit length. Interestingly, the scale of marketable fruits reduced as MSWC content increased into the substrate but addition of fertilizer reversed this trend and maintained the fruit marketability. MSWC affected quality parameters and reduced fruit acidity, total phenols but increased fruit lightness. No differences observed in fruit dry matter content, fruit firmness, green colour, total soluble sugars and EC of peppers and bacteria (total coliform and E. coli units. Low content of MSWC improved plant growth and maintained fruit fresh weight for greenhouse pepper without affecting plant yield, while fertigation acted beneficially.

  6. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility.

    Science.gov (United States)

    Dorado, Antonio D; Husni, Shafik; Pascual, Guillem; Puigdellivol, Carles; Gabriel, David

    2014-02-01

    Emissions of volatile organic compounds (VOCs) from the compost maturation building in a municipal solid waste treatment facility were inventoried by solid phase microextraction and gas chromatography-mass spectrometry. A large diversity of chemical classes and compounds were found. The highest concentrations were found for n-butanol, methyl ethyl ketone and limonene (ppmv level). Also, a range of compounds exceeded their odor threshold evidencing that treatment was needed. Performance of a chemical scrubber followed by two parallel biofilters packed with an advanced packing material and treating an average airflow of 99,300 m(3) h(-1) was assessed in the treatment of the VOCs inventoried. Performance of the odor abatement system was evaluated in terms of removal efficiency by comparing inlet and outlet abundances. Outlet concentrations of selected VOCs permitted to identify critical odorants emitted to the atmosphere. In particular, limonene was found as the most critical VOC in the present study. Only six compounds from the odorant group were removed with efficiencies higher than 90%. Low removal efficiencies were found for most of the compounds present in the emission showing a significant relation with their chemical properties (functionality and solubility) and operational parameters (temperature, pH and inlet concentration). Interestingly, benzaldehyde and benzyl alcohol were found to be produced in the treatment system.

  7. Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost

    Science.gov (United States)

    Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M. A.

    2006-04-01

    Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.

  8. Temperature and final characteristics of composting process of the Municipal solid wastes; Evolucion de la temperatura y caracteristicas finales del co-compostaje de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, O.; Leon, J.J. de; Revilla, J.; Dobao, M.M.; Ruiz, J.L. [Departamento de Quimica Agricola y Edafologia, Universidad de Cordoba, cordoba (Spain)

    1996-06-01

    In this paper it has been studied the evolution of temperature in two depth of three piles during the composting process using the organic matter of the Municipal Solid Waste from Cordoba (Spain) from the selective harvest. The cited mixtures were composed of organic matter (<50 mm), sludge from the water treatment plant, pruning garden and bark of pine (bunking). Almost it has been obtained the yield of the composting piles and the agronomic quality of the compost obtained. The mixture organic matter <50 mm+pruning arden+bunking (M.P.B.) shoved the best index. (Author) 15 refs.

  9. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production.

    Science.gov (United States)

    Yazdani, Ramin; Barlaz, Morton A; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-01

    The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  10. Composting system for waste treatment coca leaf with the addition of three biological activators in the Experimental Center Kallutaca

    Directory of Open Access Journals (Sweden)

    Apaza-Condori Emma Eva

    2015-11-01

    Full Text Available The objective of this study was to evaluate the composting process waste coca leaf with the addition of three biological activators (yogurt, whey and yeast. This work was carried out Kallutaca Experimental Center, Biofertilizers module Career Agricultural Engineering at the Public University of El Alto, La Paz municipality of Laja. Posed treatments were: T1 (+ Yogurt Coca wastes; T2 (Coca wastes + whey; T3 (Coca wastes + yeast and T4 (Control. The design was completely randomized with 4 treatments and 3 repetitions. The values in N are classified medium and high levels the quantities of P, K are classified as middle levels. The value obtained 7.9 pH, EC 12950 µS/cm and 61% organic matter belong to treatment T1. The decomposition time was a period of 105 days corresponds to treatment T3.

  11. Composting sewage sludge amended with different sawdust proportions and textures and organic waste of food industry--assessment of quality.

    Science.gov (United States)

    Ammari, Tarek G; Al-Omari, Qusai; Abbassi, Bassim E

    2012-01-01

    The quality of compost made from dewatered sewage sludge, sawdust (SD) and organic wastes of a potato-processing industry (OW), in terms of chemical and biological properties, was assessed. Mixtures of the sludge, SD and OW were composted for 57 days in insulated containers at two C:N ratios (approximately 30 : 1 and approximately 20 : 1) and SD textures (coarse- and fine-textured SD). The parameters monitored over this period were pH, electrical conductivity (EC), C:N ratio, CO2 evolution and two spectrophotometric ratios (Q2/6 and Q2/4). All the studied parameters were in general similarly influenced by initial C:N ratio and texture of SD except for EC, Q2/6 and Q2/4. At high C:N ratio of both textures, the EC of the final products increased but were less than those of low C:N ratio of both textures. Thus, final product can be used alone as growth medium without the need for grinding or blending with other materials. The spectrophotometric ratios (Q2/6 and Q2/4) dramatically decreased two weeks after composting and then slightly increased at the end of composting process. However, coarse-textured SD at the low C:N ratio and fine-textured SD at both C:N ratios resulted in lower Q2/6 and Q2/4 ratios, reflecting a better degree of aromatic condensation and organic matter humification. Considering these parameters, co-composting sludge with fine-textured SD and OW at high initial C:N ratio would represent the best compromise.

  12. Composting plant of vegetables wastes and sewage sludges in Castesdefells. Plant de compostaje de restos de poda y lodos de depuradora en Castelldefells

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Castelldefells Municipality (Catalonia, Spain) has set up a recycling plant for vegetable wastes mixed with sewage sludge to obtain compost. The plant treats 48.000 m''3/y. of vegetable wastes, and receive 8.000 m''3/y. of sewage sludge. (Author)

  13. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants.

    Science.gov (United States)

    Herrera, F; Castillo, J E; Chica, A F; López Bellido, L

    2008-01-01

    Five media prepared from old peat (OP), white peat (WP) and municipal solid waste compost (MSWC) were used to determine optimum growing media for tomatoes (Lycopersicum esculentum Mill. cv "Atletico"). The mixtures of substrates used were: OP (65%)+WP (30%)+perlite (5%), OP (65%)+MSWC (30%)+perlite (5%), WP (65%)+OP (30%)+perlite (5%), WP (65%)+MSWC (30%)+perlite (5%), MSWC (65%)+WP (30%)+perlite (5%). Various seedling indices were measured in order to assess the quality of the nursery-produced plant. Nursery-produced tomato seedlings grown in WP (65%)+MSWC (30%) displayed quality indices similar to those recorded for conventional mixtures of old and white peat sphagnum, due to a correct balance between the compost nutrient supply and the porosity and aeration provided by white peat.

  14. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity.

    Science.gov (United States)

    López-González, J A; Suárez-Estrella, F; Vargas-García, M C; López, M J; Jurado, M M; Moreno, J

    2015-01-01

    An intensive isolation program carried out in three replicated composting piles allowed the identification of the resident and transient components of the composting microbiome. More than 4000 bacterial strains were isolated, enzymatically characterized and identified by partial sequencing of their 16S rRNA gene. While microorganisms isolated under mesophilic conditions were prominent throughout the process, thermophilic stages gathered the highest total counts and spore-forming bacteria prevailed at the bio-oxidative phase of composting. Enzymatic capabilities related to the degradation of polymeric materials were exhibited by most of the isolates and as a result of these activities, more soluble compounds could be made available to the entire composting microbiota. A high proportion of isolates showed to be thermotolerant as they were detected at mesophilic and thermophilic phases. Isolated strains belonged to 187 bacterial species. Biodiversity was greater at the central stages of composting and mesophilic, thermophilic and cooling phases shared 50% of species.

  15. Changes in a Rhodic Hapludox under no-tillage and urban waste compost in the northwest of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Moacir Tuzzin de Moraes

    2014-08-01

    Full Text Available The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11 and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1, and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter, soil organic carbon (SOC and total nitrogen (TN. Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.

  16. Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol.

    Science.gov (United States)

    Vaughan, Sarah M; Dalal, Ram C; Harper, Stephen M; Menzies, Neal W

    2011-08-01

    Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N(2)O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N(2)O production over the 28 day incubation from the control soil was 1.5mg/N(2)O/m(2), and 11mg/N(2)O/m(2) from the control+N. The N(2)O emission decreased with GWC addition (Psoil, reducing cumulative N(2)O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N(2)O production during the first week of the trial, when soil N(2)O emissions peaked. An additional finding was that FGW+N did not decrease cumulative N(2)O emissions compared to the control+N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N(2)O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N(2)O, an important greenhouse gas.

  17. Comparison of compostable bags and aerated bins with conventional storage systems to collect the organic fraction of municipal solid waste from homes. a Catalonia case study.

    Science.gov (United States)

    Puyuelo, Belén; Colón, Joan; Martín, Patrícia; Sánchez, Antoni

    2013-06-01

    The separation of biowaste at home is key to improving, facilitating and reducing the operational costs of the treatment of organic municipal waste. The conventional method of collecting such waste and separating it at home is usually done by using a sealed bin with a plastic bag. The use of modern compostable bags is starting to be implemented in some European countries. These compostable bags are made of biodegradable polymers, often from renewable sources. In addition to compostable bags, a new model of bin is also promoted that has a perforated surface that, together with the compostable bag, makes the so-called "aerated system". In this study, different combinations of home collection systems have been systematically studied in the laboratory and at home. The results obtained quantitatively demonstrate that the aerated bin and compostable bag system combination is effective at improving the collection of biowaste without significant gaseous emissions and preparing the organic waste for further composting as concluded from the respiration indices. In terms of weight loss, temperature, gas emissions, respiration index and organic matter reduction, the best results were achieved with the aerated system. At the same time, a qualitative study of bin and bag combinations was carried in 100 homes in which more than 80% of the families participating preferred the aerated system.

  18. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Latifah Omar

    2015-01-01

    Full Text Available Improper use of urea may cause environmental pollution through NH3 volatilization and NO3- leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4+ and NO3- release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4+ and NO3- losses from urea. Bekenu Series soil (Typic Paleudults was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4+ and NO3- release from urea (soil incubation study compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3- leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4+ retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4+ and NO3- release from urea.

  19. Improving ammonium and nitrate release from urea using clinoptilolite zeolite and compost produced from agricultural wastes.

    Science.gov (United States)

    Omar, Latifah; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.

  20. Utilization of composted sugar industry waste (pressmud) to improve properties of sodic soil for rice cultivation.

    Science.gov (United States)

    Seth, Rashi; Chandra, R; Kumar, Narendra; Tyagi, A K

    2005-07-01

    Sulphitation pressmud (SPM) and its composts were prepared by heap, pit, NADEP and vermicomposting methods and their effects were compared with soil properties and growth, yield and nutrient uptake by rice in a sodic soil under pot conditions. Application of 15 t ha(-1) SPM and its different composts significantly increased the plant height and dry matter accumulation at different intervals, grain and straw yields and N, P and K uptake by the crop over the control. NADEP compost of SPM alone recorded the maximum and significant plant height by 8.5 to 19.3% and plant dry matter by 14.6 to 32.8% over the raw SPM at different intervals. NADEP composts of SPM alone and SPM + rice straw were also found to be superior than raw SPM by recording 34.8 and 27.8% more grain yield respectively. The SPM composts prepared by NADEP and SPM by vermicomposting methods significantly accumulated higher N and K in rice grains and straw, while NADEP compost of SPM and SPM + rice straw recorded more P in grains and straw than raw SPM. Application of SPM and its composts reduced the pH, EC and bulk density of the soil after rice harvesting, though the reductions were not significant in comparison to the control. However, these treatments increased the soil organic C by 33.33 to 69.0%, available N by 41.4 to 74.8%, available P by 47.1 to 97.8%, available K by 11.8 to 59.2% and available S by 10.3 to 90.7% over the control. NADEP composts, in general, were found to be superior than the raw SPM and other composts in residual soil nutrient content after rice crop.

  1. Summary of town kitchen waste aerobic composting research in China%我国城市厨余垃圾好氧堆肥研究综述

    Institute of Scientific and Technical Information of China (English)

    蔡旺炜; 陈俐慧; 王为木; 举健; 冯红春

    2014-01-01

    随着社会经济的发展,我国2000年之后逐渐开展城市厨余垃圾的好氧堆肥研究,且厨余垃圾好氧堆肥相关理论技术研究成果逐渐增多,源头处理、动态堆肥等新课题相继提出。本文介绍了好氧堆肥的一般机理,总结了厨余垃圾好氧堆肥预处理、微生物选择与接种、工艺条件控制、腐熟度判定、堆肥形式的研究成果。好氧堆肥处理厨余垃圾需要对原料进行一定的预处理,过程控制主要是通风量和搅拌,堆肥周期和对环境的影响因堆肥形式而异,堆垛式、槽式、容器式、蚯蚓和蝇类抗菌肽堆肥技术特点和优缺点有所不同,适用场所也不一,但都应达到相同的腐熟标准,已有实时、在线监测系统用于腐熟度测定。厨余垃圾堆肥的未来发展是基于源头容器式动态或静态堆肥,生产可就近使用的有机肥或能集中至堆肥厂再经规模化堆制加工为成品肥。%The town kitchen waste is the solid waste produced in food’s production, transportation, distribution and consump-tion various aspects. Studies on kitchen waste aerobic composting of China is still lagging behind than the developed countries which became a hot research until 2000 AD. The paper introduced general mechanism of aerobic composting, summarized the research results about raw material pretreatment, microbial agent selection and inoculation, process conditions control, maturi-ty judgment, compost forms and bioreactors in China. In summary, proper raw material pretreatment had to be processed for kitchen waste aerobic composting required, the main factors of process control were ventilation rate and agitation strength regu-lation. Aerobic compost cycle and the effect of compost processing on environment were affected by compost forms. The techni-cal features and advantage-disadvantage of different compost forms including stacking-compost, trough-compost, container-compost, earthworm-compost

  2. Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants

    Energy Technology Data Exchange (ETDEWEB)

    Braendli, Rahel C. [Agroscope Reckenholz-Taenikon Research Station ART, Analytical Chemistry, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Environmental Chemistry and Ecotoxicology (CECOTOX), Faculty of Architecture, Civil and Environmental Engineering, CH-1015 Lausanne (Switzerland); Bucheli, Thomas D. [Agroscope Reckenholz-Taenikon Research Station ART, Analytical Chemistry, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)]. E-mail: thomas.bucheli@art.admin.ch; Kupper, Thomas [Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Duebendorf (Switzerland); Mayer, Jochen [Agroscope Reckenholz-Taenikon Research Station ART, Analytical Chemistry, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland); Stadelmann, Franz X. [Agroscope Reckenholz-Taenikon Research Station ART, Analytical Chemistry, Reckenholzstrasse 191, CH-8046 Zuerich (Switzerland); Tarradellas, Joseph [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Environmental Chemistry and Ecotoxicology (CECOTOX), Faculty of Architecture, Civil and Environmental Engineering, CH-1015 Lausanne (Switzerland)

    2007-07-15

    Composting and digestion are important waste management strategies. However, the resulting products can contain significant amounts of organic pollutants such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). In this study we followed the concentration changes of PCBs and PAHs during composting and digestion on field-scale for the first time. Concentrations of low-chlorinated PCBs increased during composting (about 30%), whereas a slight decrease was observed for the higher chlorinated congeners (about 10%). Enantiomeric fractions of atropisomeric PCBs were essentially racemic and stable over time. Levels of low-molecular-weight PAHs declined during composting (50-90% reduction), whereas high-molecular-weight compounds were stable. The PCBs and PAHs concentrations did not seem to vary during digestion. Source apportionment by applying characteristic PAH ratios and molecular markers in input material did not give any clear results. Some of these parameters changed considerably during composting. Hence, their diagnostic potential for finished compost must be questioned. - During field-scale composting, low molecular weight PCBs and PAHs increased and decreased, respectively, whereas high molecular weight compounds remained st0010ab.

