WorldWideScience

Sample records for brassica waste compost

  1. Mature green waste compost enhances growth and nitrogen uptake in wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) through the action of water-extractable factors.

    Science.gov (United States)

    Keeling, A A; McCallum, K R; Beckwith, C P

    2003-11-01

    A series of field and pot trials were carried out to determine the effects of growing wheat and oilseed rape in soils supplemented with green waste composts and provided with additional fertilisers. It was shown consistently that the response of wheat and rape to compost and fertiliser applied together was greater than the responses to the individual additives, but only when very stable compost was used (>10 months processing). Experiments with 15N-labelled fertiliser showed that wheat was able to utilise the applied N more efficiently when cultivated in the stable compost. The enhanced growth was also demonstrated in hydroponic culture of oilseed rape with water extracts of green waste compost in the presence of compound fertiliser. However the effect was rapidly lost at higher dilutions of compost extract (>3). It was concluded that water-extractable growth promoters are present in stable green waste compost, but these only have measurable activity at high concentrations. The identity of the growth promoting factors remains to be found, but the literature suggests that water-extractable humic substances or cytokinins may be involved. PMID:12895554

  2. Composting of municipal solid waste.

    Science.gov (United States)

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented. PMID:20854128

  3. An Overview of Organic Waste in Composting

    OpenAIRE

    Kadir Aeslina Abdul; Azhari Nur Wahidah; Jamaludin Siti Noratifah

    2016-01-01

    This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organi...

  4. FACTORS INFLUENCING COMPOSTING POULTRY WASTE

    Directory of Open Access Journals (Sweden)

    Michał Kopeć

    2015-11-01

    Full Text Available Organic recycling of waste, taking into account sanitary safety, should be a fundamental method for recovering the nutrients present in the waste for plants and organic matter. It also refers to by-products of animal origin, which are not intended for consumption by humans. In the present research , composting of hydrated poultry slaughterhouse waste with maize straw was carried out. A combination with fodder yeast and post-cellulose lime was also introduced, which modified chemical and physico-chemical properties of the mixtures. The experiment was carried out by recording the biomass temperature for 110 days in 1.2×1.0×0.8 m reactors with perforated bottoms enabling active aeration. The following parameters were taken into consideration in the composted material: carbon, nitrogen, sulfur, respiratory activity, microorganisms, fractions of compost obtained after washing on sieves. Small amounts of fodder yeast favoured the development of microorganisms and caused a sanitary risk in the final product. At the initial stage, the temperature of raw compost in that object was several degrees lower than in the case of the composted mass without yeast addition. The addition of post-cellulose lime at ratios 6.5:1:6.5 (maize straw: poultry slaughterhouse waste: post-cellulose lime caused a change in the time of microbiological activity, and led to its inhibition in the final process. In comparison to objects with poultry waste, the highest degree of hygienization was found in the compost with post-cellulose lime (with pH close to neutral. By adjusting the ratios of substrates we can influence the microbiological activity, but the amounts of individual substrates should be determined taking into account the quality of the obtained compost.

  5. Evolution of Biochemical Parameters During Composting of Various Wastes Compost

    Directory of Open Access Journals (Sweden)

    N. Saidi

    2008-01-01

    Full Text Available In Tunisia the most treatment waste is landfill (50% of wastes were land filled and only 5% are composted. And since our soil become more and more poor in organic matter, green waste can be a significant source of organic matter; in parallel we cited the domestic waste and dead posodonia collected from beaches. All these wastes coming from various origins can be exploited to produce stable compost able to correct the deficiency of soil. Exploiting waste could lead at different quality of mature compost. We are not interested in only the quality of the mature compost but we are interested in the time of the composting cycle. The goals of this study were to characterize the maturity and the sanitary quality of compost in relation with the feed stock source (green waste (C1, green waste mixed with Posidonia (C2 and municipal solid waste (C3. The results obtained showed that the duration of the cycle of composting depends on the nature of the substrate. The longest cycle (200 days was observed with the feed stock source C3. The C/N ratios ranged between 22 and 27 at the beginning of the cycle of composting and decreased notably during time of composting. NH4-N decreased over the progress cycle and at the end of composting progress, all wastes presented a content of NH4-N not exceeding the maximal value recommended for mature compost (400 mg kg-1. The CO2 released by C1 was of approximately 6000 mg C-CO2 DM kg-1 at the start of the cycle and it reached at the end of the cycle of composting 2300 mg C-CO2 DM kg-1. Nevertheless, the deshydrogenase activity (DHA recorded was important during the thermophilous phase at the level of the three piles C1, C2 and C3, where it reached the respective values of 5.9; 6.2 and 4 TPFS/TPF/g of DM. Maturity stage showed the values of 0.3; 0.8 and 0.4 TPFS/TPF/g of DM, respectively. Salmonella appeared only at the level of the piles C2 et C3 at the beginning of composting. After 40th days composting these bacteria are

  6. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  7. Evaluation of Green Waste Composting Possibilities

    Directory of Open Access Journals (Sweden)

    Irina Kliopova

    2013-10-01

    Full Text Available In Lithuania main part of biodegradable waste (BDW from the municipal waste (MW stream, food waste from coffees and other catering companies are disposed of in landfills. Primary BDW sorting and / or secondary processing within the mechanical-biological treatment (MBT equipment is planned in Waste Management Plants (WMP in all Lithuanian regions. Lithuania has old traditions of BDW management methods, as green waste (GW composting e.g. mulching is one of the most popular, especially in rural areas. Therefore, reinstatement of composting traditions by implementing modern composters (composting bins in the territories of individual households is practically provided by all WMP. Composting of sorted BDW from MW stream and GW from public territories or green areas of companies is one of the useful BDW management methods, because, first of all, a new product – bio-compost is produced and used for agricultural purposes.This paper presents results of the research done in the Institute of Environmental Engineering (APINI of Kaunas Technological University (KTU implementing two projects: Home - composting in individual households of Tauragė region (RECO Baltic 21 Tech (RB21T project and Feasibility analysis of BDW management techniques in KTU (”KTU - Green University” project. This research work focuses on the green waste (garden and green food waste composting possibilities.DOI: http://dx.doi.org/10.5755/j01.erem.65.3.4680

  8. Aerobic Thermophilic Composting of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    D V Wadkar

    2013-03-01

    Full Text Available Composting is a natural process that turns organic material into a dark rich substance called compost. Aerobic Composting is the creation of compost that depends on bacteria that thrive in an oxygen rich environment. Aerobic bacteria manage the chemical process by converting the inputs (i.e. air, water and carbon and nitrogen rich materials into heat, carbon dioxide and ammonium. The ammonium is further converted by bacteria into plant nourishing nitrites and nitrates through the process of nitrification. Thermophilic Composting is breaking down biological waste with thermophilic (heat loving bacteria. A cylindrical reactor was made. Organic wasteincluded dry vegetable waste collected from MSW ramp, Koregaon park, Pune. The characteristics of compost like pH, moisture content, temperature, C/N ratio and volume reduction were studied for the period of maturation (42days. It can be concluded that the values are within the desired limits and compost is suitable for ornamental plants. The setup of reactor is affordable and thus the compost obtained is effective and economical.

  9. Evaluation of Green Waste Composting Possibilities

    OpenAIRE

    Irina Kliopova; Kamilė Stanevičiūtė

    2013-01-01

    In Lithuania main part of biodegradable waste (BDW) from the municipal waste (MW) stream, food waste from coffees and other catering companies are disposed of in landfills. Primary BDW sorting and / or secondary processing within the mechanical-biological treatment (MBT) equipment is planned in Waste Management Plants (WMP) in all Lithuanian regions. Lithuania has old traditions of BDW management methods, as green waste (GW) composting e.g. mulching is one of the most popular, especially in r...

  10. Possibilities of Using Stone Wool Waste in Composting

    Directory of Open Access Journals (Sweden)

    Žydrūnė Kukenienė

    2011-02-01

    Full Text Available The aim of research is to check the possibility of composting stone wool waste using sewage sludge. The problem is huge amounts of dumped waste (sewage sludge, production waste in the stone wool without any treatment. There is no practice to compost production waste in the stone wool in Lithuania. Stone wool waste can be one of bulk materials in the process of sewage sludge composting and can improve the quality of the prepared compost. Production waste in the stone wool contains phenol and formaldehyde that are very hazardous pollutants, and therefore it is important to follow its concentration during the composting process. The paper analyses the degradation of formaldehyde concentration. Adding stone wool waste made no degradation in the composting process. The most remarkable reduction in formaldehyde concentration is observed during the first half of the composting period. The average composting duration is two months which is a sufficient period for formaldehyde degradation.Article in Lithuanian

  11. Source Separation and Composting of Organic Municipal Solid Waste.

    Science.gov (United States)

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  12. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    OpenAIRE

    Novo, Luís A. B.; Luís González

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlik...

  13. An integrated approach of composting methodologies for solid waste management

    OpenAIRE

    Kumaresan, K; Balan, R.; Sridhar, A; J. Aravind; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen...

  14. Compost liquor bioremediation using waste materials as biofiltration media.

    OpenAIRE

    Savage, A. J.; Tyrrel, Sean F.

    2005-01-01

    Compost liquor results from the percolation of precipitation through composting waste; the release of liquids from high moisture content feedstocks; and as a result of runoff from hard surfaces and machinery. This research aimed to establish the potential for waste materials to act as media for low-cost compost liquor biofilters. Six types of potential biofilter media were packed into experimental biofilters (1 m long x 0.11 m diameter) and irrigated with compost liquor (organic loading rate ...

  15. Possibilities of Using Stone Wool Waste in Composting

    OpenAIRE

    Žydrūnė Kukenienė; Vaidotas Vaišis

    2011-01-01

    The aim of research is to check the possibility of composting stone wool waste using sewage sludge. The problem is huge amounts of dumped waste (sewage sludge, production waste in the stone wool) without any treatment. There is no practice to compost production waste in the stone wool in Lithuania. Stone wool waste can be one of bulk materials in the process of sewage sludge composting and can improve the quality of the prepared compost. Production waste in the stone wool contains phenol and ...

  16. Optimization of control parameters for petroleum waste composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as theactivity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5-59.5, 7.0-8.5 and 55%-60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.

  17. Trained Home Composters Reduce Solid Waste by 18%.

    Science.gov (United States)

    Vossen, Paul; Rilla, Ellen

    1996-01-01

    In the University of California Cooperative Extension's Master Gardener Program, a partnership with the Sonoma County Waste Management Agency, volunteers teach approximately 1000 people annually how to compost in their backyards to help reduce landfill waste. Surveys conducted in 1995 and 1996 showed that home composters reduced their input into…

  18. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  19. Bioremediation of leachate from a green waste composting facility using waste-derived filter media

    OpenAIRE

    Tyrrel, Sean F.; Seymour, I.; Harris, J.A.

    2008-01-01

    The evaluation of two waste-derived materials used to treat compost leachate by biofiltration is described in this paper. Nine biofilters were constructed using 240 l, high density polyethylene containers. Three containers were filled without compaction with 200 l of each of three types of filter media. Waste-derived filter media (compost and oversize) were compared to a mineral control (granite chips). The filters were fed with compost leachate from a typical green waste composting facility ...

  20. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    Science.gov (United States)

    González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  1. Germination and early growth of Brassica juncea in copper mine tailings amended with technosol and compost.

    Science.gov (United States)

    Novo, Luís A B; González, Luís

    2014-01-01

    Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings. PMID:25386602

  2. Germination and Early Growth of Brassica juncea in Copper Mine Tailings Amended with Technosol and Compost

    Directory of Open Access Journals (Sweden)

    Luís A. B. Novo

    2014-01-01

    Full Text Available Mine tailings represent a serious threat to the environment and human health; thus their restoration has become a major concern. In this study, the interactions between Brassica juncea and different mine soil treatments were evaluated in order to understand their effect on germination and early growth. Three soil treatments containing 25% and 50% of technosol and 30% of compost were prepared. Germination and early growth were assessed in soil and pore water extracts from the treatments. Unlike the untreated mine soil, the three treatments allowed germination and growth, achieving levels comparable to those of seedlings from the same species developed in normal conditions. The seedlings grown in 50% of technosol and 30% of compost exhibited greater germination percentages, higher growth, and more efficient mechanisms against oxidative stress, ascribed to the organic matter and nutrients content of these treatments. Considering the unequivocal ability of B. juncea for phytoremediation, the results suggest that technosol and compost may be an auspicious solution to allow the germination and early growth of this species in mine tailings.

  3. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process. PMID:24527651

  4. Study of thermal conductivity in organic solid wastes before composting

    OpenAIRE

    Huet, Joachim; Druilhe, Celine; Debenest, Gérald

    2012-01-01

    In France, like in all developed countries, the amount of solid wastes generated per year has increased continuously since the 1960’s. To hold back this trend, waste policies have been set up, as illustrated by current EU waste policy and its five main priorities: prevention, reuse, recycling, recovery and disposal. Composting can be defined as the process whereby aerobic micro-organisms convert organic substrates into compost: a hygienic, biostable product that can be beneficially appl...

  5. Environmental Aspects Of Home Composting Of Organic Household Waste

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund;

    2011-01-01

    Six composting units were monitored during a two-year long experimental campaign. Data regarding chemical compositions of waste inputs and outputs, gaseous emissions and leachate productions were collected, organized in mass balances and assessed by means of LCA. The management of the home...... composting unit was very relevant for the environmental performance of home composting, as the turning frequency influence the emissions of CH4 which is the main responsible for potential impacts on global warming. Results showed that overall home composting has low environmental impacts (between -2 and 16 m...

  6. Vermi composting--organic waste management and disposal.

    Science.gov (United States)

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public. PMID:23741869

  7. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity.

    Science.gov (United States)

    Goyal, Sneh; Dhull, S K; Kapoor, K K

    2005-09-01

    Changes in organic C, total N, C:N ratio, activities of cellulase, xylanase and protease, and microbial population were determined during composting of different organic wastes such as mixture of sugarcane trash and cattle dung, press mud, poultry waste and water hyacinth biomass. There were losses of N in poultry waste and water hyacinth with the effect an initial increase in C:N ratio was observed which decreased later on due to decomposition. The activities of cellulase, xylanase and protease were maximum between 30 and 60 days of composting in various wastes. Similar trend was observed with respect to mesophilic bacterial and fungal population. Various quality parameters like C:N ratio, water soluble C (WSC), CO(2) evolution and level of humic substances were compared after 90 day composting. There was statistically significant correlation between C:N ratio and CO(2) evolution, WSC and humic substances. Significant correlation between CO(2) evolved and level of humic substances was also observed. The study shows that no single parameter can be taken as an index of compost maturity. However, C:N ratio and CO(2) evolved from finished compost can be taken as the most reliable indices of compost maturity. PMID:15978991

  8. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  9. Quality of composts from municipal biodegradable waste of different origins

    OpenAIRE

    Zdanevitch, Isabelle; Bour, Olivier

    2011-01-01

    Mechanical biological treatment of municipal solid waste is increasing rapidly inaFrance as well as in other European countries. One of the outputs of this treatment is a compost prepared from the organic matter of the waste. This organic matter can be either collected selectively from the customers as biowaste, or separated from the total MSW in the plant. Unlike in Germany or Austria, where only the compost from selective collection of biowaste is allowed to serve as an amendment, in France...

  10. Composting of Waste from Poultry Breeding – Biological Analysis

    OpenAIRE

    Marcinkowski, T. A.

    2010-01-01

    The objective of this study was primarily to determine the course of biological composition changes of wastes during composting. Here presented are the results of the bacteriological, mycological and parasitological composition analyses of composts consisting of: goose and broiler excrements from ecological farms, remainders of goose intestines from slaughterhouses, goose feather waste collected on the sieves of the farm wastewater treatment plants, as well as sewage sludge from slaughterhous...

  11. Cost effective waste management through composting in Africa.

    Science.gov (United States)

    Couth, R; Trois, C

    2012-12-01

    Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. PMID:22857939

  12. Food Waste Composting Study from Makanan Ringan Mas

    Science.gov (United States)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  13. Biowaste and vegetable waste compost application to agriculture

    OpenAIRE

    Kokkora, Maria I.

    2008-01-01

    The landfilling of biodegradable waste is proven to contribute to environmental degradation. Compost use in agriculture is increasing as both an alternative to landfilling for the management of biodegradable waste, as well as means of increasing or preserving soil organic matter. This research aimed to contribute to the identification of a system for managing the utilization of vegetable waste (agricultural plant-tissue waste) and biowaste (source-separated biodegradable municipal solid waste...

  14. Composting sewage sludge with green waste from tree pruning

    OpenAIRE

    Sarah Mello Leite Moretti; Edna Ivani Bertoncini; Cassio Hamilton Abreu-Junior

    2015-01-01

    Sewage sludge (SS) has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and ...

  15. Greenhouse gas emissions from home composting of organic household waste

    International Nuclear Information System (INIS)

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week-1 and the temperature inside the composting units was in all cases only a few degrees (2-10 oC) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4-4.2 kg CH4 Mg-1 input wet waste (ww) and 0.30-0.55 kg N2O Mg-1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100-239 kg CO2-eq. Mg-1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8-12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg-1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg-1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  16. Cost effective waste management through composting in Africa

    International Nuclear Information System (INIS)

    Highlights: ► The financial/social/institutional sustainability of waste management in Africa is analysed. ► This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. ► This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

  17. Cost effective waste management through composting in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Couth, R. [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

  18. Effectiveness of three bulking agents for food waste composting

    International Nuclear Information System (INIS)

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment

  19. Palm Kernel waste management through composting and crop production

    OpenAIRE

    Kolade, O. O.; Coker A O, SMKC; G.O. Adeoye

    2006-01-01

    Palm kernel wastes produced from small and medium-scale industries pose a serious environmental problem in Nigeria. A portion of these wastes is used as feed supple-ments for livestock but most are disposed off by burningin the industry for heating purposes. This practice is anenvironmental concern and the byproduct ash is also aproblem which needs to be addressed. Alternative economic disposal methods are necessary and one potential method is to convert the wastes into compost and put them b...

  20. REDUCING THE WASTE STREAM: BRINGING ENVIRONMENTAL, ECONOMICAL, AND EDUCATIONAL COMPOSTING TO A LIBERAL ARTS COLLEGE

    Science.gov (United States)

    The Northfield, Minnesota area contains three institutions that produce a large amount of compostable food waste. St. Olaf College uses a large-scale on-site composting machine that effectively transforms the food waste to compost, but the system requires an immense start-up c...

  1. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  2. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Li, Guoxue, E-mail: yangfan19870117@126.com [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Shi, Hong; Wang, Yiming [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China)

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  3. Composting of Disposal Organic Wastes: Resource Recovery for Agricultural Sustainability

    Institute of Scientific and Technical Information of China (English)

    Mohammad H. Golabi; Peggy Denney; Clancy Iyekar

    2006-01-01

    One of the major problems of agricultural soils in the tropical regions of the Pacific is the low organic matter content. Because of the hot and humid environment, the soil organic matter (SOM) is minimal due to rapid decomposition.Composted organic material is being applied on agricultural fields as an amendment to provide nutrients and enhance the organic matter content for improving the physical and chemical properties of the cultivated soils. In addition land application of composted material as a fertilizer source effectively disposes of wastes that otherwise are buried in landfills. In our soil program at the University of Guam, we are evaluating the use of organic material as an alternative to synthetic fertilizers. Its goal is to develop management strategies and use available resources for improving crop production while conserving resources and preserving environmental quality. Our case study project is designed to improve soil fertility status by using composted organic wastes and assessing how the nitrogen and other essential nutrients contribute to long-term soil fertility and crop productivity without application of synthetic fertilizers. In our pilot project, compost is produced from wood chips,grinded typhoon debris mixed with animal manure, fish feed, shredded paper and other organic wastes. Mature compost is then applied on the field at the rates of 0, 5, 10 and 20 t/ha as a soil amendment on the eroded cobbly soils of southern Guam.Corn is planted and monitored for growth performance and yield. The effect of land application of composted material on the SOM content and overall soil quality indices are being evaluated in this pilot study.

  4. A FEASIBILITY STUDY OF PLANT FOR COMPOSTING ORGANIC WASTE IN THE CITY OF KRAGUJEVAC

    Directory of Open Access Journals (Sweden)

    Nebojša Jovičić

    2009-09-01

    Full Text Available Growing of waste quantity, its harmful influence on natural environments and world experiences has had so far impose the necessity for the analyses of techno-economic possibilities of the processes for treating the organic fraction of municipal solid waste stream, in our region. In this paper, problematic of treatment solid waste and composting process, which represents one of the most acceptable options for the processing of solid waste, are given. Composting involves the aerobic biological decomposition of organic materials to produce a stable humus-like product. Base of composting process, review of composting feedstock, use of compost, benefits of composting process and concrete proposal for composting process realization, with techno-economic analysis for the construction of composting plant on territory community Kragujevac, are given in this paper, too.

  5. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. PMID:25481697

  6. Hydrophysical, chemical and microbial properties of imported green waste composts

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI

    2014-05-01

    Full Text Available El-Nagerabi SAF, Elshafie AE, Alburashdi H. 2014. Hydrophysical, chemical and microbial properties of imported green waste composts. Nusantara Bioscience 6: 13-18.To study the hydrophysical, chemical and microbial properties of the imported green waste composts (GWCs and their suitability as an alternative to agrochemicals, four types of GWCs (Florabella, Mikskaar, Potgrond, and Shamrock were selected. All composts showed normal physical properties, except weed seeds in Shamrock. The germination indexes comparable to the standard (90% were 100% for Mikskaar followed by Florabella (97%, Potgrond (95%, and Shamrock (92%. Variations in physico-chemical properties were shown as acidic pH 5.1-6.5 (standard 5-8, electrical conductivity (EC 0.8-1.8 mScm-1 (standard 0.0-4.0 mScm-1, moisture content (MC 54-70.5% (standard 35-60% and water holding capacity (WHC% 400-800%. The chemical properties were expressed as ammonia concentrations 2871-6565 mg kg-1 (standard <500 mg kg-1, organic matter 53.3-66.2% (standard 35%. The concentrations of heavy metals (Zn, Ni, Pb, Hg, As, Cd, and Cr were lower than the recommended levels. The bacterial colony forming unit per gram compost ranged between 330-2870 cfu/g, the most probable number (MPN for coliform bacteria was 23-460 cfu/g, whereas the fungal cfu were 30-1800 cfu/g. Aspergillus niger was the predominant fungus recovered from all compost samples (100%, followed by A. fumigatus (75%, whereas A. sparsus, A. versicolor and yeasts (50%, and the remaining species of the genus Acremonium sp., A. flavus, A. restrictus, Cladosporium spp., and Penicillium spp. recovered from 25% of the samples. Generally, these composts revealed normal hydrophysical properties with obvious variation in moisture contents and elevated chemicals and microbial contamination. Therefore, there is an urgent need for quality control measurements and restrict abide to legislations and quarantine regulations.

  7. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. PMID:21704517

  8. Bioremediation of municipal solid waste by windrow composting.

    Science.gov (United States)

    Manjula, G; Ravikannan, S P; Meenambal, T

    2013-10-01

    Due to rapid urbanization and economic development the urban cities are facing the problem of solid waste management. It is one among the major challenges faced by governing bodies. Bioremediation of municipal solid waste can be effectively done by windrow composting. In this study, a consortium of effective microorganisms was used for the windrow composting process. About 500 kg of shredded waste was placed in two windrows and 1 litre effective microorganisms were sprayed on one of the windrows. The variation in physical and chemical parameters was monitored throughout the process. The results indicate that usage of effective microorganisms not only shortens the stabilization time but also improves product quality. The final product was more stable and homogenous and can be effectively used as soil conditioner. PMID:25906592

  9. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  10. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    International Nuclear Information System (INIS)

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL

  11. Microbial composting of fruit tree wastes through controlled submerged fermentation

    Directory of Open Access Journals (Sweden)

    Marian Petre

    2014-11-01

    Full Text Available The ecological valorising of organic compounds represented by many derived wastes from fruit processing through the controlled microbial composting was established as the main aim of research experiments presented in this paper. There were carried out laboratory works to test the optimal needs of bacterial and fungal pure cultures to grow inside different marc made of apple, cherry and plum wastes (chemical composition, temperature, pH, oxygen/carbon dioxide concentration. In this respect, there were used pure bacterial cultures of Bacillus genus as well as the fungal ones belonging to species of Pleurotus for microbial transformation of different fruit wastes. The biotechnology of microbial composting was applied by using a laboratory-scale bioreactor of 15 L working volume. The submerged fermentations of different fruit wastes were set up for the following parameters: constant temperature, 23°C; agitation speed, 80-100 rev. min–1; pH level, 5.7-6.0 units; dissolved oxygen tension within the range of 30-70%. After a period of 140-230 h, the fermented composts, containing the microbial biomass developed through biochemical transforming of marc into natural fertilisers, were produced.

  12. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  13. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. PMID:25203237

  14. Changes in microbial communities in green waste and sewage sludge composts following maturity

    International Nuclear Information System (INIS)

    Composting is an interesting way to valorize various bio wastes and is becoming an increasingly used soil amendment. compost is a product obtained after a humification process. However, compost utilization as amendment needs to know precisely its stability and maturity. since composting is mainly a microbial process, knowledge of the various microbial groups and their role in the process of bio-oxidation is essential. (Author)

  15. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens. PMID:16971105

  16. Composting as digestate post-treatment: composting behaviour and gaseous emissions of three types of digestate compared to non-digested waste

    OpenAIRE

    Trémier, A.; Buffet, J; Daumoin, M.; Corrand, V.

    2013-01-01

    International audience In the actual context of French regulation, anaerobic digestion products are still considered as waste and cannot be valorised as product unless being composted. Nevertheless digestates specificities concerning composting treatment have to be thoroughly studied. Thus the present work compared the composting behaviour of digestates with their non-digested waste. Three origins were considered: agricultural waste, source sorted organic fraction of municipal solid waste ...

  17. Waste composting and proving fish for production the organic fertilizers

    Directory of Open Access Journals (Sweden)

    Fernanda San Martins Sanes

    2015-06-01

    Full Text Available The volumes of waste generated in the fishing activity are increasing due to the increase in demand for these products. This implies the need for fast processing and cycling of these materials. Thus, the aim of this study was to evaluate the use of waste generated in the fishing activity as a source of organic fertilizers in agricultural production systems familiar ecological basis. The experiment was conducted at the Experimental Station Cascade / Embrapa Temperate Climate was assessed throughout the composting process and the fermentation of fish waste, identifying the main points that enable the use of these fertilizers in farming systems ecological base. The composting process of rice husk revealed be incomplete during the experiment. The compound prepared with fish waste and exhausted bark of acacia presents itself as a good source of nutrients for crops, which may be suitable as organic fertilizer for production of ecologically-based systems. For liquid organic fertilizer, the conditions under which the experiment was conducted, it is concluded that the compound resulting from aerobic or anaerobic fermentation of fish waste, present themselves as a viable source of nutrients for productive systems of ecological base. However, further studies need to be conducted to better understanding and qualification of both processes.

  18. Recycling of organic wastes through composting for land applications: a Nigerian experience.

    Science.gov (United States)

    Adekunle, Iheoma M; Adekunle, Adebola A; Akintokun, Aderonke K; Akintokun, Pius O; Arowolo, Toyin A

    2011-06-01

    In-vessel composting, a contribution to sustainable solid waste management, was conducted on source-separated waste materials generated in Abeokuta city, south-west Nigeria. Feedstock (household, agricultural and municipal waste) and the resultant composts were chemically characterized using standard procedures. Identification and changes in the microbial population during composting, the effects of composting on waste volume reduction (WVR) and elemental composition of composts were evaluated. Product performance on plant growth and metal uptake were then assessed using African spinach (Amaranthus hybridus) in a screen house for 8 weeks. Metals were determined in acid digest using atomic absorption spectrometry. Compost yields and WVR ranged from 35.28 to 48.68% and 51.66 to 64.72%, respectively. Compost heavy metal (Cu, Cr, Zn, Ni, Cd and Pb) concentrations (mg kg( -1)), ranging from 0.67-0.82; 0.13-7.5; 0.001-0.22; 1.67-18.33; 6.50-17.67; and 0.83-6.00 for Cu, Pb, Cd, Ni, Cr and Zn, respectively, were within limits for class A+ composts. The effect of composting varied with element type and significantly (p effect of products on plant metal uptake in amended soils. The study is a contribution to the data bank of composting as a low technology waste management option in the developing countries. PMID:21159738

  19. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  20. Variation in microbial population during composting of agro-industrial waste.