  3. Relationship between the nutrition status and sensory characteristics of melon fertilized with wine-distillery waste compost

    Science.gov (United States)

    Requejo, María Isabel; Sánchez-Palomo, Eva; González, Miguel Angel; Castellanos, Maria Teresa; Villena, Raquel; Cartagena, Maria Carmen; Ribas, Francisco

    2015-04-01

    The interest in developing sustainable agriculture is becoming more important day by day. A large quantity of wastes from the wine and distillery industry are produced and constitute a serious problem not only environmental but also economic. The use of exhausted grape marc compost as organic amendment is a management option of the fertility of soils. On the other hand, consumers are increasingly concerned about the type, quality and origin of food production. Flavor and aroma are most often the true indicators of shelf-life from the consumer's point of view. The aim of this study was to relate the nutritional status of melon fertilized with exhausted grape marc compost with the sensory profile of fresh-cut fruits. A field experiment was established with three doses of compost (1, 2 and 3 kg per linear meter) and a control. Melons were harvested at maturity and the sensory evaluation was carried out by an expert panel of melon tasters to describe odour, flavour and texture. Nitrogen, phosphorus and potassium concentration was determined in the fruits to calculate nutrient absorption. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01

  4. Adsorption Properties of Adsorption Tower Filled with Calcium Superphosphate on NH3 Emitted from Composting System of Animal Wastes

    Institute of Scientific and Technical Information of China (English)

    Dandan LUI; Yunxiao CHONG; Qitang WU; Genyi WU; Dechun HE; Jinrong QIU; Zhencheng XU

    2012-01-01

    [Objective] This study aimed to investigate the adsorption properties of the adsorption tower filled with calcium superphosphate on ammonia volatilized with aer- ation. [Method] Adsorption tower filled with calcium superphosphate was adopted as experimental apparatus, which was constructed by poly vinyl chloride (PVC) circular tubes. With hartshorn as the source of ammonia volatilization, the effect of different ratios of height to diameter of the tower filled with equal amount of calcium super-phosphate on ammonia adsorption was investigated. In addition, adsorption tower with height-diameter ratio of 9.9 was selected to adsorb the ammonia emitted from the composting systems of pig manure and chicken manure with optimized and reg- ulated carbon-nitrogen ratio. [Result] Under certain volatilization rate, calcium super- phosphate particles in the adsorption tower could effectively adsorb the ammonia, and the adsorption efficiency was enhanced with the increase of height-diameter ra-tio, which could reach above 90% with height-diameter ratio of more than 1.1; the ammonia emitted from composting systems of pig manure and chicken manure with optimized and regulated carbon-nitrogen ratio could be completely absorbed using adsorption tower with height-diameter ratio of 9.9 filled with calcium superphosphate accounting for about 8% of the weight of composting materials. [Conclusion] Experi- mental results of this study provided reference for the application of adsorption tower filled with calcium superphosphate in the treatment of waste gas emitted from com- posting materials.

  5. Substitution of peat with municipal solid waste compost in watermelon seedling production combined with fertigation

    Directory of Open Access Journals (Sweden)

    Maria Papamichalaki

    2014-12-01

    Full Text Available Interest in reusing organic residues as substrate medium in nurseries has increased worldwide as peat availability has been reduced over time. In this study, the effect of fertigation and/or a partial substitution of peat with municipal solid waste compost (MSWC on the emergence, growth, and nutrition of watermelon (Citrullus lanatus L. seedlings were tested. The MSWC extracts (MSWC:water at 10-1 and 10-2 dilutions maintained seedling germination. Under nursery conditions, six media prepared from commercial peat and MSWC were further assessed in conjunction with nutrient application as basic fertilizer (BF or hydro fertilizer (HF. Adding MSWC to the substrate inhibited seed emergence and mean germination time, whereas fertigation maintained seed emergence in 15% MSWC but decreased in 45% MSWC. Adding 45% MSWC reduced seedling height, leaf number, and fresh weight. The HF increased fresh weight (up to 44% and growth in seedlings cultivated in 15% MSWC. Leaf photosynthetic rate and stomatal conductance increased (up to 2.6-fold in MSWC-based (< 45% MSWC substrates, but no differences were observed in chlorophyll a, chlorophyll b, total carotenoid content, and leaf fluorescence. The HF reduced chlorophyll a and total carotenoids, but increased chlorophyll b content. The K, N, and Na content increased (ranging from 2- to 5-fold when adding MSWC, whereas P content did not differ. Fertigation benefits seedling nutritive status. Low content (15% to 30% of MSWC may act as an alternative substitute for peat with more positive effects if minerals are provided through HF.

  6. DESIGN AND EVALUATION OF BENCH-SCALE COMPOST TREATMENT SYSTEM FOR HAZARDOUS WASTE

    Science.gov (United States)

    Soil bound contamination presents a significant set of problems to those attempting to remediate the soil. Bioremediation has received considerable attention, as a potential answer to the obvious remediation needs. Composting technology represents a promising means to use indigen...

  7. DESIGN AND EVALUATION OF BENCH-SCALE COMPOST TREATMENT SYSTEM FOR HAZARDOUS WASTE

    Science.gov (United States)

    Soil bound contamination presents a significant set of problems to those attempting to remediate the soil. Bioremediation has received considerable attention, as a potential answer to the obvious remediation needs. Composting technology represents a promising means to use indigen...

  8. microbiological parameters and maturity degree during composting of Posidonia oceanica residues, mixed with vegetable wastes in semi-arid pedo-climatic condition

    Institute of Scientific and Technical Information of China (English)

    SAIDI Neyla; KOUKI Soulwene; M'HIRI Fadhel; JEDIDI Naceur; MAHROUK Meriam; HASSEN Abdennaceur; OUZARI Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) a C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (9.48 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  9. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    Science.gov (United States)

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  10. Decomposition of olive mill waste compost, goat manure and Medicago sativa in Lebanese soils using the litterbag technique

    Science.gov (United States)

    Atallah, Therese

    2014-05-01

    Organic amendments, green manure and plant residues incorporation are the main sources of nutrients in organic farming, their decomposition rate is crucial for the accumulation and long-term storage of organic matter in soils. In this study the decomposition of compost from olive mill waste (N: 29.3 g kg-1; total dissolved nitrogen or TDN: 3.82 g kg-1), goat manure (N: 31.5 g kg-1; TDN: 0.94 g kg-1), the shoots (N: 33.6 g kg-1; TDN: 17.57 g kg-1) and roots (N: 22.12 g kg-1; TDN: 8.87 g kg-1) of Medicago sativa was followed in three Lebanese soils. The nitrogen, phosphorus and potassium released were followed over one year, starting in early winter (December-January). The mild sub-humid Mediterranean conditions allowed a rapid mass loss in alfalfa shoots 30 days after incorporation. Manure and compost were more persistent. Between 80 and 90% of TDN were released, after 30 days of in-situ incubation for compost, the release was over 90% for alfalfa shoots. The movement of P was slower, as the compost (6.99 g kg-1 of P) and manure (9.81 g kg-1 of P) lost 33% and 22%, respectively, during 30 days of incubation. After one year, 15 to 35% of P remained in the soils. The manure was the richest in potassium (19.66 g kg-1) followed by the alfalfa shoots (15.56 g kg-1), the compost (8.19 g kg-1) and the roots (5.96 g kg-1). The loss of potassium was important, as over 88% had disappeared over the year. All decomposition curves followed an exponential model. The calculated coefficients of decomposition for total nitrogen (lnfinal - lninitial/days) were significantly higher for alfalfa shoots (0.00547 day-1) and similar for the compost (0.00184 day-1) and the manure (0.00175 day-1). The ANOVA test showed a difference between two of the sites (Site A: 521 g kg-1 of clay and 42 g kg-1 of calcium carbonate; Site S: 260 g kg-1 of clay and 269 g kg-1 of CaCO3) and the third one (Site L: 315 g kg-1 of clay and 591 g kg-1 of CaCO3). The relationships between the soil calcium

  11. INFLUENCE OF OZONE AERATION ON TOXIC METAL CONTENT AND OXYGEN ACTIVITY IN GREEN WASTE COMPOST

    Directory of Open Access Journals (Sweden)

    Maciej Gliniak

    2017-07-01

    Full Text Available This paper presents results of work on the reduction of toxic metal content while decreasing its oxygen activity. During the study the effects of different doses of ozone in the air used for aeration of the stabilized compost in the first post-thermophilic phase were analyzed. The results showed the possibility of reducing the concentrations of toxic metals and decrease the activity of oxygen up to 30% compared to traditional stabilized compost aeration system without using ozone.

  12. Growth and yield of tomato cultivated on composted duck excreta enriched wood shavings and source-separated municipal solid waste

    Directory of Open Access Journals (Sweden)

    Vincent Zoes

    2011-02-01

    Full Text Available A greenhouse experiment was conducted to evaluate the use of growth substrates, made with duck excreta enriched wood shaving compost (DMC and the organic fraction of source-separated municipal solid waste (MSW compost, on the growth and yield of tomato (Lycopersicum esculentum Mill. cv. Campbell 1327. Substrate A consisted of 3:2 (W/W proportion of DMC and MSW composts. Substrates B and C were the same as A but contained 15% (W/W ratio of brick dust and shredded plastic, respectively. Three control substrates consisted of the commercially available peat-based substrate (Pr, an in-house sphagnum peat-based substrate (Gs, and black earth mixed with sandy loam soil (BE/S in a 1:4 (W/W ratio. Substrates (A, B, C and controls received nitrogen (N, phosphate (P and potassium (K at equivalent rates of 780 mg/pot, 625 mg/pot, and 625 mg/pot, respectively, or were used without mineral fertilizers. Compared to the controls (Pr, Gs and BE/S, tomato plants grown on A, B, and C produced a greater total number and dry mass of fruits, with no significant differences between them. On average, total plant dry-matter biomass in substrate A, B, and C was 19% lower than that produced on Pr, but 28% greater than biomass obtained for plant grown, on Gs and BE/S. Plant height, stem diameter and chlorophyll concentrations indicate that substrates A, B, and C were particularly suitable for plant growth. Although the presence of excess N in composted substrates favoured vegetative rather than reproductive growth, the continuous supply of nutrients throughout the growing cycle, as well as the high water retention capacity that resulted in a reduced watering by 50%, suggest that substrates A, B, and C were suitable growing mixes, offering environmental and agronomic advantages.

  13. Biodegradation of Phenolic Compounds in Creosote Treated Wood Waste by a Composting Microbial Culture Augmented with the Fungus Thermoascus aurantiacus

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: Creosote is used as a wood preservative and water proof agent in railway sleepers, utility poles, buildings foundations and fences and garden furniture. It is a mixture of over 300 hydrocarbons which include 75% polycyclic aromatic hydrocarbons, 2-17% phenolic compounds and 10-18% heterocyclic organic compounds. Exposure to creosote may result in several health problems including damage to kidney, liver, eyes and skin. Potential contamination of soil and water exist from creosote treated wood from construction and demolition sites. Approach: The possibility of using an invessel composting process augmented with the ascomycetous fungus Thermoascus aurantiacus as a mesophilic/thermophilic bioremediation option for the degradation of phenolic compounds in creosote treated wood waste was evaluated. Results: The temperatures of bioremediation process reached thermophilic phase and the mesophilic and thermophilic lag phases were clearly identified. The moisture content decreased significantly indicating that the water produced by microbial respiration did not compensate for the water lost as vapor with the exhaust gases. Initial increases in pH due to the breakdown of organic nitrogen to ammonium and final drop in pH due to the formation of organic acids and the loss of ammonium with the exhaust gases in the latter stage were observed. Different degradation rates were observed in the mesophilic and thermophilic stages of composting. The control experiment achieved higher reductions of volatile solids, total carbon and TKN and higher degradation of phenolic compounds, cellulose and lignin, indicating a higher level of activity of microorganisms during the composting process compared with the inoculated experimental trial. The stability and maturity of the product of the control experiment were also better than those of the product from the inoculated experimental trial. Conclusion: The inoculation of the cellulolyticthermophilic

  14. Characterization of the denitrifying bacterial community in a full-scale rockwool biofilter for compost waste-gas treatment.

    Science.gov (United States)

    Yasuda, Tomoko; Waki, Miyoko; Fukumoto, Yasuyuki; Hanajima, Dai; Kuroda, Kazutaka; Suzuki, Kazuyoshi

    2017-07-07

    The potential denitrification activity and the composition of the denitrifying bacterial community in a full-scale rockwool biofilter used for treating livestock manure composting emissions were analyzed. Packing material sampled from the rockwool biofilter was anoxically batch-incubated with (15)N-labeled nitrate in the presence of different electron donors (compost extract, ammonium, hydrogen sulfide, propionate, and acetate), and responses were compared with those of activated sludge from a livestock wastewater treatment facility. Overnight batch-incubation showed that potential denitrification activity for the rockwool samples was higher with added compost extract than with other potential electron donors. The number of 16S rRNA and nosZ genes in the rockwool samples were in the range of 1.64-3.27 × 10(9) and 0.28-2.27 × 10(8) copies/g dry, respectively. Denaturing gradient gel electrophoresis analysis targeting nirK, nirS, and nosZ genes indicated that the distribution of nir genes was spread in a vertical direction and the distribution of nosZ genes was spread horizontally within the biofilter. The corresponding denitrifying enzymes were mainly related to those from Phyllobacteriaceae, Bradyrhizobiaceae, and Alcaligenaceae bacteria and to environmental clones retrieved from agricultural soil, activated sludge, freshwater environments, and guts of earthworms or other invertebrates. A nosZ gene fragment having 99% nucleotide sequence identity with that of Oligotropha carboxidovorans was also detected. Some nirK fragments were related to NirK from micro-aerobic environments. Thus, denitrification in this full-scale rockwool biofilter might be achieved by a consortium of denitrifying bacteria adapted to the intensely aerated ecosystem and utilizing mainly organic matter supplied by the livestock manure composting waste-gas stream.

  15. Control of spread of Augusta disease caused by tobacco necrosis virus in tulip by composting residual waste of small bulbs, tunics, roots and soil debris

    NARCIS (Netherlands)

    Asjes, C.J.; Barnhoorn, G.J.

    2002-01-01

    In this study the elimination of the infectious virus/fungus complex of tobacco necrosis virus (TNV; cause of Augusta disease in tulip) and Olpidium brassicae in different soil types and residual waste material of soil debris, small tulip bulbs, roots and tunics by temperature treatments of

  16. The Compost Pile Meets the 1990's.

    Science.gov (United States)

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  17. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    Science.gov (United States)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  18. nfluences of ammonium-nitrate, food waste compost and bacterial fertilizer on soluble soil nitrogen forms and on the growth of carrot (Daucus Carota L.