    Science.gov (United States)

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation. PMID:22699450

  1. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    OpenAIRE

    Ogefere, H. O.; Ogbimi, A. O.; Omoregie, R

    2010-01-01

    Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal) counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of compos...

  2. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    Science.gov (United States)

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  3. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    Science.gov (United States)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  4. Behaviour of Main Microbiological Parameters And of Enteric Microorganisms During the Composting of Municipal Solid Wastes and Sewage Sludge in A Semi-Industrial Composting Plant

    OpenAIRE

    O. Fourti; Jedidi, N.; Hassen, A.

    2008-01-01

    This study was focused on the microbiological aspects of composting and on the behaviour of main prevalent microbial communities (non-pathogenic and selected pathogenic bacteria) during the composting process of municipal solid wastes and sewage sludge in a semi-industrial composting plant. Results showed that the dehydrogenase activity and Biomass C / Biomass N ratio showed a noticeable increase in the two windrows W1 (100% of municipal solid wastes) and W2 (60% of municipal solid wastes and...

  5. Evaluation of nitrogen fertilizing value of composted household solid waste under greenhouse conditions

    OpenAIRE

    Elherradi, Elhassania; Soudi, Brahim; CHIANG, Claude; Elkacemi, Kacem

    2005-01-01

    Accumulation of municipal solid wastes, such as household solid waste, can be rated as a harmful, if not critical, pollution problem. However, if these wastes can be composted and the end product used as soil organic amendment or fertilizer, this may represent one of the alternatives for achieving the goal of ensuring integrated and sustainable waste management. The objective of the present work is to evaluate the nitrogen fertilizing value of household solid waste compost in two soils of Mor...

  6. Household, hotel and market waste audits for composting in Vietnam and Laos.

    Science.gov (United States)

    Byer, Philip H; Hoang, Chi Phuong; Nguyen, Thi Thuc Thuy; Chopra, Sangeeta; Maclaren, Virginia; Haight, Murray

    2006-10-01

    In Da Nang and Ha Long, Vietnam and in Vientiane, Laos, there was interest by local authorities in separating and composting waste in order to reduce environmental and health problems at the local landfills and to produce a soil conditioner for local agricultural use. To assist in the planning of composting projects, three studies were carried out to estimate waste quantities and composition. 1. A 9-day audit of waste from 45 vendors in a market in Vientiane, the capital of Laos. The total quantity of waste and the quantity in each of nine categories were estimated for each of six different types of vendors. 2. A 7-day audit of waste disposed by three hotels in the tourist area of Ha Long, Vietnam. Waste quantities were estimated in total, on a per guest basis, and in three main categories: compostables, recyclables and miscellaneous. 3. A 7-day audit of waste collected from 74 households in Da Nang, the fourth largest city in Vietnam. Waste from each household was separated into compostable and non-compostable waste. Over 60% of each waste source comprised compostable waste and this was considered significant enough to warrant further planning of composting operations. PMID:17121118

  7. Evaluation of an Organic Waste Composting Device to Household Treatment

    Directory of Open Access Journals (Sweden)

    C. Alejandro Falcó

    2015-09-01

    Full Text Available The performance of a plug-flow automated aerobic digester for the composting of the biodegradable organic waste (BOW from a typical family at its generation rhythm was evaluated. During 13 month assessment, 179.7 kg of BOW were treated and 106.7 kg of compost were obtained with a C:N ratio of 12 and an average concentration of N of about 2.72%. Additional tests enabled to assess the generation of stable and good quality compost according to the considered standards, suitable for using as organic fertilizer and other uses, such as biotreatments. The design, location and operational characteristics of the device have determined reduced leachate emissions, the absence of unpleasant odour generation and incidence of insects or other vectors, implying the viability of their use without affecting the user´s quality of life. It could be an efficient alternative treatment for household BOW, from a technical, economic, energy, cultural and environmental point of view, easy to implement for users lacking in special training. 

  8. Turnover and loss of nitrogenous compounds during composting of food wastes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Few people have so far explored into the research of the dynamics of various nitrogenous compounds (including water-soluble nitrogen) in composting of food wastes.This study aimed to investigate the solid-phase nitrogen,water-soluble nitrogen,nitrogen loss together with ammonia volatilization in the process of food wastes composting.A laboratory scale static aerobic reactor in the experiment was employed in the composting process of a synthetic food waste,in which sawdust was used as the litter amendment.In the experiment,oxygen was supplied by continuous forced ventilation for 15 days.The results have shown that the concentrations of total nitrogen and organic nitrogen decrease significantly in the composting process,whereas NH4+-N concentration increases together with little fluctuation in NO3--N.After composting,the total content of the water-soluble nitrogen compounds in the compost greatly increased,the total nitrogen loss amounted to 50% of the initial nitrogen,mainly attributed to ammonia volatilization.56.7% of the total ammonia volatilization occurred in the middle and late composting of the thermophilic stage.This suggested that the control at the middle and late composting of thermophilic stage is the key to nitrogen loss in the food waste compost.

  9. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    International Nuclear Information System (INIS)

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations

  10. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    Energy Technology Data Exchange (ETDEWEB)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    2015-08-15

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.

  11. Can we build better compost? Use of waste drywall to enhance plant growth on reclamation sites.

    Science.gov (United States)

    Naeth, M Anne; Wilkinson, Sarah R

    2013-11-15

    Compost is a readily available source of organic matter and nutrients and is produced large scale in many jurisdictions. Novel advancements in composting include addition of construction waste, such as drywall, to address its disposal while potentially improving compost quality for use in land reclamation. Varying compositions (15-30% by weight) of coarse and ground waste drywall were added to manure and biosolids during composting. Six composts were applied at four rates (0, 50, 100, 200 Mg ha(-1)) to three reclamation soils (agricultural, urban clean fill, oil sands tailings). Response to composts was assessed in the greenhouse with three plant species (Hordeum vulgare L. (barley), Agropyron trachycaulum (Link) Malte (slender wheat grass) and Festuca saximontana Rydb. (rocky mountain fescue). Drywall added to biosolids or manure during composting had no detrimental effects on vegetation; any negative effects of compost occurred with and without drywall. In agricultural soil and clean fill, biosolids composts with 15% coarse and 18% ground drywall improved native grass response, particularly biomass, relative to biosolids compost without drywall. Drywall manure composts reduced native grass response relative to manure compost without drywall. Only low quality tailings sand was improved by 30% coarse drywall. Compost rate significantly affected above and below ground biomass in agricultural soil and reduced performance of native species at highest rates, suggesting a threshold beyond which conditions will not be suitable for reclamation. Grinding drywall did not significantly improve plant performance and use of coarse drywall would eliminate the need for specialized equipment and resources. This initial research demonstrates that drywall composts are appropriate soil amendments for establishment of native and non native plant species on reclamation sites with consideration of substrate properties and plant species tolerances to dictate which additional feed

  12. FERTILISER VALUE AND TRACE ELEMENT CONTENT OF COMPOSTS PRODUCED FROM DIFFERENT WASTES

    Directory of Open Access Journals (Sweden)

    Edward Meller

    2015-09-01

    Full Text Available Composting process provides a valuable material improving physical and chemical properties of soil. The quality of the obtained compost depends to a great extent on the kind of material subjected to stabilisation. Composting biodegradable products may result in the end product exceeding heavy metal limits that cannot be used in agriculture. The studies included composts produced in the compost plant in Kołobrzeg, the Municipal Waste Recovery and Storage Plant in Leśno Górne and the Waste Managemant Plant in Wardyń Górny. Composts were made from municipal solid waste, sewage sludge with straw and sawmill waste, and from urban green waste. The following determinations were determined: morphological composition, total content of macroelements and microelements and the level of these elements soluble in HCl at the concentration of 0.5 mol∙dm-3. The examined composts contained the amounts of total Pb, Ni and Cd allowing for their use in agriculture and the compost from sewage sludge, straw and sawmill waste, turned out to have the best utilisation properties.

  13. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes.

    Science.gov (United States)

    Raj, Dev; Antil, R S

    2011-02-01

    The objective of this study was to evaluate changes in physical, chemical and biological parameters to assess the maturity and stability of composts prepared from mixture of different farm and agro-industrial wastes over a period of 150 days. All the composts appeared granular, dark grey in color without foul odor and attained an ambient temperature at 120 days of composting indicating the stable nature of composts. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss >42%, C:N ratio humic acid (HA):fulvic acid (FA) ratio >1.9, humification index (HI) >30%, cation exchange capacity (CEC):total organic carbon (TOC) ratio >1.7 and germination index (GI) >70%. Compost enriched with sewage sludge, pressmud and poultry waste matured earlier compared to composts either enriched with distillery effluent or un-enriched. PMID:21075622

  14. Data summary of municipal solid waste management alternatives. Volume 9, Appendix G: Composting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting`s contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  15. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  16. Succession of Actinomycetes During Composting Proccess of Dairy-Farm Waste Investigated by Culture-Dependent and Independent Approaches

    OpenAIRE

    Mukhlissul Faatih; Jaka Widada; Ngadiman N

    2015-01-01

    Mesophilic, thermophilic, and maturation phases were recognized in composting proccess. Temperaturechanges influence the microbial communities in compost within composting proccess. Actinomycetes account for alarger part of compost microbial population. The aim of this research was to study succession of actinomycetescommunity during composting of dairy-farm waste investigated by culture-dependent and independentapproaches.In culture-independent method, the succession of actinomycetes communi...

  17. Using compost from urban solid waste to prevent erosion in road embankments

    OpenAIRE

    Osorio, Francisco; de O??a, Juan

    2006-01-01

    This paper describes how compost, a by-product generated by solid waste treatment plants, can be usefully applied to road embankments to prevent erosion. Our study analyzed this process in terms of the following variables: (1) location and orientation; (2) embankment slope; (3) soil and compost characteristics; (4) compost dosage; (5) vegetation species; (6) plot dimensions; and (7) planting method. The results ob- tained focus on the vegetation survival rate, plant growth and germination; co...

  18. QUALITY INTENSIFICATION OF COMPOST PREPARED FROM AGRO-INDUSTRIAL WASTES BY PHOSPHATE SOLUBILIZING FUNGI

    OpenAIRE

    Shrikumar Vijaykumar Mahamuni*; Kavita Kumar Kulkarni; Megha Nivrutti Mulik; Vaishali Shivaji Jadhav; Kajal Pradip Shukla; Kalpana Tukaram Nanaware; Prajakta Baban Nanaware; Savita Bhagwan Deokate; Monali Hambirrao Phadtare; Rajendra Jagannath Marathe

    2013-01-01

    Compost, a soil amendment or a growth medium to plants is prepared by combining organic wastes in proper quotients. Efficient decomposing culture accelerates composting process. Present investigation was carried out to assess the composting power of consortium of five phosphate solubilizing fungi isolated from sugarcane and sugar beet rhizosphere including Aspergillus niger (NFCCI 1991), Aspergillus awamori (NFCCI 1992), Penicillium oxalicum (NFCCI 1997), Penicillium rubrum (NFCCI 1998) and T...

  19. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    OpenAIRE

    de Souza, Priscila F; Danielle C. F. S. Grazziotti; Paulo H. Grazziotti; Luiz A Fernandes; Enilson de B. Silva; Andrezza M. M. Gandini

    2015-01-01

    ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of ...

  20. Biohazards and ecotoxicological considerations of landspreading of spent compost wastes.

    Science.gov (United States)

    Rao, J R; Nelson, D; Lafferty, N; Moore, J E; Millar, B C; Xu, J; Watabe, M

    2003-01-01

    Spent mushroom compost (SMC) is a major waste of the mushroom industry with low economic value. SMC arises after mushroom production in phase II compost (pIIC), predominantly comprising straw and chicken litter as principal raw ingredients. The majority of SMC waste is disposed off by application to agricultural land. It is an attractive proposition for utilising SMC as soil inorganic fertiliser supplementation. However, there is limited data available as to the consequences of this method of disposal either in terms of microbiological loading of food-borne pathogens and those of concern to mushroom industry itself. The resulting imbalance of the natural flora of the agricultural land has not been properly audited. This study aims to initially examine SMC for prevalence of faecal bacterial pathogens including Campylobacter spp., Salmonella spp. and Listeria monocytogenes that may arise from chicken litter. At another level, it aims to ascertain the pathogenic bacteria (Pseudomonas syringae, pv phaseolicola or tolasii) and fungal populations (Trichoderma, Verticillium species) originating mainly from the straw component of the SMC, which are of concern to the mushroom industry. Lastly, the study would also qualitatively identify the diversity of bacterial populations within SMC. This was largely accomplished through employment of rDNA, PCR and direct sequencing strategies on the culturable microflora. However, for specific mushroom pathogens, nucleic acids (DNA or RNA) were directly extracted from composts before subjecting to sequence analysis. In accordance with the current legislation (ABP 02/02, Animal By Products wastes disposal EC No. 1774/2002), it is imperative to regulate the farm wastes carrying residues from animal sources including SMC before they are regarded safe for land spreading operations. The ecological microbe-microbe and plant-microbe interactions that potentially occur between the native bacterial soil flora and those added annually

  1. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O2 concentration in the biomass free air space (FAS) was kept optimal (O2 > 140 ml l-1, v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R2 = 0.991; R2CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  2. Composting of municipal solid wastes in Jujuy (Argentina); Compostaje de residuos solidos urbanos en la provincia de Jujuy, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Santos Romero, E. E.; Boccardo, R.; Kosir, A.; Altamirano, F.; Figliolo, C.; Arias, P.; Aguado, R.; Zankar, G. [Universidad de Jujuy. Argentina (Argentina); Gonzalez Carcedo, S. [Universidad de Burgos (Spain)

    1999-11-01

    The results from a first experience of composting of urban solid waste in Jujuy (Argentine) were shown. The organic part of a solid waste collected from the city San Salvador, was composted during 3 months experience in windrow piles and physico-chemical properties were monitored. The time of composting was diminished by the application of an aqueous aminoacid solution. (Author) 10 refs.

  3. The effects of composted insect rearing waste on radish, squash and green bean

    Science.gov (United States)

    A study was initiated to determine the potential for composted solid and semi-solid insect rearing waste as a growth substrate for plants. Semi-solid larval diet was washed through the vermiculite substrate used for larval transformation to pupa. The resulting material was composted for six weeks. R...

  4. Mass balances and life cycle inventory of home composting of organic waste

    DEFF Research Database (Denmark)

    Andersen, Jacob Kragh; Boldrin, Alessio; Christensen, Thomas Højlund;

    2011-01-01

    A comprehensive experimental setup with six single-family home composting units was monitored during 1year. The composting units were fed with 2.6–3.5kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full li...

  5. Characterization of MSW and related waste-derived compost in Zanzibar municipality.

    Science.gov (United States)

    Vuai, Said Ali Hamad

    2010-02-01

    The spread of municipal solid waste (MSW) in Zanzibar municipality has been associated with environmental pollution, unpleasant city conditions, contamination of water sources and coastal areas together with harbouring of malaria vectors. The contamination has a close relationship with eruption of diarrhoea, cholera and typhoid which claim the lives of the residents. Most of the wastes are of domestic and market origin and have the potential for compost production. This study examined the possibility of composting MSW from Zanzibar municipality as an alternative way of SW management and assessed the nutrient contents of the compost for application in agricultural production. Two major classes of SW were selected for the study: municipal solid waste and rice milling by-products. The samples were composted aerobically and anaerobically. The results showed that aerobic composting reduced about 60% of the waste volume. This volume reduction suggests that composting can be a promising SW management technique by reducing the large demand of space for landfilling. Municipal solid waste composted under anaerobic conditions produced compost with relatively higher concentrations of dissolved species than that produced under aerobic conditions. The trace metal contents were higher in MSW than in rice milling by-products. It was found that the unmanaged compost collected from the dumping site had low nutrient contents and was enriched with trace metals. Generally, physico-chemical characteristics, nutrients and trace metal levels suggest that Zanzibar municipal solid waste can produce high-quality compost for application to a wide range of soil types to improve their fertility, under proper management. PMID:19748949

  6. Mass balances and life cycle inventory of home composting of organic waste

    OpenAIRE

    Andersen, Jacob Kragh; Boldrin, Alessio; Christensen, Thomas Højlund; Scheutz, Charlotte

    2011-01-01

    A comprehensive experimental setup with six single-family home composting units was monitored during 1year. The composting units were fed with 2.6–3.5kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air a...

  7. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  8. Organized and optimized composting of agro-waste some important considerations and approaches.

    Science.gov (United States)

    Tripathi, Shilpa

    2013-01-01

    In the modern industrialized society, generation of solid waste, such as agricultural waste, yard waste, waste paper and food waste is increasing at an alarming rate. In countries, like India, a common method of their disposal adopted by farmers, agro- industries, municipal workers and contracting agencies is to burn such waste on site or in incinerators leading to emission of green house gases and release of pollutants directly into atmosphere. In developed countries, these solid wastes are disposed of through landfilling, which are clogging under ever-increasing load. Emission of gases from land- fills poses yet another environmental challenge. Today, composting offers a promising solution to disposal of agro-waste with minimum harmful impact on environment. Need of the hour is to carry out composting in an organized and controlled manner to derive maximum benefits with minimum undesirable effects and researchers are attempting to compost agro-wastes with these objectives in mind. PMID:25508346

  9. Municipal solid waste compost utilization in greenhouse-cultivated tomato

    OpenAIRE

    Madrid Díaz, Fernando; Trasierra, Manuel J.; López Núñez, Rafael; Murillo Carpio, José Manuel; Cabrera, Francisco

    1998-01-01

    8 páginas, 2 figuras, 4 tablas, 15 referencias.-- International Symposium on Composting and use of Composted Materials for Horticulture, celebrado del 5-11 de abril 1997, en Ayr, Scotland, United Kingdom.

  10. Greenhouse gas and ammonia emissions from composting of animal manure and other organic waste products

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune

    on human health and ecosystem health. Thus, alternative technologies for recycling manure and utilising it as a nutrient source for crop production, while minimising the environmental costs, are important for the sustainability of the livestock and poultry sectors. Composting of animal manure and other......, but information on its effect on GHG emissions, especially nitrous oxide (N2O), is still limited. This thesis investigated the main processes and factors affecting the physicochemical composition of the compost and emissions of GHG and NH3 during composting of animal manure and other organic waste products......, within the range of flow rates and composting mixtures tested. This indicates that temperature is an important factor influencing GHG emissions during composting. Composting of nitrogen-rich manure materials with carbon-rich bulking agents proved to be an effective means of conserving nitrogen in manures...

  11. Waste compost effect on macronutrients in haplorthox soil

    Directory of Open Access Journals (Sweden)

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Composting is a controlled aerobic process to treat and stabilize organic wastes, transforming them into organic fertilizers. It is environmentally friendly (by treating polluting wastes and recycling nutrients and materials, sanitary (by breaking the cycle of diseases and eliminating vectors and socially beneficial (by generating jobs and improving crop yields. The use of compost from urban waste (the product obtained by composting the organic part of solid household wastes can improve soil fertility without harming the environment. This study aimed to evaluate the effect of levels of organic fertilizer (waste compost - WC on soil macronutrient contents. The experiment was performed at the Animal Nutrition and Pasture Center – Instituto de Zootecnia – Nova Odessa, SP, between January and June 2013, in a Haplorthox soil (pHCaCl2= 4.9, cultivated with piatagrass (Brachiaria brizantha, Stapf, without liming. The treatments involved five rates of WC application: 0, 2.0, 4.0, 6.0, 8.0 and 10.0 Mg ha-1, mixed with soil before sowing the grass. The experimental design was randomized blocks, with five replications, in pottery vessels (3.34 dm3. Soil samples were collected prior to the experiment (original soil and after cultivation of the grass (60 days after application. The samples were air dried and passed through sieves with 2 mm mesh and analyzed chemically. The macronutrients (P, S, in mg kg-1 and K, Ca and Mg mmolc kg-1 were quantified. The method to measure P, Ca, Mg and K was atomic emission spectrophotometry, after extraction with ion exchange resin, and the S concentration was measured by turbidimetry. The data were analyzed by the mixed procedure of SAS V. 9.2. The degrees of freedom related to the five rates (quantitative treatment were decomposed into orthogonal polynomials to obtain the best equation to fit the data. In the original soil, the concentrations of the macronutrients analyzed were considered low. The application of the WC

  12. Influence of lime on struvite formation and nitrogen conservation during food waste composting.

    Science.gov (United States)

    Wang, Xuan; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study aimed at investigating the feasibility of supplementing lime with struvite salts to reduce ammonia emission and salinity consequently to accelerate the compost maturity. Composting was performed in 20-L bench-scale reactors for 35days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis), and Mg and P salts (MgO and K2HPO4, respectively). Nitrogen loss was significantly reduced from 44.3% to 27.4% during composting through struvite formation even with the addition of lime. Lime addition significantly reduced the salinity to less than 4mS/cm with a positive effect on improving compost maturity. Thus addition of both lime and struvite salts synergistically provide advantages to buffer the pH, reduce ammonia emission and salinity, and accelerate food waste composting. PMID:27020123

  13. Study on mechanisms of biosurfactant-enhanced composting technology for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.Y.; Huang, G.H.; Chen, B.; Xi, B.D.; Maqsood, I. [Regina Univ., SK (Canada)

    2003-07-01

    Composting is increasingly being used for solid waste treatment. The efficiency of solid waste composting might be enhanced using biosurfactants produced by microbial activities. This study was conducted to characterize the effect of biosurfactant on solid waste biodegradation throughout the composting process. The method employed involves shredding solid waste, followed by a treatment in an 8-litre (L) batch reactor. Biosurfactant production was monitored daily along with characteristics and maturity degree. Surface tension and emulsification capacity were of particular concern. The measurement of indices such as humic acid carbon (CHA) and fulvic acid carbon (CFA) were used to evaluate the maturity degree. The results indicated that the highest level of biosurfactant concentration was achieved on the third day, and within two days, related emulsification capacity reached its peak. This study confirmed the presence of biosurfactants and their function during the composting process. 16 refs., 2 tabs., 4 figs.

  14. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    International Nuclear Information System (INIS)

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  15. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality

    OpenAIRE

    Soares, Micaela A. R.; Quina, Margarida M. J.; Quinta-Ferreira, Rosa M.

    2013-01-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporati...

  16. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  17. The effect of palm wastes compost as peat substitute on cultivation of Dieffenbachia amoena ornamental plant

    Directory of Open Access Journals (Sweden)

    S. H. Nourani

    2013-10-01

    Full Text Available This research was conducted in order to investigate the possibility of using palm wastes compost as substrate for cultivation of Dieffebnbachia amoena at five levels (ratio of 0, 25, 50, 75 and 100% v/v as substitute for peat and peat: perlite (4:1 treatment as control, as a randomized complete blocks design with three replications. Chemical and biological properties of palm wastes compost, physico-chemical characteristics of growth media and growth indices after 7 months were evaluated and measured. Results showed that carbon to nitrogen ratio (C/N=18 and germination test (71.25% indicated that the palm wastes compost is mature and stable. Nutrients content, pH and electrical conductivity of compost was higher than peat. The physico-chemical characteristics of substrates showed that 75% compost ratio was in the ideal range. Evaluation of the growth indices such as plant height, stem diameter, fresh and dry weight of shoots, and fresh weight of roots shows that the highest and the least growth rate was obtained from 75% and 100% compost treatments, respectively. In general, palm wastes compost is a suitable substrate for growth of Dieffenbachia and could be replaced up to 75% with imported peat in peat-perlite mediums.

  18. PERBANDINGAN TANAH TOP SOIL DENGAN KOMPOS PRODUKSI DEPO KSM LESTARI SEBAGAI MEDIA TANAM PADA TANAMAN SAWI (Brassica Juncea)

    OpenAIRE

    Antonius I

    2011-01-01

    Antonius. Faculty of Agriculture, University of Tarakan Borneo 2010. The Comparative effect of Compost Top Soil Depot with KSM Sustainable production as planting media on mustard plants (Brassica Juncea). (Guidance by Nur Indah Mansyur and Willem). Compost is an organic fertilizer That is the result of the disintegration or decay of organic materials, Such as plants, animals or other organic waste. Compost is Used as fertilizer is organic fertilizer Also Called Because it comes from orga...

  19. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste.

    Science.gov (United States)

    Xiao, Yong; Zeng, Guang-Ming; Yang, Zhao-Hui; Shi, Wen-Jun; Huang, Cui; Fan, Chang-Zheng; Xu, Zheng-Yong

    2009-10-01

    Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A. The products from the CTC runs also showed favorable stability in room temperature environment after the short-term composting at high temperature. The study suggested CTC as a novel method for rapid degradation and maturation of organic municipal solid wastes. PMID:19487122

  20. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  1. Composting of tobacco plant waste by manual turning and forced aeration system

    Directory of Open Access Journals (Sweden)

    Nonglak Saithep

    2009-05-01

    Full Text Available The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a 3-HP air pump with a flow rate of 19 litres min-1 for 15 minutes every morning and evening. The completely randomised design of turned and force-aerated piles was performed in triplicate. The composting activity of both systems during the composting period was measured by several parameters: temperature, pH, moisture content, C/N ratio, growth of microorganisms, cellulase activity, and nicotine degradation in the set-up piles. Both systems had similar temperature, pH, and moisture content conditions in the piles during the composting process. However, the forced aeration system was more advantageous for the growth of mesophilic and thermophilic microorganisms, for cellulase activity from cellulase-producing microorganisms, and for nicotine degradation, when compared to the manual turning system. In conclusion, the forced aeration system was more efficient than the manual turning system in composting and is a viable alternative method for the composting process.

  2. Application of organic waste composts when producing forest planting material

    Directory of Open Access Journals (Sweden)

    Romanov Evgeny M.

    2016-01-01

    Full Text Available Most seedlings and saplings of woody plants in the Russian Federation are produced in the open ground in forest nurseries. In order to produce high quality planting material it is necessary to support and preserve soil fertility, which can be obtained by using organic wastes and organic-based fertilizers. Our research is aimed at the assessment of the influence of non-conventional organic fertilizers on fertility of podzols and on the growth rate of seedlings and saplings of woody plants in forest nurseries. Our research shows, that the application of non-conventional organic fertilizers does not result in any accumulation of heavy metal salts in podzols, but optimizes hydro physical and agrochemical properties of the ploughed horizon. The efficiency of non-conventional organic fertilizers depends on their composition, physical and chemical characteristics of the original components, their doses applied and original fertility of soils. A combined application of non-conventional organic fertilizers and sand results in the optimization of practically all soil fertility parameters in middle clay-loam soils, while application of non-conventional organic fertilizers and clay is optimal for application on light soils. The optimal application dose of non-conventional fertilizers depends on soil texture, woody species and the fertilizer composition. An optimal application dose for Norway spruce on a light clay-loam soil is 50-80 tons/ha, and on a middle clay-loam soil is 149-182 tons/ha. It is 50 tons/ha for Scots pine growing on a sandy loam soil, and 100 tons/ha for the same species growing on a sandy soil or a light clay-loam. For Siberian larch growing on a light clay-loam soil the dose of fertilizer applied should be 150 tons/ha. It is recommended to apply composts containing over 50% (by weight of Category II wastes (substrate for the amelioration of light soils, and composts containing over 40% (by weight of Category I wastes (filler for the

  3. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    Directory of Open Access Journals (Sweden)

    Ogefere, H. O.

    2010-01-01

    Full Text Available Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of composting significantly (p<.0.05 affected microbial counts as the counts decreased from the initial value at week zero to much lower value at week 40. A total of 274 bacterial and fungal isolates were recovered from the composting waste and majority (60.58% were isolated from the open heap. Bacillus subtilis, Pseudomonas aeruginosa and Aspergillus flavus were the predominant isolates recovered (9.49% each, and were the only isolates recovered throughout the period of composting irrespective of the composting technique. Staphylococcus aureus and Salmonella typhimurium were the least isolated (1.09% each. Vermicomposting technique was recommended on health and environmental grounds.

  4. Waste composts as nitrogen fertilizers for forage leys

    OpenAIRE

    Tontti, Tiina; Nykänen, Arja; Kuisma, Miia

    2009-01-01

    Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral) or composts. The compost types were municipal biowaste (Biowaste), biowaste + sewage sludge (BioSludge) and cattle manure (Manure). Plant yields and nitrogen (N) uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the...