    Directory of Open Access Journals (Sweden)

    Andrea Balla Kovács

    2014-04-01

    Full Text Available This paper reports a greenhouse study to compare the effects of food waste compost, bacterial fertilizer and their combination with the effect of mineral fertilizer on yield of carrot and the available nutrient content of soils. The study was conducted on calcareous chernozem and acidic sandy soils and consisted of 8 treatments in a randomized complete block design with four replications. The NH4NO3 resulted in reduced growing of carrot plant in sandy soil, and the treatment effect of mineral fertilizer was not observed significantly in chernozem soil. Sandy soil showed higher response of growth of carrot to food waste compost fertilization than chernozem soil. Sole application of EM-1 bacterial fertilizer did not have marked effect on yield parameters and sizes of roots. When EM-1 bacterial fertilizer was applied together with ammonium-nitrate or with compost in chernozem soil, the weights of roots and the sizes of roots in some cases became higher compared to the values of appropriate treatments without inoculation. In sandy soil the diameter of roots slightly increased when EM-1 bacterial fertilizer was applied with ammonium-nitrate and with ammonium-nitrate+compost combination compared to appropriate treatment without inoculation. In chernozem soil the maximum weights and sizes of roots were achieved with the combined treatment of ammonium-nitrate+compost+EM-1 bacterial fertilizer and in sandy soil with compost treatment. Our results of soluble nitrogen content of soils are in good agreement with yield parameters of carrot. Results suggest that food waste compost could be a good substitute for mineral fertilizer application in carrot production mainly in sandy soil. EM-1 bacterial fertilizer did not cause marked effect on yield and yield parameters of carrot plant, but its combination with other fertilizers promises a little bit higher yield or plant available nutrient in the soil. These effects do not clear exactly, so further studies are

  19. Composting of urban solid wastes and agricultural wastes: the influence on the temperature and oxygen levels; Compostaje conjunto de la fraccion organica de residuos munipales (FORM) y residuos vegetales triturados: influencia sobre la temperatura y los niveles de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Manzano Castro, S.; Perz Losada, C.; Soliva Torrento, M.

    1998-07-01

    The Superior School of Agriculture of Barcelona states in this paper that the compost of urban solid waste improvement is better if they are mixed with wastes of prune vegetables. This mixture improves the oxygen load and the temperatures that are reached. (Author) 26 refs.

  20. Dissolved organic matter dynamic and resident microbiota evolution in soil amended with fresh and composted olive mill wastes

    Science.gov (United States)

    Gigliotti, Giovanni; Massaccesi, Luisa; Federici, Ermanno; Fidati, Laura; Nasini, Luigi; Proietti, Primo

    2013-04-01

    The disposal of olive mill wastes represents a problem of environmental relevance particularly in the Mediterranean countries where olive oil is mostly produced. Among the several valorisation and recycling methods proposed, interesting for its operational simplicity and convenience is land spreading, either directly or after composting. However, the agriculture use of the water-saturated husk produced by the new two-phase oil extraction systems may be hampered by its consistency and its high content of phenolic compounds, which may finally lead to phytotoxicity. Humid husk may indeed modify the dynamic of soil organic matter (SOM) and the structure and function of microbial communities. On the other hand, organic amendments are known to positively affect SOM fractions, particularly by increasing the concentration and quality of dissolved organic matter (DOM), which may eventually lead to an increase in microbial activity. The aim of this work was to investigate, during a 90-day field trial, the modifications in soil DOM composition and the effects on the soil microbiota induced by a humid husk, obtained from a new generation two-phase oil extraction plant, spread in an olive orchard either as a fresh amendment or after a composting process. With respect to the control, the soil amended with either fresh or composted husk showed an increase in water extractable organic carbon (WEOC). Interestingly, while during the first 30 days the soil amended with the composted husk showed a WEOC content higher than the one amended with the fresh husk, after that time only in the latter the WEOC remained significantly higher than in the control. The total content of phenolic compounds showed a similar trend, with the only difference that their concentration in the soil amended with both treatments remained higher than the control for the entire trial. Similarly, both treatments induced an increase in soil reducing sugars, with an higher effect observed in the soil amended with

  1. The Assessment of Municipal Solid Waste (MSW Compost Properties Produced in Sanandaj City with a View of Improving the Soil Quality and Health

    Directory of Open Access Journals (Sweden)

    Z. Sharifi

    2017-01-01

    Full Text Available Introduction: the use of municipal solid waste (MSW compost in agriculture as a soil conditioner is increasing day by day because of its positive effects on biological, physical, and chemical soil properties. However, some of the composts because of contamination with heavy metals and other impurities can have deleterious effects on groundwater quality, agricultural environment, food chain, plant growth and activity of soil microorganisms. Therefore, this study was conducted to investigate the physical and chemical properties, fertilizing potential and heavy metal polluting potential of two types of municipal solid waste composts with processing time between 4 to 8 years (type A and between1 to 4 years (type B produced in Sanandaj city with the aim of using it as an organic fertilizer. Materials and Methods: Sanadaj city, the center of Kurdistan province, with a population of about 335,000 is located in the west of Iran. The current solid waste generation from the city is about 320 t/day, which are not separated at source of generation. About 200 t of the total produced wastes are composted using an open windrows system at the Sanandaj MSW Composting Plant, which is located in 10 km of Sanadaj-Kamiaran road and the rest are disposed at the landfill site. The compost manufactured by the composting plant has been collected around it in two different locations. The first belonges to the product of 2004-2008 (type A and the second belonges to the product of 2009-2013 (type B. Till now, due to lack of quality information associated with these products, they have remained unused. Therefore, in this study, we sampled 3 samples composed of six subsamples (each containing 2 kg from the products in March 2013. The samples were analyzed to determine the physical properties (including undesirable impurities, initial moisture content, particle size distribution, particle density, bulk density (ρb, porosity, and maximum water holding capacity, and the

  2. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-01-01

    coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred......The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO3, Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results...... and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced....

  3. Compostagem de resíduos sólidos de frigorífico Composting of slaughterhouse solid waste

    Directory of Open Access Journals (Sweden)

    Mônica S. S. de M. Costa

    2009-02-01

    Full Text Available Em virtude da compostagem ser uma alternativa viável e eficiente no tratamento de resíduos agroindustriais, objetivou-se avaliá-la em resíduos provenientes do abate de bovinos e suínos. Confeccionaram-se 12 leiras de compostagem utilizando-se resíduos de frigorífico, palha de trigo e serragem de madeira. O processo foi avaliado pelo monitoramento diário da temperatura, observação da ocorrência de parâmetros indesejáveis (presença de odores desagradáveis e/ou amoniacais, formação de chorume e presença de moscas e larvas e pela capacidade de reciclagem de nutrientes. Os parâmetros indesejáveis foram observados, em média, nos primeiros cinco dias após a confecção das leiras; as temperaturas se elevaram, atingindo picos acima de 70 ºC; quanto à composição química do composto, esta apresentou teores relevantes de macro e micronutrientes demonstrando alto potencial de reciclagem. Recomenda-se a utilização de piso impermeável e estrutura de cobertura durante a compostagem. A freqüência de revolvimentos adotada (15 dias após a confecção da leira, seguida de revolvimentos semanais foi adequada. A melhor relação de peso encontrada foi de 7,2 kg de resíduos para cada kg de palha e 16,6 kg de resíduos para cada kg de serragem.Composting has been a viable and efficient alternative treatment to agroindustrial waste. This experiment was installed with the objective of analyzing the process of composting for slaughterhouse waste. Twelve piles of composting were prepared, using slaughterhouse waste, wheat straw and wood sawdust. The process was evaluated by daily temperature monitoring, observations of the occurrence of undesirable parameters (bad smell and/or ammoniacal smell, grease formation and presence of grubs and flies, as well as the capacity of recycling nutrients. The undesirable parameters were observed, on average, for the first five days after pile building; the temperatures increased, reaching 70 º

  4. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  5. Chemical Composition of Vermicompost Made from Organic Wastes through the Vermicomposting and Composting with the Addition of Fish Meal and Egg Shells Flour

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2017-05-01

    Full Text Available Chemical composition of compost is an important indicator that determines the quality of compost. This study compared the chemical composition of vermicompost resulting from the process of vermicomposting alone with combined vermicomposting and composting with addition of egg shells flour and fish meal. Organic wastes used were the mixture of spent mushrooms waste, coconut husks, cow dung, vegetables residue, and leaf litter. Lumbricus rubellus was the species of earthworm used in the vermicomposting process. In the composting process, egg shells flour and fish meal are added into the vermicompost as additives materials. The results indicate that the combined vermicomposting and composting process with addition the additives materials improves the chemical composition of vermicompost compared to using vermicomposting process alone. The change of chemical composition was indicated by a decrease in C-organic content and C/N ratio by 29% and 99%, respectively, while the content of N, P, K and S increased by 52%, 67.5%, 29% and 25%, respectively due to the addition of additives material in the composting process. The largest increase of vermicompost nutrient content occurred in the Ca content by an average of up to 7-fold. While polyphenols, lignin and cellulose content of vermicompost decreased slightly. The treatment of two mixture (a spent mushrooms waste, cow dung and vegetables residue, and (b spent mushroom waste, cow dung, vegetables residue, and leaf litter gave the best chemical composition. However, to determine the quality, we need to test the product in a plant growth bioassay as a follow-up study.

  6. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste.

    Science.gov (United States)

    Ravindran, Balasubramani; Wong, Jonathan W C; Selvam, Ammaiyappan; Sekaran, Ganesan

    2016-10-01

    This study focuses on the effect of the epigeic earthworm Eudrilus eugeniae (with and without addition) to transform solid state fermented (SSF) and submerged (SmF) state fermented TFL mixed with cow dung and leaf litter into value added products in compost and vermicompost bioreactors respectively. The significant role of microbes was identified during compost and vermicompost process. In addition, three important phytohormones (Indole 3-acetic acid, Gibberellic acid, Kinetin) were also detected in the compost and vermicompost products. The results revealed that the maximum amount of plant hormones were available in the vermicompost products which may be due to the joint action of earthworm and microorganisms. The overall results confirmed that the vermicomposting process produced a greater value added product.

  7. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    Science.gov (United States)

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of Iron Oxides (Ordinary and Nano and Municipal Solid Waste Compost (MSWC Coated Sulfur on Wheat (Triticum aestivum L. Plant Iron Concentration and Growth

    Directory of Open Access Journals (Sweden)

    S Mazaherinia

    2011-02-01

    Full Text Available Abstract A greenhouse study was conducted to compare the effects of ordinary iron oxide (0.02-0.06 mm and nano iron oxide (25-250 nm and five levels of both iron oxides (0, 0.05, 0.1, 0.5, and 1.0 %w/w and two levels of sulfurous granular compost (MSW (0 and 2% w/w on plant height, spike length, grain weight per spike, total plant dry matter weight and thousands grain weight of wheat. The experimental factors were combined in factorial arrangement in a completely randomized design with 3 replications. Results showed that nano iron oxide was superior over ordinary iron oxide in all parameters studied. Fe concentration, spike length, plant height, grain weight per spike, total plant dry weight and thousands grain weight showed increasing trend per increase in both of iron oxides levels. Also, all parameters studied in sulfurous granular compost (MSW treatment were superior over granular compost without sulfurous (MSW. This increase in all parameters were significantly higher when urban solid waste compost coated with sulfur coupled with nano iron oxide compared to urban sulfurous granular compost (MSW along with ordinary iron oxide. Keywords: Sulfurous granular compost (MSW, Nano and ordinary iron oxides, Wheat

  9. Total and available soil trace element concentrations in two Mediterranean agricultural systems treated with municipal waste compost or conventional mineral fertilizers.

    Science.gov (United States)

    Baldantoni, Daniela; Leone, Anna; Iovieno, Paola; Morra, Luigi; Zaccardelli, Massimo; Alfani, Anna

    2010-08-01

    The temporal dynamics of some trace elements in two different types of Mediterranean soils were studied in order to evaluate the possible long-term contamination following compost amendments. Total and available (DTPA-extractable) concentrations of Cd, Cu, Pb and Zn were determined. The study was carried out on two agricultural soils in Campania region (southern Italy), a Sandy Loam Calcaric Cambisol (SG) and a Clay Gleyc Luvisol (CO), during 3 years of organic amendment with compost. The compost, produced from the organic fraction of municipal solid waste and urban yard trimmings, in accordance with the Italian law for agricultural use, was applied at annually rates of 15, 30, and 45 t ha(-1) (on dry weight basis). Wide variations in total and available Cd, Cu, Pb and Zn concentrations were observed over time, but appeared to be in many cases unrelated to the treatments, occurring also in control plots. After 3 years of compost application the amended SG soil showed the highest and significant increase in total Cd and Zn concentrations; in addition, the available Cd, Pb and Zn concentrations increased in accordance with the compost rates. The CO soil, characterized by a higher clay content, lower organic matter content and lower cation exchange capacity, exhibited a lower increase in available metal fractions. Our findings show that compost amendment affects more the available than the total metal concentrations in the two types of soils studied and thus it is important into legislation that metal "bioavailability" may be considered in defining threshold metal values.

  10. Soil Chemical Properties and Soybean Yield Due to Application Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available he importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block design with three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m × 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost

  11. Soil Chemical Properties and Soybean Yield Due to Application of Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available The importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block designwith three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m× 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost 10

  12. Application Test of Cowpea with Domestic Waste Compost%生活垃圾堆肥在豇豆上的应用试验

    Institute of Scientific and Technical Information of China (English)

    曾明; 陈康; 许晓波

    2012-01-01

    According to the application test of cowpea with municipal domestic waste compost, the output, quality and cultivating soil have not changed significantly.%通过城市生活垃圾堆肥在豇豆的应用试验,得出其产量、质量以及栽培土壤没有显著变化.

  13. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  14. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  15. Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost.

    Science.gov (United States)

    Paradelo, R; Villada, A; Barral, M T

    2011-04-15

    The effect of two municipal solid waste composts on the availability of Cu, Pb and Zn in a soil contaminated in the laboratory was evaluated. An agricultural acid soil developed on granite was amended with the composts at two rates (3% and 6% dry weight), contaminated with 1000 mg kg(-1) of Cu, Pb and Zn, and incubated in the laboratory for three months. Determinations of soil pH, CaCl(2)-extractable and EDTA-extractable Cu, Pb, and Zn were run monthly during the incubation. At the end, a leaching test (TCLP) and selective extractions were performed for these elements. The analysis of the CaCl(2)-extractable elements demonstrated a strong capacity of both composts to decrease the solubility of the metals added to the soil, specially for Cu and Pb. The percentage of reduction of the soluble forms with respect to the initial addition was higher at the highest rate of compost, and reached 99% for Cu and Pb, and 80% for Zn in the compost-amended soil, whereas the soil without amendment was able to reduce Cu availability by a 94%, but not Zn or Pb availability. The TCLP test showed that compost also reduced the leachability of the three elements. Nevertheless, EDTA extracted a major amount (around 90%) of the elements added in all the treatments. Given that EDTA has a strong ability to extract elements bound to organic matter, it can be hypothesized that the main mechanism of the observed insolubilization was the formation of low-solubility organo-metallic complexes with both soil and compost organic matter. The selective extractions confirmed that compost reduced the exchangeable fraction of the elements, and that the organically bound fraction (pyrophosphate-extractable) was the main one for the three elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture, horticu

  17. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture,

  18. Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    G. Irvine

    2010-01-01

    Full Text Available An in-vessel tunnel composting facility in Scotland was used to investigate the potential for collection and reuse of compost heat as a source of renewable energy. The amount of energy offered by the compost was calculated and seasonal variations analysed. A heat exchanger was designed in order to collect and transfer the heat. This allowed heated water of 47.3oC to be obtained. The temperature could be further increased to above 60oC by passing it through multiple tunnels in series. Estimated costs for installing and running the system were calculated. In order to analyse these costs alternative solar thermal and ground source heat pump systems were also designed. The levels of supply and economic performance were then compared. A capital cost of £11,662 and operating cost of £1,039 per year were estimated, resulting in a cost of £0.50 per kWh for domestic water and £0.10 per kWh for spatial heat. Using the heat of the compost was found to provide the most reliable level of supply at a similar price to its rivals.

  19. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices.

    Science.gov (United States)

    Saha, J K; Panwar, N; Singh, M V

    2010-02-01

    A study was conducted to investigate physico-chemical properties, fertilizing potential and heavy metal polluting potentials of municipal solid waste composts produced in 29 cities of the country. Results indicated that except a very few samples, all other samples have normal pH and EC. Organic matter as well as major nutrients N and P contents in MSW composts are generally low as compared to the composts prepared from rural wastes. Heavy metal contents in composts from bigger cities (>1 million population) were higher by about 86% for Zn, 155% for Cu, 194% for Cd, 105% for Pb, 43% for Ni and 132% for Cr as compared to those from smaller cities (quality of compost significantly in terms of fertilizing parameters and heavy metal contents. Majority of MSW composts did not conform to the quality control guideline of 'The Fertilizer (Control) Order 1985' in respect of total organic C, total P, total K as well as heavy metals Cu, Pb and Cr. In order to enable the relevant stakeholders to judge overall quality, a scheme has been proposed for the categorization of composts into different marketable classes (A, B, C, and D) and restricted use classes (RU-1, RU-2, and RU-3) on the basis their fertilizing potential and as well as potential for contaminating soil and food chain. Under the scheme, 'Fertilizing index' was calculated from the values of total organic C, N, P, K, C/N ratio and stability parameter, and 'Clean index' was calculated from the contents of heavy metals, taking the relative importance of each of the parameters into consideration. As per the scheme, majority of the compost samples did not belong to any classes and hence, have been found unsuitable for any kind of use. As per the regulatory limits of different countries, very few compost samples (prepared from source separated biogenos wastes) were found in marketable classes (A, B, C and D) and some samples (11-14) were found suitable only for some restricted use.

  20. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.

    Science.gov (United States)

    Onursal, Emrah; Ekinci, Kamil

    2015-04-01

    Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.3-0.4% (w/w), almost 4000 to 3000 kg of rose petals are needed to produce 1 kg of rose oil. Rose oil production is a seasonal activity and takes place during the relatively short period where the roses are blooming. As a result, large quantities of solid waste are produced over a limited time interval. This research aims: (i) to determine the possibilities of aerobic co-composting as a waste management option for rose oil processing waste with caged layer manure; (ii) to identify effects of different carbon sources - straw or sawdust on co-composting of rose oil processing waste and caged layer manure, which are both readily available in Isparta, where significant rose oil production also takes place; (iii) to determine the effects of different C/N ratios on co-composting by the means of organic matter decomposition and dry matter loss. Composting experiments were carried out by 12 identical laboratory-scale composting reactors (60 L) simultaneously. The results of the study showed that the best results were obtained with a mixture consisting of 50% rose oil processing waste, 64% caged layer manure and 15% straw wet weight in terms of organic matter loss (66%) and dry matter loss (38%).

  1. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste

    Science.gov (United States)

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  2. Sludge composting of waste water treatment plant. Compost plant of Vila-Seca (Tarragona); Compostaje de lodos procedentes de la depuracion de aguas residuales. Planta de compostaje de Vila- Seca

    Energy Technology Data Exchange (ETDEWEB)

    Marza Brillas, J.

    1995-12-01

    Composting is a very effective process in waste treatment. Very good results are obtained in mass and volume loss, moisture reduction, organic matter establization as well as making possible agricultural uses for the final product. Some parameters as nutrients (C/N ratio), pH, temperature and oxygen content are pointed as the most important for the process. Some composting systems are mentioned but finally tunnel system is shown as the best. Its great advantage is that measurements from main parameters are given continuously to the control computer, so process optimization is done at the moment. The Vila-Seca sludge composting plant is described. This plant can treat 30.000 tones/year from three water treatment plants. The expected 50% on organic matter reduction and 70% on dry matter content has been achieved after only 3 months since its starting up. Finally, in september 1995 will start the construction of another sludge composting plant were the same technology, belonging to GICOM and represented by G.T.R. in Spain, will be installed.

  3. Aluminium dynamics from soil to tea plant (Camellia sinensis L.): is it enhanced by municipal solid waste compost application?

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Frankowski, Marcin; Boruah, Romesh K; Dutta, Amrit K; Das, Dilip K

    2015-01-01

    Application of municipal solid waste compost (MSWC) in tea (Camellia sinensis L.) cultivation can increase the fertility status of soils and thus enhance the plant growth. The present study attempts at application of MSWC in tea (TV1 and TV23 clones) cultivation to assess the effect of different doses of MSWC on growth and translocation potential of Al on this plant as well as fate of Al in soil, through the calculation of a risk assessment code (RAC). The sequential extraction of Al in MSWC amended soils showed that the fractionation of Al in soil changed after compost application, with an overall increase of the fractions associated to with Fe-Mn oxides, organic and of the residual fraction. The accumulation of Al in different parts ofC. sinensisL., grown on MSWC amended soil effected an overall increased growth of the plant with increasing doses of MSWC. According to RAC, Al falls in medium to high risk, though no adverse effect on plant health was observed. Tea plants were found to adapt well to MSWC amended soils. However, long term field trials are necessary to completely assess the risk of Al accumulation in soils upon MSWC application. Hierarchical cluster analysis was applied aiming to check for the presence of homogenous groups among different treatments. It was found that in both TV1 and TV23, treatments formed two different groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Artemia salina as a new index for assessment of acute cytotoxicity during co-composting of sewage sludge and lignocellulose waste.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-04-01

    Considering the necessity to constantly monitor the safety of use of sewage sludge, we have focused on evaluating the toxicity of raw sludge and sludge treated by co-composting with date palm waste using an in vitro assessment of cytotoxicity based on Artemia salina larvae as a simple new sensitive and reliable routine test. The efficiency of co-composting in decreasing sludge toxicity was evaluated in terms of cytotoxicity abatement reaching 100% by the second month of composting for mixture A (1/3 sludge+2/3 date palm waste) and the third month for mixture B (1/2 sludge+1/2 date palm waste). Cytotoxicity abatement was confirmed by the increase of germination index, which reached over 100% with positive correlation for lettuce (R(2)=0.81 and 0.86) and for turnip (R(2)=0.87 and 0.74) for mixtures A and B respectively. A strong correlation between the proposed cytotoxicity test and the evolution of regulatory physical-chemical approaches was found, (R(2)=0.88 and 0.89) for NH4(+)/NO3(-) and (R(2)=0.80 and 0.88) for C/N respectively for mixture A and B. These findings allow the inexpensive bioassay reported to be used as a highly sensitive test to determine the cytotoxicity and maturity of composts.

  5. Comparison of bacterial succession in green waste composts amended with inorganic fertiliser and wastewater treatment plant sludge.

    Science.gov (United States)

    Storey, Sean; Chualain, Dearbháil Ní; Doyle, Owen; Clipson, Nicholas; Doyle, Evelyn

    2015-03-01

    Replacing CAN with DWS resulted in a stable product capable of supporting similar levels of plant growth to conventional compost. Proteobacteria was the dominant phylum detected in both CAN- and DWS-amended composts with Actinobacteria, Bacteroidetes, Firmicutes and Chloroflexi present also. Proteobacteria in both composts negatively correlated with pH, NO3 concentration and temperature, but were positively influenced by NH4 levels. Sphaerobacter was the most abundant genus in the mature phase of both CAN- and DWS-amended composts but bacterial community structure in mature DWS-amended compost appeared more diverse than that present in mature compost made using CAN.

  6. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Helm, M.; Schoen, H. [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1997-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  7. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  8. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    Science.gov (United States)

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Evaluation of Composting for Reducing Volume of Solid Waste on Contingency Bases

    Science.gov (United States)

    2012-05-23

    and nutrients to improve the soil • Natural fertilizer and valuable humus that promotes weed and erosion control, protects plant roots...National Def nse Cent rgy and Environment Nitrogen Carbon Vapor/Gas (Void Space) Water Moisture Dry Solids Water Vapor Carbon Nitrogen Two other elements...pile its structure • Curing – Nitrifying bacteria recolonize as the fresh compost pile cools to below 85°F and convert the unacceptable

  10. Greenhouse gas and ammonia emissions from composting of animal manure and other organic waste products

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune

    .4-22.5% and 0.001-0.17% of initial Tot-C, respectively, while N losses as 2O and x NH3 emissions comprised 0.05-0.10% and 0.81-26.5% of initial Tot-N, respectively. There was strong evidence that high emissions of CH4-C and N2O-N gases can occur simultaneously, even during the thermophilic phase of composting...... provided further evidence that doubling the amount of bulking agent in a mixture of digested solids and bulking agent can decrease losses of CH4-C and N2O-N from compost, both GHG of high importance, without any accompanying increase in NH3-N losses. Cumulative CH4-C emissions decreased significantly...... manure materials can conserve nitrogen while reducing N2O-N and CH4-C emissions to the atmosphere and that adding bio-char alone or together with barley straw to composting manure can be a potential tool for mitigating total GHG emissions in terms of CO2-equivalents. This thesis provides insights...

  11. Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: effects on growth and nutrition of the native shrub Pistacia lentiscus L.

    Science.gov (United States)

    Ostos, J C; López-Garrido, R; Murillo, J M; López, R

    2008-04-01

    In this study, the effect of a partial substitution of peat for compost on the growth and nutrition of a native shrub (Pistacia lentiscus L.) was tested. Composts were prepared from pruning and municipal solid wastes or pruning waste and sewage sludge. For preparing growing media each compost was added at a rate of 40%, fresh pine bark at 20% or 40% and peat at 20%, 40% or 60%. Aqueous extracts from the substrates did not impair germination of cress (germination bioassay). In relation to plants growing in peat-based substrate (used as a control), plants of the compost-based substrates reached better growth and nutrition, especially when using the sewage sludge-based compost, and the P uptake was notably enhanced. The concentrations of trace elements were far lower than the ranges considered phytotoxic for vascular plants. Detrimental effect derived from using fresh pine bark was not observed.

  12. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  13. Risk of wine-distillery waste compost application in vulnerable zones: nitrogen balance

    Science.gov (United States)

    Requejo, M. I.; Villena, R.; Ventas, L.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    Nitrogen (N) is the nutrient with the greatest impact on yield of horticultural crops. It is extremely dynamic in soil and undergoes changes that include processes of gains, losses and transformations. The melon crop area at Ciudad Real adds the 29% of the national production in Spain. The common agronomic management is representative of semiarid cropped zones of Spain where environmental degradation of water supplies with high N loads is observed. The site of this work is located near of Mancha Occidental aquifer (U.H.04.04, 6.953 km2) and Campo de Montiel aquifer (U.H. 04.06, 3.192 km2) with high contamination problems. The efficient use of fertilizers and irrigation is especially important in these areas designated vulnerables to nitrate pollution from agricultural sources. The aim of this study was to assess N losses when applying exhausted grape marc compost to a melon crop as source of nutrients in a vulnerable area. The doses are often excessive because are normally based on the input of organic matter rather than on the potentially mineralizable nitrogen. This N is not only released during the growing season but also in the intercropping period. In this experiment a nitrogen balance was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3). The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs), with a depth of 0.6 m and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant absorption and nitrate losses were measured weekly, controlling at the same time N mineralized in soil. Simultaneously, a mineralization experiment was carried out without crop (either in laboratory and field conditions) to compare it with the results obtained with melon crop. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  14. 有机固体废物好氧堆肥实验装置设计%Design of experimental device of organic solid wastes aerobic composting

    Institute of Scientific and Technical Information of China (English)

    王月伶; 刘训东; 蒋建国; 段凤魁; 孙艳; 杨宏伟

    2012-01-01

    根据实验教学的需要,设计了有机固体废物好氧堆肥实验装置.介绍了有机固体废物好氧堆肥实验装置的构造、功能及实验效果.实验装置功能完备,操作方便,进行堆肥实验时不受室温和季节影响.%The experimental device of the organic solid wastes aerobic composting was designed for experiment teaching. The structure, properties and experimental effects of the experimental device of the organic solid wastes aerobic composting were introduced.

  15. Influence of green waste compost on azimsulfuron dissipation and soil functions under oxic and anoxic conditions.

    Science.gov (United States)

    García-Jaramillo, M; Cox, L; Hermosín, M C; Cerli, C; Kalbitz, K

    2016-04-15

    Concerns have been raised over the sustainability of intensive rice cultivation, where the use of chemical fertilizers and pesticides has been associated with numerous environmental problems. The objective of this study was to test the effect of the herbicide azimsulfuron on important soil functions as affected by amendment with a byproduct of the olive oil industry. Soil was collected from a Mediterranean rice field. Part of it was amended with alperujo compost (AC). Amended and unamended soils were incubated for 43days in presence or not of azimsulfuron, under anoxic-flooded (AF) and oxic-unflooded (OU) conditions. We monitored the dissipation of the herbicide azimsulfuron, C mineralization, soil microbial biomass (SMB) and dissolved organic carbon (DOC) content and its nature. Under AF conditions, the application of compost produced an increase in the dissipation of the herbicide (up to 12.4%). It was related with the higher DOC content, 4 times higher than under OU conditions. Though increases in carbon turnover (under AF and OU conditions) and reduction of SMBC after herbicide application (only under AF conditions) were observed, the differences were not statistically significant. The application of this organic amendment is presented as an efficient management strategy to increase C turnover in agricultural soils and reduce some of the negative effects derived from the application of azimsulfuron under flooded conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.

    Science.gov (United States)

    Pepe, Olimpia; Ventorino, Valeria; Blaiotta, Giuseppe

    2013-07-01

    Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps. Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Controlled composting of waste wood contaminated with PAH; Untersuchungen zur gesteuerten Rotte von mit polyzyklischen aromatischen Kohlenwasserstoffen (PAK) kontaminiertem Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, H.

    2002-07-01

    The author investigated the potential and limits of microbial pollutant degradation in PAH-polluted waste wood by composting. The conditions in which autochthonic micro-organisms are able to decomposite the PAH contained in wood by solid phase fermentation were investigated. The focus was on phenanthrene, anthracene and pyrene, all of which are used as protective materials (disinfestants) for wood. The results were verified on contaminated waste wood, including an analytical investigations of decomposition of PAH of the EPA catalogue. Boundary conditions for achieving high rates of PAH decomposition were investigated. [German] Generelles Ziel der Arbeit war die Untersuchung der Moeglichkeiten und Grenzen des mikrobiellen Schadstoffabbaus in PAK-belastetem Altholz durch Kompostierung und die Pruefung auf Anwendbarkeit der Erkenntnisse in technischen Verfahren. In der vorliegenden Arbeit wurde untersucht, unter welchen Bedingungen die autochthonen Mikroorganismen in der Lage sind, an das Holz gebundene PAK durch Feststofffermentation abzubauen. Als Schwerpunkt wurde zunaechst der Abbau der im zum Holzschutz verwendetem Teeroel vorkommenden PAK Phenanthren, Anthracen und Pyren untersucht. Eine Verifizierung der Ergebnisse erfolgte mit real kontaminiertem Altholz, dabei wurde der Abbau der PAK der EPA-Liste analytisch verfolgt. Es sollten geeignete Randbedingungen gefunden werden, um im Festphasensystem hohe Abbauraten der PAK zu erreichen. (orig.)