  5. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic composting reactors. The golden apple snail is a pesticide and cattle dung is an animal waste. Both materials are all waste of low values. The main purpose of this study was to determine the influence of nitrogen containing wastes addition to rice straw on the performance of natural aerobic composting process in terms of the following parameters: pH, temperature, organic matter, C/N ratio, electrical conductivity and GI. The impact of this study is to reuse agriculture residue by composting. Approach: The experiments was consisted of three reactors. The reactor 1 contains the rice straws and golden apple snails while the reactor 2 contains the rice straws, golden apple snails and urea. The reactor 3 contains the rice straws, cattle dung and urea. The experiments were carried out in designed natural aerobic reactors (60 L under controlled laboratory conditions over 60 days. The analysis was done every 5 days however the temperature was measured daily. Results: The experimental results showed that the initial C/N ratio was 30.7, 30.3 and 31.8 in the reactor 1, 2 and 3, respectively. After the 60-day period, the final C/N ratio was reduced to 17.9, 16.9 and 18.4 in the reactor 1, 2 and 3, respectively. The main nutrients (N: P: K from all reactors achieved the standard level for Thai compost standard. The rice straw as agricultural residue was suitable for co-composting with golden apple snails and cattle dung as the nitrogen containing wastes. Conclusion: The

  6. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  7. Composting as Final Alternative to Solid Waste from Ceasa Curitiba/PR

    Directory of Open Access Journals (Sweden)

    Cleverson V. Andreoli

    2010-06-01

    Full Text Available Solids waste (SW have been a municipal government concern. Centrais de Abastecimento (CEASA, the wholesale markets, are examples of SW potential generators. The CEASA localized in Curitiba city generates about 25 ton of SW per day corresponding to 20 ton of organic solid waste, consisting mainly of leftover or surplus of products marketed in the unit. The alternatives for this waste class are landfill, incineration, biodigesters and composting. The aim of the present work was to evaluate the composting as an alternative to disposal of waste based on the diagnosis made previously in the Program of Waste Management. It was found the composting is the cheaper solution available, ranging form U$ 6 to U$ 10 for natural method and U$ 20 to U$ 90 per ton for the accelerated method. It has suggested the compost from the composting method should be sold at CEASA with the objective to decrease the value paid by storekeeper to form a cycle: The farmer produces foods to market at CEASA and receive the compost to be applied partial or overall to substitute the chemical additives in his fields and turn to CEASA as foods and son on, encouraging the farmers to use natural nutrients and reduce their dependence on artificial inputs.

  8. Oxygen respirometry to assess stability and maturity of composted municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Iannotti, D.A.; Grebus, M.E.; Toth, B.L.; Madden, L.V.; Hoitink, A.J. [Ohio State Univ./Ohio Agricultural Research and Development Center, Wooster, OH (United States)

    1994-11-01

    The stability and maturity of compost prepared from municipal solid waste (MSW) at a full-scale composting plant was assessed through chemical, physical, and biological assays. Respiration bioassays used to determine stability (O{sub 2} and CO{sub 2} respirometry) were sensitive to process control problems at the composting plant and indicated increasing stability with time. Radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) growth bioassays revealed that immature compost samples inhibited growth. Growth of ryegrass in potting mix prepared with cured compost not amended with fertilizer was enhanced as compared to a pest control. Garden cress (Lepidium sativum L.) seed germination, used as an indicator of phytotoxicity, revealed inhibition of germination at all compost maturity levels. The phytotoxicity was though to be salt-related. Spearman rank-order correlations demonstrated that O{sub 2} respirometry, water-soluble organic C, and the water extract organic C to organic N ratio, significantly correlated with compost age and best indicated an acceptable level of stability. Oxygen respirometry also best predicted the potential for ryegrass growth, and an acceptable level of compost maturity. 31 refs., 4 figs., 5 tabs.

  9. Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Compost and Digestates from Urban Organic Wastes

    OpenAIRE

    Möller, Kurt (Prof. Dr. phil. habil.)

    2016-01-01

    Organic wastes from urban areas include organic household wastes, food processing residues and catering wastes. These so called "Urban Organic Wastes" are important potential sources for nutrient recycling back to agriculture. Main waste treatment options for these sources are composting and anaerobic digestion. Both differ in the process performance – regarding for example emissions or energy balances – and in the characteristics of the final fertilizer pro­duct. This fact sheet describes th...

  10. Transformation behavior of lead fractions during composting of lead-contaminated waste

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiao; XU Xiang-min; HUANG Dan-lian; ZENG Guang-ming

    2009-01-01

    The transformation behaviors of Pb fractions during composting of Pb-polluted waste without inoculants and with the inoculants of Phanerochaete chrysosporium were studied. Results show that the active Pb ions with high toxicity and transferability are transformed into the inactive Pb with low toxicity and transferability, confirming that Pb ions can be efficiently immobilized during composting without or with the inoculants. The soluble-exchangeable Pb in composting without inoculants reaches 49.0 mg/kg at day 60, while that with the inoculants is reduced to 0 mg/kg dry mass compost. The higher contents of organic-bound Pb (59.0 mg/kg) and residual Pb (69.2 mg/kg) with low toxicity are found after 60-day composting with inoculants, compared with those without inoculants. The above data indicate the better immobilization effect of Pb and the greater alleviation of Pb hazards in composting with the inoculants of Phanerochaete chrysosporium than without inoculants, which may be due to the more microbial biomass and the higher pH value in composting of Pb-polluted waste with inoculants.

  11. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. PMID:24055972

  12. Use of slaughterhouse waste and tannery-based organic compost for management of reniform nematode

    Directory of Open Access Journals (Sweden)

    Guilherme L. Asmus

    2014-07-01

    Full Text Available A greenhouse experiment was carried out with the objective of evaluating the effect of increasing soil amendments (1, 3, 9, 15 and 30%, v/v of organic compost produced from slaughterhouse waste and tannery residues on the reproduction of reniform nematodes and cotton development. The addition of organic composts to soil proportionately reduced the number of nematodes per gram of root and the reproduction factor. However, depending on the concentration of the compost, there was a reduction of height and dry mass of cotton shoots. We concluded that the organic compost produced with slaughterhouse and tannery waste has potential for controlling reniform nematodes, but requires dose adjustments or improvements in its composition to reduce the risk of phytotoxicity.

  13. Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies.

    Science.gov (United States)

    Siles, J A; Vargas, F; Gutiérrez, M C; Chica, A F; Martín, M A

    2016-07-01

    Although recent research has demonstrated that waste orange peel (WOP) is a potentially valuable resource that can be transformed into high value products, heat generation, biomethanisation and composting might be considered the most feasible alternatives in terms of yield. This study revealed that WOP can be successfully valorised through combustion. However, a previous drying step, which generates hazardous wastewater, is required and harmful NOx are emitted with the flue gases. In contrast, a high yield of renewable methane (280LSTPCH4/kg added COD, chemical oxygen demand) and an organic amendment can be obtained through the thermophilic biomethanisation of WOP following the removal of valuable essential oils from the peel. Co-composting of WOP combined at different proportions (17-83%) with the organic fraction of municipal solid waste (OFMSW) was also demonstrated to be suitable. Moreover, a 37% reduction in odour generation was observed in co-composting of WOP compared to single composting of OFMSW. PMID:27017127

  14. Fluorescence characteristic changes of dissolved organic matter during municipal solid waste composting

    Institute of Scientific and Technical Information of China (English)

    WEI Zi-min; XI Bei-dou; WANG Shi-ping; XU Jing-gang; ZHOU Yu-yan; LIU Hong-liang

    2005-01-01

    Dissolved organic matter(DOM) of municipal solid waste(MSW) consists of minerals, water, ash and humic substances, and is known to enhance plant growth. In this study, inoculating microbes (Z J, MS) were used in municipal solid wastes composting, and composting implemented a industrialized technology. During composting, dissolved organic matter was extracted from the compost and purified. The spectral characteristics of dissolved organic matter was determined by fluorescence emission, excitation, and synchronous spectroscopy. Fluorescence emission, excitation, and synchronous spectra characterized by different relative fluorescent intensities and peaks over time. Fluorescence spectra were similar to that of fulvic acid in sewage sludge, indicating the presence of dissolved organic matter with aromatic structures and a high degree of molecular polymerization. Compared with the controls with no microbial inoculation,the microbe-inoculated treatments exhibited the increase of aromatic polycondensation, in the following order: MS + ZJ > ZJ > MS >CK.

  15. Composting of biological waste. Processes and utilisation; Bioabfallkompostierung. Verfahren und Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for procesing and utilisation of biological waste by means of composting and spreading on agricultural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises all three reports. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die genannten drei Teilberichte. (orig./SR)

  16. Municipal household waste used as complement material for composting chicken manure and crop residues

    OpenAIRE

    Guillaume L. Amadji; Brahima Kone; Pierre J. Bognonkpe; Nagnin Soro

    2013-01-01

    There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW) was added to cotton-seed residue (CSR) and to the association of CSR with chicken manure (M) in different weight/weight (MW/added materials) ratios of 5:1 and 2:1. Aerobic composting was processed and c...

  17. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    OpenAIRE

    Marta García-Albacete; Ana M. Tarquis; M. Carmen Cartagena

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were p...

  18. Quality assessment of citrus-processing industry waste compost for organic and conventional farming

    OpenAIRE

    Ciaccia, Dr Corrado; Di Bartolomeo, Dr Emanuela; Calabretta, Dr M.L.; Intrigliolo, Dr Francesco; Tittarelli, Dr. Fabio; Canali, Dr. Stefano

    2008-01-01

    The aim of the work was to verify the potential of citrus by-products for the production of a quality compost to be used in both conventional and organic farming. Two different composts were produced utilizing Pastazzo (mixture of citrus pulp and skins). One of them, to be used in conventional farming, was prepared adding sludges obtained from citrus industry waste water treatment to pastazzo. The other one, whose final destination was organic farming, was produced without the addition of slu...

  19. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    OpenAIRE

    Dana Adamcová; Magdalena Vaverková

    2016-01-01

    In this study white mustard (Sinapis alba) plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC) to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retard...

  20. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste

    International Nuclear Information System (INIS)

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min−1. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption

  1. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste

    Energy Technology Data Exchange (ETDEWEB)

    Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-15

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.

  2. Assessment of municipal solid waste compost quality using standardized methods before preparation of plant growth media.

    Science.gov (United States)

    Silva, María Teresa Barral; Menduíña, Ana Moldes; Seijo, Yolanda Cendón; Viqueira, Francisco Díaz-Fierros

    2007-04-01

    The quality of compost and its suitability for agricultural application depend upon physical and chemical parameters such as water-holding capacity, porosity, pH, electrical conductivity, C/N ratio, available nutrients and the absence of toxic substances. In the present study a complete characterization of an industrial municipal solid waste compost (MSWC) based on standardized European methods (CEN) for soil improvers and growing media was obtained, and compared with the quality of other Spanish composted biowaste and conventional substrates such as peat and pine bark. The MSWC was obtained from the main composting plant in Galicia (Spain), which processes organic waste that has been separated at origin and collected from more than 100 000 inhabitants. The MSWC presented a lower C/N ratio (15) than peat (84) and composted pine bark (CPB) (211), but had a similar ratio to other marketed MSWC. The nutrients and heavy metals were extracted using different recommended solvents (water, CaCl2 + diethylen triamin pentaacetic acid, and aqua regia). The nutrient concentrations of composted urban waste or manure were much higher than those of peat, CPB or pine bark. On the basis of the results of the plant tolerance test, the MSWC could be employed directly as a soil improver, but would need to be diluted with other low-salt components such as peat or CPB before being used as a growing media. PMID:17439045

  3. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model. PMID:26522660

  4. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments

    Science.gov (United States)

    Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T.

    The passive and active release of bioaerosols during green waste composting, measured at source is reported for a commercial composting facility in South East (SE) England as part of a research programme focused on improving risk assessments at composting facilities. Aspergillus fumigatus and actinomycetes concentrations of 9.8-36.8×10 6 and 18.9-36.0×10 6 cfu m -3, respectively, measured during the active turning of green waste compost, were typically 3-log higher than previously reported concentrations from static compost windrows. Source depletion curves constructed for A. fumigatus during compost turning and modelled using SCREEN3 suggest that bioaerosol concentrations could reduce to background concentrations of 10 3 cfu m -3 within 100 m of this site. Authentic source term data produced from this study will help to refine the risk assessment methodologies that support improved permitting of compost facilities.

  5. Toward zero waste: Composting and recycling for sustainable venue based events

    International Nuclear Information System (INIS)

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed

  6. Toward zero waste: Composting and recycling for sustainable venue based events

    Energy Technology Data Exchange (ETDEWEB)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 370 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States); Bilec, Melissa M., E-mail: mbilec@pitt.edu [University of Pittsburgh, Civil and Environmental Engineering, 153 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15261-3949 (United States); Brown, Nicholas R., E-mail: nick.brown@asu.edu [Arizona State University, University Sustainability Practices, 1130 East University Drive, Suite 206, Tempe, AZ 85287 (United States); Landis, Amy E., E-mail: amy.landis@asu.edu [Arizona State University, School of Sustainable Engineering and the Built Environment, 375 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States)

    2015-04-15

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night

  7. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    OpenAIRE

    Neamat Jaafarzadeh Haghighi Fard; Behnam Moradi; Mokhtar Abbasi; Rahman Alivar Babadi; Hossein Bahrani; Azadeh Mirzaie; Ahmad Zare Javid; Maryam Ravanbakhsh

    2015-01-01

    Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio ...

  8. Comparative Study of Nirmalya Solid Waste Treatment by Vermicomposting and Artificial Aeration Composting

    OpenAIRE

    Pallavi S.Chakole; Prof. D.B.Jasutkar

    2014-01-01

    Temple waste normally contains floral offering, leaves and milk product i.e. “Abishek waste water”, and this solid waste management is one of the important issues in the world, because of shortage ofdumping sites and strict environmental legislation. Now days ‘Nirmalyasolid waste’ is generated in large quantity due toincreased in population are commonly treated using different types of bins by the method of composting or vermicomposting. Vermicomposting of solid waste can be done by using dif...

  9. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability.

    Science.gov (United States)

    Maňáková, Blanka; Kuta, Jan; Svobodová, Markéta; Hofman, Jakub

    2014-09-15

    Composting and vermicomposting are traditional processes for the treatment of sludge. During these processes, the humification of organic matter has a significant effect on the physicochemical form and distribution of heavy metals. In this study, industrial sludge (groundwater treatment waste) contaminated by arsenic (396 ± 1 mg kg(-1)) was used. Such sludge poses a significant challenge with respect to effective treatment. Composting, vermicomposting (with Eisenia fetida), and the combined approach of composting and vermicomposting were performed to determine the evolution of arsenic speciation, mobility and bioavailability. The composting/vermicomposting was done with sludge, horse manure, and grass in the ratios of 3:6:1. A solution of 0.1M NH4COOCH3 was used as a single extraction solvent for determination of the mobile arsenic pool and targeted arsenic species (As(III), As(V), monomethylarsenic acid - MMA(V), dimethylarsenic acid - DMA(V)). The analysis of arsenic in the extracts was carried out by means of HPLC-ICP-MS spectrometry. In addition, the earthworm species E. fetida was used for bioaccumulation tests that followed the compost and vermicompost processes. The obtained results indicate a reduction in arsenic mobility and bioavailability in all matured composts and vermicomposts. The combined process exhibited a greater effect than compost or vermicompost alone. PMID:25209831

  10. Assessment of microbiological and parasitological quality of composted wastes: health implications and hygienic measures.

    Science.gov (United States)

    Briancesco, Rossella; Coccia, Anna Maria; Chiaretti, Gianluca; Della Libera, Simonetta; Semproni, Maurizio; Bonadonna, Lucia

    2008-04-01

    Feedstock and compost samples were collected from twenty composting plants and analysed from the microbiological point of view. Faecal indicator organisms were determined in order to evaluate the efficacy of processes for the removal of pathogenic micro-organisms with similar survival characteristics and to verify their suitability as appropriate markers of microbial quality of composted products. In addition to the classical bacterial indicators, selected organisms, such as Salmonella, Giardia, Cryptosporidium, Clostridium spores and helminth ova, were investigated. Statistically significant differences in the removal of the different micro-organisms were observed with regard to both the different composting plants (P sewage sludge was shown to have a better hygienic quality in comparison with compost containing green discards and municipal solid waste as raw matter. Giardia cysts, Cryptosporidium oocysts and helminth ova were not effective indicators of hygienic quality of compost, whereas Clostridium perfringens spores, because of their high resistance to treatments, could be considered as an additional model for assessing the composting process, especially with regard to more resistant pathogen reduction. PMID:18578158

  11. Production of Potassium and Calcium Hydroxide, Compost and Humic Acid from Sago (Metroxylon sagu Waste

    Directory of Open Access Journals (Sweden)

    C. P. Auldry

    2009-01-01

    Full Text Available Problem statement: Agriculture waste such as Sago Waste (SW has a potential to cause pollution when the waste is discarded into rivers. In order to add value to SW, a study was conducted to produce potassium and calcium hydroxide, compost and Humic Acid (HA from SW. Approach: The SW was air-dried and some grinded. The grinded SW was incinerated at 600°C. Potassium and calcium hydroxide was extracted by dissolving the ash in distilled water at a ratio of 1:500 (ash: water, equilibrated for 24 h at 150 rpm using a mechanical shaker and filtered. The ungrinded SW was used for compost production. The compost was produced by mixing SW (80% + chicken feed (10% + chicken dung slurry (5% + molasses (5%. Results: The hydroxide extracted from ash of SW was used to isolate HA of composted SW. The molarity and pH of the hydroxide were 0.002M and 10 respectively. Calcium (42.88 mg kg-1 and potassium (29.51 mg kg-1 content were high in the hydroxide compared with other elements. The compost took about 60 days to mature. There was an increased in pH, ash, Cation Exchange Capacity (CEC and HA and a decreased in temperature, C/N ratio, C/P ratio and organic matter. The hydroxide was able to extract 1% of HA from the composted SW. A comparison between the yields of HA extracted from the composted SW using the hydroxide of the SW and that of the analytical grade showed no statistically difference. The chemical characteristics of HA from the composted SW were in standard range. Conclusion: Potassium and calcium hydroxide, compost and HA can be produced from sago waste. Low morality of the hydroxide is able to produce good quality of HA from composted sago waste. The HA can be reconstituted with K and Ca from potassium and calcium hydroxide to produce K-Ca-humate and this needs to be investigated as a form of organic based fertilizer.

  12. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting.

    Science.gov (United States)

    Yuan, Jing; Yang, Qingyuan; Zhang, Zhiye; Li, Guoxue; Luo, Wenhai; Zhang, Difang

    2015-11-01

    The effects of adding a bulking agent and chemically pretreating municipal kitchen waste before aerobic composting were studied using a laboratory-scale system. The system used 20-L reactors and each test lasted 28days. The objective was to decrease NH3 and H2S emissions during composting. The bulking agent, dry cornstalks, was mixed with the kitchen waste to give a mixture containing 15% (wet weight) bulking agent. A combined treatment was also conducted, in which kitchen waste mixed with the bulking agent was pretreated with ferric chloride (FeCl3). Less leachate was produced by the composted kitchen waste mixed with bulking agent than by the kitchen waste alone, when the materials had reached the required maturity. The presence of cornstalks also caused less H2S to be emitted, but had little impact on the amount of NH3 emitted. The FeCl3 was found to act as an effective chemical flocculant, and its presence significantly decreased the amounts of NH3 and H2S emitted. Kitchen waste mixed with cornstalks and treated with FeCl3 emitted 42% less NH3 and 76% less H2S during composting than did pure kitchen waste. PMID:26574091

  13. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. PMID:26644164

  14. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids.

    Science.gov (United States)

    Belyaeva, O N; Haynes, R J; Sturm, E C

    2012-12-01

    The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH(4), NO(3) and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon's diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community. PMID:22770779

  15. Influence of applying compost from municipal wastes on some physical properties of the soil

    Directory of Open Access Journals (Sweden)

    Drozd J.

    1999-06-01

    Full Text Available Influence of compost from municipal wastes (MSWC, used as a fertilizer, on some physico- chemical and physical properties of the soil such as: pHKCl, total porosity, bulk density, specific density, water retention at pF 2.54 of field water capacity as well as pF range of 1.0 - 2.9, is presented in the paper. The paper is part of a general project analysing the possibility of using compost from municipal wastes in horticulture.

  16. Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste.

    Science.gov (United States)

    Mattei, P; Cincinelli, A; Martellini, T; Natalini, R; Pascale, E; Renella, G

    2016-10-01

    Polluted dredged sediments are classified as waste and cannot be re-used in civil and environmental engineering nor in agriculture, posing serious logistical, economic and environmental problems for their management. We tested co-composting of sediments (S) slightly polluted by PAHs with urban green waste (GW), as a sustainable technique to both degrade the organic pollutants and lend to sediments suitable properties to be reused as technosol. Four treatments were tested: sediments only (S), GW only (GW), 1:1 w:w S:GW (SGW1:1), and 3:1 w:w S:GW (SGW3:1) for a co-composting period of one year. The co-composting materials underwent to an initial short and moderate thermophilic phase. However, at the end of the co-composting process, SGW3:1 and SGW1:1 achieved suitable physical and chemical properties as plant substrate in terms of organic C, N and humic substances contents, electrical conductivity and bulk density. In the first six months of treatment, the PAHs concentration in SGW3:1 and SGW1:1 was reduced by 26% and 57%, respectively, reaching values below under 1mgg(-1), whereas such a reduction in S alone was observed only after nine months. We concluded that co-composting with green waste can be a suitable approach for reclamation of dredged sediments opening opportunities for their use as technosol or as plant growing substrate. PMID:27236622

  17. Evolution of microbial dynamics during the maturation phase of the composting of different types of waste.

    Science.gov (United States)

    Villar, Iria; Alves, David; Garrido, Josefina; Mato, Salustiano

    2016-08-01

    During composting, facilities usually exert greater control over the bio-oxidative phase of the process, which uses a specific technology and generally has a fixed duration. After this phase, the material is deposited to mature, with less monitoring during the maturation phase. While there has been considerable study of biological parameters during the thermophilic phase, there is less research on the stabilization and maturation phase. This study evaluates the effects of the type of starting material on the evolution of microbial dynamics during the maturation phase of composting. Three waste types were used: sludge from the fish processing industry, municipal sewage sludge and pig manure, each independently mixed with shredded pine wood as bulking agent. The composting system for each waste type comprised a static reactor with capacity of 600L for the bio-oxidative phase followed by stabilization and maturation phase in triplicate 200L boxes for 112days. Phospholipid fatty acids, enzyme activities and physico-chemical parameters were measured throughout the maturation phase. The evolution of the total microbial biomass, Gram + bacteria, Gram - bacteria, fungi and enzymatic activities (β-glucosidase, cellulase, protease, acid and alkaline phosphatase) depended significantly on the waste type (pfish sludge maturation, manure and municipal sludge were characterized by a greater proportion of bacteria. Both the structure of the microbial community and enzymatic activities provided important information for monitoring the composting process. More attention should be paid to the maturation phase in order to optimize composting. PMID:27236404

  18. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO2 e (glass) to −19 111 kg CO2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  19. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  20. Effect of municipal solid waste compost on yield and quality of eggplant

    OpenAIRE

    Parvin Ramezani Kharrazi; Jamal-Ali Olfati; Gholam-Ali Peyvast; Hadi Shabani

    2011-01-01

    Organic agriculture aspires to return to more closed cycles of energy and materials, maximize reuse,employ rotation systems, use nutrients of organic origin and renewable energy sources, etc.Production of municipal solid waste compost, including organic waste is increasing while soils areprogressively losing organic matter due to intensive cultivation and climatic conditions. This makesthe recycling of organic waste as soil amendments a useful alternative to incineration, landfillor rubbish d...

  1. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    Science.gov (United States)

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems. PMID:26895274

  2. Behaviour of Main Microbiological Parameters And of Enteric Microorganisms During the Composting of Municipal Solid Wastes and Sewage Sludge in A Semi-Industrial Composting Plant

    Directory of Open Access Journals (Sweden)

    O. Fourti

    2008-01-01

    Full Text Available This study was focused on the microbiological aspects of composting and on the behaviour of main prevalent microbial communities (non-pathogenic and selected pathogenic bacteria during the composting process of municipal solid wastes and sewage sludge in a semi-industrial composting plant. Results showed that the dehydrogenase activity and Biomass C / Biomass N ratio showed a noticeable increase in the two windrows W1 (100% of municipal solid wastes and W2 (60% of municipal solid wastes and 40% of dried sewage sludge during the thermophilic phase (≥45°C for 100 days and marked a high microbial activity during this period of the composting process. During the thermophilic phase, the removal of faecal indicator bacteria is in order of 2 Ulog10, and a total absence of Staphylococcus aureus and Salmonella was observed. The re-emergence of faecal indicator bacteria at the end of the composting progress (cooling step could constitute a major problem for the agricultural use of compost.

  3. Critical components of odors in evaluating the performance of food waste composting plants

    International Nuclear Information System (INIS)

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components - ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene - exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH3, amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery

  4. Critical components of odors in evaluating the performance of food waste composting plants

    Energy Technology Data Exchange (ETDEWEB)

    Mao, I-F. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: ifmao@ym.edu.tw; Tsai, C.-J. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China); Shen, S.-H. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Lin, T.-F. [Institute of Environmental Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Rd., Tainan, Taiwan (China); Chen, W.-K. [Department of Environment Management, Jin Wen Institute of Technology, No. 99, An-Chung Rd., Hsin-Tien City, Taipei, Taiwan (China); Chen, M.-L. [Institute of Environmental Health Sciences, National Yang-Ming University, No. 155, Sec.2, Li-Nong St., Beitou, Taipei, Taiwan (China)]. E-mail: mlchen@ym.edu.tw

    2006-11-01

    The current Taiwan government policy toward food waste management encourages composting for resource recovery. This study used olfactometry, gas chromatography-mass spectrometry (GC-MS) and gas detector tubes to evaluate the ambient air at three of the largest food waste composting plants in Taiwan. Ambient air inside the plants, at exhaust outlets and plant boundaries was examined to determine the comprehensive odor performance, critical components, and odor elimination efficiencies of various odor control engineering. Analytical results identified 29 compounds, including ammonia, amines, acetic acid, and multiple volatile organic compounds (VOCs) (hydrocarbons, ketones, esters, terpenes and S-compounds) in the odor from food waste composting plants. Concentrations of six components - ammonia, amines, dimethyl sulfide, acetic acid, ethyl benzene and p-Cymene - exceeded human olfactory thresholds. Ammonia, amines, dimethyl sulfide and acetic acid accounted for most odors compared to numerous VOCs. The results also show that the biotrickling filter was better at eliminating the concentrations of odor, NH{sub 3}, amines, S-compounds and VOCs than the chemical scrubber and biofilters. All levels measured by olfactometry at the boundaries of food waste composting plants (range, 74-115 Odor Concentration (OC)) exceeded Taiwan's EPA standard of 50 OC. This study indicated that the malodor problem continued to be a significant problem for food waste recovery.

  5. Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp. FA13.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Mimoto, Hiroshi; Tran, Quyen Ngoc Minh; Oinuma, Akiko

    2015-03-01

    Food waste collected from restaurants, convenience stores, and food-processing factories was mixed with sawdust and subjected to hydrothermal pretreatment at 180°C for 30min to prepare compost raw material. Furan compounds such as 5-HMF (5-hydroxymethyl furfural) and furfural were produced at concentration levels of approximately 8 and 0.5mg/g-ds, respectively, through hydrothermal pretreatment. The furan compounds inhibited the activity of composting microorganisms, thus delaying the start of organic matter degradation during composting. A newly identified fungus, Paecilomyces sp. FA13, which possesses the ability to degrade furan compounds, was isolated and used as an inoculum for the composting of the raw material prepared by hydrothermal pretreatment. By inoculating the FA13 into the compost raw material at 10(5)CFU/g-ds, the degradation of furan compounds was accelerated. As a result, bacterial activity, which contributed to composting, was enhanced, significantly promoting the start of vigorous degradation of organic materials. PMID:25585259

  6. Nutrients dynamics of co-composting poultry litter with fast food wastes

    International Nuclear Information System (INIS)

    Co-composting of poultry litter (PL) and fast food waste (FFW) in different combinations was carried out to explore the nutrient dynamics. The PL and FFW were co-composted in pits of dimensions 2 m*2 m*1.5 m (L*W*D) in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively, for a period of 105 days. Co-composts of PL and FFW in a 50:50 ratio yielded highest total nitrogen (3.63%), total phosphorus (0.81%), and total potassium (3.40%) levels in the mature compost after 105 days of composting period. Carbon to nitrogen ratio for this combination was 18.33, which is suitable for safe land application. Present study identified PL and FFW co-composting in equal proportions yields maximum N, P and K levels with suitable C:N ratio which may be applied to soils to meet crop nutrient demands and enhanced agricultural productivity. (author)

  7. Municipal solid wastes composting: Estrela (Brasil); Compostaje de residuos solidos municipales: el ejemplo de Estrela, brasil

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, O.; Bezama, A.; Navia, R.; Lorber, K. E.