  18. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  19. Physico-chemistry characteristics of compost from urban solid wastes in Valencia (Spain); Caracteristicas fisico-quimicas de los composts de residuos solidos urbanos de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albiach, M. R.; Canet, R.; Pomares, F.; Tarazona, F.; Chaves, C.; Ferrer, E.

    2004-07-01

    For nearly twenty years samples of MSW compost produced in the Valencia region. have been analysed in our laboratories. Their main characteristics are summarised and discussed in this article, which reveals their compliance with current regulations, but also the problems which may arise if stricter requirements are eventually applied by the European Commission. (Author)

  20. The substitution of mineral fertilizers by compost from household waste in Cameroon: economic analysis with a partial equilibrium model.

    Science.gov (United States)

    Jaza Folefack, Achille Jean

    2009-05-01

    This paper analyses the possibility of substitution between compost and mineral fertilizer in order to assess the impact on the foreign exchange savings in Cameroon of increasing the use of compost. In this regard, a partial equilibrium model was built up and used as a tool for policy simulations. The review of existing literature already suggests that, the compost commercial value i.e. value of substitution (33,740 FCFA tonne(-1)) is higher compared to the compost real price (30,000 FCFA tonne(-1)), proving that it could be profitable to substitute the mineral fertilizer by compost. Further results from the scenarios used in the modelling exercise show that, increasing the compost availability is the most favourable policy for the substitution of mineral fertilizer by compost. This policy helps to save about 18.55% of the annual imported mineral fertilizer quantity and thus to avoid approximately 8.47% of the yearly total import expenditure in Cameroon. The policy of decreasing the transport rate of compost in regions that are far from the city is also favourable to the substitution. Therefore, in order to encourage the substitution of mineral fertilizer by compost, programmes of popularization of compost should be highlighted and be among the top priorities in the agricultural policy of the Cameroon government.

  1. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...

  2. Hygienization and control of Diplodia seriata fungus in vine pruning waste composting and its seasonal variability in open and closed systems.

    Science.gov (United States)

    Matei, Petruta M; Sánchez-Báscones, Mercedes; Bravo-Sánchez, Carmen T; Martín-Ramos, Pablo; Martín-Villullas, M Teresa; García-González, M Cruz; Hernández-Navarro, Salvador; Navas-Gracia, Luis M; Martín-Gil, Jesús

    2016-12-01

    After the ban on sodium arsenite, waste management alternatives to the prevalent burning method, such as the hygienization and biodegradation in solid phase by composting, are required for the pruned material from grapevines affected by various fungi. In this work the dynamics of a fungus associated with vine decay (Diplodia seriata) during the composting process of a mixture of laying hen manure and vine pruning waste (2:1w/w) have been investigated in an open pile and a discontinuous closed biodigester. Through the optimization of the various physical-chemical parameters, hygienization of the infected waste materials was attained, yielding class-A organo-mineral fertilizers. Nevertheless, important differences in the efficiency of each system were observed: whereas in the open pile it took 10days to control D. seriata and 35 additional composting days to achieve full inactivation, in the discontinuous biodigester the fungus was entirely inactivated within the first 3-7days. Finally, the impact of seasonal variability was assessed and summer temperatures shown to have greater significance in the open pile.

  3. Spent Mushroom Waste as a Media Replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra Production

    Directory of Open Access Journals (Sweden)

    H. Sendi

    2013-01-01

    Full Text Available Peat moss (PM is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW for Kai-lan (Brassica oleracea var. Alboglabra production replacing peat moss (PM in growth media. The treatments evaluated were 100% PM (control, 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100% and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  4. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production.

    Science.gov (United States)

    Sendi, H; Mohamed, M T M; Anwar, M P; Saud, H M

    2013-01-01

    Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for Kai-lan (Brassica oleracea var. Alboglabra) production replacing peat moss (PM) in growth media. The treatments evaluated were 100% PM (control), 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v) with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  5. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4.

    Science.gov (United States)

    Zhao, Shulan; Shang, Xiaojuan; Duo, Lian

    2013-02-01

    Municipal solid waste compost can be used to cropland as soil amendment to supply nutrients and improve soil physical properties. But long-term application of municipal solid waste (MSW) compost may result in accumulation of toxic metals in amended soil. Phytoremediation, especially phytoextraction, is a novel, cost-effective, and environmentally friendly approach that uses metal-accumulating plants to concentrate and remove metals from contaminated soils. Ethylenediaminetetraacetate (EDTA) was applied to metal-contaminated soil to increase the mobility and phytoavailability of metals in soil, thereby increasing the amount of toxic metals accumulated in the upper parts of phytoextracting plants. The objectives of this study were (1) to investigate the accumulation and spatial distribution of toxic metals (Cd, Cr, and Pb) in mulberry from MSW compost with the application of EDTA and (NH(4))(2)SO(4), (2) to examine the effectiveness of EDTA and (NH(4))(2)SO(4) applied together on toxic metals (Cd, Cr, and Pb) removal by mulberry under field conditions, and (3) to evaluate the potential of mulberry for phytoextraction of toxic metals from MSW compost. The tested plant-mulberry had been grown in MSW compost field for 4 years. EDTA solution at five rates (0, 50, 100, 50 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4), and 100 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4)) was added into mulberry root medium in September 2009. Twenty days later, the plants were harvested and separated into six parts according to plant height. Cd, Cr, and Pb contents in plant samples and MSW compost were analyzed using an atomic absorption spectrophotometer. In the same treatment, Cd, Cr, and Pb concentrations in mulberry shoot were all higher than those in root, and Cd and Pb concentrations in shoot increased from lower to upper parts, reaching the highest in leaves. Significant increases were found in toxic metal concentration in different parts of mulberry with increasing EDTA concentration

  6. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties.

    Science.gov (United States)

    Ballardo, Cindy; Abraham, Juliana; Barrena, Raquel; Artola, Adriana; Gea, Teresa; Sánchez, Antoni

    2016-03-15

    There is a growing generation of biodegradable wastes from different human activities from industrial to agricultural including home and recreational activities. On the other hand, agricultural and horticultural activities require significant amounts of organic amendments and pesticides. In this framework, the present study evaluates the viability of soy fiber residue valorization as organic soil amendment with biopesticide properties through aerobic solid-state fermentation (SSF) in the presence of Bacillus thuringiensis (Bt). The experiments were performed first under sterile and non-sterile conditions at lab scale using 115 g of sample and controlled temperature (30 °C). Bt growth was successful in sterile conditions, obtaining 6.2 × 10(11) CFU g(-1) DM and 8.6 × 10(10) spores g(-1) DM after 6 days. Bt survived on solid culture under non-sterile conditions (3.8 × 10(9) CFU g(-1) DM and 1.3 × 10(8) spores g(-1) DM). Further, the valorization process was scaled-up to 10 L reactors (2300 g) under non-sterile conditions obtaining a final stabilized material with viable Bt cells and spores (9.5 × 10(7) CFU g(-1) DM and 1.1 × 10(8) spores g(-1) DM in average) after 9 days of SSF. These results confirm the possibility of managing biodegradable wastes by their transformation to a waste derived soil amendment with enhanced biopesticide effect, in comparison to traditional compost using a valuable and low-cost technique (SSF). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    Science.gov (United States)

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

  8. The influence of wine-distillery waste compost on nitrogen and phosphorus dynamics and uptake by a melon crop in a shallow calcareous soil

    Science.gov (United States)

    Requejo, M. I.; Villena, R.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    In Mediterranean countries, the large quantity of organic wastes generated by the winery industry constitutes a serious environmental concern, due to its low pH and high content of phenolic compounds. This is accompanied by a seasonal production that makes their management difficult. Winery wastes are characterized by high organic matter contents, low electrical conductivity values and notable contents in macronutrients, so their use as organic amendments is a good management option for improving soil fertility. However, a composting treatment is necessary to convert these organic wastes into more stable, hygienic and humic-rich materials. The aim of this work was to evaluate the effects of the application of exhausted grape marc compost (composed of dealcoholized pulp, skins and stems) as fertilizer in soil nitrogen and phosphorus availability and uptake by a melon crop (Cucumis melo L.). This experiment was carried out from May to September 2011 in Ciudad Real (Spain). This area was designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 7.9), poor in organic matter (0.20%), rich in potassium (407 ppm) and with a medium level of phosphorus (19.4 ppm). The experiment had a randomised complete block design, with four treatments consisted of four compost doses: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3), in order to determine the optimum dose to ensure nutrient demand, maximizing yield and minimizing nutrient losses. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  9. 蘑菇渣和园林废物堆肥复配基质在黄瓜育苗上的应用效果%Effect of Reproducing Compound Substrate for Cucumber Seedling by Mushroom Residue and Garden Waste Compost

    Institute of Scientific and Technical Information of China (English)

    田锁霞; 陈清; 龚建英; 李国学; 贾小红; 李彦明

    2011-01-01

    以腐熟的蘑菇渣堆肥、园林修剪废物堆肥、草炭、蛭石为原料,通过将蘑菇渣堆肥与园林废物堆肥以不同比例替代草炭后对复配基质的理化特性及普通白菜生长的影响筛选出适宜的配方,并以草炭:蛭石=7V:3V为对照,探讨该配方对黄瓜幼苗生长指标的影响.结果表明,蘑菇渣堆肥:园林废物堆肥:草炭:蛭石=3 V:4 V:7 V:6V为最佳基质配方;受EC值过高的影响,蘑菇渣堆肥和园林废物堆肥替代草炭最大比例不宜超过40%;所获配方基质培育出的黄瓜幼苗株高、茎粗、干物质积累和壮苗指数等指标均显著优于对照.%The spent mushroom compost ( MC ) and the garden wastes compost ( YC ) were evaluated as components of substrates in partial substitution of peat for seedlings production. Compost-based substrates , containing different percentage of these 2 composts , were analyzed to find their physicochemical parameter and effect on the growth of Brassica campestris L. Ssp. Chinensis ( L.) Makino var. Communis Tsen et Lee, so as to screen out an optimal formula. Then its effects on cucumber ( Cucumis sativus L. ) seedling quality were investigated comparing with the control ( a commercial substrates ). The results showed that the substrate's composition of MC : YC : peat : vermiculite=3 V : 4 V : 7 V : 6 V was the optimal formula. The percentage of the MC and YC in compost-based substrates should not exceed 40%, due to the high EC value. The plant height, stem diameter, dry matter accumulation and seedling index and other indicators of cucumber seedling cultivated on this formula substrate were significantly excelled that of the control treatment.

  10. Alterações nos atributos de fertilidade em solo adubado com composto de lixo urbano Changes in fertility attributes of soil fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2005-10-01

    Full Text Available O composto de lixo urbano é um adubo orgânico que vem sendo, com bastante freqüência, utilizado em áreas de produção de hortaliças. Assim, o objetivo deste trabalho foi avaliar o efeito da aplicação do composto de lixo urbano na fertilidade do solo, na produção de alface e no acúmulo de nutrientes nas plantas. O experimento foi realizado em casa de vegetação, em colunas de PVC, em delineamento em blocos ao acaso, com cinco tratamentos, doses de 0; 30; 60; 90 e 120 t ha-1 de composto de lixo urbano e oito repetições. As colunas receberam solo das profundidades de 0-20 (tratado com composto de lixo, 20-40 e 40-60 cm de um Argissolo, textura média, e uma muda de alface. Ao final do cultivo, colunas de quatro repetições de cada tratamento foram desmontadas e, nas demais colunas, fez-se um segundo cultivo de alface. A incorporação de composto de lixo urbano na profundidade de 0-20 cm melhorou a fertilidade do solo da própria camada em que foi aplicado e da camada de 20-40 cm, mas não alterou as características da camada de 40-60 cm. A adubação com composto de lixo urbano propiciou aumento do pH e dos teores de MO, P, K, Ca e Mg do solo, na camada de 0-20 cm, e de pH e Ca, na profundidade de 20-40 cm. A melhora da fertilidade do solo com a aplicação de composto de lixo urbano acarretou aumento de produção de alface e provocou maior acúmulo de P, K e Ca nas plantas.Urban waste compost is an organic manure frequently used in horticultural areas. Thus, the objectives of this study were to evaluate the effects of urban waste compost on soil fertility, on lettuce production and on nutrient accumulation in plants. The experiment was carried out in a greenhouse using PVC columns. It was used a randomized block design with five treatments and eight replications. The treatments consisted of five urban waste compost rates (0; 30; 60; 90; and 120 t ha-1. The columns were filled up with soil from the 0-20 layer (treated with waste

  11. Speciation of lipids and humus-like colloidal compounds in a forest soil reclaimed with municipal solid waste compost.

    Science.gov (United States)

    Zancada, M Cristina; Almendros, Gonzalo; Sanz, Jesús; Román, Román

    2004-02-01

    The progressive transformations of lipid and humus-like fractions in soil after massive input (400 Mg ha(-1)) of urban waste have been studied during an 87-week experiment in field plots of a degraded Calcic Regosol in Central Spain. Structural changes in the macromolecular fractions were small when compared with the qualitative and quantitative changes in lipid composition. The intense depletion of the lipid fraction with time and the decrease of the humic acid to fulvic acid ratio were the most significant quantitative indices of the compost transformation in soil. Changes in soil lipid fractions were especially noted in relation to their speciation status and distribution patterns (carbon preference index and relative chain length). Three subfractions were considered: (I) direct extraction with petroleum ether, (II) liquid-liquid extraction after soil treatment with 2 M H3PO4 and (III) after soil treatment with 0.1 M NaOH. Although lipid concentration tends to decrease with time, lipids in the fraction tightly bonded to soil (III) remained qualitatively and quantitatively constant in the course of the field experiment. Gas chromatographic-mass spectrometric analyses showed that the more stable the association of lipid to the soil matrix, the fewer the changes observed in the distribution pattern of the fatty acids during the progressive transformation stages.

  12. Status and Development Trend of Waste Composting Biological Treatment in China%我国垃圾堆肥生物处理现状及发展趋势分析

    Institute of Scientific and Technical Information of China (English)

    宋立杰; 陈善平

    2013-01-01

    Aiming at the state of stagnation even decline for municipal waste composting biological treatment in China, and decline of waste composting biological treatment capacity in the last decade, the development trend and suggestions for biological treatment of organic waste were proposed.%针对我国城市垃圾堆肥生物处理处于停滞甚至萎缩的状态,以及近10 a堆肥生物处理能力存在不增反降等问题,提出有机垃圾生物处理的发展趋势和对策建议.

  13. Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling.

    Science.gov (United States)

    Illera-Vives, Marta; López-Mosquera, María Elvira; Salas-Sanjuan, María Del Carmen; López-Fabal, Adolfo

    2015-05-01

    The purpose of this work was to examine solute release by the effect of leaching of a saline compost with two main objectives: (1) to identify the most efficient method for this purpose, in order to minimize the environmental impact of this process in terms of water consumption and (2) to study the composition of the leachates to manage them properly and avoid possible contamination. A laboratory method involving column leaching with distilled water (CL) and two field methods involving saturation leaching (SL) and drip leaching (DL) were compared to this end. In order to more accurately assess nutrient release and compare the three leaching techniques, the cumulative amounts of ions leached were processed by using an exponential growth model. All target ions fitted properly, and so did the curve for the ions as a whole. Salts were removed mainly by effect of the leaching of major ions in the substrate (Na(+), Cl(-), inorganic N, SO4 (2-) and K(+)). SL and CL proved similarly efficient and reduced the salt content of the substrate to an electrical conductivity below 2 dS m(-1) in the saturation extract, which is the optimum level for nursery crops. By contrast, the DL method provided poor results: salt contents were reduced to an electrical conductivity of only 8 dS m(-1) in the saturation extract, so the resulting substrate can only be useful to grow highly salt-tolerant crops.

  14. Industrial waste based compost as a source of novel cellulolytic strains and enzymes.

    Science.gov (United States)

    Amore, Antonella; Pepe, Olimpia; Ventorino, Valeria; Birolo, Leila; Giangrande, Chiara; Faraco, Vincenza

    2013-02-01

    Ninety bacteria isolated from raw composting materials were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. The bacteria producing the highest cellulolytic activity levels were identified by 16S rRNA sequencing as Bacillus licheniformis strain 1, Bacillus subtilis subsp. subtilis strain B7B, Bacillus subtilis subsp. spizizenii strain 6, and Bacillus amyloliquefaciens strain B31C. Cellulase activity production by the most productive strain B. amyloliquefaciens B31C was optimized in liquid culture varying the carbon source. Comparison of growth curves of B. amyloliquefaciens B31C at temperatures from 28 to 47 °C indicated its thermotolerant nature. Moreover, analysis of time courses of cellulase activity production in this thermal range showed that increase of temperature from 28 to 37 °C causes an increase of cellulase activity levels. Investigating the enzymes responsible for cellulase activity produced by B. amyloliquefaciens B31C by proteomic analyses, an endoglucanase was identified. It was shown that the purified enzyme catalyzes carboxymethylcellulose's hydrolysis following Michaelis-Menten kinetics with a K(M) of 9.95 mg ml(-1) and a v(max) of 284 μM min(-1) . It shows a retention of 90% of its activity for at least 144 h of incubation at 40 °C and exhibits a range of optimum temperatures from 50 to 70 °C.

  15. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application.

    Science.gov (United States)

    Hartley, William; Dickinson, Nicholas M; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W

    2010-12-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils.

  16. 促腐菌剂在农业有机废弃物腐解中的应用研究进展%Research Progress on Application of Microbial Inoculants in Agricultural Organic Wastes Composting

    Institute of Scientific and Technical Information of China (English)

    赵斌; 方正; 柯晓静

    2014-01-01

    堆肥发酵是农业有机废弃物资源化利用的主要途径之一,在堆肥过程中添加促腐菌剂可缩短堆肥周期、提高堆肥质量。为此,综述了国内外促腐菌剂在农业有机废弃物腐解中的应用研究进展,分析了促腐菌剂在农业有机废弃物利用中需要注意的问题,并展望了促腐菌剂的发展及应用前景。%Composting is one of the main utilization approaches for agricultural organic wastes , application of microbial inoculants in composting can shorten the composting period and improve the compost quality .T his paper summarized the research progress on the application of microbial inoculants in the agricultural organic wastes composting at home and abroad ,analyzed some prob-lems about the application of microbial inoculants in agricultural organic wastes composting ,and the development and application prospect of microbial inoculants was forecasted .

  17. Pilot study on continous composting processing system for food waste%餐厨垃圾连续堆肥处理系统中试研究

    Institute of Scientific and Technical Information of China (English)

    李小建; 周振鹏; 谢锡龙; 王德汉

    2013-01-01

    餐厨垃圾是影响城市环境重要的污染源,其处理尤其是就地堆肥处理近年来受到重视.为了利用园林绿化基质作为餐厨垃圾堆肥的水分调节材料,按照1:1体积比进行连续堆肥,研究添加园林绿化基质对餐厨垃圾堆肥过程中理化指标的影响,为餐厨垃圾无害化处理提供科学依据和技术指导.结果表明,物料堆肥升温启动迅速,第3天就达到50℃,高温持续10 d以上,达到无害化要求;堆肥最终减容率达到53%以上,减量化效果明显;物料总氮和总磷含量呈升高趋势,总有机质含量降低,肥料营养元素含量在6%以上,符合有机肥国家标准(NY525-2002).总的来说,园林绿化基质作为调理剂与餐厨垃圾联合堆肥方法可行,减量化效果好,品质符合标准.%Food waste is a major souce of pollution affecting the urban environment. The treatment of food waste, especially the in-situ composting, got more attention in recent years. Landscape matrix was used as food waste composing moisture regulating material in accordance with the 1: 1 volume ratio, and continuous composting was carried out. Effects of adding landscape matrix on compost physicochemical indexs were studied to provide a scientific basis and technologial guide for harmless treatment of food waste. The results show that food waste compost temperature started quickly, reached 50℃ at the third day, high temperature sustained for 10 days, and met the sound requirements. The final reduction rate of food waste aerobic composting reaches 53% or more, so reduction effect is obvious. Total nitrogen and phosphorous content show the trend of increasing, and total organic matter content tends to decrease, and nutrient content of fertilizer is above 6% , and this is consistent with national standards of organic fertilizer. Overall, landscape matrix as a conditioner combines with food waste composting method is feasible, reduction effect is good.

  18. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes

    NARCIS (Netherlands)

    Veeken, A.H.M.; Blok, W.J.; Curci, F.; Coenen, G.C.M.; Termorshuizen, A.J.; Hamelers, H.V.M.

    2005-01-01

    Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This

  19. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes

    NARCIS (Netherlands)

    Veeken, A.H.M.; Blok, W.J.; Curci, F.; Coenen, G.C.M.; Termorshuizen, A.J.; Hamelers, H.V.M.

    2005-01-01

    Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This result

  20. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  1. Compost: Brown gold or toxic trouble?

    Science.gov (United States)

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  2. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  3. Monitoring of the process of composting of kitchen waste in an institutional scale worm farm.

    Science.gov (United States)

    Kristiana, R; Nair, J; Anda, M; Mathew, K

    2005-01-01

    Vermicomposting provides an alternative method of managing waste that is ecofriendly and cost-effective. The Environmental Technology Centre (ETC) at Murdoch University and St. John of God Hospital (SJOG) signed a Memorandum of Understanding (MOU) to install a vermiculture system in SJOG to treat some of the organic waste generated by the on site kitchen facility. This is an effort made by SJOG to reduce the amount of organic waste sent to landfill each year and to treat the waste on site as part of a recycling/reuse program. The study is aimed at scientifically monitoring vermicomposting process and to understand the optimum management requirements to improve the operation of an institutional scale worm farm. In addition, an experiment was conducted to investigate the suitability of bedding materials: horse manure, cow manure, peat coir, and natural bedding (vermicast). The species of earthworms used in this experiment were Red (Lumbricus rubellus), Tiger (Eisenia fetida), and Blue (Lumbricus excavatus). The pH, temperature, worm population and quality of castings were tested in different beds. Results indicated that vermicast was the best bedding for vermicomposting, and there were no significant difference between the performances of the other three beds. However, it can be concluded that the bedding material of horse manure, cow manure, and peat coir were successfully established well within the experimental period of eight weeks, and cow manure with the lowest C:N ratio produced the best quality bedding. As using vermicast for the initial bedding creates a very high capital cost these organic substrates provide cost-effective alternative. Therefore they would be quite appropriate to initiate an institutional scale worm farm.

  4. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    OpenAIRE

    Manjula Gopinathan; Meenambal Thirumurthy

    2012-01-01

    Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along wit...

  5. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    The objective of this study was to investigate the effects of the long-term addition of three compost types (vegetable, fruit and yard waste compost – VFYW, garden waste compost – GW and spent mushroom compost – SM) on the physical properties of a sandy soil and to quantify any such effects using...

  6. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...

  7. Effects of spent mushroom compost on quality and productivity of ...

    African Journals Online (AJOL)

    Effects of spent mushroom compost on quality and productivity of cucumber ... to determine the effects of spent mushroom compost (SMC), which is a waste product ... processing through a year, on greenhouse cucumber growth as an organic

  8. Physico- Chemical characteristics of compost (Cotonou, Benin, West ...

    African Journals Online (AJOL)

    Physico- Chemical characteristics of compost (Cotonou, Benin, West Africa) ... proving the poverty of the soil of this site and their increased need of organic amendment. Keywords: Cotonou; biodegradable waste; compost; physico- chemical ...

  9. An Overview of Composting Based on Variable Feedstock Material

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available Composting is a biological treatment method that provides a potential sustainable way to convert food waste into organic compost. In composting, the feedstock material is an important item to ensure the success of the composting process. This paper reviewed the process of composting based on implementation different types of feedstock, namely: 1 animal waste such as cow dung, poultry litter, swine manure and chicken manure; and 2 agricultural waste such as sawdust, rice straw, bran, bagasse, banana waste and pine chip. The result for poultry litter, cow manure, swine manure, sawdust and rice straw has C/N ratio lower than 20 at final composting process which is considered as satisfactory level for compost maturity. As a conclusion, the selection of the feedstock material is based on the characteristics of the material itself and the selection of materials is important for the quality of compost.

  10. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching.

  11. Evaluation of the Upland Weed Control Potentiality of Green Tea Waste-Rice Bran Compost and Its Effect on Spinach Growth

    Directory of Open Access Journals (Sweden)

    M. A. I. Khan

    2007-01-01

    Full Text Available This study evaluated the upland weed control potentiality, germination inhibition ability and growth suppression efficiency of the five combinations of green tea waste rice bran compost (GRC. GRC was prepared by mixing green tea waste and rice bran at five ratios, and allowed to decompose for 5 mo. Application of GRC suppressed weed growth up to 93.4% in number and 95.4% in dry weight in 2004, and 80.7% in number and 73.4% in dry weight of weeds in 2005, as compared with the untreated control (only soil under the greenhouse condition. Among the five combinations of GRC, rice bran alone (RC showed the significantly highest and green tea waste alone (GC showed the lowest weed suppressing activity in both years. The weed control potentiality of GRC was increased by the increase of rice bran percentages in the mixture. The exudates of GRC inhibited the hypocotyl and radicle elongation of lettuce seedlings when examined by the sandwich method. The water extracts of GRC also inhibited the germination and radicle elongation of the test species in the seed germination tests. The growth inhibitory activity of RC was greater than that of GC, and radicle elongation was more sensitive than seed germination and hypocotyl elongation in all bioassays. The inhibitory activity of GRC water extract varied with the test species and was higher for the dicotyledonous species than monocotyledonous species. The inhibitory effect on seed germination and seedling growth increased as the extract concentration increased. The concentration dependent responses of test species to the water extract of GRC indicated that it might contain phytotoxic substances that were responsible for growth inhibition. Moreover, GRC promoted spinach growth significantly compared with the untreated control. These results suggest that the use of 30% green tea waste + 70% rice bran mixture compost (GRC-3 might be useful to control the upland weeds and enhance spinach growth among the five

  12. Composting plant for pruning waste and sewage works sludge in Castelldefels (Barcelona, Spain). Planta de compostaje de restos de poda y lodos de depuradora en Castelldefels

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The biological waste water treatment works in Castelldefels (Barcelona, spain) generates 8,000 m''3 of sludge per year. Triturated vegetable remains are added and the mixture left to ferment for 14 days in 8 tunnels measuring 4x4x10 m provided with forced ventilation by 10 ventilators with a capacity for 2,000 m''3/h. Annual production is 8,000 m''3 of compost and 14,000 m''3 of substrates and mould. Fermentation loss is 30%. Process time, including storage, is 100 days.

  13. Composting of wine industry wastes and their use as a substrate for growing soil less ornamental plants

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, E.; Moreno, M. T.; Aviles, M.; Ordovas, J.

    2012-11-01

    To study the process of composting of grape marc and test the resulting compost as a substrate for the cultivation of ornamental plants, six composting processes, with mixtures of dealcoholised grapevine marc and grape stalk (DM + GS) in a 1:1 ratio (v:v), were carried out in Seville (Spain) between 2000 and 2006. The duration of the composting ranged between 20 and 24 weeks in the Spring-Summer season. Weekly, temperature, pH, EC, N-NO{sub 3}{sup -} and N-NH{sub 4} +, were measured. The maximum temperatures reached values of 65-73 degree centigrade at a depth between 40 and 80 cm. The compost had a slightly alkaline pH, slightly salinity, high organic matter and total nitrogen contents. The final compost chemical composition in total elements showed values in the same range as those corresponding to plant material, except for Fe. The distribution in the size of the particles gives way to a total porous space that is close to the one considered as optimal in a substrate for soil less cropping. Pore size distribution showed a prevalence of big pores that produces unbalance in the water-air ratios, resulting in a material with a good aeration but with low water retention. The composts were tested as substrates for four ornamental species: geranium, petunia, carnation and gerbera. The results suggest that compost has no limiting characteristics for its use as a medium for the cultivation of ornamental plants in container, and can replace conventional substrates, such as peat and coconut fibre. (Author) 35 refs.

  14. Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste

    DEFF Research Database (Denmark)

    Andersen, Jacob Kragh; Boldrin, Alessio; Samuelsson, Jerker

    2010-01-01

    Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed...... to give a more accurate estimate of the GHG emissions, with CO2 emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH4 and CO. In this study, the dynamic plume method was a more effective...

  15. Composting in advanced life support systems

    Science.gov (United States)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  16. Wasted cabbage (Brassica oleracea silages treated with different levels of ground corn andsilage inoculant

    Directory of Open Access Journals (Sweden)

    Adauton Vilela de Rezende

    2015-08-01

    Full Text Available Our objective was to evaluate the chemical composition, fermentation profile, and aerobic stability of cabbage silages treated with ground corn and inoculant. The evaluated treatments were: addition of 200, 300, 400, 500, and 600 g of ground corn per kilogram of cabbage (fresh matter basis, with or without a bacterial inoculant composed of Lactobacillus plantarumand Pediococcus pentosaceus. As expected, ground corn additions increased the dry matter (DM content of cabbage silage, and high values were observed for the highest level of addition (540 g kg−1. Conversely, the crude protein, neutral detergent fiber, acid detergent fiber, and lignin contents decreased with ground corn additions. The in vitro dry matter digestibility coefficients increased slightly with ground corn additions, but all cabbage silages had digestibility higher than 740 g kg−1 of DM. In the fermentation process, the pH values of cabbage silages increased linearly because of the high levels of ground corn addition. Cabbage ensiled with 200 and 300 g kg−1 of ground corn had high ammonia N production and fermentative losses (effluent and gas. Cabbage silage treated with 600 g kg−1 of ground corn had lower maximum pH values during aerobic exposure, but all silages had constant temperature during aerobic exposure. The ensiling of wasted cabbage is possible and we recommend the application of 400 g kg−1ground corn to improve the silage quality, whereas the use of the inoculant is unnecessary.

  17. Effect of Kelp Waste Extracts on the Growth and Development of Pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Zheng, Shiyan; Jiang, Jie; He, Meilin; Zou, Shanmei; Wang, Changhai

    2016-12-01

    To explore the effects of kelp waste extracts (KWE) on the growth and development of Brassia chinensis L., germination and greenhouse experiments were carried out under different concentrations of KWE. The results showed that a higher germination percentage (95%), associated with high germination index (8.70), germination energy (71.67%) and seedling vigor index (734.67), was obtained under a lower KWE concentration (2%) compared with the control. The radicle length (4.97 cm), fresh weight (0.32 g/10 seedlings) and dry weight (0.015 g/10 seedlings) were significantly increased in the treatment of 2% KWE. KWE also could enhance the root growth, the maximum leaf length × width and the fresh weight of plants, the optimal value of which increased by 8.37 cm, 58.14 cm2 and 7.76 g under the treatment of 10% KWE compared with the control respectively. Meanwhile, the contents of vitamin C and soluble sugars in pakchoi leaf were improved by 19.6 mg/100 g and 1.44 mg/g compared with the control, and the nitrate content was decreased by 212.27 mg/kg. Briefly, KWE could markedly stimulate the pakchoi seeds germination at a lower concentration (2%) and enhance the plant growth and quality at a higher concentration (10%).