    2002-07-01

    In Estrela, Rio Grande do Sul, Brazil, an improved separation system for the municipal solid wastes was implemented. The objective is to enhance the performance of the composting process of the solid wastes. In the original separation system, the fractions corresponding to organic matter, recyclable materials and the light-weight fraction (destined to sanitary landfill) were obtained, where the organic fraction reached a 70%. This fraction was destined to a composting process which after 80 days of processing was still in the thermophilic stage and had to be later stabilized through a worm composting process. In order to improve this situation, a modified system was proposed and implemented. In this way, four fractions were obtained during the separation process: a light fraction destined to sanitary land filling, a recyclable materials fraction and two organic fractions. (Author) 8 refs.

  8. Comparison of home-composting and large-scale composting  for organic waste management in Québec, Canada.

    OpenAIRE

    Joly, Elsa

    2011-01-01

    The management of the organic fraction of municipal solid waste has become a major issue lately in the province of Québec, Canada. Most of it is landfilled today, which increases the burden on landfills and is environmentally unsound. In order to comply with new government guidelines, municipalities have to develop solutions to recover and recycle organic waste. In this context, this study examines two solutions for treating organic waste: home-composting and a separate biodegradable waste co...

  9. Biological testing of a digested sewage sludge and derived composts

    OpenAIRE

    Moreira, R.; Sousa, J.P.; Canhoto, C.

    2008-01-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6 ton/ha or 12 ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and grow...

  10. Residues of organochlorine pesticides and PCBs in some Brazilian municipal solid waste compost.

    Science.gov (United States)

    Lourencetti, Carolina; Favoreto, Rodrigo; Marchi, Mary R R; Ribeiro, Maria L

    2007-08-01

    Persistent organic pollutants (POPs), organochlorine pesticides and polychlorinated biphenyls (PCBs), listed as per the Stockholm Convention (alpha -HCH, beta -HCH, gamma -HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, dieldrin, PCBs 28, 52, 118, 138, 153, and 180), were analyzed in municipal solid waste (MSW) compost samples from three different Brazilian composting plants located in three São Paulo State cities: Araras, Araraquara and São Paulo (Vila Leopoldinha). Quantitative and qualitative analyses were carried out using gas chromatography electron capture detection (GC-ECD) and gas chromatography mass spectrometry (GC-MS) (Ion Trap, electron impact ionization), respectively. The samples were analyzed in triplicate and the target POPs were not detected by GC-ECD. Twelve pollutants were identified in two samples when qualitative analysis (GC-MS) was used (beta -HCH, gamma -HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, and p,p'-DDE, PCBs 28, 118, 138, 153 and 180). The composting process has advantages such as urban solid waste reduction and landfill life-span increase, however the MSW compost quality, which can be utilized for agricultural purposes, should be evaluated and be controlled. This kind of study is the first step in making available information to answer questions regarding MSW compost for sustainable agricultural use, such as the pollutants accumulation in soil and in groundwater, and plants uptake. PMID:17701705

  11. The impact of silver nanoparticles on the composting of municipal solid waste.

    Science.gov (United States)

    Gitipour, Alireza; El Badawy, Amro; Arambewela, Mahendranath; Miller, Bradley; Scheckel, Kirk; Elk, Michael; Ryu, Hodon; Gomez-Alvarez, Vicente; Santo Domingo, Jorge; Thiel, Stephen; Tolaymat, Thabet

    2013-12-17

    The study evaluates the impact of polyvinylpyrrolidone (PVP) coated silver nanoparticles (PVP-AgNPs) on the composting of municipal solid waste. The results suggest that there was no statistically significant difference in the leachate, gas, and solid quality parameters and overall composting performance between the treatments containing the AgNPs, Ag(+), and negative control. Nonetheless, taxonomical analyses of 25 Illumina 16S rDNA barcoded libraries containing 2 393 504 sequences indicated that the bacterial communities in composted samples were highly diverse and primarily dominated by Clostridia (48.5%), Bacilli (27.9%), and beta-Proteobacteria (13.4%). Bacterial diversity studies showed that the overall bacterial community structure in the composters changed in response to the Ag-based treatments. However, the data suggest that functional performance was not significantly affected due to potential bacterial functional redundancy within the compost samples. The data also indicate that while the surface transformation of AgNPs to AgCl and Ag2S can reduce the toxicity, complexation with organic matter may also play a major role. The results of this study further suggest that at relatively low concentrations, the organically rich waste management systems' functionality may not be influenced by the presence of AgNPs. PMID:24143996

  12. Composting of urban solid wastes: agronomic value of environmental impact. Application for potatoes production; Compost de RSU: valor agronomico vs impacto ambiental. Aplicacion en la produccion de patata

    Energy Technology Data Exchange (ETDEWEB)

    Sebastiao, M. J.; Queda, A. C. C.

    2003-07-01

    The objective of this work was to study the effect of mixed Municipal Solid Waste (MSW) compost (still allowed in Portugal for agricultural purposes) on potato production and to assess the risk of heavy metal contamination of vegetables and soils. Three types of soils from the Setubal region were tested. Significant increases in potato production were obtained in poor sandy soils even at low compost application rates (15 t/ha year). There was no significant intake of heavy metals by the tubers grown with compost in all the tests performed. Four years of compost application increased copper concentration in the three types of soils, Zinc and lead accumulation was also observed in some of the experimental fields. Nevertheless, the detected amounts are still far below the limit values indicated in Portuguese and EU legislation for agricultural soils. The gradual change from MSW to bio-waste compost already in progress in our country will certainly reduce our concerns about compost utilisation in agriculture. (Author)

  13. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  14. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    Science.gov (United States)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  15. Toward zero waste: composting and recycling for sustainable venue based events.

    Science.gov (United States)

    Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E

    2015-04-01

    This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game. PMID:25666546

  16. The influence of amendment material on biosolid composting of sludge from a waste-water treatment plant

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2010-06-01

    Full Text Available Aerobic composting employing manual turning was evaluated by using the sludge produced by EMCALI EICE ESP's Cañaverlejo wastewater treatment plant (PTAR-C. Compost (in 1,0 ton piles consisted of sludge, a fixed proportion of bulking agent (10% and amendment material. Sugarcane waste and solid organic (marketplace waste were evaluated as amendment material using 20/80 and 40/60 weight/weight (amendment/sludge ratios. Incorporating the amendment material improved the compost, being reflected in a faster start for the thermophilic phase, higher temperatures beign maintained (>55°C and better C/N ratio obtained in the compost in all treatments compared to the pile which had no amendment added to it. Incorporating the bulking agent improved sludge manageability during composting; the best combination was 54% sludge + 10% sugacane bagasse + 36% liquid sugarcane waste.

  17. Evolution of Microbial Biomasses C and N during the Composting of Municipal solid Wastes

    Directory of Open Access Journals (Sweden)

    Olfa Fourti

    2011-01-01

    Full Text Available Problem statement: The aim of this study was mainly focused on the evolution of microbial biomasses C and N during the composting of municipal solid wastes. Approach: The carbon and the nitrogen of the microbial biomass (BC and BN were studied using the fumigation-extraction method. Results: The dynamics of the BC/BN ratio, index of the chemical composition of the whole microbial population suggested a shift in the composition of microbial populations during the process from prevailing bacteria and actinomycetes to prevailing fungi. Conclusion/Recommendations: Microbial characterization of composting is of importance for the optimization of the process and the quality of the end product.

  18. COMPOST PRODUCTION THROUGH UTILIZATION OF MUNICIPAL SOLID WASTE AND SEPTAGE BY BARSHI MUNICIPAL COUNCIL

    OpenAIRE

    Kanchan Wani

    2014-01-01

    Documented is a good practice conducted by Barshi Municipal Council (BMC), which effectively utilizes Municipal Solid Waste (MSW) and septage for production of compost. Barshi is an 'A' class Municipal Council in Sholapur division of Maharashtra State, situated at a distance of about 71 km from Sholapur City on its northern side. Barshi town generates about 46 tons of solid waste on daily basis; while on annual basis averagely 200 septic tanks were cleaned by Urban Local Body ...

  19. Chemical Characteristics of Compost and Humic Acid from Sago Waste (Metroxylon sagu)

    OpenAIRE

    Auldry C. Petrus; Osumanu H. Ahmed; Ab M.N. Muhamad; Hassan M. Nasir; Make Jiwan; Michael G. Banta

    2009-01-01

    Problem statement: Agriculture waste such as Sago Waste (SW) has a potential to cause pollution either on land or in water. In order to reduce this problem, a study was conducted to investigate the effect of three different treatments on the chemical characteristics of compost and humic acid from SW. Approach: The study had three treatments which were: T1: SW (80%) + chicken feed (5%) + chicken dung slurry (5%) + molasses (5%) + urea (5%), T2: SW (80%) + chicken feed (10%) + chicken dung slur...

  20. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    OpenAIRE

    Thaniya Kaosol; Suchinun Kiepukdee; Prawit Towatana

    2012-01-01

    Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic ...

  1. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Directory of Open Access Journals (Sweden)

    Ming-Wei Chang

    2013-12-01

    Full Text Available The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM, with coarse particles (2.5–10 μm having higher endotoxin levels than did fine particles (0.5–2.5 μm. After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL-6 release and activated epidermal growth factor receptor (EGFR, transforming growth factor (TGF-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1 gene expression, but not of matrix metallopeptidase (MMP-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  2. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Science.gov (United States)

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  3. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    Science.gov (United States)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  4. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guo Xue; Yang, Qing Yuan; Luo, Wen Hai

    2013-10-01

    This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH₄, N₂O, and NH₃) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH₄ and N₂O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO₂-eqt(-1) dry matter) than the other treatments. PMID:24001663

  5. Composting of cotton wastes; Compostaje de residuos de algodon

    Energy Technology Data Exchange (ETDEWEB)

    Dobao, M.M.; Tejada, M.; Benitez, C.; Gonzalez, J.L.

    1997-12-31

    In this article a study on the composting process of residuals of cotton gin is presented crushed and not crushed, previous. The analysis of correlation gotten for each one of the treatments reveals that although common correlations between the parameters studied for both treatment exist, they are presented a great number of correlations between this parameters for the treatment of cotton crushed residuals. (Author) 11 refs.

  6. Comparative Study of Nirmalya Solid Waste Treatment by Vermicomposting and Artificial Aeration Composting

    Directory of Open Access Journals (Sweden)

    Pallavi S.Chakole

    2014-08-01

    Full Text Available Temple waste normally contains floral offering, leaves and milk product i.e. “Abishek waste water”, and this solid waste management is one of the important issues in the world, because of shortage ofdumping sites and strict environmental legislation. Now days ‘Nirmalyasolid waste’ is generated in large quantity due toincreased in population are commonly treated using different types of bins by the method of composting or vermicomposting. Vermicomposting of solid waste can be done by using different types of earthworms providing natural and artificial aeration along with mixture of cow dung and soil, artificial aeration is carried out by providing diffused aerators or perforated pipes. The parameters like C/N ratio, temperature, moisture contain are carried out. The main objective of this study is to minimize the problem of solid waste management by treating nirmalya solid waste by vermicomposting and suggesting that which method gives good quality of compost at short interval of time comparing artificial and natural aeration composting.

  7. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  8. Compost Extracts of Vegetable Wastes as Biopesticide to Control Cucumber Mosaic Virus

    Directory of Open Access Journals (Sweden)

    WIWIEK SRI WAHYUNI

    2010-06-01

    Full Text Available In semiaerobic conditions, different composting processes of vegetable wastes have different characteristics. When compost extracts amended with the effective microorganism-4 (EM4, +E and Pseudomonas aeruginosa Ch1 (+B stored for 40 days, the bacteria population and P-content increased. Tobacco plants treated with compost extracts amended with +E+B and [+E+B] directly to organic materials and inoculated with Cucumber mosaic virus (CMV both sprayed or watered applications reduced the disease severity. This is due to the higher bacteria population in the root and rhizosphere, particularly the activities of P. aeruginosa Ch1 as plant growth promoting rhizobacteria (PGPR rather than the activities of bacteria from EM4. The role of P. aeruginosa Ch1 to induce resistance of the plants to CMV was suggested by producing siderophores under the limited Fe conditions,17-20 ppm.

  9. Shoot biomass of turfgrass cultivars grown on composted waste

    Science.gov (United States)

    Roberts, Bruce R.; Kohorst, Sanford D.; Decker, Henry F.; Yaussy, Daniel

    1995-09-01

    Various cultivars of four cool-season grass types (tall fescue, fine fescue, perennial ryegrass, and Kentucky bluegrass) were seeded in 0.34-liter plastic pots containing either composted sewage sludge [Com-Til2 (CT), Soil Magic2 (SM)] or composted yard mulch (YM). Plants were grown in the greenhouse for four weeks prior to measuring shoot biomass. White most tall fescue cultivars showed more shoot growth on YM, perennial ryegrass cultivars generally grew better on SM. Cultivars of fine fescue and bluegrass grew about the same on YM or SM, and slightly less on CT. With very few exceptions, shoot biomass of individual cultivars was greater on either YM or SM than it was on CT. Within individual grass types, Pennlawn (fine fescue), Pennant (perennial ryegrass), and Victa (Kentucky bluegrass) averaged consistently better growth on all three composted media. For tall fescue, Aquara, Rebel II, and Monarch performed best on YM, SM, and CT, respectively. Bioaccumulation of heavy metals did not occur in selective samples of shoot tissues collected from the grass types used.

  10. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth.

    Science.gov (United States)

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  11. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2013-01-01

    Full Text Available Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA, crude fulvic acids (CFA, crude humin (CH, soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants’ diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  12. Assessment of municipal waste compost as a daily cover material for odour control at landfill sites

    International Nuclear Information System (INIS)

    The ability of municipal waste compost as a daily cover material to reduce the odorous emissions associated with landfill surfaces was investigated. Trials were carried out using landfill gas, a certified sulphurous gas mix and ambient air as a control. Odorous gas was passed through portable test column filled with compost at different densities (590 kg/m3 and 740 kg/m3). Gas samples were taken from the inlet, outlet and at varying column depths and examined using a combination of sensory analysis (olfactometry) and a novel analytical method (Transportable Selected Ion Flow Tube - TSIFT). Results for the trials using landfill gas showed a 69% odour reduction (OU/m3) through the column for compost with a bulk density of 590 kg/m3, and a reduction of 97% using compost with a bulk density of 740 kg/m3. TSIFT analysis showed an overall decrease in the concentration of terpenes, and sulphurous compounds in the outlet gas from the column for both bulk densities. No significant trend could be identified for the concentrations at different depths within the column. Results show the ability of compost to reduce landfill odours under differing conditions. The inconclusive data provided by TSIFT analysis may be due to the analysis of compounds that are not contributing to odour, and thus highlights the potential for synergetic effects and the importance of sensory measurement when examining odorous emissions. - Practical measures to improve landfill odour control are investigated

  13. Assessment of municipal waste compost as a daily cover material for odour control at landfill sites

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Claire [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, Philip [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: p.j.longhurst@cranfield.ac.uk; Pollard, Simon [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Jefferson, Bruce [School of Water Sciences, Cranfield University, MK43 0AL (United Kingdom); Gronow, Jan [Environment Agency, Science Group - Waste and Remediation, Olton Court, 10 Warwick Road, Olton, Solihull, West Midlands, B92 7HX (United Kingdom)

    2005-05-01

    The ability of municipal waste compost as a daily cover material to reduce the odorous emissions associated with landfill surfaces was investigated. Trials were carried out using landfill gas, a certified sulphurous gas mix and ambient air as a control. Odorous gas was passed through portable test column filled with compost at different densities (590 kg/m{sup 3} and 740 kg/m{sup 3}). Gas samples were taken from the inlet, outlet and at varying column depths and examined using a combination of sensory analysis (olfactometry) and a novel analytical method (Transportable Selected Ion Flow Tube - TSIFT). Results for the trials using landfill gas showed a 69% odour reduction (OU/m{sup 3}) through the column for compost with a bulk density of 590 kg/m{sup 3}, and a reduction of 97% using compost with a bulk density of 740 kg/m{sup 3}. TSIFT analysis showed an overall decrease in the concentration of terpenes, and sulphurous compounds in the outlet gas from the column for both bulk densities. No significant trend could be identified for the concentrations at different depths within the column. Results show the ability of compost to reduce landfill odours under differing conditions. The inconclusive data provided by TSIFT analysis may be due to the analysis of compounds that are not contributing to odour, and thus highlights the potential for synergetic effects and the importance of sensory measurement when examining odorous emissions. - Practical measures to improve landfill odour control are investigated.

  14. Chemical Characteristics of Compost and Humic Acid from Sago Waste (Metroxylon sagu

    Directory of Open Access Journals (Sweden)

    Auldry C. Petrus

    2009-01-01

    Full Text Available Problem statement: Agriculture waste such as Sago Waste (SW has a potential to cause pollution either on land or in water. In order to reduce this problem, a study was conducted to investigate the effect of three different treatments on the chemical characteristics of compost and humic acid from SW. Approach: The study had three treatments which were: T1: SW (80% + chicken feed (5% + chicken dung slurry (5% + molasses (5% + urea (5%, T2: SW (80% + chicken feed (10% + chicken dung slurry (5% + molasses (5% and T3: SW (80% + chicken feed (10% + chicken dung slurry (5% + urea (5%. Composting was done for 60 days in a white polystyrene box with a size of 61.5×49×33.5 cm. The composts were analyzed for pH, total nitrogen, organic carbon, organic matter, ash, Cation Exchange Capacity (CEC, phosphorus and HA using standard procedures. Results: All treatments did not reach thermophilic phase. Compost of T2 had high quality (pH, total nitrogen, organic carbon, organic matter, ash, Cation Exchange Capacity (CEC, phosphorus and HA compared to T1 and T3. The yield of HA of T2 was also significantly higher compared to those of T1 and T3. The compost characteristics of T1 and T3 were similar. The chemical characteristics of HA the 3 treatments were within the standard range reported by other researchers. Conclusion: T2 is more efficient in producing mature and good quality compost in 60 days compared to T1 and T3.

  15. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  16. Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting.

    Science.gov (United States)

    Kumar, Rahul; Verma, Deepshikha; Singh, Bhanu L; Kumar, Umesh; Shweta

    2010-09-01

    The waste by-products of the sugar-cane industry, bagasse (b), pressmud (p) and trash (t) have been subjected to bioinoculation followed by vermicomposting to shorten stabilization time and improve product quality. Press-mud alone and in combination with other by-products of sugar processing industries was pre-decomposed for 30 days by inoculation with combination of Pleurotus sajorcaju, Trichoderma viridae, Aspergillus niger and Pseudomonas striatum. This treatment was followed by vermicomposting for 40 days with the native earthworm, Drawida willsi. The combination of both treatments reduced the overall time required for composting to 20 days and accelerated the degradation process of waste by-products of sugar processing industry, thereby producing a nutrient-enriched compost product useful for sustaining high crop yield, minimizing soil depletion and value added disposal of waste materials. PMID:20403689

  17. Microbiological degradation of pesticides in yard waste composting.

    OpenAIRE

    Fogarty, A M; Tuovinen, O H

    1991-01-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste includi...

  18. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Marta García-Albacete

    2014-01-01

    Full Text Available New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste’s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

  19. Study of calendula and Gaillardia growth in two composts prepared from agroindustrial wastes.

    Science.gov (United States)

    Roudsari, O Nouri; Akbari, B

    2007-05-01

    Two composts prepared from agroindustrial wastes were assayed as substrates: C1 from brewing waste (yeast and malt) plus lemon tree pruning and C2 from the solid fraction of olive mill wastewater plus olive leaves. Sixteen substrates were prepared by combining each compost with Sphagnum peat or a Commercial Substrate (CS) in different proportions. The nutrients (N and K) provided by the composts, which acted as slow-release fertilizers, influenced especially the development of calendula, although the physical and physicochemical properties such as total pore space and Electrical Conductivity (EC) were also relevant. On the other hand, in the salt-sensitive Gaillardia hybrid, EC and chloride concentration were the main factors influencing growth. The best results were found in substrates prepared by mixing C1 at up to 75% with peat, or at up to 50% with CS, or by mixing C2 at up to 50% with peat or CS, for calendula. For salt-sensitive species such as Gaillardia, adequate substrates for plant development were found for C1 at up to 50% with peat or CS, but the use of C2 should be limited to 25% in mixtures with peat or CS. Therefore, composts of agroindustrial origin such as these can be used as an alternative to peat and CSs for growing ornamental plants, provided the mixture contains at least 25% peat or CS. PMID:19069954

  20. Characterization of olive mill wastes composts and their humic acids: stability assessment within different particle size fractions.

    Science.gov (United States)

    Masmoudi, Saoussan; Jarboui, Raja; El Feki, Hafedh; Gea, Teresa; Medhioub, Khaled; Ammar, Emna

    2013-01-01

    Compost stability assessment within different particle size fractions was studied. Humic acids (HAs) were extracted from two kinds of co-composts prepared using evaporated olive mill wastewater (OMSW) or solid waste from olive oil extraction (OC) and poultry manure (PM). The elemental composition, Fourier-transform infrared spectroscopy (FTIR) and 13C-NMR (nuclear magnetic resonance) analysis and molecular weight distribution were investigated to assess the composted organic matter stability in different fractions. In both composts, organic matter content was higher in the > 2 mm fractions than in the < 2 mm fractions, because of fractions' richness in hardly biodegradable compounds. Spectroscopic analysis revealed that OMSW compost fraction < 2 mm and OC compost 2-4 mm fraction were rich in aromatic compounds and oxygenated groups but poor in aliphatic structure. Moreover, the HA distribution reflected a high stabilized compost < 2 mm fraction, especially from evaporated effluent known as phytotoxic. However, the 4-6 mm fraction included high aliphatic compounds besides aromatic structures and did not exhibit any phytotoxicity, confirming compost fraction maturity. However, the low C/N ratio, the high OMSW compost mineral nutritive elements and the high aromatic C rate reflected highly stabilized products. Consequently, the performance of both prepared organic fertilizers for agriculture use contested the previous negative effect ascribed to olive mill wastewater. PMID:23837330

  1. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    Science.gov (United States)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    P contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg‑1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  2. Maturity and hygiene quality of composts and hygiene indicators in agricultural soil fertilised with municipal waste or manure compost.

    Science.gov (United States)

    Tontti, Tiina; Heinonen-Tanski, Helvi; Karinen, Päivi; Reinikainen, Olli; Halinen, Arja

    2011-02-01

    Composts produced from municipal source separated biowaste (Biowaste), a mixture of biowaste and anaerobically digested sewage sludge (Biosludge) and cattle manure (Manure) were examined for their maturity and hygiene quality. The composts were applied to a potato crop in 2004 and to a barley nurse crop of forage ley in 2005 in a field experiment. Numbers of faecal coliforms, enterococci, clostridia and Salmonella in field soil were determined 2 weeks and 16 weeks after compost applications. Municipal compost batches chosen based on successful processing showed variable maturity during field application, and the need to evaluate compost maturity with multiple variables was confirmed. The numbers of faecal coliform were similar in all compost types, averaging 4.7 and 2.3 log( 10) CFU g(-1) in the first and second years, respectively. The highest number of enterococci was 5.2 log(10) CFU g(-1), found in Manure compost in the first year, while the highest clostridia numbers were found in Biosludge compost, averaging 4.0 log(10) CFU g(-1) over both years. Except for one case, less than 2.4 log(10) CFU g(-1) of faecal coliforms or clostridia were found in compost-fertilised soil, while the numbers of enterococci were mostly higher than in unfertilised soil (potato at harvest. Overall, compost fertilisations caused rather small changes in the counts of hygiene indicators in the field environment. PMID:20392787

  3. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.

    Science.gov (United States)

    Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer

    2014-01-01

    Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth. PMID:24600889

  4. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  5. Effect of municipal solid waste compost on yield and quality of eggplant

    Directory of Open Access Journals (Sweden)

    Parvin Ramezani Kharrazi

    2011-08-01

    Full Text Available Organic agriculture aspires to return to more closed cycles of energy and materials, maximize reuse,employ rotation systems, use nutrients of organic origin and renewable energy sources, etc.Production of municipal solid waste compost, including organic waste is increasing while soils areprogressively losing organic matter due to intensive cultivation and climatic conditions. This makesthe recycling of organic waste as soil amendments a useful alternative to incineration, landfillor rubbish dumps. In this study that carry out in the summer of 2008, four levels of municipal solidwaste compost (50, 100, 150 and 200 t. ha-1 with control had applied. Through measured factors,marketable yield per m2, number of weed per plot, soil born disease reduction, number of leafper plant, lateral branch rate, plants height had significant effect in 0.05 levels. The best of yieldachieved of 50 t. ha-1 fertilizer level. Municipal solid waste compost also had significant effect on Caroot, fruit, leaf and root P and leaf Mg.

  6. Effect of Municipal Solid Waste Compost on the Growth and Production of Vegetable Crops

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2010-01-01

    Full Text Available Problem statement: MSW has traditionally been dealt with thorough the practice of land filling and incineration. However, deleterious environmental impacts have promoted municipalities in Canada to recycle non-putrescible wastes and compost the putrescible ones. This study aimed at evaluating the effect of MSW compost on the growth and production of three vegetable crops (potatoes, corn and squash. Approach: Each crop received 5 treatments: MSW1, MSW2, MSW3, NPK and 0.5 NPK, 0.5 MSW1. MSW2 and MSW3 were twice and three times MSW1, respectively. MSW1 was determined for corn and potato based on phosphorous requirements by these crops and the phosphorous content of the MSW compost and was determined for squash based on the nitrogen requirement by the plant and the nitrogen content of the MSW compost. The choice of chemical fertilizer and application rate were based on the optimum NPK ratio for each plant. Samples from the plants were taken at specific growth stages and at harvest for visual health and dry matter analyses. Results: The plant yield for each crop followed the same patterns as those of the visual observations for health ranking and the dry matter. The results showed that 0.5 NPK + 0.5 MSW1 gave the best plant growth, health and yield for potato and corn while NPK gave the best plant growth, heath and yield for squash. Squash did not seem to respond well to MSW compost. Conclusion: The plots that received MSW2 were healthier than those reserved MSW1 and MSW3. High rate of MSW may provide higher level of heavy metals than the plant can tolerate while low rate of MSW may not contain all the other required micro-nutrients. Long tern effects of MSW compost on the chemical and microbiological properties of the soil and the plant properties such as taste, appearance, storability, susceptibility to bugs and disease should be evaluated.

  7. THE COMPOST – A METHOD TO RESTORE THE ORGANIC WASTE PRODUCTS IN THE NATURAL CIRCUIT

    Directory of Open Access Journals (Sweden)

    Delia Nicoleta VIERU

    2009-03-01

    Full Text Available Half of the quantity of waste products produced by the households is made of foodremainders, vegetable and garden remainders and more of 50% of waste products are organicand they arrive in waste products storehouses, in cesspools or are burned, causing animportant pollution. As an alternative to those, we can transform the organic material througha set of microbial, biochemical, chemical and physical processes into a valuable material witha humus appearance, named compost. To obtain a quality compost we need to lead thecompost process, in accordance with the dimension, the humidity, the structure and thecomposition of residual materials, that these to be fast and efficient available to the microorganisms,making up an ideal substratum rich in nutrients for their development. Thedecomposition agents (bacterium, fungous, mites, Collembola, wooden lice, worms,diplopoda need the azote to build the cells and some food remainders, ripped grass and greenleaves. The chips of wood, the dry leaves and the sawdust are rich in carbon and theyconstitute another energy source for the decomposition agents. The azote sources aredesignated as the „green” elements, and the carbon sources are the „brown” ones. In a pile ofcompost is efficient to maintain a balance between the „brown” elements (carbon and the„green” ones (azote – in percent of 30:1 to offer the decomposition agents a balancednourishment and this thing can be acquired through the alternation of layers of brown andgreen elements. The production of compost in schools can be a way to determine the entireschool community to work together for helping the environment. This means the naturalrecirculation of resources, community education over the benefits of the compost, the changeof the cultural attitude over the garbage in a way that brings benefits to the society, thereduction of the alimentary remainders quantity from the school canteen, the implication ofthe students in extra

  8. Copper (II) and lead (II) complexation capacity of composts from several wastes

    OpenAIRE

    Ruiz-Cortés, E.; Madrid, Luis; Bejarano Bravo, M.

    2001-01-01

    Several authors have shown the great importance of organic matter on the bioavailability of metal ions for plants and how formation of complexes can affect their retention and solubility (Harter and Naidu, 1995). Thus, although addition of composts from several wastes to soils as organic amendments is a common practice, their excessive use may cause deficiency or toxicity of heavy metals in some instances. An increase in metal solubility due to formation of soluble comple...

  9. Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite.

    Science.gov (United States)

    Hwang, Taewoon; Neculita, Carmen Mihaela; Han, Jong-In

    2012-01-01

    Tailings are mine wastes in the form of slurries stacked in mine sites abandoned after the exhaustion of ores. There are approximately 5000 abandoned mine sites in Korea, and tailings have become a serious environmental problem. Long-term environmental exposure of tailings can cause release of acidic and high concentrations of sulfate- and metal-contaminated water (acid mine drainage, AMD). Organic and/or inorganic amendments have been studied for AMD prevention and passive in situ treatment of pore water. This study tests locally available food waste-based compost as a viable amendment, in addition to the need for sustainable ways to dispose of compost, in response to a new environmental law. To examine the feasibility, three bioreactors were constructed, filled with mixtures of tailings, food waste-based compost, and zeolite. During the 4-wk experimental period, feeding water ormedium were poured in one reactor. The leachates were investigated in terms of chemistry and microbiology. Compared with the unamended reactor, the leachate from two mixture-filled reactors showed increased pH, formation of sulfate reduction conditions, and highly efficient metal removal. Black-colored precipitates observed at the end of the experiment suggested the formation of metal biosulfides, following the activity of sulfate reduction mediated by sulfate-reducing bacteria (SRB). Mineralogical analysis of these precipitates confirmed the presence of biosulfides, mainly of Fe and Pb. Moreover, microbial and molecular biological analyses revealed that several species of heterotrophic bacteria (SRB and iron-reducing bacteria) were present in the solids recovered from the bioreactors. Microbial consortium, such as SRB species (), and cellulosic-degrader ( sp.) were identified. This study provides promising results on the application potential of food waste-based compost for prevention of AMD generation and passive in situ treatment of pore water in weathered tailings in Korea and

  10. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Science.gov (United States)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  11. Behavior of selected organic pollutants in municipal waste during the mechanical-biological progress of composting

    International Nuclear Information System (INIS)

    Municipal waste was investigated during the mechanical-biological process of composting. Waste from Burgenland is treated mechanically and biologically to reduce organic matter in the material and to keep gas building potential low before deposition. Samples were taken and analyzed during a period of 80 days. The parameters: temperature, dry-weight, glow loss, ammonium, nitrate and phenolic substances were measured to follow the composting process. It was found that the process was almost finished after a period of 40 days in which the material was breathed intensively. The content of polycyclic aromatic hydrocarbons and polychlorinated phenols decreased slightly. It was not clear whether this was due to microbiological activity or blowing-out effects. Polychlorinated biphenyls were found to be stable during composting. The concentrations were considered as high. Hepta- and octachlorinated dibenzodioxines were formed during the first 10 days. The increase of octachlorinated dibenzodioxin was threefold. Other dioxines and furanes remained unchanged. Finally it was found out that mechanical-biological waste treatment is insufficient in order to reduce organic pollutants effectively. (author)

  12. Installation and Setup of Whole School Food Waste Composting Program

    Science.gov (United States)

    Zhang, A.; Forder, S. E.

    2014-12-01

    Hong Kong, one of the busiest trading harbors in the world, is also a city of 8 million of people. The biggest problem that the government faces is the lack of solid waste landfill space. Hong Kong produces around 13,500 tons of waste per day. There are three landfills in Hong Kong in operation. These three landfills will soon be exhausted in around 2020, and the solid waste in Hong Kong is still increasing. Out of the 13,500 tons of solid waste, 9,000 tons are organic solid waste or food waste. Food waste, especially domestic waste, is recyclable. The Independent Schools Foundation Academy has a project to collect domestic food waste (from the school cafeteria) for decomposition. Our school produces around 15 tons of food waste per year. The project includes a sub-project in the Primary school, which uses the organic soil produced by an aerobic food waste machine, the Rocket A900, to plant vegetables in school. This not only helps our school to process the waste, but also helps the Primary students to study agriculture and have greater opportunities for experimental learning. For this project, two types of machines will be used for food waste processing. Firstly, the Dehydra made by Tiny Planet reduces the volume and the mass of the food waste, by dehydrating the food waste and separating the ground food waste and the excessive water inside machine for further decomposition. Secondly, the A900 Rocket, also made by Tidy Planet; this is used to process the dehydrated ground food waste for around 14 days thereby producing usable organic soil. It grinds the food waste into tiny pieces so that it is easier to decompose. It also separates the wood chips inside the ground food waste. This machine runs an aerobic process, which includes O2 and will produce CO2 during the process and is less harmful to the environment. On the other hand, if it is an anaerobic process occurs during the operation, it will produce a greenhouse gas- CH4 -and smells bad.

  13. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    Science.gov (United States)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  14. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DEFF Research Database (Denmark)

    Andersen, J.K.; Boldrin, Alessio; Christensen, Thomas Højlund;

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different....... The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg−1 wet waste (ww...... input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load...

  15. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  16. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    Science.gov (United States)

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards. PMID:26093343

  17. The utilisation of municipal waste compost for the reclamation of anthropogenic soils: implications on C dynamics.

    Science.gov (United States)

    Said-Pullicino, D.; Bol, R.; Gigliotti, G.

    2009-04-01

    The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil

  18. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    Science.gov (United States)

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  19. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Directory of Open Access Journals (Sweden)

    Devin B Holman

    Full Text Available Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  20. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Science.gov (United States)

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  1. Effect of bio-surfactant on municipal solid waste composting process

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou; LIU Hong-liang; HUANG G H; ZHANG Bai-yu; QIN Xiao-sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains Ⅲ (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains Ⅲ (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains Ⅲ (2),the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains Ⅲ (2) were both higher than those without Strains Ⅲ (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains Ⅲ (2)with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate(PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  2. ANAEROBIC CO-TREATMENT OF LEACHATES PRODUCED IN A BIODEGRADABLE URBAN SOLID WASTE COMPOSTING PLANT IN MEXICO CITY

    OpenAIRE

    Gan, J; G. Montaño; C FAJARDO; Meraz, M.; P. Castilla

    2013-01-01

    In this work the anaerobic co-treatment of the leachates produced during urban solid biodegradable wastes composting diluted with municipal wastewater, was investigated. Leachates produced during the first 30 days of garbage composting contained 102.1 g COD L-1, 20 g VFA L-1, acid pH and 0.64 g NHt-N L-l. Instead, leachates that remained for 3 months the composting plant after being produced contained 15.8 g COD L-1,2.35 g VFA L-1, a pH near neutrality and 5.36 g NHt-N L-l. An anaerobic zeoli...

  3. Identification of locally available structural material as co-substrate for organic waste composting in Tamil Nadu, India.

    Science.gov (United States)

    Springer, C; Heldt, N

    2016-06-01

    Owing to the lack in structural strength while composting certain kinds of organic wastes, 11 co-substrates were tested that are generally locally available in rural areas of northern Tamil Nadu, India. In addition to the classical composting parameters such as carbon/nitrogen ratio, moisture content, dry matter and organic dry matter, a compression test was conducted to evaluate the structural strength and the suitability as bulking agent for composting processes. Additionally, with respect to the climatic conditions in India, the water holding capacity was also evaluated. PMID:27126983

  4. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management

    International Nuclear Information System (INIS)

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD5 concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36 weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  5. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-07-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  6. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    International Nuclear Information System (INIS)

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  7. Characterization of compost-like outputs from mechanical biological treatment of municipal solid waste.

    Science.gov (United States)

    Donovan, Sally M; Bateson, Thomas; Gronow, Jan R; Voulvoulis, Nikolaos

    2010-06-01

    Throughout the world, most municipal solid waste consists of biodegradable components. The most abundant biological component is cellulose, followed by hemicellulose and lignin. Recycling of these components is important for the carbon cycle. In an attempt to reduce the environmental impacts of biodegradable wastes, mechanical biological treatments (MBTs) are being used as a waste management process in many countries. MBT plants attempt to mechanically separate the biodegradable and nonbiodegradable components. The nonbiodegradable components are then sent for reprocessing or landfilled, whereas the biodegradable components are reduced in biological content through composting or anaerobic digestion, leaving a compost-like output (CLO). The further use of these partially degraded residues is uncertain, and in many cases it is likely that they will be landfilled. The implications of this for the future of landfill management are causing some concern because there is little evidence that the long-term emissions tail will be reduced. In this study, the CLOs from four different biological treatment processes were characterized for physical contamination through visual inspection and for biological content using a sequential digestion analysis. The results indicate that the composition of the incoming waste, dependent on the way the waste was collected/segregated, was the factor that influenced biological content most, with length of treatment process the second most important. PMID:20564995

  8. 园林废弃物好氧堆肥处理技术的研究进展%Research Progress of Composting Treatment Technologies of Garden Waste

    Institute of Scientific and Technical Information of China (English)

    梅娟

    2014-01-01

    从堆肥处理工艺、堆肥过程控制、堆肥机械研制等方面介绍了我国园林废弃物好氧堆肥研究的现状。现有研究存在的问题主要是针对园林废弃物堆肥专用菌剂,以及对园林废弃物与其它易腐有机废弃物混合堆肥工艺和装置的研究较少。%With the rapid development of urban greening, the amount of garden waste is increasing in China cit-ies. The aerobic composting treatment has become an important method of garden waste resource utilization. Garden waste composting has been practiced in several major cities now, and there have been many researches about appropri-ate composting technologies. Research status of garden waste composting treatment in China is introduced in this paper in terms of content, including composting treatment progress, composting progress controlling, and composting equip-ment research and development. The existing problems in previous studies are analyzed and the suggestions are given that more attention should be paid on specific microorganism agent for garden waste composting and the technology and equipment for mixed composting of garden waste with easily degradable waste in the further.

  9. The effect of application of compost from urban solid wastes on the properties of agricola soil; Efecto de la aplicacion de compost de residuos solidos urbanos sobre las propiedades de un suelo agricola

    Energy Technology Data Exchange (ETDEWEB)

    Garci-Gil, J. C.; Soler-Rovira, P.; Alonso, N.; Diaz-Marcote, I.; Polo, A. [C.S.I.C. Madrid (Spain)

    1999-08-01

    A long-term field experiment was conducted to determine the effect of the addition of municipal solid waste (MSW) compost applied at two different rates on a barley crop. In all treatments, values obtained for plants overall weights show increases in comparison to the control, especially with the higher rate of compost. The contents of macronutients in plants were similar in all the treatments. only N showed an increase in both grain and straw with the higher rate of compost during the years of consecutive applications. No heavy metal contamination was observed in plants, but in the compost treatments the contents of Zn increased while Mn decreased. (Author)

  10. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    OpenAIRE

    ANDERSEN, J. K.; Boldrin, Alessio; Christensen, Thomas Højlund; Scheutz, Charlotte

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the envir...

  11. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash.

    Science.gov (United States)

    Belyaeva, O N; Haynes, R J

    2009-11-01

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase (50 degrees C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38 degrees C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil. PMID:19539464

  12. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  13. Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic

    International Nuclear Information System (INIS)

    This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and

  14. Proposal for the integration of decentralised composting of the organic fraction of municipal solid waste into the waste management system of Cuba.

    Science.gov (United States)

    Körner, I; Saborit-Sánchez, I; Aguilera-Corrales, Y

    2008-01-01

    Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended. PMID:17321124

  15. Energy or compost from green waste? - A CO(2) - based assessment.

    Science.gov (United States)

    Kranert, Martin; Gottschall, Ralf; Bruns, Christian; Hafner, Gerold

    2010-04-01

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currently subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO(2)-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions. PMID:19896819

  16. Studies concerning recycling by composting organic waste in Tg-Mureş

    Directory of Open Access Journals (Sweden)

    Florica Morar

    2011-12-01

    Full Text Available Recycling organic waste has become a matter of utmost importance for overall healthiness of the Earth, its volume largely interacting with the economic development. The problem tends to become a vital matter of survival for an entire society. In this context, recovery, recycling, physical-chemical treatment, composting or incineration are methods of waste processing, commonly used in most countries of the world. These measures are intended to both environmental protection and rational use and economically efficient. Based on the data regarding the municipal waste generated in Mures County, in previous years, and in Tg-Mures city, in 2007 were calculated the quantities expected to generate by the year 2038. Also, concerning the cleaning recovery it is proposed the pile composting method, being, from our point of view, more Beneficial in the area. In conclusion, at county level but at city level too, there is still working to do, primarily in terms of awareness, not only the population but also the relevant, local bodies, of what means the cleaning recovery of the municipal waste.

  17. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  18. Dining Services composting program aims to reduce landfill waste

    OpenAIRE

    Gehrt, Katie

    2009-01-01

    Thanks to a new partnership between Virginia Tech Dining Services and Poplar Manor Enterprises LLC (PME), the Southgate Food Processing Center on campus has reduced the amount of food waste it sends to the local landfill each week by as much as 2.5 tons.

  19. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.

    Science.gov (United States)

    Tsang, Daniel C W; Yip, Alex C K; Olds, William E; Weber, Paul A

    2014-09-01

    In situ metal stabilisation by amendments has been demonstrated as an appealing low-cost remediation strategy for contaminated soil. This study investigated the short-term leaching behaviour and long-term stability of As and Cu in soil amended with coal fly ash and/or green waste compost. Locally abundant inorganic (limestone and bentonite) and carbonaceous (lignite) resources were also studied for comparison. Column leaching experiments revealed that coal fly ash outperformed limestone and bentonite amendments for As stabilisation. It also maintained the As stability under continuous leaching of acidic solution, which was potentially attributed to high-affinity adsorption, co-precipitation, and pozzolanic reaction of coal fly ash. However, Cu leaching in the column experiments could not be mitigated by any of these inorganic amendments, suggesting the need for co-addition of carbonaceous materials that provides strong chelation with oxygen-containing functional groups for Cu stabilisation. Green waste compost suppressed the Cu leaching more effectively than lignite due to the difference in chemical composition and dissolved organic matter. After 9-month soil incubation, coal fly ash was able to minimise the concentrations of As and Cu in the soil solution without the addition of carbonaceous materials. Nevertheless, leachability tests suggested that the provision of green waste compost and lignite augmented the simultaneous reduction of As and Cu leachability in a fairly aggressive leaching environment. These results highlight the importance of assessing stability and remobilisation of sequestered metals under varying environmental conditions for ensuring a plausible and enduring soil stabilisation. PMID:24859701

  20. Use of Fertigation and Municipal Solid Waste Compost for Greenhouse Pepper Cultivation

    OpenAIRE

    Nikos Tzortzakis; Sofia Gouma; Eleni Dagianta; Christos Saridakis; Maria Papamichalaki; Dimitrios Goumas; Thrassyvoulos Manios

    2012-01-01

    Municipal solid waste compost (MSWC) and/or fertigation used in greenhouse pepper (Capsicum annuum L.) cultivation with five different substrates with soil (S) and/or MSWC mixtures (0–5–10–20–40%) used with or without fertigation. Plants growth increased in 10–20% MSWC and fertigation enhanced mainly the plant height. Fruit number increased in S : MSWC 80 : 20 without fertilizer. Plant biomass increased as MSWC content increased. There were no differences regarding leaf fluoresces and plant y...

  1. Co-composting

    OpenAIRE

    Dinis, Maria Alzira

    2010-01-01

    A further and stronger effort has to be made in terms of allowing composting to reveal its benefits. Increasing technological experiments have been done with composting of biodegradable wastes and even some considered hazardous. Treated sewage sludge mixed with biodegradable wastes provides a rich source of bacteria and nutrients. But we have gone further and today co-composting is done with a diversity of wastes and not only. There is no turning back in our throwaway society a...

  2. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob; Christensen, Thomas Højlund; Favoino, E.

    2009-01-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficie...

  3. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.

    Science.gov (United States)

    Karami, Nadia; Clemente, Rafael; Moreno-Jiménez, Eduardo; Lepp, Nicholas W; Beesley, Luke

    2011-07-15

    Green waste compost and biochar amendments were assessed for their assistance in regulating the mobility of copper (Cu) and lead (Pb) and the resultant uptake of these metals into vegetation. The amendments were mixed with a heavily Cu and Pb contaminated soil (600 and 21,000 mg kg(-1), respectively) from a former copper mine in Cheshire (UK), on a volume basis both singly and in combination in greenhouse pot trials. Ryegrass (Lolium perenne L. var. Cadix) was grown for the following 4 months during which biomass, metals in soil pore water and plant uptake were measured in three consecutive harvests. Very high Pb concentrations in pore water from untreated soil (>80 mg l(-1)) were reduced furthest by compost amendment (treatment at reducing pore water Cu concentrations. Duly, ryegrass shoot Cu levels were reduced and large, significant reductions in shoot Pb levels were observed after biochar and compost amendments, respectively during successive harvests. However, because green waste compost singly and in combination with biochar vividly enhanced biomass yields, harvestable amounts of Pb were only significantly reduced by the compost amendment which had reduced shoot Pb levels furthest. The low biomass of ryegrass with biochar amendment meant that this was the only amendment which did not significantly increase harvestable amounts of Cu. Therefore the two amendments have opposing metal specific suitability for treating this contaminated soil regarding whether it is a maximum reduction in plant tissue metal concentration or a maximum reduction in harvestable amount of metal that is required. PMID:21565444

  4. Modelling response patterns of physico-chemical indicators during high-rate composting of green waste for suppression of Pythium ultimum.

    Science.gov (United States)

    St Martin, Chaney C G; Bekele, Isaac; Eudoxie, Gaius D; Bristol, Dexter; Brathwaite, Richard A I; Campo, Kenia-Rosa

    2014-01-01

    High-rate composting studies on green waste, i.e. banana leaves (BL) and lawn clippings (LC), were conducted in 0.25-m3 rotary barrel composters to evaluate and model changes in key physico-chemical parameters during composting. Time to compost maturity and antagonistic effects and relationships of composts against Pythium ultimum were also investigated. Higher temperatures were achieved in LC compost (LCC), which did not translate to higher total organic carbon (TOC) loss but resulted in lower carbon to nitrogen ratio (C:N) and a more mature compost. With the exception of electrical conductivity (EC), net decreases were observed in pH, TOC and C:N across compost types. Total Kjeldahl nitrogen (TKN) showed a net increase in LCC and a net decrease in BLC. With the exception of TOC and pH, the results showed that compost type and time had a significant effect on the respective TKN, EC and C:N models. Compost temperature and TOC were best described by the critical exponential and rectangular hyperbola functions, respectively. Whereas TKN, C:N and pH were described using double Fourier functions and EC using Fourier functions. Composts achieved maturity within 19 days and significantly inhibited the growth of P. ultimum. Bacterial population was positively related to growth inhibition (GI) across compost types, whereas total microbial population had a positive relationship with GI in LCC. Evidence suggests that multiple groups of microorganisms contributed to GI through antibiosis and competition for resources. Composts were determined to be suitable for use as components of plant growth substrates based on compost maturity indices. PMID:24645438

  5. Composting case study

    OpenAIRE

    Burke, Jean; Walsh, Phil

    2002-01-01

    This report was presented at the UK Organic Research 2002 Conference. Garden waste delivered by the public to a recycling centre is stockpiled, shredded and delivered to the on-farm composting site. The material is forced, together with aeration pipes into 60 metre long EcoPods using specialist machinery. The temperatures achieved during the composting process are fully monitored and controlled using a forced aeration system. The composting site operates under a waste management licence exemp...

  6. Utilización de azufre micronizado en la corrección del pH de compost de residuos de poda Correction of the pH of pruning waste compost with micronized sulphur

    Directory of Open Access Journals (Sweden)

    L.A. Barbaro

    2010-12-01

    Full Text Available Los compost actualmente son muy utilizados como componentes de sustratos, aunque en algunos casos presentan pH alcalinos y causan problemas nutricionales. Por ello se recomienda hacer una corrección previa a su utilización o luego de elaborar el sustrato. Algunas alternativas para bajar el pH es mezclando el compost con materiales ácidos o mediante la adición de azufre, sulfato ferroso u otros compuestos azufrados. El objetivo de este trabajo fue corregir el pH de un compost de residuos de poda con azufre micronizado y hallar la dosis adecuada para el pH deseado. Se conformaron siete tratamientos, incorporando al compost de poda diferentes dosis de azufre micronizado: 0, 1, 2, 3, 4, 6 y 8 g/litro. Al compost de cada tratamiento se le midió el pH semanalmente y una vez estabilizados se analizó la conductividad eléctrica, concentración de nitrato, calcio, magnesio, potasio y sodio. Para un pH entre 5,3 y 6,2 se necesitaron 2 a 3 g de azufre/litro. El pH del compost disminuyó con el incremento de la dosis de azufre, y la CE aumentó. El azufre micronizado es una alternativa viable para corregir el pH del compost de restos de poda a los valores deseados.Nowadays, composts are widely used for incorporation into substrates and in some cases they present alkaline pH, causing nutritional problems. Therefore, it is suggested that a correction should be made prior to its use or after its preparation. Some alternatives to decrease pH values are mixing compost with acid materials or adding sulphur, ferrous sulphate or other sulphur compounds. The aim of this work was to correct the pH of pruning waste compost with micronized sulphur and find the appropriate dose for the desired pH. Seven treatments were performed incorporating different doses of micronized sulphur: 0, 1, 2, 3, 4, 6 and 8 g per liter of compost. Compost pH was measured weekly in each treatment. Once stabilized, electrical conductivity and concentration of nitrate, calcium, magnesium

  7. Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials

    OpenAIRE

    Cabeza, I. O.; López Núñez, Rafael; Giráldez, I.; Stuetz, R. M.; Díaz, M. J.

    2013-01-01

    In this study, a biofiltration system was designed using mature composts of municipal solid waste (MSW) or MSW mixed with pruning residues (MSW-P) as packing materials to treat vapours of α-pinene (a dominant volatile organic compounds (VOC) emitted during the MSW-P co-composting). Monitoring the efficiency of the biofiltration system was carried out using a photoionization analyser, a commercial electronic nose (e-nose) and gas chromatography - mass spectrometry (GC/MS). Using an EBRT of 66....

  8. P losses in soil columns amended with compost and digestate from municipal solid wastes

    Science.gov (United States)

    García-Albacete, Marta; Cartagena, M. Carmen

    2013-04-01

    Sludge's, manures and compost applied to agricultural soils in high quantities and long-term application to increase crop productivity, result in accumulation of soil phosphorous (P). Soluble P is directly available to algae (Sonzogni et al., 1982) and thus particularly relevant to water quality degradation. Transport of P from agricultural soils to surface waters has been linked to eutrophication in fresh water and estuaries (Sharpley and Lemunyon, 1998). Almost 50% of stored water in Spain is degraded by eutrophication processes that cause the proliferation of algae and other organisms and a decrease in oxygen content (Environmental Profile of Spain 2005). Fertilizers and biodegradable wastes application rates in agriculture are based on nitrogen requirements. This results in a P supply that is in excess of crops needs since the ratio of P to N in waste use to be greater than required by plants (Smith, 1995). While surface runoff is an important pathway of phosphorus losses from agricultural lands, significant losses can also occur via leaching thought soils. Leaching tests are important for assessing the risk of release of potential pollutants from biodegradable wastes into groundwater or surface water. Percolation tests also get information about the interaction of organic waste with soils. The study was conducted according to the percolation leaching test CEN/TS 14405 "Characterization of waste-Leaching behavior test- Up-flow percolation test" with three different soils mixed with organic wastes from msw (compost and digestato) and an inorganic fertilizer (NaH2PO4). Each soil was amended with the P sources at rates of 100 kg P ha-1. Leachates were collected and analyzed for each column for dissolved reactive P by inductively coupled plasma atomic emission spectroscopy (ICP) following USEPA Method 3050A digestion (USEPA, 1995). The fact that P sorption capacity (Xmax, PSI) of the soils was determined using Langmuiŕs isotherms and the P forms from organic

  9. A study of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the livestock waste compost of Hong Kong, PR China

    International Nuclear Information System (INIS)

    Composting is one of the waste disposal methods adopted for disposal of livestock waste in Hong Kong. The composting livestock waste normally undergoes 6-8 weeks fermentation, followed by 16-20 weeks maturation. The matured compost is sold as soil conditioner in the local market. In 2006, feedstock material and a time-series of compost samples were collected throughout the fermentation and maturation process from the Sha Ling Composting Plant in the New Territories. The feedstock material and compost samples were analyzed for contents of three unintentional persistent organic pollutants (POPs), i.e. dioxins/furans, dioxin-like PCBs and total PCBs. These POPs are unintentionally produced by-products of chemical industrial processes and combustion processes. Selected heavy metals were also analyzed, which served as conservative tracers to determine potential mass loss during the composting process. Levels of contamination by these POPs were found to be low in the matured compost for sale. The mean concentrations (lower-upper bound) of total dioxins/furans, total dioxin-like PCBs and total PCBs were 2.01-2.05 ng I-TEQ/kg dw, 0.04-0.05 ng WHO-TEQ/kg dw and 1.55-1.55 μg/kg dw, respectively. Progressively elevated levels of these POPs were observed in the compost samples during the fermentation process. Analysis of the congener profiles revealed that the heptaCDD and octaCDD were the main contributors to the observed increase in dioxin/furan content. The possible sources of dioxins/furans in the compost were discussed. The study results established a local dioxins/furans emission factor specific to the trade and provided a better estimate of the annual dioxins/furans emission for the livestock waste composting activity in Hong Kong

  10. Insects associated with the composting process of solid urban waste separated at the source

    Directory of Open Access Journals (Sweden)

    Gladis Estela Morales

    2010-01-01

    Full Text Available Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae. Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.

  11. PLFAs of the microbial communities in composting mixtures of agro-industry sludge with different proportions of household waste

    OpenAIRE

    Amir, Soumia; Abouelwafa, Rajae; Meddich, Abdelilah; Souabi, Salah; Winterton, Peter; Merlina, Georges; Revel, Jean-Claude; Pinelli, Eric; Hafidi, Mohamed

    2010-01-01

    Phospholipid fatty acids (PLFAs) were analysed at different time periods during composting of two waste mixtures rich in fats, M1 (22%) and M2 (39%), with the aim of monitoring changes in microbial community structure. The two mixtures consisted of a sludge sample collected from a vegetable oil refinery effluent treatment plant combined with household wastes. The PLFA profiles of both mixtures revealed that, at the start of the process, fungi and Gram-negative bacteria (GÀ) were more abundant...

  12. Ultrahigh performance composting of sludge from food industry-comparative study of fermentation in sawdust and paper mixing methods

    International Nuclear Information System (INIS)

    We succeeded to develop an ultra high performance composting system for food industrial sludge by employing paper mixing method. Sludge was mixed with cut pieces (3 x 12 mm) of waste paper, like newspapers, in the range of 10-20 % (w/w) in an electric mixer to enhance the porosity and reduce water content of the mass. We followed conventional way of sawdust mixing as control. The mixture was subjected to aeration at room temperature with an electric blower at 86 L/min/m/sup 2/ bottom area of bio-reactor. The composting process completed in 10 days, in contrast to the conventional cases where it takes 60 to 90 days to complete composting, thereby reducing the time course 6 to 9 fold. Chemical analyses of the compost showed concentration nitrogen (N) 5.0%, phosphorus (P) 4.9% and potassium (K) 0.6% while all heavy metal contents were below the standard required level. The compost showed pH 7.1, EC 5.6 and C/N ratio 8. We analyzed for nitrogen release into the soil and efficacy on the germination and growth of Brassica Tapa L. the compost showed markedly good effect on the growth of the plantlets. The present study demonstrated that the paper-mixed composting method is highly efficient and energy saving. In addition, this method can lead to design a reactor which is compact but with very high capacity to convert municipal organic waste to compost. (author)

  13. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    Science.gov (United States)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and

  14. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  15. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    International Nuclear Information System (INIS)

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg−1 wet waste (ww) for the non-toxic categories and −0.9 to 28 mPE Mg−1 ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

  16. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    International Nuclear Information System (INIS)

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in the compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.

  17. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed

  18. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production.