  18. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  19. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers.

    Science.gov (United States)

    Rafiee, Reza; Obersky, Lizanne; Xie, Sihuang; Clarke, William P

    2017-01-12

    Although CH4 oxidation in landfill soil covers is widely studied, the extent of composting and CH4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (rAD), CH4 oxidation (rOX) and composting (rCOM) in environments where O2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH4:CO2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH4 and O2 to represent methanotrophic activity. CO2, CH4, O2 and the stable isotope (13)C-CO2 were chosen as the components for the mass balance model. The three reaction rates, r (=rAD, rOX, rCOM) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r(2)) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r(2) deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of rCOM showed that this output

  20. Physical analyses of compost from composting plants in Brazil.

    Science.gov (United States)

    Barreira, L P; Philippi Junior, A; Rodrigues, M S; Tenório, J A S

    2008-01-01

    Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product.

  1. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  2. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Science.gov (United States)

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  3. Remediation of metal polluted mine soil with compost: co-composting versus incorporation.

    Science.gov (United States)

    Tandy, Susan; Healey, John R; Nason, Mark A; Williamson, Julie C; Jones, Davey L

    2009-02-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.

  4. Practical experience with biodegradable biomass waste bags in several different German composting plants; Praxiserfahrungen zum Abbau kompostierbarer Bioabfallsaecke auf verschiedenen Kompostierungsanlagen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Ziermann, Andreas; Schmidt, Bettina [C.A.R.M.E.N. e.V., Straubing (Germany)

    2012-11-01

    The study intended to find out how fast biodegradable biomass waste bags are degraded in practical conditions in composting and fermentation plants. The plants differ with regard to the processes employed; further, rotting times may be much shorter in practice than the twelve weeks requested by DIN EN 13432 and DIN EN 14995. For the study, plant types were selected that are practically relevant for biomass waste utilisation in Germany. (orig.) [German] Ziel der vorliegenden Studie war es, herauszufinden, wie schnell kompostierbare Bioabfallsaecke unter Praxisbedingungen in verschiedenen Kompost- und Vergaerungsanlagentypen abgebaut werden. Zum einen bestehen teilweise grosse verfahrenstechnische Unterschiede zwischen den Anlagentypen, zum anderen sind die Rottezeiten in der Praxis zum Teil wesentlich kuerzer, als die in der DIN EN 13432 und DIN EN 14995 geforderten zwoelf Wochen. Fuer die Studie wurden Anlagentypen ausgewaehlt, die fuer die Verwertung von Bioabfaellen in Deutschland praxisrelevant sind. (orig.)

  5. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    Science.gov (United States)

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation.

  6. Compostagem de resíduos da indústria de desfibrilação de algodão Composting of cotton industrial waste

    Directory of Open Access Journals (Sweden)

    Mônica S. S. de M. Costa

    2005-08-01

    Full Text Available O processo de compostagem foi avaliado por meio do monitoramento diário da temperatura em leiras confeccionadas com o resíduo da indústria de desfibrilação de algodão e tipos de inóculo. Foram avaliadas seis leiras, divididas em dois sistemas: com aeração e sem aeração, sendo estudados, em cada sistema, três tipos de inóculo: esterco bovino diluído em água; esterco bovino, e conteúdo ruminal. Avaliou-se, também, a porcentagem de redução de volume nas leiras quando se intensificaram os revolvimentos, visando a obter informações para fins de dimensionamento do pátio de compostagem. Os compostos produzidos foram transferidos para minhocário e amostras do produto após a compostagem e após a vermicompostagem foram analisadas quimicamente com o objetivo de avaliar os teores de nutrientes. Os resultados obtidos demonstraram que o conteúdo ruminal utilizado como inóculo tende a apresentar valores mais altos de temperatura na fase inicial (fase ativa e menores na fase final (maturação, embora, independentemente do tipo de inóculo utilizado, a estabilização praticamente tenha ocorrido no mesmo período; o sistema com aeração possibilitou, em todos os tratamentos, estabilização mais rápida do material, quando comparado ao sistema sem aeração; a intensificação dos revolvimentos possibilitou diminuição do tempo de retenção com redução de 46% no volume final, e a composição química dos vermicompostos apresentou-se enriquecida quando comparada aos compostos produzidos.The composting process performance was evaluated through diary temperature monitoring at piles made with the waste of cotton carding industry and kinds of inocule. Were evaluated six piles divided in two systems: with aeration and without aeration. In each system three kinds of inocule: cattle waste diluted in water; cattle waste and rumen were studied. In a second phase three piles with rumen intensifying the turnings aiming to evaluate the

  7. Feasibility of Rural Domestic Waste Treatment Using Forced Aeration Composting Technology%强制通风堆肥技术处理农村生活垃圾的可行性研究

    Institute of Scientific and Technical Information of China (English)

    丁湘蓉

    2011-01-01

    Three kinds of material proportion of organic component in rural domestic waste in New North Zone of Haidian district, Beijing were used for the composting experiment Physicochemical property, putrescibility and controlling parameters of pile during composting were researched. The results showed that moisture content of organic component in rural domestic waste was too high to directly composting. Using static composting of forced aeration, change regularity of temperature, moisture content,volume, pH, conductivity, and carbon-nitrogen ratio during the composting was similar with change of parameters during general composting. Index of the compost product conformed to control standards for waste compost for agricultural use. It indicated that static composting of forced aeration was suitable to food residue treatment in New North Zone. Comparing with food residue compost, the temperature of compost with chicken manure and straws increased rapidly, it can achieve the purpose of volume reduction, harmless and biological drying, the rate of volume reduction was over 70%. Organic component compost almost reached maturity after 21 days from aspects of putrescibility index of compost estimate, such as compost temperature, apparent characters,carbon-nitrogen ratio, and germination index. The composting effect is best when material proportions of food residue, straws and chicken manure were 75%, 10% and 15% respectively, according to the experimental data of three fermentation tanks.%对北京市海淀区北部新区农村生活垃圾中的有机成分进行3组不同物料配比的堆肥试验,在堆肥周期内对堆体的理化性质、腐熟度指标与控制参数进行了研究.结果表明:农村生活垃圾中的有机成分含水率偏高,不利于直接堆肥.采用强制通风静态好氧堆肥,堆肥过程中温度、含水率、体积、pH、电导率、碳氮比的变化与一般堆肥过程各参数的变化规律相似,堆制出的堆

  8. Use of compost for the restoration of mine wastes and mine soils; Utilizacion de materiales compostados en la rehabilitacion potencial de espacios afectados por residuos mineros y suelos de mina

    Energy Technology Data Exchange (ETDEWEB)

    Paradelo, R.

    2013-09-01

    One of the main limitations for the successful restoration of the environmental damages produced by quarrying and mining activities is that mine waste and mine soils are largely devoid of organic matter. For this reason, amelioration with organic materials such as sewage sludge, manure or compost is gaining attention as a desirable strategy that may render good results in restoration. In this paper, recent experiences on the use of composted materials for the amelioration of mine wastes and mine soils are reviewed. The benefits obtained from the use of compost in restoration studies include improvement of the unfavourable physical, chemical and biological properties of mine waste and mine soils. The increase in the organic matter concentrations produces an improvement of the structure which leads to reduced bulk density and increased porosity, thus decreasing the risks of compaction, sealing and erosion. Correction of extreme pH is usually observed. N and P, two elements that are usually lacking in mine waste, are also added with compost in plant-available forms. The introduction of microbial populations leads to the reactivation of biogeochemical cycles which are essential for the long-term fertility and sustainability of new ecosystems. (Author)

  9. Compostability of bioplastic packaging materials: an overview.

    Science.gov (United States)

    Kale, Gaurav; Kijchavengkul, Thitisilp; Auras, Rafael; Rubino, Maria; Selke, Susan E; Singh, Sher Paul

    2007-03-08

    Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost

  10. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  11. Dynamic Succession Law of Bacterial Communities during Domestic Waste Composting%生活垃圾堆肥过程中细菌群落演替规律

    Institute of Scientific and Technical Information of China (English)

    党秋玲; 刘驰; 席北斗; 魏自民; 李鸣晓; 杨天学; 李晔

    2011-01-01

    The PCR-DGGE technique was used to study the dynamic succession law of bacterial communities during composting of Municipal Solid Waste (MSW). The microbial metagenomic DNA was extracted from samples in different periods of composting,and the V3 region of 16S rDNA was amplified for analyzing the change of the bacterial community during the composting process.DGGE prints showed that the bacterial community changed dramatically with the rise of temperature. New predominant bacteria appeared at the end of the composting process. This indicated that the bacterial community changed in different composting periods. Clustering analysis results showed that 14 samples were divided into two families at 55 ℃. The similarity of the two families was only 13% , indicating that the bacterial community structure was different in the normal temperature process ( < 55 ℃ ) and high temperature process ( > 55 ℃ ), The results of DNA sequencing showed that: caterpillar pathogen H. obtusa and human waste sample gene were detected in the rising temperature period; thermophilic microbe Clostridium thermocellu, which can decompose cellulose, was the dominant group in the high-temperature composting; and, lots of uncultured bacterial appeared when the temperature was lower than 55 ℃.%应用PCR-DGGE技术研究生活垃圾堆肥过程中的细菌群落演替规律,对堆肥不同时期的宏基因组DNA进行提取,扩增16S rDNA的V3区,分析生活垃圾堆肥过程中细菌群落的变化.DGGE图谱表明,随着堆体温度的升高,DNA条带表现出了明显的动态变化,降温期出现了新的优势条带并趋于稳定,说明堆肥不同时期的细菌群落发生了更替.对条带分布进行聚类分析,结果表明:以55 ℃为界,将14个堆肥样品划分为2个族,族间的相似性仅为13%,说明堆肥过程中常温期(55 ℃)微生物群落结构差别较大.对优势条带回收测序的结果表明:在升温期,堆肥堆体中检测到H.obtusa和人类

  12. 麦秸和奶牛场废弃物联合堆肥试验%Co-composting of wheat straw and dairy waste

    Institute of Scientific and Technical Information of China (English)

    李瑞鹏; 于建光; 常志州; 顾元; 周立祥

    2012-01-01

    An experiment was conducted to investigate the feasibility of co-composting of wheat straw and dairy waste. Wheat straw was co-composting with biogas residues, biogas slurry, dairy manure, and dairy slurry, respectively, and pure wheat straw composting was regarded as control, in which C/N ratio was regulated to 35 : 1 using urea. The results indicated that the high temperature durations above 50 ℃ for five composts were 30 d, 17d,41 d, 12d and 24 d, respectively, which reached the sanitary standard of aerobic composting. The organic carbon contents of five composts decreased by 14. 00% , 5. 50% , 15. 80% , 4.45% and 10.70% at the end of experiment, respectively. The contents of nitrogen, phosphorus and potassium increased gradually during composting. At the end of composting, the organic matter content was 590. 28-701. 86 g/kg. The total nutrient content (N+P2O5+K2O) was 46.54-89.45 g/kg. Among five treatments, total nutrients in the co-compost of straw and dairy manure was the highest(89.45 g/kg) , followed by co-compost of wheat straw and biogas residues (69.61 g/kg). Given long high-temperature duration and high total content of nitrogen, phosphorus and potassium, co-com-posting oi wheat straw and dairy manure or biogas residues is suitable in practical application. But it is economical for the co-composting of wheat straw and biogas slurry or dairy slurry, because of high ratio of 1. 8 t biogas slurry or dairy slurry to 1. 0 t wheat straw.%设置小麦秸秆和奶牛场废弃物联合堆肥试验,以评估其消纳养殖废水与制作商品有机肥的可行性.试验用麦秸分别与沼渣、沼液、牛粪、粪水混合堆肥,以小麦秸秆并用尿素调节碳氮比为35∶1的处理为对照.结果表明,各处理堆体温度50℃以上持续时间分别为30 d、17 d、41 d、12 d和24d,均已符合堆肥卫生标准要求的高温天数;堆肥过程中麦秸分别与沼渣、沼液、牛粪、粪水混合堆肥及对照的

  13. La Incidencia de Metales Pesados en Compost de Residuos Sólidos Urbanos y en su uso Agronómico en España Impact of Heavy Metals in Composting of Municipal Solid Wastes and its use in Agriculture in Spain

    Directory of Open Access Journals (Sweden)

    Antonio Rosal

    2007-01-01

    Full Text Available En este trabajo, se describe el proceso de compostaje mediante pilas volteadas de la fracción orgánica, recogida selectivamente, de residuos sólidos urbanos (RSU, analizado durante tres años. El compost, aceptable para su uso agrícola, fue aplicado en cultivos de trigo y ajo, combinando tratamientos mixtos con el objetivo de conocer que tipo de fertilización era la que generaba los mejores resultados, y demostrar como la fertilización orgánica puede llegar a ser una alternativa real en nuestros suelos con los consiguientes beneficios ambientales. No se encontraron incidencias de metales sobre los frutos ni los suelos. La producción fue también semejante al control. A pesar de todo esto, en caso de aprobación de la nueva Normativa Europea que se encuentra en fase de discusión, y con las restricciones que se pretenden imponer, el compost de RSU fabricado en la ciudad de Córdoba (España tendrá grandes dificultades para su uso agrícola si se continúan con las mismas prácticas de gestión debido a su alto contenido en metales.In this work, our group do a research about the composting process, in turned windrow, of the organic fraction of the municipal solid waste (MSW, selectively collected, that was analysed for three years. Suitable compost for agricultural use was obtanied. This compost was used in wheat and garlic farming. No incidence of metals on fruit and soil was detected. Crops were found to bew similar to thoses observed for a control test. However, requirements in metal contents are increasing in European Union rules. Therefore, this Compost of Municipal Solid Waste made in Cordoba (Spain will not be accepted for an agricultural use with the actual management.

  14. Molecular Analysis of Ammonia-Oxidizing Bacteria of the ß Subdivision of the Class Proteobacteria in Compost and Composted Materials

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Naoumenko, Z.S.; Derikx, P.J.L.; Felske, A.; Stephen, J.R.; Arkhipchenko, I.A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous

  15. Process of composting; Proceso de compostaje envital

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, D.; Ibanez, E.; Sanchez, F.

    1998-12-31

    Update, the european region uses three methods for Municipal Solid Wastes treatment: landfilling, incineration with energy recovery and composting. This last one is being used more and more lately. This is because of the separated collection that makes easier to give an adequate treatment to the organic fraction of MSW, like composting. (Author)

  16. COMPLEX COMPOST AND DETOXICATION OF AGROLANDSCAPE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-03-01

    Full Text Available Toxicity complex compost arises during compiling of organomineral mixtures of various waste of life, agriculture and mineral industries. One of detoxification factors of complex compost is the ability of heavy metal cations to the formation insoluble compounds, which are fixed by clay materials and different disperse systems, and differ markedly by calcium content, acidity and humus soil-absorbing complex

  17. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).

    Science.gov (United States)

    Carbonell, Gregoria; de Imperial, Rosario Miralles; Torrijos, Manuel; Delgado, Mar; Rodriguez, José Antonio

    2011-11-01

    Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha(-1)) and NPK fertilizer (33 g plant(-1)) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.

  18. Composting of Rice straw with Effective Microorganisms (EM and its Influence on Compost Quality

    Directory of Open Access Journals (Sweden)

    Mohd Lokman Che Jusoh

    2013-02-01

    Full Text Available This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05 compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05 than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  19. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    Science.gov (United States)

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  20. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom...

  1. The removal of lead and nickel from the composted municipal waste and sewage sludge using nanoscale zero-valent iron fixed on quartz.