    Science.gov (United States)

    Zorpas, Antonis A; Arapoglou, Dimitris; Panagiotis, Karlis

    2003-01-01

    Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions. PMID:12623099

  19. Succession of Actinomycetes During Composting Proccess of Dairy-Farm Waste Investigated by Culture-Dependent and Independent Approaches

    Directory of Open Access Journals (Sweden)

    Mukhlissul Faatih1

    2015-11-01

    Full Text Available Mesophilic, thermophilic, and maturation phases were recognized in composting proccess. Temperaturechanges influence the microbial communities in compost within composting proccess. Actinomycetes account for alarger part of compost microbial population. The aim of this research was to study succession of actinomycetescommunity during composting of dairy-farm waste investigated by culture-dependent and independentapproaches.In culture-independent method, the succession of actinomycetes community was analyzed by nestedpolymerasechain reaction of ribosomal intergenic spacer (nested-PCR RISA using spesific primer F243 and primerR23S followed by a second PCR using primers F968 and R23S. In culture-dependent method actinomycetes fromcompost were isolated on selective media, starch-nitrate medium and humic-acid + vitamins medium. DNA ofactinomycetes was extracted and amplified by repetitive sequence-based PCR (rep-PCR using primer BOXA1R. Thebanding patterns were used to generate dendrograms by UPGMA clustering with NTSYS program. Microcosmcontaining sterile rice-straw and water which is inoculated with each actinomycetes isolates was used for examiningthe ability of each isolate in rice-straw degradation.The experiment results showed that succession of both bacteria and actinomycetes was occured withincomposting proccess of dairy-farm waste. Analysed by culture-independent method revealed that the highestcommunity of compost’s bacteria was on mesophilic, thermophilic, and maturation phases, respectively. WhereasPCR-nested RISA resulted the highest population of actinomycetes was on thermophilic, maturation, and mesophilicphases, respectively. By culture-dependent method was obtained 29 actinomycetes isolates from mesophilic phase,23 isolates from thermophilic phase, and 19 isolates from maturation phase. Genetic diversity analysis of the obtainedisolates showed the presence of phylogenetic grouping on each phase of composting proccess. This result

  20. Growth Performance and Nutrient Uptake of Oil Palm Seedling in Prenursery Stage as Influenced by Oil Palm Waste Compost in Growing Media

    OpenAIRE

    Rosenani, A.B.; Rovica, R.; Cheah, P. M.; Lim, C. T.

    2016-01-01

    The use of composted oil palm wastes in the oil palm nursery as an organic component of growing medium for oil palm seedlings seems promising in sustainable oil palm seedling production. This study was conducted to investigate the effects of six oil palm waste compost rates (0, 20, 40, 60, 80, and 100%) on the growth performance of oil palm seedling and nutrient uptake in the prenursery stage (0–3 months). The addition of oil palm compost reduced the soil bulk density (1.32 to 0.53 g cm−3) an...

  1. 生活垃圾堆肥发酵研究%Study on Municipal Solid Waste Composting

    Institute of Scientific and Technical Information of China (English)

    于萍萍; 扎西罗布; 扎西; 桑杰扎西; 莫祖斌; 张洁荣

    2013-01-01

    [Objective]Use of municipal solid waste composting is a scientific and rational processing and utilization measure. [Method]In Bayi Town,municipal solid waste composting study with a number of different methods and different ingredients was carried out to select the most economical and practical testing method for solid waste composting. [ Result] After the compost of waste and animal manure, the nutrient content was the highest in 2nd group ( garbage: cow dung, pig manure: barley straw = 1 : 1:2). [ Conclusion ] Proportion of municipal solid waste in 2nd group was suitable.%[目的]利用生活垃圾堆肥是科学、合理地处理和利用生活垃圾的根本措施.[方法]在八一镇,采取不同方法、不同的配料比进行生活垃圾堆肥的试验研究,选取一种最经济、最实用的生活垃圾堆肥发酵试验方法.[结果]垃圾与畜禽粪便混合堆肥后,养分含量最高的是垃圾和牛猪粪混合的2号堆肥组(垃圾∶牛粪、猪粪∶青稞秸秆=1∶1∶2).[结论]2号生活垃圾堆肥配比比较成功.

  2. Production of Potassium and Calcium Hydroxide, Compost and Humic Acid from Sago (Metroxylon sagu) Waste

    OpenAIRE

    C. P. Auldry; Ahmed, O. H.; A. M.N. Muhamad; H.M. Nasir; M. Jiwan

    2009-01-01

    Problem statement: Agriculture waste such as Sago Waste (SW) has a potential to cause pollution when the waste is discarded into rivers. In order to add value to SW, a study was conducted to produce potassium and calcium hydroxide, compost and Humic Acid (HA) from SW. Approach: The SW was air-dried and some grinded. The grinded SW was incinerated at 600°C. Potassium and calcium hydroxide was extracted by dissolving the ash in distilled water at a ratio of 1:500 (ash: water), equilibrated for ...

  3. Modelling of the kinetics of municipal solid waste composting in full-scale mechanical-biological treatment plants

    OpenAIRE

    Baptista, Marco Henrique de Carvalho

    2009-01-01

    This work focused on the study of the kinetics of municipal solid waste composting in four full-scale mechanical-biological treatment (MBT) plants. We investigated how well the existent plants in Portugal were being operated, and estimated their performance at optimum operation. To achieve this, volatile solids (VS) content and several environmental conditions, namely temperature (T), moisture content (MC), oxygen concentration ([O2]), and free air space (FAS), were monitored throughout th...

  4. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Palumbo-Roe, Barbara [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom)

    2011-07-15

    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg{sup -1} and 362 mgCu kg{sup -1}) and Pb/Zn mine (4550 mgPb kg{sup -1} and 908 mgZn kg{sup -1}) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. - Graphical abstract: Display Omitted Highlights: > Compost reduced the mobility of Cu, Pb and Zn. > Compost increased the mobility of As. > Earthworms decreased water soluble As and Cu but increased Pb and Zn in porewater. > These effects are explained by the impact of the earthworms and compost on pH and DOC. - The effect of earthworms on metal solubility was due to changes in dissolved organic carbon and pH but was reduced with increasing compost amendments.

  5. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products.

    Science.gov (United States)

    Fernández-Delgado Juárez, M; Gómez-Brandón, M; Insam, H

    2015-04-01

    A trial was carried out to evaluate the influence of wood ash admixture on biowaste composting. The aim was to find the optimal dosage of ash addition to enhance the composting process without endangering the final compost characteristics and use. Six treatments including an unamended control (K0) and composts with additions of 3% (K3), 6% (K6), 9% (K9), 12% (K12) and 15% (K15) of wood ash (w/w) were studied. The composting process was monitored in situ for 49days, by measuring temperature, CO2, O2, and CH4 in the piles and pH, electric conductivity (EC), and inorganic N in the laboratory. At the end of the process, the products were tested for Reifegrad (maturity), toxicity and quality. The addition of up to 15% of wood ash to biowaste did not negatively affect the composting process, and the initial differences found between both the low and high ash-treated composts were attenuated with the ongoing process development. Nevertheless, and mainly due to Cd level, composts with higher ash amendment did not comply with the highest quality standards established by the Austrian Compost Ordinance. The failure of obtaining class A+ quality after ash amendment emphasizes the need for a rigid quality selection of (bottom) ashes and thus reducing environmental risks related to high pollutant loads originating from the ashes. PMID:25536175

  6. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate

  7. Changes in soil microbial community composition using cellular markers (PLFA) in soils amended with olive-mill waste composts

    Czech Academy of Sciences Publication Activity Database

    Sánchez-Monedero, M.A.; Elhottová, Dana; Roig, A.; Šimek, Miloslav

    Weimar: ORBIT, 2008, s. 1-8. ISBN 3-935974-20-5. [ International Conference Orbit 2008. Moving Organic Waste Recycling Towards Resource Management and Biobased Economy /6./. Wageningen (NL), 13.10.2008-15.10.2008] R&D Projects: GA MŠk LC06066 Grant ostatní: Spanish Ministry of Science and Innovation(ES) CTM2005-05324 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil microbial community * cellular markers * olive-mill waste composts Subject RIV: EH - Ecology, Behaviour

  8. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@ljmu.ac.u [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M.; Riby, Philip [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Leese, Elizabeth; Morton, Jackie [Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN (United Kingdom); Lepp, Nicholas W., E-mail: nickandeileenlepp@hotmail.co [35 Victoria Road, Formby L37 7DH (United Kingdom)

    2010-12-15

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  9. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    International Nuclear Information System (INIS)

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  10. On-line monitoring of airborne bioaerosols released from a composting/green waste site.

    Science.gov (United States)

    O'Connor, David J; Daly, Shane M; Sodeau, John R

    2015-08-01

    This study is the first to employ the on-line WIBS-4 (Wideband Integrated Bioaerosol Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing "dust" released from a composting/green waste site. The purpose of the research was to provide a "proof of principle" for using WIBS to monitor such a location continually over days and nights in order to construct comparative "bioaerosol site profiles". The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, "shape", site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a "light" workload period, another as a "heavy" workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5-3μm with morphologies ranging from elongated to ellipsoidal/spherical. The real-time number-concentration data provides a long-term "video" record of the site and were consistent with the Andersen sampling protocol performed that provides only a single "snapshot" for bioaerosol release. The number-concentration of fluorescent particles as a proportion of total particle counts amounted, on average, to ∼1% for the "light" workday period, ∼7% for the "heavy" workday period and ∼18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays. PMID:25987290

  11. Growth Performance and Nutrient Uptake of Oil Palm Seedling in Prenursery Stage as Influenced by Oil Palm Waste Compost in Growing Media

    Directory of Open Access Journals (Sweden)

    A. B. Rosenani

    2016-01-01

    Full Text Available The use of composted oil palm wastes in the oil palm nursery as an organic component of growing medium for oil palm seedlings seems promising in sustainable oil palm seedling production. This study was conducted to investigate the effects of six oil palm waste compost rates (0, 20, 40, 60, 80, and 100% on the growth performance of oil palm seedling and nutrient uptake in the prenursery stage (0–3 months. The addition of oil palm compost reduced the soil bulk density (1.32 to 0.53 g cm−3 and increased soil pH (4.7 to 5.1 of growth media. Oil palm waste compost treatment produced positive growth performance up to 70%. A regression analysis indicated in 72% of compost and topsoil mixture as a polybag growth medium was optimum in producing best growth performance of oil palm seedling in the prenursery stage. Foliar analysis implied highest nutrients uptake (N, P, K, Mg, Ca, Fe, Zn, and Cu for seedlings grown in 60 to 100% compost media.

  12. Comparison of compostable bags and aerated bins with conventional storage systems to collect the organic fraction of municipal solid waste from homes. a Catalonia case study.

    Science.gov (United States)

    Puyuelo, Belén; Colón, Joan; Martín, Patrícia; Sánchez, Antoni

    2013-06-01

    The separation of biowaste at home is key to improving, facilitating and reducing the operational costs of the treatment of organic municipal waste. The conventional method of collecting such waste and separating it at home is usually done by using a sealed bin with a plastic bag. The use of modern compostable bags is starting to be implemented in some European countries. These compostable bags are made of biodegradable polymers, often from renewable sources. In addition to compostable bags, a new model of bin is also promoted that has a perforated surface that, together with the compostable bag, makes the so-called "aerated system". In this study, different combinations of home collection systems have been systematically studied in the laboratory and at home. The results obtained quantitatively demonstrate that the aerated bin and compostable bag system combination is effective at improving the collection of biowaste without significant gaseous emissions and preparing the organic waste for further composting as concluded from the respiration indices. In terms of weight loss, temperature, gas emissions, respiration index and organic matter reduction, the best results were achieved with the aerated system. At the same time, a qualitative study of bin and bag combinations was carried in 100 homes in which more than 80% of the families participating preferred the aerated system. PMID:23490360

  13. Effect of different buffer agents on in-vessel composting of food waste: performance analysis and comparative study.

    Science.gov (United States)

    Li, Sheng; Huang, Guo-He; An, Chun-Jiang; Yu, Hui

    2013-01-01

    This study investigated the performance and feasibility for application of different buffer agent combinations, including K2HPO4/MgSO4, KH2PO4/MgSO4 and NaAc, in composting of food waste. The variations of temperature, pH, O2 consumption, organic mass and ammonia release were monitored. The results showed that addition of all these three types of agents could prolong the thermophilic stage during composting. The amendments of KH2PO4/MgSO4 and NaAc could increase and decrease the final pH levels, respectively. Application of K2HPO4/MgSO4 and NaAc would lead to a peak daily oxygen uptake rate of 10.0 and 12.4 mg/(g·h) respectively, which were all higher than that with KH2PO4/MgSO4 amendment. Similarly, the reactors with K2HPO4/MgSO4 and NaAc were also associated with a higher cumulative oxygen uptake and total organic degradation rate. The amendment of NaAc resulted in a higher ammonia loss than the other two agents. More inorganic nitrogen contents were observed in the series with K2HPO4/MgSO4 and NaAc. It can be concluded that K2HPO4/MgSO4 additive showed the most favorable influence on composting performance. The results of this study will have important implications for developing appropriate treatment approach for food waste composting. PMID:23445420

  14. Changes in a Rhodic Hapludox under no-tillage and urban waste compost in the northwest of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Moacir Tuzzin de Moraes

    2014-08-01

    Full Text Available The use of urban waste compost as nutrient source in agriculture has been a subject of investigation in Brazil and elsewhere, although the effects on soil physical and chemical properties and processes are still poorly known. The aim of this study was to evaluate the effect of application of urban waste compost and mineral fertilizer on soil aggregate stability and organic carbon and total nitrogen content of a Rhodic Hapludox under no-tillage in the northwestern region of Rio Grande do Sul, Brazil, in the 2009/2010 and 2010/2011 growing seasons. The experiment was arranged in a 2 × 6 (seasons and fertilization factorial in a randomized complete block design with four replications. The factor time consisted of two growing seasons (sunflower in 2009/10 and maize in 2010/11 and the factor fertilization of five rates of urban waste compost (0, 25, 50, 75 and 100 m³ ha-1, and mineral fertilizer. Soil samples were collected from the 0.0-0.10 m layer to determine aggregate stability (mean weight and geometric diameter, soil organic carbon (SOC and total nitrogen (TN. Rates of up to 75 m³ ha-1 of urban waste compost, after two years of application to no-tillage maize and sunflower, improved aggregation compared to mineral fertilization in a Rhodic Hapludox. After the second crop, the SOC and TN contents increased linearly with the levels of urban waste compost.

  15. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices.

    Science.gov (United States)

    Saha, J K; Panwar, N; Singh, M V

    2010-02-01

    A study was conducted to investigate physico-chemical properties, fertilizing potential and heavy metal polluting potentials of municipal solid waste composts produced in 29 cities of the country. Results indicated that except a very few samples, all other samples have normal pH and EC. Organic matter as well as major nutrients N and P contents in MSW composts are generally low as compared to the composts prepared from rural wastes. Heavy metal contents in composts from bigger cities (>1 million population) were higher by about 86% for Zn, 155% for Cu, 194% for Cd, 105% for Pb, 43% for Ni and 132% for Cr as compared to those from smaller cities (MSW composts did not conform to the quality control guideline of 'The Fertilizer (Control) Order 1985' in respect of total organic C, total P, total K as well as heavy metals Cu, Pb and Cr. In order to enable the relevant stakeholders to judge overall quality, a scheme has been proposed for the categorization of composts into different marketable classes (A, B, C, and D) and restricted use classes (RU-1, RU-2, and RU-3) on the basis their fertilizing potential and as well as potential for contaminating soil and food chain. Under the scheme, 'Fertilizing index' was calculated from the values of total organic C, N, P, K, C/N ratio and stability parameter, and 'Clean index' was calculated from the contents of heavy metals, taking the relative importance of each of the parameters into consideration. As per the scheme, majority of the compost samples did not belong to any classes and hence, have been found unsuitable for any kind of use. As per the regulatory limits of different countries, very few compost samples (prepared from source separated biogenos wastes) were found in marketable classes (A, B, C and D) and some samples (11-14) were found suitable only for some restricted use. PMID:19857948

  16. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    Science.gov (United States)

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. PMID:27173566

  17. Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants

    International Nuclear Information System (INIS)

    Composting and digestion are important waste management strategies. However, the resulting products can contain significant amounts of organic pollutants such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). In this study we followed the concentration changes of PCBs and PAHs during composting and digestion on field-scale for the first time. Concentrations of low-chlorinated PCBs increased during composting (about 30%), whereas a slight decrease was observed for the higher chlorinated congeners (about 10%). Enantiomeric fractions of atropisomeric PCBs were essentially racemic and stable over time. Levels of low-molecular-weight PAHs declined during composting (50-90% reduction), whereas high-molecular-weight compounds were stable. The PCBs and PAHs concentrations did not seem to vary during digestion. Source apportionment by applying characteristic PAH ratios and molecular markers in input material did not give any clear results. Some of these parameters changed considerably during composting. Hence, their diagnostic potential for finished compost must be questioned. - During field-scale composting, low molecular weight PCBs and PAHs increased and decreased, respectively, whereas high molecular weight compounds remained stable

  18. Decomposition of olive mill waste compost, goat manure and Medicago sativa in Lebanese soils using the litterbag technique

    Science.gov (United States)

    Atallah, Therese

    2014-05-01

    Organic amendments, green manure and plant residues incorporation are the main sources of nutrients in organic farming, their decomposition rate is crucial for the accumulation and long-term storage of organic matter in soils. In this study the decomposition of compost from olive mill waste (N: 29.3 g kg-1; total dissolved nitrogen or TDN: 3.82 g kg-1), goat manure (N: 31.5 g kg-1; TDN: 0.94 g kg-1), the shoots (N: 33.6 g kg-1; TDN: 17.57 g kg-1) and roots (N: 22.12 g kg-1; TDN: 8.87 g kg-1) of Medicago sativa was followed in three Lebanese soils. The nitrogen, phosphorus and potassium released were followed over one year, starting in early winter (December-January). The mild sub-humid Mediterranean conditions allowed a rapid mass loss in alfalfa shoots 30 days after incorporation. Manure and compost were more persistent. Between 80 and 90% of TDN were released, after 30 days of in-situ incubation for compost, the release was over 90% for alfalfa shoots. The movement of P was slower, as the compost (6.99 g kg-1 of P) and manure (9.81 g kg-1 of P) lost 33% and 22%, respectively, during 30 days of incubation. After one year, 15 to 35% of P remained in the soils. The manure was the richest in potassium (19.66 g kg-1) followed by the alfalfa shoots (15.56 g kg-1), the compost (8.19 g kg-1) and the roots (5.96 g kg-1). The loss of potassium was important, as over 88% had disappeared over the year. All decomposition curves followed an exponential model. The calculated coefficients of decomposition for total nitrogen (lnfinal - lninitial/days) were significantly higher for alfalfa shoots (0.00547 day-1) and similar for the compost (0.00184 day-1) and the manure (0.00175 day-1). The ANOVA test showed a difference between two of the sites (Site A: 521 g kg-1 of clay and 42 g kg-1 of calcium carbonate; Site S: 260 g kg-1 of clay and 269 g kg-1 of CaCO3) and the third one (Site L: 315 g kg-1 of clay and 591 g kg-1 of CaCO3). The relationships between the soil calcium

  19. Adsorption Properties of Adsorption Tower Filled with Calcium Superphosphate on NH3 Emitted from Composting System of Animal Wastes

    Institute of Scientific and Technical Information of China (English)

    Dandan LUI; Yunxiao CHONG; Qitang WU; Genyi WU; Dechun HE; Jinrong QIU; Zhencheng XU

    2012-01-01

    [Objective] This study aimed to investigate the adsorption properties of the adsorption tower filled with calcium superphosphate on ammonia volatilized with aer- ation. [Method] Adsorption tower filled with calcium superphosphate was adopted as experimental apparatus, which was constructed by poly vinyl chloride (PVC) circular tubes. With hartshorn as the source of ammonia volatilization, the effect of different ratios of height to diameter of the tower filled with equal amount of calcium super-phosphate on ammonia adsorption was investigated. In addition, adsorption tower with height-diameter ratio of 9.9 was selected to adsorb the ammonia emitted from the composting systems of pig manure and chicken manure with optimized and reg- ulated carbon-nitrogen ratio. [Result] Under certain volatilization rate, calcium super- phosphate particles in the adsorption tower could effectively adsorb the ammonia, and the adsorption efficiency was enhanced with the increase of height-diameter ra-tio, which could reach above 90% with height-diameter ratio of more than 1.1; the ammonia emitted from composting systems of pig manure and chicken manure with optimized and regulated carbon-nitrogen ratio could be completely absorbed using adsorption tower with height-diameter ratio of 9.9 filled with calcium superphosphate accounting for about 8% of the weight of composting materials. [Conclusion] Experi- mental results of this study provided reference for the application of adsorption tower filled with calcium superphosphate in the treatment of waste gas emitted from com- posting materials.

  20. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food

    International Nuclear Information System (INIS)

    The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO2 evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO2 evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO2 evolution potential, specific CO2 evolution rate, and lag phase time. No parameters that describe the impact of operating variables are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO2 evolution potentials on aeration and agitation. In the first stage, a maximum CO2 evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time

  1. Relationship between the nutrition status and sensory characteristics of melon fertilized with wine-distillery waste compost

    Science.gov (United States)

    Requejo, María Isabel; Sánchez-Palomo, Eva; González, Miguel Angel; Castellanos, Maria Teresa; Villena, Raquel; Cartagena, Maria Carmen; Ribas, Francisco

    2015-04-01

    The interest in developing sustainable agriculture is becoming more important day by day. A large quantity of wastes from the wine and distillery industry are produced and constitute a serious problem not only environmental but also economic. The use of exhausted grape marc compost as organic amendment is a management option of the fertility of soils. On the other hand, consumers are increasingly concerned about the type, quality and origin of food production. Flavor and aroma are most often the true indicators of shelf-life from the consumer's point of view. The aim of this study was to relate the nutritional status of melon fertilized with exhausted grape marc compost with the sensory profile of fresh-cut fruits. A field experiment was established with three doses of compost (1, 2 and 3 kg per linear meter) and a control. Melons were harvested at maturity and the sensory evaluation was carried out by an expert panel of melon tasters to describe odour, flavour and texture. Nitrogen, phosphorus and potassium concentration was determined in the fruits to calculate nutrient absorption. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01

  2. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    Science.gov (United States)

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes. PMID:20000002

  3. microbiological parameters and maturity degree during composting of Posidonia oceanica residues, mixed with vegetable wastes in semi-arid pedo-climatic condition

    Institute of Scientific and Technical Information of China (English)

    SAIDI Neyla; KOUKI Soulwene; M'HIRI Fadhel; JEDIDI Naceur; MAHROUK Meriam; HASSEN Abdennaceur; OUZARI Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) a C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (9.48 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  4. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study investigated the antimicrobial properties of Chinese medicinal herbal residues (CMHRs) during its co-composting with food waste (FW) in two different ratios along with a control. Inhibition on total microbial population were assessed while the numerically dominant microbes were isolated and their antagonistic effects were assessed. Results indicate that the active ingredients persist in the composting mass did not affect the microbes unspecifically as revealed from almost similar bacterial and fungal populations. Rather specific inhibitory activities against Alternaria solani and Fusarium oxysporum were observed. Apart from the CMHR-born active compounds, CMHR-induced changes in the antagonistic and mycoparasitic abilities of the bacteria and fungi also contribute to the specific inhibition against the tested pathogens. Therefore use of CMHRs during the composting of CMHRs enhances its antipathogenic property resulting in an anti-pathogenic compost. PMID:27039351

  5. Biodegradation of Phenolic Compounds in Creosote Treated Wood Waste by a Composting Microbial Culture Augmented with the Fungus Thermoascus aurantiacus

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: Creosote is used as a wood preservative and water proof agent in railway sleepers, utility poles, buildings foundations and fences and garden furniture. It is a mixture of over 300 hydrocarbons which include 75% polycyclic aromatic hydrocarbons, 2-17% phenolic compounds and 10-18% heterocyclic organic compounds. Exposure to creosote may result in several health problems including damage to kidney, liver, eyes and skin. Potential contamination of soil and water exist from creosote treated wood from construction and demolition sites. Approach: The possibility of using an invessel composting process augmented with the ascomycetous fungus Thermoascus aurantiacus as a mesophilic/thermophilic bioremediation option for the degradation of phenolic compounds in creosote treated wood waste was evaluated. Results: The temperatures of bioremediation process reached thermophilic phase and the mesophilic and thermophilic lag phases were clearly identified. The moisture content decreased significantly indicating that the water produced by microbial respiration did not compensate for the water lost as vapor with the exhaust gases. Initial increases in pH due to the breakdown of organic nitrogen to ammonium and final drop in pH due to the formation of organic acids and the loss of ammonium with the exhaust gases in the latter stage were observed. Different degradation rates were observed in the mesophilic and thermophilic stages of composting. The control experiment achieved higher reductions of volatile solids, total carbon and TKN and higher degradation of phenolic compounds, cellulose and lignin, indicating a higher level of activity of microorganisms during the composting process compared with the inoculated experimental trial. The stability and maturity of the product of the control experiment were also better than those of the product from the inoculated experimental trial. Conclusion: The inoculation of the cellulolyticthermophilic

  6. Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol

    International Nuclear Information System (INIS)

    Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N2O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N2O production over the 28 day incubation from the control soil was 1.5 mg/N2O/m2, and 11 mg/N2O/m2 from the control + N. The N2O emission decreased with GWC addition (P 2O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N2O production during the first week of the trial, when soil N2O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N2O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N2O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N2O, an important greenhouse gas.

  7. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  8. Exploitation of biological wastes for the production of value-added hydrolases by Streptomyces sp. MSWC1 isolated from municipal solid waste compost.

    Science.gov (United States)

    Mokni-Tlili, Sonia; Ben Abdelmalek, Imen; Jedidi, Naceur; Belghith, Hafedh; Gargouri, Ali; Abdennaceur, Hassen; Marzouki, Mohamed Nejib

    2010-09-01

    Actinomycetes with the ability to degrade natural polysaccharides were isolated during a screening programme from soil, farmyard manure and municipal solid waste compost. One of the most potent isolates was identified as Streptomyces sp. MSWC1 using morphological and biochemical properties along with 16S rDNA partial sequence analysis. The highest enzyme production by Streptomyces was observed for the xylanase and chitinase activity on different carbon sources with an optimum of 12,100 IU ml(-1) and 110 IU ml(-1) at 3 days' culture on 1% of xylan and chitin, respectively. To meet the demand of industry, low-cost medium is required for the production of hydrolases by Streptomyces sp. Strain MSWC1 grown on manure, compost, and a natural carbon source was used to evaluate the re-utilisation of biological wastes for the production of value-added products. Despite the presence of a high amount of toxic heavy metals in the compost, Streptomyces produced interesting enzymes that have been biochemically characterized. PMID:20022900

  9. Water and Bromide Dynamics in a Soil Amended with Different Urban Composts

    OpenAIRE

    Chalhoub, Maha; Coquet, Yves; Vachier, Pierre

    2013-01-01

    International audience Urban waste compost additions to soil can increase soil organic matter content and improve soil physical conditions, leading to agronomic and environmental benefits. The need for information still exists to evaluate more precisely the effects of urban waste compost on soil physical properties. Three types of urban waste composts, a biowaste compost (BIO), a municipal solid waste compost (MSW), and a co-compost of green waste and sewage sludge (GWS), were applied once...

  10. Dissolved organic matter dynamic and resident microbiota evolution in soil amended with fresh and composted olive mill wastes

    Science.gov (United States)

    Gigliotti, Giovanni; Massaccesi, Luisa; Federici, Ermanno; Fidati, Laura; Nasini, Luigi; Proietti, Primo

    2013-04-01

    The disposal of olive mill wastes represents a problem of environmental relevance particularly in the Mediterranean countries where olive oil is mostly produced. Among the several valorisation and recycling methods proposed, interesting for its operational simplicity and convenience is land spreading, either directly or after composting. However, the agriculture use of the water-saturated husk produced by the new two-phase oil extraction systems may be hampered by its consistency and its high content of phenolic compounds, which may finally lead to phytotoxicity. Humid husk may indeed modify the dynamic of soil organic matter (SOM) and the structure and function of microbial communities. On the other hand, organic amendments are known to positively affect SOM fractions, particularly by increasing the concentration and quality of dissolved organic matter (DOM), which may eventually lead to an increase in microbial activity. The aim of this work was to investigate, during a 90-day field trial, the modifications in soil DOM composition and the effects on the soil microbiota induced by a humid husk, obtained from a new generation two-phase oil extraction plant, spread in an olive orchard either as a fresh amendment or after a composting process. With respect to the control, the soil amended with either fresh or composted husk showed an increase in water extractable organic carbon (WEOC). Interestingly, while during the first 30 days the soil amended with the composted husk showed a WEOC content higher than the one amended with the fresh husk, after that time only in the latter the WEOC remained significantly higher than in the control. The total content of phenolic compounds showed a similar trend, with the only difference that their concentration in the soil amended with both treatments remained higher than the control for the entire trial. Similarly, both treatments induced an increase in soil reducing sugars, with an higher effect observed in the soil amended with

  11. nfluences of ammonium-nitrate, food waste compost and bacterial fertilizer on soluble soil nitrogen forms and on the growth of carrot (Daucus Carota L.