    Science.gov (United States)

    Ghasemzadeh, Parisa; Bostani, Amir

    2017-11-01

    Reducing the concentration of heavy metals including lead (Pb) and nickel (Ni) in organic contaminants such as municipal wastes and sewage sludge is of health and environmental importance. Nanoscale zero-valent iron (NZVI) particles can effectively remove heavy metals from contaminated aqueous and solid media. It was accordingly hypothesized that it is possible to recycle and detoxify organic waste materials containing heavy metals using NZVI and NZVI fixed on quartz (QNZVI). The objective was to investigate the effects of NZVI type, concentration (2% and 5%) and contact time on the removal of Pb and Ni from raw compost, compost fermented with beet molasses, and leachate using a factorial design. The results indicated the significant reduction of DTPA- Pb and DTPA-Ni concentration, in all the organic compounds treated with NZVI and QNZVI (P= 0.01), compared with control. Increased concentration of NZVI in all treatments, increased the rate of DTPA-Pb and DTPA-Ni (P= 0.01) at 113.1% and 180% for Pb (NZVI at 2% and 5%), and at 16.3% and 23.3% for Ni, irrespective of the NZVI type. The reducing trend of extractable Pb and Ni in all the organic compounds was the same, quick reduction at the beginning, followed by a negligible rate. The highest reduction rates for Pb (at one hour) and Ni (at 672h) were equal to 72.93% and 23.27%, respectively. NZVI at 2% was more efficient than NZVI at 5%. There were not any significant differences between NZVI and QNZVI on the removal of Pb and Ni from the organic contaminants. It is possible to immobilize and reduce the concentration of heavy metals such as Pb and Ni in organic contaminants using NZVI, which is affected by NZVI properties, concentration, and contact time, as well as by organic contaminant type. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Agricultural use of compost and vermicomposts from urban wastes: process, maturity and quality of products; Uso agricola de compost y vermicompost de basuras urbanas: procesos, madurez y calidad de los productos

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Departamento Agricola y Proteccion Vegetal, Estacion experimental del Zaidin, CSIC, Granada (Spain)

    1995-12-31

    In this fourth-part review, the authors discuss the positive and negative effects of the agricultural use of compost and vermicomposts from town refuse. This first part reviews the composting and vermicomposting processes, including the most important methods to evaluate the maturity of the end products.

  3. Effectiveness of combined thermophilic composting and ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... extractable humic acid carbon; CFA, extractable fulvic acid carbon; EC, electrical .... level of 80% recommended for vermicomposting but no worms ... composting of the wastes was then done in boxes measuring 1 x 1.

  4. Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo Carbon and nitrogen mineralization in an ultisol fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2006-08-01

    Full Text Available Estudos da mineralização do C e do N em solos que receberam aplicação de composto de lixo urbano são importantes para avaliar o comportamento desse resíduo no solo e dar subsídios para definir as doses adequadas às culturas, com vistas em atender à necessidade de N das plantas. Foram realizados dois experimentos em condições de laboratório com o objetivo de avaliar a mineralização de C e de N em um Argissolo textura média adubado com composto de lixo urbano. No primeiro experimento, utilizou-se delineamento inteiramente ao acaso, com cinco tratamentos e três repetições, com os tratamentos constituídos de cinco doses de composto de lixo urbano, equivalentes a 0, 30, 60, 90 e 120 t ha-1. No segundo experimento, empregou-se esquema fatorial, com delineamento inteiramente ao acaso e três repetições, combinando as mesmas cinco doses de composto de lixo urbano utilizadas no primeiro experimento e 11 tempos de incubação (0, 7, 14, 28, 42, 56, 70, 84, 98, 112 e 126 dias. Os maiores aumentos de N-NO3- no solo foram obtidos até os 42 dias de incubação, independentemente da dose de composto de lixo aplicada, percebendo-se, a partir dos 70 dias, tendência de estabilização. A fração de mineralização de C-orgânico em C-CO2 menor do que 2 % em 168 dias indica que o composto de lixo urbano é material que contribui para aumentar os estoques de matéria orgânica do solo. Na ausência de adubação nitrogenada complementar, a fração de mineralização de N-orgânico de 12 % em 126 dias evidencia que o composto de lixo urbano apresenta potencial fertilizante de liberação lenta de N para as plantas.Studies about nitrogen and carbon mineralization in soils amended with urban waste compost are important to evaluate the reactions of this waste in soil and to define the best rates for crops. Two experiments were carried out under laboratory conditions to evaluate carbon and nitrogen mineralization in an Ultisol fertilized with

  5. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  6. Laboratory Investigation of Rill Erosion on Compost Blankets under Concentrated Flow Conditions

    Science.gov (United States)

    A flume study was conducted using a soil, yard waste compost, and an erosion control compost to investigate the response to concentrated flow and determine if the shear stress model could be used to describe the response. Yard waste compost (YWC) and the bare Cecil soil (CS) cont...

  7. Laboratory Investigation of Rill Erosion on Compost Blankets under Concentrated Flow Conditions

    Science.gov (United States)

    A flume study was conducted using a soil, yard waste compost, and an erosion control compost to investigate the response to concentrated flow and determine if the shear stress model could be used to describe the response. Yard waste compost (YWC) and the bare Cecil soil (CS) cont...

  8. Pathogen re-colonization of in-house composted and non-composted broiler litter

    Science.gov (United States)

    “In-house” litter composting has been reintroduced to the industry and shown to reduce bacteria by as much as two orders of magnitude. Other industries have demonstrated that pathogens can recolonize a waste-residual when microbial competition has been reduced or inhibited following composting. Po...

  9. Determination of lead and cadmium concentration limits in agricultural soil and municipal solid waste compost through an approach of zero tolerance to food contamination.

    Science.gov (United States)

    Saha, Jayanta Kumar; Panwar, N R; Singh, M V

    2010-09-01

    Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4-150 mg/kg and Cd at 0.02-20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C(ul)) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers' fields. Lead and Cd concentration limits in soil were calculated by dividing C(ul) with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.

  10. Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abedin Zafari

    2012-11-01

    Full Text Available Densification of biomass feedstocks, such as pelletizing, can increase bulk density, improve storability, reduce transportation costs, and ease the handling of biomass using existing handling and storage equipment for grains. In order to study the pelletizing process, compost pellets were produced under controlled conditions. The aim of the work was to investigate the effect of raw material properties and the die geometry on the true density of formed pellets and also find the optimal conditions of the densification process for producing pellets with high density. Compost was extruded into cylindrical pellets utilizing open-end dies under axial stress from a vertical piston applied by a hydraulic press. The effects of independent variables, including the raw material moisture content (35 to 45% (wet basis, hammer mill screen size (0.3 to 1.5 mm, speed of piston (2 to 10 mm/s, and die length (8 to 12 mm on pellet density, were determined using response surface methodology. A quadratic model was proposed to predict the pellet density, which had high F and R2 values along with a low p value, indicating the predictability of the model. Moisture content, speed of piston, and particle size significantly affected (P 0.05.

  11. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    Science.gov (United States)

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  12. Influence of Municipal Solid Waste Compost on Soil Properties and Plant Reestablishment in Peri-Urban Environments Efecto de la Aplicación de Compost de Residuos Sólidos Municipales sobre las Propiedades de los Suelos y el Establecimiento de Plantas en Ambientes Peri-Urbanos

    Directory of Open Access Journals (Sweden)

    Gabriela Civeira

    2010-09-01

    Full Text Available Soils in urban areas often present characteristics that might submit these environments to erosion processes. Applying municipal solid wastes (MSW composts to soils have been suggested as a means to improve physical and chemical properties. A field experiment with a completely randomized design was conducted in a Typic Argiudoll from a degraded area in Buenos Aires City. The objective was to evaluate the effect of MSW compost application on soil properties, residue decomposition and Poa (Poa pratensis L. reestablishment. At the beginning of the trial, compost was prepared and applied in a bare soil on 0.25 m² square plots afterwards litterbags were incorporated and Poa was sown. Compost amounts were: 0 (control; 2 (low; 4 (medium and 7 kg m-2 (high on fresh matter basis. During the trial residue decomposition and aerial dry matter (DM: g treatment-1 were evaluated, at the end soil physical and chemical parameters were measured. Medium and high compost rates increased organic C, total N and extractable P. Addition of 2 kg m-2 affected soil organic C as well, but in a minor fee. Soil physical properties were improved after MSW compost addition. In medium and high doses, augmentations in organic matter reduced bulk densities and enhanced water infiltration. Aerial DM was significantly affected by treatments (p Los suelos de las áreas urbanas presentan características que pueden someter estos ambientes a procesos erosivos. La aplicación de composts de residuos sólidos urbanos (MSW a los suelos es una práctica que mejora sus propiedades. El objetivo del trabajo fue evaluar el efecto del compost de MSW sobre las propiedades, la descomposición de residuos y el restablecimiento de la especie Poa (Poa pratensis L. en estos suelos. En un Argiudol típico degradado de la ciudad de Buenos Aires se realizó un ensayo con diseño completamente aleatorizado. Se preparó e incorporó compost en parcelas de 0,25 m² en las siguientes cantidades: 0

  13. Nitrogen transformations during pig manure composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is now suggested as one of the environmentallyand friendly alternative method for disposal of solid organic wastes, as it leads to minimization, stabilization, and utilization of organic waste. Transformations of nitrogen were investigated inco-composting of pig manure with different amendments, such as sawdust and leaves. Samples were analyzed for pH, total-N, soluble NH4-N, soluble NO3-N and soluble organic-N. The total-N increased after 63 days of composting, as well as the soluble NO3-N and soluble organic-N. Soluble NH4-N increased significantly and showed peak values at day 7, thereafter decreased sharply and gradually to lower levels. Seed germination index (GI) showed that co-composting of pig manure with sawdust reached maturity after 49 days of composting, while co-composting of pig manure with sawdust and leaves required shorter time for 35 days. Soluble NH4-N was significantly negatively (P<0.05), while soluble NO3-N and soluble organic-N were significantly positively (P<0.05), correlated with seed germination index (GI). Addition of leaves in co-composting of pig manure with sawdust had no significant impacts on nitrogen transformations, but it was beneficial for maturity of pig manure compost.

  14. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  15. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    Science.gov (United States)

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens.

  16. Behaviour of biodegradable plastics in composting facilities.

    Science.gov (United States)

    Körner, I; Redemann, K; Stegmann, R

    2005-01-01

    Composting is a preferred treatment strategy for biodegradable plastics (BDPs). In this sense, the collection of BDPs together with organic household wastes is a highly discussed possibility. Under the aspect of the behaviour of BDPs in composting facilities, a telephone survey was carried out with selected composting facility operators. They were interviewed with respect to treated wastes, content of impurities, processes for impurity separation, experiences with biodegradable plastics and assumptions to the behaviour of biodegradable plastics in their facility. Forty percent of the facilities had some experiences with BDPs due to test runs, and also since the occurrence of BDPs in their waste was known. The majority of the operators expressed apprehension regarding an increase of impurities resulting from a combined collection of biowaste and BDPs. In the facilities, measures for the impurity separation from the biowaste were used in common practice - in 33% of the cases, separation of disturbing plastics was done before composting, in 33% after composting, and in 13% before and after composting. The most important separation processes for conventional plastics were sieving and manual sorting. In two cases air classification was also used. When asked about the separation possibility of the conventional but not of the biodegradable plastics in their facilities, the majority of operators were not in a position to comment or they replied that it was not an option. No problems were seen in most cases if the impurity separation follows composting. If impurity separation takes place before composting it was often assumed that the BDPs are mainly separated by sieving. In conclusion, in more than half of the cases, BDPs would not be composted if delivered to a composting facility. Under the actual conditions regarding the collection and the treatment/disposal possibilities, an application of BDPs seems to only be reasonable for clean (i.e., source separated on their own

  17. Community level composting in a developing country: case study of KIWODET, Tanzania

    NARCIS (Netherlands)

    Oberlin, A.S.; Szanto, G.L.

    2011-01-01

    Environmentally sustainable waste management practices have a limited relevance and viability in developing countries. Despite a technological potential, composting initiatives often share this fate. Little is known about the functioning of community level composting, which is reportedly the optimal

  18. Community level composting in a developing country: case study of KIWODET, Tanzania

    NARCIS (Netherlands)

    Oberlin, A.S.; Szanto, G.L.

    2011-01-01

    Environmentally sustainable waste management practices have a limited relevance and viability in developing countries. Despite a technological potential, composting initiatives often share this fate. Little is known about the functioning of community level composting, which is reportedly the optimal

  19. Long Term Amendment with Fresh and Composted Solid Olive Mill Waste on Olive Grove Affects Carbon Sequestration by Prunings, Fruits, and Soil

    Science.gov (United States)

    Regni, Luca; Nasini, Luigi; Ilarioni, Luana; Brunori, Antonio; Massaccesi, Luisa; Agnelli, Alberto; Proietti, Primo

    2017-01-01

    The soil amendment with organic wastes represents a way to increase the soil fertility and the organic carbon (C) stored in the agro-ecosystems. Among the organic waste materials produced by agricultural and industrial activities, olive mill wastes derived from the olive oil extraction process may represent a suitable soil amendment. The aim of the study was to evaluate the effect of fresh (SOMW) or composted mixture of SOMW and shredded olive tree prunings (C-SOMW+P) on the vegetative and productive activities of olive trees, on the C stored in the tree non-permanent structures (prunings and fruits) and in the soil. The plots treated with SOMW or C-SOMW+P showed higher vegetative and productive activities than the untreated plots, and this was attributed to the higher total N and availability of P and K supplied by the amendments. Consequently, treatments increased the C sequestered in the tree non-permanent structures than in the control trees. However, no significant different effect between SOMW and C-SOMW+P treatments was found for the C stored in prunings and fruits, whereas it was evident a stronger influence of C-SOMW+P than SOMW on soil C sequestration. Indeed, about 50% the C supplied by the treatment with C-SOMW+P was sequestered in the olive grove system, with more than 90% of the sequestered C stored into the soil. The low amount of C sequestered in the soil following the addition of SOMW was attributed to its richness of moisture and easily degradable compounds that triggered the mineralization processes controlled by the soil microbial community. Although the 8 years of amendment produced a higher fruit yields than the control, no difference occurred between the characteristics and the oil content of the olive fruits. Only the total phenol content for the oil obtained from the SOMW-treated plots was significantly higher. The other considered fruit characteristics did not show significant differences. PMID:28119719

  20. Microbiological characteristics of bioaerosol at the composting plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as mechanical biological treatment, anaerobic digestion and composting will be paramount in achieving this strategic goal. Composting plant is one of the end technology, which is widely used in waste processing of the biodegradable waste. These wastes originate from the maintenance of green areas in the cities and the municipalities and from the separatelly collected biodegradable waste from the citizens. There is also possible to process other biodegradable materials whose origin may be in other technologies of waste management at the composting plant. The most commonly used technology of composting is windrow system. Technological operations, which are necessary for the proper conduct of the composting process, may have negative influence on the environment in the immediate vicinity of composting plant. As pollutants we can mark particular odor and microorganisms. The largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic thermotolerant fungi. The amount of thermophillic actinomycetes ranged from 10 to 84.000 CFU∙m−3 (colony forming units per m3. Furthermore, it was confirmed that the maximum air contamination has been found during aeration of windrow by compost turner and during the sieving of the mature compost. For each indicator, the increase in concentrations due to the turning of compost windrow as compared to the background concentration obtained in natural environments and upwind of composting plants was determined. At a distance of 150 m from the composting plant, only low numbers of indicator organisms at a regular occurrence in the air has been found.