    Directory of Open Access Journals (Sweden)

    Andrea Balla Kovács

    2014-04-01

    Full Text Available This paper reports a greenhouse study to compare the effects of food waste compost, bacterial fertilizer and their combination with the effect of mineral fertilizer on yield of carrot and the available nutrient content of soils. The study was conducted on calcareous chernozem and acidic sandy soils and consisted of 8 treatments in a randomized complete block design with four replications. The NH4NO3 resulted in reduced growing of carrot plant in sandy soil, and the treatment effect of mineral fertilizer was not observed significantly in chernozem soil. Sandy soil showed higher response of growth of carrot to food waste compost fertilization than chernozem soil. Sole application of EM-1 bacterial fertilizer did not have marked effect on yield parameters and sizes of roots. When EM-1 bacterial fertilizer was applied together with ammonium-nitrate or with compost in chernozem soil, the weights of roots and the sizes of roots in some cases became higher compared to the values of appropriate treatments without inoculation. In sandy soil the diameter of roots slightly increased when EM-1 bacterial fertilizer was applied with ammonium-nitrate and with ammonium-nitrate+compost combination compared to appropriate treatment without inoculation. In chernozem soil the maximum weights and sizes of roots were achieved with the combined treatment of ammonium-nitrate+compost+EM-1 bacterial fertilizer and in sandy soil with compost treatment. Our results of soluble nitrogen content of soils are in good agreement with yield parameters of carrot. Results suggest that food waste compost could be a good substitute for mineral fertilizer application in carrot production mainly in sandy soil. EM-1 bacterial fertilizer did not cause marked effect on yield and yield parameters of carrot plant, but its combination with other fertilizers promises a little bit higher yield or plant available nutrient in the soil. These effects do not clear exactly, so further studies are

  12. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  13. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  14. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste.

    Science.gov (United States)

    Ravindran, Balasubramani; Wong, Jonathan W C; Selvam, Ammaiyappan; Sekaran, Ganesan

    2016-10-01

    This study focuses on the effect of the epigeic earthworm Eudrilus eugeniae (with and without addition) to transform solid state fermented (SSF) and submerged (SmF) state fermented TFL mixed with cow dung and leaf litter into value added products in compost and vermicompost bioreactors respectively. The significant role of microbes was identified during compost and vermicompost process. In addition, three important phytohormones (Indole 3-acetic acid, Gibberellic acid, Kinetin) were also detected in the compost and vermicompost products. The results revealed that the maximum amount of plant hormones were available in the vermicompost products which may be due to the joint action of earthworm and microorganisms. The overall results confirmed that the vermicomposting process produced a greater value added product. PMID:27013190

  15. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    Science.gov (United States)

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. PMID:24810202

  16. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    Science.gov (United States)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly

  17. Compostagem de resíduos sólidos de frigorífico Composting of slaughterhouse solid waste

    Directory of Open Access Journals (Sweden)

    Mônica S. S. de M. Costa

    2009-02-01

    Full Text Available Em virtude da compostagem ser uma alternativa viável e eficiente no tratamento de resíduos agroindustriais, objetivou-se avaliá-la em resíduos provenientes do abate de bovinos e suínos. Confeccionaram-se 12 leiras de compostagem utilizando-se resíduos de frigorífico, palha de trigo e serragem de madeira. O processo foi avaliado pelo monitoramento diário da temperatura, observação da ocorrência de parâmetros indesejáveis (presença de odores desagradáveis e/ou amoniacais, formação de chorume e presença de moscas e larvas e pela capacidade de reciclagem de nutrientes. Os parâmetros indesejáveis foram observados, em média, nos primeiros cinco dias após a confecção das leiras; as temperaturas se elevaram, atingindo picos acima de 70 ºC; quanto à composição química do composto, esta apresentou teores relevantes de macro e micronutrientes demonstrando alto potencial de reciclagem. Recomenda-se a utilização de piso impermeável e estrutura de cobertura durante a compostagem. A freqüência de revolvimentos adotada (15 dias após a confecção da leira, seguida de revolvimentos semanais foi adequada. A melhor relação de peso encontrada foi de 7,2 kg de resíduos para cada kg de palha e 16,6 kg de resíduos para cada kg de serragem.Composting has been a viable and efficient alternative treatment to agroindustrial waste. This experiment was installed with the objective of analyzing the process of composting for slaughterhouse waste. Twelve piles of composting were prepared, using slaughterhouse waste, wheat straw and wood sawdust. The process was evaluated by daily temperature monitoring, observations of the occurrence of undesirable parameters (bad smell and/or ammoniacal smell, grease formation and presence of grubs and flies, as well as the capacity of recycling nutrients. The undesirable parameters were observed, on average, for the first five days after pile building; the temperatures increased, reaching 70 º

  18. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  19. Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    G. Irvine

    2010-01-01

    Full Text Available An in-vessel tunnel composting facility in Scotland was used to investigate the potential for collection and reuse of compost heat as a source of renewable energy. The amount of energy offered by the compost was calculated and seasonal variations analysed. A heat exchanger was designed in order to collect and transfer the heat. This allowed heated water of 47.3oC to be obtained. The temperature could be further increased to above 60oC by passing it through multiple tunnels in series. Estimated costs for installing and running the system were calculated. In order to analyse these costs alternative solar thermal and ground source heat pump systems were also designed. The levels of supply and economic performance were then compared. A capital cost of £11,662 and operating cost of £1,039 per year were estimated, resulting in a cost of £0.50 per kWh for domestic water and £0.10 per kWh for spatial heat. Using the heat of the compost was found to provide the most reliable level of supply at a similar price to its rivals.

  20. Simulation of organic matter and pollutant evolution during composting : the COP-compost model

    OpenAIRE

    Lashermes, Gwenaëlle; Zhang, Yuan; Houot, Sabine; Barriuso Benito, Enrique; Steyer, Jean-Philippe; Patureau, Dominique

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. A...

  1. Ecological, energetic and economical comparison of fermentation, composting and incineration of solid biogenic waste materials; Oekologischer, energetischer und oekonomischer Vergleich von Vergaerung, Kompostierung und Verbrennung fester biogener Abfallstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W. [Arbeitsgemeinschaft Bioenergie GmbH, Arbi, Baar (Switzerland); Schleiss, K. [Umwelt- und Kompostberatung Schleiss, Baar (Switzerland)

    2001-07-01

    This study compares different technologies for the treatment of biogenic wastes, including open windrow and enclosed tunnel composting, anaerobic digestion, the combination of both these methods and burning in waste incineration plants. The methods are compared from the points of view of environmental impact, energy use and production, and economics. The environmental impact, calculated for normalised quantities of waste using the 'Ecoindicator 95+' tool, are discussed and the methane and carbon dioxide emissions of the different methods of treatment are compared. Also, the considerable differences to be found in the energy balances of the different systems are discussed in the light of efforts to substitute nuclear and fossil-fuel generated power. Cost and energetic comparisons are also made between compost and artificial fertilisers. The report is concluded with recommendations for adapting bio-technological methods for the treatment of wastes with an emphasis on anaerobic processes.

  2. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste

    Science.gov (United States)

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  3. The production of commercial organic amendments and fertilisers by composting of two-phase olive-mill waste (“alperujo”)

    OpenAIRE

    Tortosa, Germán; Alburquerque, José Antonio; Ait Baddi, Ghita; Cegarra, Juan

    2012-01-01

    Nowadays, the main concern for the Spanish olive oil industry is the disposal of the huge amounts (about 5 Mt in the last olive oil campaign, 2010-2011) of the two-phase olive-mill waste or “alperujo” (AL) that it produces. Here, we have studied the technical feasibility of using composting to transform AL into commercial organic amendments and fertilisers. For this, six piles of 20 t each, prepared by mixing AL and either poultry (PM) or sheep manure (SM), were composted. In addition, Fe and...

  4. The Effect of Green Waste Composting on the Concentration and Composition of Ambient Bioaerosols

    OpenAIRE

    Pankhurst, Louise J

    2010-01-01

    The emission and dispersal of bioaerosols from commercial composting facilities has become an issue of increasing concern over the past decade, as historical evidence links bioaerosol exposure to negative human health impacts. As a result, recommended concentrations and risk assessment limits were imposed in 2001. However, more recent research has suggested that these limits may be exceeded under certain circumstances. For example, underestimation of bioaerosol concentrations may occur throug...

  5. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Helm, M.; Schoen, H. [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1997-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  6. A stepwise-cluster microbial biomass inference model in food waste composting

    International Nuclear Information System (INIS)

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levels of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH4+-N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH4+-N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.

  7. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    International Nuclear Information System (INIS)

    Highlights: ► Biochemical methane potential decreased by 83% during the two-stage operation. ► Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). ► The average removal efficiency of volatile organic compounds (VOCs) was 96–99%. ► The average removal efficiency of non-methane organic compounds (NMOCs) was 68–99%. ► The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96–99% and 68–99%, respectively.

  8. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.;

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...

  9. Microbial Community Profiling of Biodegradable Municipal Solid Waste Treatments : Aerobic Composting and Anaerobic Digestion

    OpenAIRE

    Yu, Dan

    2014-01-01

    An enormous quantity of solid waste is generated annually all over the world. Solid waste can be divided into three main categories: municipal waste, industrial waste and agricultural waste. The focus of the research presented in this thesis was on the biodegradable fraction of municipal solid waste (MSW), and particularly on the biowaste and sewage sludge generated in the Nordic countries. In general, there are two major options for processing biodegradable MSW in a sustainable manner: aerob...

  10. Physico-chemistry characteristics of compost from urban solid wastes in Valencia (Spain); Caracteristicas fisico-quimicas de los composts de residuos solidos urbanos de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albiach, M. R.; Canet, R.; Pomares, F.; Tarazona, F.; Chaves, C.; Ferrer, E.

    2004-07-01

    For nearly twenty years samples of MSW compost produced in the Valencia region. have been analysed in our laboratories. Their main characteristics are summarised and discussed in this article, which reveals their compliance with current regulations, but also the problems which may arise if stricter requirements are eventually applied by the European Commission. (Author)

  11. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  12. Risk of wine-distillery waste compost application in vulnerable zones: nitrogen balance

    Science.gov (United States)

    Requejo, M. I.; Villena, R.; Ventas, L.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    Nitrogen (N) is the nutrient with the greatest impact on yield of horticultural crops. It is extremely dynamic in soil and undergoes changes that include processes of gains, losses and transformations. The melon crop area at Ciudad Real adds the 29% of the national production in Spain. The common agronomic management is representative of semiarid cropped zones of Spain where environmental degradation of water supplies with high N loads is observed. The site of this work is located near of Mancha Occidental aquifer (U.H.04.04, 6.953 km2) and Campo de Montiel aquifer (U.H. 04.06, 3.192 km2) with high contamination problems. The efficient use of fertilizers and irrigation is especially important in these areas designated vulnerables to nitrate pollution from agricultural sources. The aim of this study was to assess N losses when applying exhausted grape marc compost to a melon crop as source of nutrients in a vulnerable area. The doses are often excessive because are normally based on the input of organic matter rather than on the potentially mineralizable nitrogen. This N is not only released during the growing season but also in the intercropping period. In this experiment a nitrogen balance was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3). The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs), with a depth of 0.6 m and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant absorption and nitrate losses were measured weekly, controlling at the same time N mineralized in soil. Simultaneously, a mineralization experiment was carried out without crop (either in laboratory and field conditions) to compare it with the results obtained with melon crop. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  13. Influence of green waste compost on azimsulfuron dissipation and soil functions under oxic and anoxic conditions.

    Science.gov (United States)

    García-Jaramillo, M; Cox, L; Hermosín, M C; Cerli, C; Kalbitz, K

    2016-04-15

    Concerns have been raised over the sustainability of intensive rice cultivation, where the use of chemical fertilizers and pesticides has been associated with numerous environmental problems. The objective of this study was to test the effect of the herbicide azimsulfuron on important soil functions as affected by amendment with a byproduct of the olive oil industry. Soil was collected from a Mediterranean rice field. Part of it was amended with alperujo compost (AC). Amended and unamended soils were incubated for 43days in presence or not of azimsulfuron, under anoxic-flooded (AF) and oxic-unflooded (OU) conditions. We monitored the dissipation of the herbicide azimsulfuron, C mineralization, soil microbial biomass (SMB) and dissolved organic carbon (DOC) content and its nature. Under AF conditions, the application of compost produced an increase in the dissipation of the herbicide (up to 12.4%). It was related with the higher DOC content, 4 times higher than under OU conditions. Though increases in carbon turnover (under AF and OU conditions) and reduction of SMBC after herbicide application (only under AF conditions) were observed, the differences were not statistically significant. The application of this organic amendment is presented as an efficient management strategy to increase C turnover in agricultural soils and reduce some of the negative effects derived from the application of azimsulfuron under flooded conditions. PMID:26849340

  14. Monitoring and characterization of compost obtained from household waste and pine sawdust in a facultative reactor by conventional and spectroscopic analyses.

    Science.gov (United States)

    de Campos, Sandro Xavier; Resseti, Rolan Roney; Zittel, Rosimara

    2014-12-01

    This study proposes a new facultative reactor configuration for the treatment of organic household waste and pine sawdust. The process was monitored and the compost characterized by conventional (temperature, moisture, pH, ash content and ratio C/N) conjugated with spectroscopic analyses (ultraviolet (UV)/visible (Vis) and infrared (IR)) and germination index. The spectroscopy results revealed enrichment of carbon-carbon unsaturation structures and a degradation of the aliphatic structures. The results showed that stability of the final product was reached after 90 days and that the compost obtained presents substantial richness of stabilized organic matter and an absence of toxicity, so it may be considered as an organic fertilizer. Finally, this study led to the conclusion that the reactor proposed can be a promising technology for the management of organic household waste and sawdust. PMID:25106532

  15. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  16. Controlled composting of waste wood contaminated with PAH; Untersuchungen zur gesteuerten Rotte von mit polyzyklischen aromatischen Kohlenwasserstoffen (PAK) kontaminiertem Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, H.

    2002-07-01

    The author investigated the potential and limits of microbial pollutant degradation in PAH-polluted waste wood by composting. The conditions in which autochthonic micro-organisms are able to decomposite the PAH contained in wood by solid phase fermentation were investigated. The focus was on phenanthrene, anthracene and pyrene, all of which are used as protective materials (disinfestants) for wood. The results were verified on contaminated waste wood, including an analytical investigations of decomposition of PAH of the EPA catalogue. Boundary conditions for achieving high rates of PAH decomposition were investigated. [German] Generelles Ziel der Arbeit war die Untersuchung der Moeglichkeiten und Grenzen des mikrobiellen Schadstoffabbaus in PAK-belastetem Altholz durch Kompostierung und die Pruefung auf Anwendbarkeit der Erkenntnisse in technischen Verfahren. In der vorliegenden Arbeit wurde untersucht, unter welchen Bedingungen die autochthonen Mikroorganismen in der Lage sind, an das Holz gebundene PAK durch Feststofffermentation abzubauen. Als Schwerpunkt wurde zunaechst der Abbau der im zum Holzschutz verwendetem Teeroel vorkommenden PAK Phenanthren, Anthracen und Pyren untersucht. Eine Verifizierung der Ergebnisse erfolgte mit real kontaminiertem Altholz, dabei wurde der Abbau der PAK der EPA-Liste analytisch verfolgt. Es sollten geeignete Randbedingungen gefunden werden, um im Festphasensystem hohe Abbauraten der PAK zu erreichen. (orig.)

  17. Effects of a compost made from the solid by-product ("alperujo") of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.).

    Science.gov (United States)

    Alburquerque, J A; Gonzálvez, J; García, D; Cegarra, J

    2007-03-01

    A pot experiment was conducted on a low-fertility calcareous soil in order to evaluate the effect on ryegrass growth and nutrient uptake of an organic fertiliser obtained by composting "alperujo" and cotton gin waste. Compost, alone and combined with nitrogen fertilisation, was added to the soil at three rates and three harvests were obtained. The compost application enhanced plant growth in the first and third harvest. However, the additional nitrogen fertilisation clearly improved soil productivity due to the scarce availability of this nutrient in the compost. Also, a general increase in the plant contents of phosphorus and potassium in the first two harvests was recorded, whereas treatments with the maximum compost rate showed the highest plant content of copper in the last two harvests. Decreases in calcium in the last two harvests, in magnesium in all of them and in iron and manganese in the last harvest were also observed. PMID:16762544

  18. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    Science.gov (United States)

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances. PMID:27197656

  19. Soil bioassays as tools for sludge compost quality assessment

    OpenAIRE

    Domene, X.; Solà i Sau, Laura; Ramírez Hernández, Wilson Ariel; Alcañiz, Josep M.; Andrés Pastor, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were...

  20. Propriedades químicas de um Argissolo tratado sucessivamente com composto de lixo urbano Chemical properties of an Ultisol successively treated with municipal waste compost

    Directory of Open Access Journals (Sweden)

    Alexandre Diehl Krob

    2011-03-01

    Full Text Available Com o objetivo de avaliar as alterações em algumas propriedades químicas do solo sob adição sucessiva de composto de lixo urbano, conduziu-se um experimento a campo, em um solo Argissolo Vermelho de textura média na Estação Experimental Agronômica da UFRGS. Os tratamentos constaram de cinco doses de composto (0, 20, 40, 80 e 160t ha-1, de um tratamento com adubo mineral e uma testemunha (Calagem e NPK, com aplicações sucessivas por um período de quatro anos. A adição de composto no solo aumentou o pH, CTC, C orgânico, N total, P e Na extraíveis, bem como da relação de adsorção de sódio (RAS, Ca e Mg trocáveis e o teor de K extraível após a terceira aplicação. O Al trocável teve os seus teores diminuídos após aplicações sucessivas de composto. Os resultados permitiram concluir que aplicação de até 80t ha-1 por ano de composto de lixo urbano pode ser considerada como adequada para melhorar e, ou, manter as propriedades químicas do solo.In order to assess the changes in some chemical properties of soil under the successive addition of urban waste compost, it was conducted a field experiment in an Ultisol soil at Agronomic Experimental Station of UFRGS. The treatments consisted of five successive applications of different doses of municipal solid waste compost (0, 20, 40, 80 and 160t ha-1 for a period of four years and a comparative treatment with mineral fertilizer and a control (without compost and fertilization. The addition of the compost increased soil pH, CEC, organic C, total N, extractable P and Na and the sodium adsorption ratio (SAR, calcium, and magnesium and extractable K after the third application. The exchangeable Al had their levels reduced by successive applications of compost. The results showed that application of up to 80t ha-1 yr-1 of urban waste compost can be the dose recommended to improve and maintain the chemical properties of soil.

  1. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties.

    Science.gov (United States)

    Ballardo, Cindy; Abraham, Juliana; Barrena, Raquel; Artola, Adriana; Gea, Teresa; Sánchez, Antoni

    2016-03-15

    There is a growing generation of biodegradable wastes from different human activities from industrial to agricultural including home and recreational activities. On the other hand, agricultural and horticultural activities require significant amounts of organic amendments and pesticides. In this framework, the present study evaluates the viability of soy fiber residue valorization as organic soil amendment with biopesticide properties through aerobic solid-state fermentation (SSF) in the presence of Bacillus thuringiensis (Bt). The experiments were performed first under sterile and non-sterile conditions at lab scale using 115 g of sample and controlled temperature (30 °C). Bt growth was successful in sterile conditions, obtaining 6.2 × 10(11) CFU g(-1) DM and 8.6 × 10(10) spores g(-1) DM after 6 days. Bt survived on solid culture under non-sterile conditions (3.8 × 10(9) CFU g(-1) DM and 1.3 × 10(8) spores g(-1) DM). Further, the valorization process was scaled-up to 10 L reactors (2300 g) under non-sterile conditions obtaining a final stabilized material with viable Bt cells and spores (9.5 × 10(7) CFU g(-1) DM and 1.1 × 10(8) spores g(-1) DM in average) after 9 days of SSF. These results confirm the possibility of managing biodegradable wastes by their transformation to a waste derived soil amendment with enhanced biopesticide effect, in comparison to traditional compost using a valuable and low-cost technique (SSF). PMID:26731311

  2. The influence of wine-distillery waste compost on nitrogen and phosphorus dynamics and uptake by a melon crop in a shallow calcareous soil

    Science.gov (United States)

    Requejo, M. I.; Villena, R.; Ribas, F.; Castellanos, M. T.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2012-04-01

    In Mediterranean countries, the large quantity of organic wastes generated by the winery industry constitutes a serious environmental concern, due to its low pH and high content of phenolic compounds. This is accompanied by a seasonal production that makes their management difficult. Winery wastes are characterized by high organic matter contents, low electrical conductivity values and notable contents in macronutrients, so their use as organic amendments is a good management option for improving soil fertility. However, a composting treatment is necessary to convert these organic wastes into more stable, hygienic and humic-rich materials. The aim of this work was to evaluate the effects of the application of exhausted grape marc compost (composed of dealcoholized pulp, skins and stems) as fertilizer in soil nitrogen and phosphorus availability and uptake by a melon crop (Cucumis melo L.). This experiment was carried out from May to September 2011 in Ciudad Real (Spain). This area was designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Alfisol Xeralf Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 7.9), poor in organic matter (0.20%), rich in potassium (407 ppm) and with a medium level of phosphorus (19.4 ppm). The experiment had a randomised complete block design, with four treatments consisted of four compost doses: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T compost ha-1 (D3), in order to determine the optimum dose to ensure nutrient demand, maximizing yield and minimizing nutrient losses. Acknowledgements This project has been supported by INIA-RTA2010-00110-C03-01.

  3. Evaluation of the Upland Weed Control Potentiality of Green Tea Waste-Rice Bran Compost and Its Effect on Spinach Growth

    OpenAIRE

    Khan, M. A. I.; Ueno, K; S. Horimoto; F. Komai; Tanaka, K; Ono, Y

    2007-01-01

    This study evaluated the upland weed control potentiality, germination inhibition ability and growth suppression efficiency of the five combinations of green tea waste rice bran compost (GRC). GRC was prepared by mixing green tea waste and rice bran at five ratios, and allowed to decompose for 5 mo. Application of GRC suppressed weed growth up to 93.4% in number and 95.4% in dry weight in 2004, and 80.7% in number and 73.4% in dry weight of weeds in 2005, as compared with the untreated contro...

  4. COLLOIDAL SYSTEMS OF WASTES OF DIFFERENT PRODUCTION AND THEIR ROLE IN THE FORMATION OF COMPLEX COMPOSTS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2013-11-01

    Full Text Available Dispersed colloidal particles pertaining to positive colloids is played important role in the process of the interaction of organic wastes (sewage sludge, defeca-tion mud, chicken manure, etc. with various wastes of mineral raw materials (phosphogypsum, lime powder, halite, etc.

  5. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    Science.gov (United States)

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC

  6. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.; Kjeldsen, Peter; Christensen, Thomas Højlund

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG ...

  7. Potential for transfer of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Senftenberg from contaminated food waste derived compost and anaerobic digestate liquid to lettuce plants.

    Science.gov (United States)

    Murphy, Suzannah; Gaffney, Michael T; Fanning, Seamus; Burgess, Catherine M

    2016-10-01

    The diversion of food wastes from landfill to sustainable disposal methods, such as composting and anaerobic digestion, has led to an increase in the soil amendment products that are now commercially available and which are derived from both of these processes. The use of such products as soil amendments during the production of ready-to-eat (RTE) crops is increasing worldwide. The aim of this study was to investigate the potential of three well-recognised bacterial pathogens of importance to public health, namely Escherichia coli O157:H7, Salmonella Senftenberg and Listeria monocytogenes, to become internalised in lettuce plants from peat growing media amended with contaminated food waste derived compost and anaerobic digestion liquid. The results demonstrated both S. Senftenberg and E. coli O157:H7 are capable of internalisation at lower inoculation levels, compared to previous studies. The internalisation was visualised through confocal microscopy. Internalisation of L. monocytogenes did not occur, however significant levels of L. monocytogenes contamination occurred on the non-sterilised plant surface. Assessing the internalisation potential for each of these pathogens, through the compost and anaerobic digestate matrices, allows for better risk assessment of the use of these products in a horticultural setting. PMID:27375239

  8. Composted green waste as a substitute for peat in growth media: effects on growth and nutrition of Calathea insignis.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100% of composted green waste (CGW as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents. The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis.

  9. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application.

    Science.gov (United States)

    Hartley, William; Dickinson, Nicholas M; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W

    2010-12-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. PMID:20864234

  10. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.;

    2011-01-01

    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...

  11. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.;

    2011-01-01

    The objective of this study was to investigate the effects of the long-term addition of three compost types (vegetable, fruit and yard waste compost – VFYW, garden waste compost – GW and spent mushroom compost – SM) on the physical properties of a sandy soil and to quantify any such effects using...

  12. Spent Mushroom Waste as a Media Replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra Production

    Directory of Open Access Journals (Sweden)

    H. Sendi

    2013-01-01

    Full Text Available Peat moss (PM is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW for Kai-lan (Brassica oleracea var. Alboglabra production replacing peat moss (PM in growth media. The treatments evaluated were 100% PM (control, 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100% and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  13. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  14. Status and Development Trend of Waste Composting Biological Treatment in China%我国垃圾堆肥生物处理现状及发展趋势分析

    Institute of Scientific and Technical Information of China (English)

    宋立杰; 陈善平

    2013-01-01

    Aiming at the state of stagnation even decline for municipal waste composting biological treatment in China, and decline of waste composting biological treatment capacity in the last decade, the development trend and suggestions for biological treatment of organic waste were proposed.%针对我国城市垃圾堆肥生物处理处于停滞甚至萎缩的状态,以及近10 a堆肥生物处理能力存在不增反降等问题,提出有机垃圾生物处理的发展趋势和对策建议.

  15. Pilot study on continous composting processing system for food waste%餐厨垃圾连续堆肥处理系统中试研究

    Institute of Scientific and Technical Information of China (English)

    李小建; 周振鹏; 谢锡龙; 王德汉

    2013-01-01

    餐厨垃圾是影响城市环境重要的污染源,其处理尤其是就地堆肥处理近年来受到重视.为了利用园林绿化基质作为餐厨垃圾堆肥的水分调节材料,按照1:1体积比进行连续堆肥,研究添加园林绿化基质对餐厨垃圾堆肥过程中理化指标的影响,为餐厨垃圾无害化处理提供科学依据和技术指导.结果表明,物料堆肥升温启动迅速,第3天就达到50℃,高温持续10 d以上,达到无害化要求;堆肥最终减容率达到53%以上,减量化效果明显;物料总氮和总磷含量呈升高趋势,总有机质含量降低,肥料营养元素含量在6%以上,符合有机肥国家标准(NY525-2002).总的来说,园林绿化基质作为调理剂与餐厨垃圾联合堆肥方法可行,减量化效果好,品质符合标准.%Food waste is a major souce of pollution affecting the urban environment. The treatment of food waste, especially the in-situ composting, got more attention in recent years. Landscape matrix was used as food waste composing moisture regulating material in accordance with the 1: 1 volume ratio, and continuous composting was carried out. Effects of adding landscape matrix on compost physicochemical indexs were studied to provide a scientific basis and technologial guide for harmless treatment of food waste. The results show that food waste compost temperature started quickly, reached 50℃ at the third day, high temperature sustained for 10 days, and met the sound requirements. The final reduction rate of food waste aerobic composting reaches 53% or more, so reduction effect is obvious. Total nitrogen and phosphorous content show the trend of increasing, and total organic matter content tends to decrease, and nutrient content of fertilizer is above 6% , and this is consistent with national standards of organic fertilizer. Overall, landscape matrix as a conditioner combines with food waste composting method is feasible, reduction effect is good.

  16. Composting of wine industry wastes and their use as a substrate for growing soil less ornamental plants

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, E.; Moreno, M. T.; Aviles, M.; Ordovas, J.

    2012-11-01

    To study the process of composting of grape marc and test the resulting compost as a substrate for the cultivation of ornamental plants, six composting processes, with mixtures of dealcoholised grapevine marc and grape stalk (DM + GS) in a 1:1 ratio (v:v), were carried out in Seville (Spain) between 2000 and 2006. The duration of the composting ranged between 20 and 24 weeks in the Spring-Summer season. Weekly, temperature, pH, EC, N-NO{sub 3}{sup -} and N-NH{sub 4} +, were measured. The maximum temperatures reached values of 65-73 degree centigrade at a depth between 40 and 80 cm. The compost had a slightly alkaline pH, slightly salinity, high organic matter and total nitrogen contents. The final compost chemical composition in total elements showed values in the same range as those corresponding to plant material, except for Fe. The distribution in the size of the particles gives way to a total porous space that is close to the one considered as optimal in a substrate for soil less cropping. Pore size distribution showed a prevalence of big pores that produces unbalance in the water-air ratios, resulting in a material with a good aeration but with low water retention. The composts were tested as substrates for four ornamental species: geranium, petunia, carnation and gerbera. The results suggest that compost has no limiting characteristics for its use as a medium for the cultivation of ornamental plants in container, and can replace conventional substrates, such as peat and coconut fibre. (Author) 35 refs.

  17. Plant bioassays to assess toxicity of textile sludge compost

    OpenAIRE

    Araújo Ademir Sérgio Ferreira de; Monteiro Regina Teresa Rosim

    2005-01-01

    Composting of industrial wastes is increasing because of recycling requirements set on organic wastes. The evaluation of toxicity of these wastes by biological testing is therefore extremely important for screening the suitability of waste for land application. The toxicity of a textile sludge compost was investigated using seed germination and plant growth bioassays using soybean and wheat. Compost samples were mixed with water (seed germination bioassay) or nutrient solution (plant growth b...

  18. Heavy metal speciation in the composting process.

    Science.gov (United States)

    Greenway, Gillian M; Song, Qi Jun

    2002-04-01

    Composting is one of the more efficient and environment friendly methods of solid waste disposal and has many advantages when compared with landfill disposal on which the UK and Ireland are currently heavily dependent. Composting is a very complicated process involving intensive microbial activity and the detailed mechanisms of the process have yet to be fully understood. Metal speciation information can provide an insight into the metal-microbial interaction and would help in the evaluation of the quality of compost. This would facilitate the exploitation of composts in remediation of heavy metal contaminated land. In this work a systematic approach to metal speciation in compost has been taken by applying the three-step method for operationally defined metal speciation of soils and sediments, developed by the European Commission's Standards, Measurement and Testing Programme to monitor the change in metal speciation with time (up to 106 days) for four different waste composting processes. The results have shown that in general metals become less available for the first extraction step as the composting process proceeds. This implies that composting tends to redistribute the metals from more labile forms to more fixed forms which may explain why the application of composts could be useful for with heavy metal contaminated land. There are exceptions to this trend and in some cases, certain metals appear to behave differently depending on the source of the compost. PMID:11993774

  19. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    Science.gov (United States)

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g(-1)), and soil from the site containing low (5.0 ± 0.3 μg·g(-1) Cd), and high (16.5 ± 1.2 μg⋅g(-1) Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site. PMID:25848836

  20. Compostability of bioplastic packaging materials: an overview.

    Science.gov (United States)

    Kale, Gaurav; Kijchavengkul, Thitisilp; Auras, Rafael; Rubino, Maria; Selke, Susan E; Singh, Sher Paul

    2007-03-01

    Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost

  1. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  2. Fluorescence characterization of metal ion-humic acid interactions in soils amended with composted municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, Cesar; Polo, Alfredo [Consejo Superior de Investigaciones Cientificas, Centro de Ciencias Medioambientales, Madrid (Spain); Brunetti, Gennaro; Senesi, Nicola [University of Bari, Dipartimento di Biologia e Chimica Agroforestale ed Ambientale, Bari (Italy)

    2006-12-15

    Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L{sup -1} resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs. (orig.)

  3. 绿化废弃物好氧堆肥和蚯蚓堆肥作为蔬菜育苗基质研究%Compost and vermicompost from green wastes as substrates for vegetable seedlings cultivation

    Institute of Scientific and Technical Information of China (English)

    龚小强; 李素艳; 李燕; 孙向阳

    2016-01-01

    To reduce the overuse of peat and to increase t h e recycling rate of green wastes for vegetable seedling cultivation, the feasibility of using green waste compost and vermicompost to replace peat as a growth media was evaluated. Six media were prepared by mixing green waste compost and vermicompost with peat at different rates by volume including ck (peat), T1 (compost), T2 (vermicompost), T3 (compost + peat at 1∶1 V/V), T4 (vermicompost + peat at 1∶1 V/V), T5 (compost + vermicompost + peat at 1∶1∶1 V/V). Thereafter, three vegetable species with different salt tolerance: cabbage (most salt tolerance), lettuce (moderate salt tolerance), and zucchini (less salt tolerance) were germinated and grown in the six media. The physical and chemical properties of the different growing media were determined, and the growth of seedlings was also measured. The analysis method of subordinate function was used to evaluate the pros and cons of different growing media. All treatments were replicated ten times, in a completely randomized design. Results indicated that the physical and chemical properties of T4 were all within adequate range for use as a containerized substrate in horticul-ture. The comprehensive evaluation index for seedlings of T4 versus the control were higher with T4: cabbage (0.52 and 0.33), lettuce (0.52 and 0.49), and zucchini (0.54 and 0.49). Additionally, the cost with T4 was 41.56% less. Therefore, this treatment could be used successfully as a medium replacing peat for production of cabbage, lettuce, and zucchini seedlings.%为减少泥炭的开采和提高绿化废弃物的再利用率,探讨绿化废弃物好氧堆肥和蚯蚓堆肥替代泥炭作为蔬菜育苗基质的可行性,将好氧堆肥、蚯蚓堆肥、泥炭按不同体积混配制成6种基质:对照(泥炭), T1(好氧堆肥), T2(蚯蚓堆肥), T3[V(好氧堆肥)∶V(泥炭)=1∶1], T4[V(蚯蚓堆肥)∶V(泥炭)=1∶1], T5[V(好氧堆肥

  4. Evaluation of the Upland Weed Control Potentiality of Green Tea Waste-Rice Bran Compost and Its Effect on Spinach Growth

    Directory of Open Access Journals (Sweden)

    M. A. I. Khan

    2007-01-01

    Full Text Available This study evaluated the upland weed control potentiality, germination inhibition ability and growth suppression efficiency of the five combinations of green tea waste rice bran compost (GRC. GRC was prepared by mixing green tea waste and rice bran at five ratios, and allowed to decompose for 5 mo. Application of GRC suppressed weed growth up to 93.4% in number and 95.4% in dry weight in 2004, and 80.7% in number and 73.4% in dry weight of weeds in 2005, as compared with the untreated control (only soil under the greenhouse condition. Among the five combinations of GRC, rice bran alone (RC showed the significantly highest and green tea waste alone (GC showed the lowest weed suppressing activity in both years. The weed control potentiality of GRC was increased by the increase of rice bran percentages in the mixture. The exudates of GRC inhibited the hypocotyl and radicle elongation of lettuce seedlings when examined by the sandwich method. The water extracts of GRC also inhibited the germination and radicle elongation of the test species in the seed germination tests. The growth inhibitory activity of RC was greater than that of GC, and radicle elongation was more sensitive than seed germination and hypocotyl elongation in all bioassays. The inhibitory activity of GRC water extract varied with the test species and was higher for the dicotyledonous species than monocotyledonous species. The inhibitory effect on seed germination and seedling growth increased as the extract concentration increased. The concentration dependent responses of test species to the water extract of GRC indicated that it might contain phytotoxic substances that were responsible for growth inhibition. Moreover, GRC promoted spinach growth significantly compared with the untreated control. These results suggest that the use of 30% green tea waste + 70% rice bran mixture compost (GRC-3 might be useful to control the upland weeds and enhance spinach growth among the five

  5. Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste

    DEFF Research Database (Denmark)

    Andersen, Jacob Kragh; Boldrin, Alessio; Samuelsson, Jerker;

    2010-01-01

    Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to...... give a more accurate estimate of the GHG emissions, with CO2 emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH4 and CO. In this study, the dynamic plume method was a more effective...

  6. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR

    International Nuclear Information System (INIS)

    The humic acids extracted from a compost of activated sludge at different stages of maturity were characterized by various chemical techniques. Elemental analysis showed the reduction of H, and the H/C and C/N ratios and an increase in the proportion of N and S. At the end of composting C% and O% presented the same values as initially, although they increased in the intermediate stage. Based on the ratios of FTIR absorbance it was shown that the end product was enriched in etherified and peptidic compounds absorbing at 1384, 1034 and 1544 cm-1. The alkyl and other N-rich and oxidized recalcitrant structures compose the new humic polymers produced during composting. In principal components analysis, the first axis, PC1: 49.75% considers the variability between structures in decomposition from the other parameters that concern the stable new humic polymers formed after composting. PC2 (40.5%) shows a negative correlation between (aromatic carbon, FA level) and (aliphatic carbon, HA level) during composting.

  7. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    Science.gov (United States)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P < 0.05) were observed in weight gain, specific growth rate, survival rate, daily consumption, and food conversion ratio between tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  8. COMPLEX COMPOST AND DETOXICATION OF AGROLANDSCAPE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-03-01

    Full Text Available Toxicity complex compost arises during compiling of organomineral mixtures of various waste of life, agriculture and mineral industries. One of detoxification factors of complex compost is the ability of heavy metal cations to the formation insoluble compounds, which are fixed by clay materials and different disperse systems, and differ markedly by calcium content, acidity and humus soil-absorbing complex

  9. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  10. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Science.gov (United States)

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste. PMID:24027758

  11. How to set up and manage a good compost

    OpenAIRE

    Fuchs, Jacques

    2002-01-01

    This teaching document explains how good compost is made. Compost is the solid, crumble, brownish to dark brown product of an aerobic degradation of biogenic waste or organic material. There are huge numbers of microorganisms working under constant access of air (oxygen) and with sufficient moisture in the material mix. There is not only degradation, but also formation of new compounds. Compost has to be treated like a living organism. A healthy compost can bring many advantages to the...

  12. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom...

  13. Composting Technology and the Impact of Compost on Soil Biochemical Properties

    International Nuclear Information System (INIS)

    Organic farming is one of several approaches to sustainable agriculture. Properly managed, organic farming reduces or eliminates environmental pollution and helps conserve water and soil on the farm. Organic farming systems require significantly greater amounts of organic fertilizers input than conventional systems. Because of the shortage of organic fertilizers in arid areas, composting is a way to transform waste materials left over from agricultural production and processing into a useful resource. Mature compost is an excellent organic fertilizer and soil amendment. The potential of composting to turn on-farm waste material into farm resources makes it an attractive proposition. Composting offers several benefits such as to enhance soil fertility and soil health, thereby increasing agricultural productivity, improving soil biodiversity, reducing ecological risks and improving the environment. Aerobic composting of some agricultural wastes (peanut, wheat straw and palm tree wastes) was carried out to raise its fertilizing value compared with widely used organic fertilizer, farmyard manure. The influence of composted and non-composted agricultural wastes on the availability of nitrogen, phosphorus and potassium (NPK) in sandy soil, as well as the uptake of these elements by corn plants, was also studied. Results indicated a rapid degradation of palm tree and wheat straw wastes as compared with peanut wastes. The composting process raised the fertilizing value of agricultural wastes as indicated by increase in nutritional availability. The application of the composted wastes as organic fertilizers to sandy soil increased the content of available N, P and K. Results showed that the application of different composted organic materials increased the dry weight and NPK uptake by corn plants. (author)

  14. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): The effect of soil amendments

    International Nuclear Information System (INIS)

    Two crops of Brassica juncea (L.) Czern. were grown in a field experiment, at the site affected by the toxic spillage of acidic, metal-rich waste in Aznalcollar (Seville, Spain), to study its metal accumulation and the feasibility of its use for metal phytoextraction. The effects of organic soil amendments (cow manure and mature compost) and lime on biomass production and plant survival were also assessed; plots without organic amendment and without lime were used as controls. Plots, with or without organic amendment, having pH-1, respectively). The total uptake of heavy metals in the plants was relatively low, emphasising the problems faced when attempting to employ phytoextraction for clean-up of pluri-contaminated sites. - Although organic amendments improved soil conditions and plant growth, the phytoextraction capacity of Brassica juncea (cv. Z1) is too low for efficient soil remediation

  15. Comparison between UV spectroscopy and Nirs to assess humification process during sewage sludge and green wastes co-composting.

    Science.gov (United States)

    Albrecht, Remy; Le Petit, Jean; Terrom, Gérard; Périssol, Claude

    2011-03-01

    The humification of organic matter during composting was studied by the quantification and monitoring of the evolution of humic substances (Humic Acid-HA and Fulvic Acid-FA) by UV spectra deconvolution (UVSD) and near-infrared reflectance spectroscopy (NIRS) methods. The final aim of this work was to compare UVSD to NIRS method, already applied on the same compost samples in previous studies. Finally, UVSD predictions were good for HA and HA/FA (r(2) of 0.828 and 0.531) but very bad for FA (r(2) of 0.092). In contrary, all NIRS correlations were accurate and significant with r(2) of 0.817, 0.806 and 0.864 for HA, FA and HA/FA ratio respectively. From these results, HA/FA ratio being a well-used index of compost maturity, UVSD and NIRS represent two invaluable tools for the monitoring of the composting process. However, we can note that NIRS predictions were more accurate than UVSD calibrations. PMID:21239169

  16. La Incidencia de Metales Pesados en Compost de Residuos Sólidos Urbanos y en su uso Agronómico en España Impact of Heavy Metals in Composting of Municipal Solid Wastes and its use in Agriculture in Spain

    Directory of Open Access Journals (Sweden)

    Antonio Rosal

    2007-01-01

    Full Text Available En este trabajo, se describe el proceso de compostaje mediante pilas volteadas de la fracción orgánica, recogida selectivamente, de residuos sólidos urbanos (RSU, analizado durante tres años. El compost, aceptable para su uso agrícola, fue aplicado en cultivos de trigo y ajo, combinando tratamientos mixtos con el objetivo de conocer que tipo de fertilización era la que generaba los mejores resultados, y demostrar como la fertilización orgánica puede llegar a ser una alternativa real en nuestros suelos con los consiguientes beneficios ambientales. No se encontraron incidencias de metales sobre los frutos ni los suelos. La producción fue también semejante al control. A pesar de todo esto, en caso de aprobación de la nueva Normativa Europea que se encuentra en fase de discusión, y con las restricciones que se pretenden imponer, el compost de RSU fabricado en la ciudad de Córdoba (España tendrá grandes dificultades para su uso agrícola si se continúan con las mismas prácticas de gestión debido a su alto contenido en metales.In this work, our group do a research about the composting process, in turned windrow, of the organic fraction of the municipal solid waste (MSW, selectively collected, that was analysed for three years. Suitable compost for agricultural use was obtanied. This compost was used in wheat and garlic farming. No incidence of metals on fruit and soil was detected. Crops were found to bew similar to thoses observed for a control test. However, requirements in metal contents are increasing in European Union rules. Therefore, this Compost of Municipal Solid Waste made in Cordoba (Spain will not be accepted for an agricultural use with the actual management.

  17. Use of compost for the restoration of mine wastes and mine soils; Utilizacion de materiales compostados en la rehabilitacion potencial de espacios afectados por residuos mineros y suelos de mina

    Energy Technology Data Exchange (ETDEWEB)

    Paradelo, R.

    2013-09-01

    One of the main limitations for the successful restoration of the environmental damages produced by quarrying and mining activities is that mine waste and mine soils are largely devoid of organic matter. For this reason, amelioration with organic materials such as sewage sludge, manure or compost is gaining attention as a desirable strategy that may render good results in restoration. In this paper, recent experiences on the use of composted materials for the amelioration of mine wastes and mine soils are reviewed. The benefits obtained from the use of compost in restoration studies include improvement of the unfavourable physical, chemical and biological properties of mine waste and mine soils. The increase in the organic matter concentrations produces an improvement of the structure which leads to reduced bulk density and increased porosity, thus decreasing the risks of compaction, sealing and erosion. Correction of extreme pH is usually observed. N and P, two elements that are usually lacking in mine waste, are also added with compost in plant-available forms. The introduction of microbial populations leads to the reactivation of biogeochemical cycles which are essential for the long-term fertility and sustainability of new ecosystems. (Author)

  18. Dynamic Succession Law of Bacterial Communities during Domestic Waste Composting%生活垃圾堆肥过程中细菌群落演替规律

    Institute of Scientific and Technical Information of China (English)

    党秋玲; 刘驰; 席北斗; 魏自民; 李鸣晓; 杨天学; 李晔

    2011-01-01

    The PCR-DGGE technique was used to study the dynamic succession law of bacterial communities during composting of Municipal Solid Waste (MSW). The microbial metagenomic DNA was extracted from samples in different periods of composting,and the V3 region of 16S rDNA was amplified for analyzing the change of the bacterial community during the composting process.DGGE prints showed that the bacterial community changed dramatically with the rise of temperature. New predominant bacteria appeared at the end of the composting process. This indicated that the bacterial community changed in different composting periods. Clustering analysis results showed that 14 samples were divided into two families at 55 ℃. The similarity of the two families was only 13% , indicating that the bacterial community structure was different in the normal temperature process ( < 55 ℃ ) and high temperature process ( > 55 ℃ ), The results of DNA sequencing showed that: caterpillar pathogen H. obtusa and human waste sample gene were detected in the rising temperature period; thermophilic microbe Clostridium thermocellu, which can decompose cellulose, was the dominant group in the high-temperature composting; and, lots of uncultured bacterial appeared when the temperature was lower than 55 ℃.%应用PCR-DGGE技术研究生活垃圾堆肥过程中的细菌群落演替规律,对堆肥不同时期的宏基因组DNA进行提取,扩增16S rDNA的V3区,分析生活垃圾堆肥过程中细菌群落的变化.DGGE图谱表明,随着堆体温度的升高,DNA条带表现出了明显的动态变化,降温期出现了新的优势条带并趋于稳定,说明堆肥不同时期的细菌群落发生了更替.对条带分布进行聚类分析,结果表明:以55 ℃为界,将14个堆肥样品划分为2个族,族间的相似性仅为13%,说明堆肥过程中常温期(55 ℃)微生物群落结构差别较大.对优势条带回收测序的结果表明:在升温期,堆肥堆体中检测到H.obtusa和人类

  19. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    Science.gov (United States)

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation. PMID:26341336

  20. Wasted cabbage (Brassica oleracea silages treated with different levels of ground corn andsilage inoculant

    Directory of Open Access Journals (Sweden)

    Adauton Vilela de Rezende

    2015-08-01

    Full Text Available Our objective was to evaluate the chemical composition, fermentation profile, and aerobic stability of cabbage silages treated with ground corn and inoculant. The evaluated treatments were: addition of 200, 300, 400, 500, and 600 g of ground corn per kilogram of cabbage (fresh matter basis, with or without a bacterial inoculant composed of Lactobacillus plantarumand Pediococcus pentosaceus. As expected, ground corn additions increased the dry matter (DM content of cabbage silage, and high values were observed for the highest level of addition (540 g kg−1. Conversely, the crude protein, neutral detergent fiber, acid detergent fiber, and lignin contents decreased with ground corn additions. The in vitro dry matter digestibility coefficients increased slightly with ground corn additions, but all cabbage silages had digestibility higher than 740 g kg−1 of DM. In the fermentation process, the pH values of cabbage silages increased linearly because of the high levels of ground corn addition. Cabbage ensiled with 200 and 300 g kg−1 of ground corn had high ammonia N production and fermentative losses (effluent and gas. Cabbage silage treated with 600 g kg−1 of ground corn had lower maximum pH values during aerobic exposure, but all silages had constant temperature during aerobic exposure. The ensiling of wasted cabbage is possible and we recommend the application of 400 g kg−1ground corn to improve the silage quality, whereas the use of the inoculant is unnecessary.

  1. Agricultural use of compost and vermicomposts from urban wastes: process, maturity and quality of products; Uso agricola de compost y vermicompost de basuras urbanas: procesos, madurez y calidad de los productos

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Departamento Agricola y Proteccion Vegetal, Estacion experimental del Zaidin, CSIC, Granada (Spain)

    1995-12-31

    In this fourth-part review, the authors discuss the positive and negative effects of the agricultural use of compost and vermicomposts from town refuse. This first part reviews the composting and vermicomposting processes, including the most important methods to evaluate the maturity of the end products.

  2. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    Science.gov (United States)

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  3. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  4. Nitrogen transformations during pig manure composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is now suggested as one of the environmentallyand friendly alternative method for disposal of solid organic wastes, as it leads to minimization, stabilization, and utilization of organic waste. Transformations of nitrogen were investigated inco-composting of pig manure with different amendments, such as sawdust and leaves. Samples were analyzed for pH, total-N, soluble NH4-N, soluble NO3-N and soluble organic-N. The total-N increased after 63 days of composting, as well as the soluble NO3-N and soluble organic-N. Soluble NH4-N increased significantly and showed peak values at day 7, thereafter decreased sharply and gradually to lower levels. Seed germination index (GI) showed that co-composting of pig manure with sawdust reached maturity after 49 days of composting, while co-composting of pig manure with sawdust and leaves required shorter time for 35 days. Soluble NH4-N was significantly negatively (P<0.05), while soluble NO3-N and soluble organic-N were significantly positively (P<0.05), correlated with seed germination index (GI). Addition of leaves in co-composting of pig manure with sawdust had no significant impacts on nitrogen transformations, but it was beneficial for maturity of pig manure compost.

  5. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    Science.gov (United States)

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. PMID:26708650

  6. Improving bioaerosol exposure assessments 1 - comparative modelling of 2 emissions from different compost ages and activities.

    OpenAIRE

    Taha, M. P. M.; Drew, Gillian H; Tamer Vestlund, Asli; Hewings, G.; Jordinson, G. M.; Longhurst, Philip J.; Pollard, Simon J. T.

    2007-01-01

    We present bioaerosol source term concentrations from passive and active composting sources and compare emissions from green waste compost aged 1, 2, 4, 6, 8, 12 and 16 weeks. Results reveal that the age of compost has little effect on the bioaerosol concentrations emitted for passive windrow sources. However emissions from turning compost during the early stages may be higher than during the later stages of the composting process. The bioaerosol emissions from passive sourc...

  7. Monitoring bioaerosol and odour emissions from composting facilities - WR1121

    OpenAIRE

    Williams, Melanie; Lamarre, Baptiste; Butterfield, David; Tyrrel, Sean; Longhurst, Phil; Drew, Gillian; Al-Ashaab, Reyna; Nelson, Alan; Gladding, Toni; Simpson, Annika; Coughlin, Toni; Hansell, Anna

    2013-01-01

    Government policy requires that valuable resources should be recovered and recycled from biodegradable waste. A successful and growing organics recycling industry delivers this policy with composting being one of the principal technologies deployed to process suitable feedstock such as garden and food waste. Composting inevitably generates bioaerosols – particulate matter comprising cells or cellular components that are released into the air as a result of disturbance of composting feedstock ...

  8. Characterisation and disersal of bioaerosols emitted from composting facilities

    OpenAIRE

    Tamer Vestlund, Asli

    2009-01-01

    The role of sustainable and natural waste management processes such as composting are increasingly becoming more important in tackling the current environmental challenge of the amount of waste that is being produced. However a potential risk of composting facilities is the release and dispersal of bioaerosols that might result in adverse health effects in sensitive receptors. Therefore, environmental regulators request regulatory risk assessments from composting facilities tha...

  9. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; Dyer, David H.; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  10. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    Science.gov (United States)

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. PMID:26432056

  11. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    International Nuclear Information System (INIS)

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation

  12. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    Science.gov (United States)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    2015-09-01

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  13. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    Energy Technology Data Exchange (ETDEWEB)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini [Biology Study Program, School of Life Science and Technology, Bandung Institute of Technology (Indonesia)

    2015-09-30

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  14. Microbiological consequences of indoor composting.

    Science.gov (United States)

    Naegele, A; Reboux, G; Vacheyrou, M; Valot, B; Millon, L; Roussel, S

    2016-08-01

    Recycling of organic waste appeals to more and more people. The aim of this study was to evaluate the microbiological contamination around organic waste bins at three distances over a 12-month period. Contamination near the customary trash of control households was evaluated at the beginning to ensure that there is no recruitment bias. Air samples using the MAS 100 impactor were carried out in 38 dwellings that do household waste composting and in 10 dwellings of controls. Collection of particles by CIP 10 rotating cup sampler and dust samples collected by electrostatic dust collector cloths were acquired in dwellings that do household waste composting. Samples were analyzed by culture and by real-time quantitative PCR. Information about dwelling characteristics and inhabitant practices was obtained by a standardized questionnaire. The genera most often isolated were Penicillium, Aspergillus, Cladosporium and Streptomyces. Near the organic waste bins, bioaerosol samples showed an increase of Acarus siro (P = 0.001). Sedimented dust analyses highlighted an increase of A. siro, Wallemia sebi, Aspergillus versicolor, and Cladosporium sphaerospermum concentrations after a 12-month survey compared to the beginning. Composting favors microorganism development over time, but does not seem to have an effect on the bioaerosol levels and the surface microbiota beyond 0.5 m from the waste bin. PMID:26299932

  15. Influence of Municipal Solid Waste Compost on Soil Properties and Plant Reestablishment in Peri-Urban Environments Efecto de la Aplicación de Compost de Residuos Sólidos Municipales sobre las Propiedades de los Suelos y el Establecimiento de Plantas en Ambientes Peri-Urbanos

    Directory of Open Access Journals (Sweden)

    Gabriela Civeira

    2010-09-01

    Full Text Available Soils in urban areas often present characteristics that might submit these environments to erosion processes. Applying municipal solid wastes (MSW composts to soils have been suggested as a means to improve physical and chemical properties. A field experiment with a completely randomized design was conducted in a Typic Argiudoll from a degraded area in Buenos Aires City. The objective was to evaluate the effect of MSW compost application on soil properties, residue decomposition and Poa (Poa pratensis L. reestablishment. At the beginning of the trial, compost was prepared and applied in a bare soil on 0.25 m² square plots afterwards litterbags were incorporated and Poa was sown. Compost amounts were: 0 (control; 2 (low; 4 (medium and 7 kg m-2 (high on fresh matter basis. During the trial residue decomposition and aerial dry matter (DM: g treatment-1 were evaluated, at the end soil physical and chemical parameters were measured. Medium and high compost rates increased organic C, total N and extractable P. Addition of 2 kg m-2 affected soil organic C as well, but in a minor fee. Soil physical properties were improved after MSW compost addition. In medium and high doses, augmentations in organic matter reduced bulk densities and enhanced water infiltration. Aerial DM was significantly affected by treatments (p Los suelos de las áreas urbanas presentan características que pueden someter estos ambientes a procesos erosivos. La aplicación de composts de residuos sólidos urbanos (MSW a los suelos es una práctica que mejora sus propiedades. El objetivo del trabajo fue evaluar el efecto del compost de MSW sobre las propiedades, la descomposición de residuos y el restablecimiento de la especie Poa (Poa pratensis L. en estos suelos. En un Argiudol típico degradado de la ciudad de Buenos Aires se realizó un ensayo con diseño completamente aleatorizado. Se preparó e incorporó compost en parcelas de 0,25 m² en las siguientes cantidades: 0

  16. 化工废料过磷酸钙在植物秸秆沤肥中的应用%Application of Calcium Superphosphate as Chemical Waste in the Reaction of Plant Straw Wet Compost

    Institute of Scientific and Technical Information of China (English)

    王庆雨; 林楷

    2016-01-01

    In order to investigate the influence of the chemical waste calcium superphosphate on the nitrogen loss rate and the maturity time in the reaction of plant straw wet compost, using straws, melon vines, rotten vegetables leaves, weeds and animal manures as raw materials, and using the chemical waste calcium superphosphate as additive, the reaction of wet compost was carried out in the homemade equipment. The results show that the chemical waste calcium superphosphate is helpful to reduce the loss of N and shorten the maturity time. After plant straw wet compost for 20 days, the nitrogen loss rate and germination index of the wet compost without the chemical waste calcium superphosphate are 35.8% and 64.3%, respectively, while the nitrogen loss rate and germination index of the wet compost adding the chemical waste calcium superphosphate are 15.2% and 82.8%, respectively. Good application effect of the chemical waste calcium superphosphate has been achieved in plant straw wet compost process.%为研究化工废料过磷酸钙对植物秸秆沤肥过程中氮损失率和腐熟时间的影响,以秸秆、瓜蔓、烂菜叶、杂草、畜肥为原材料,以化工废料过磷酸钙为添加剂,在自制的装置中进行沤肥。结果表明:化工废料过磷酸钙有助于减少氮的损失,缩短沤肥腐熟时间。沤肥20 d 后,沤肥过程中未添加化工废料过磷酸钙的氮损失率为35.8%,发芽指数为64.3%;而添加了化工废料过磷酸钙的氮损失率为15.2%,发芽指数为82.8%。化工废料过磷酸钙在植物秸秆沤肥过程取得了良好的应用效果。

  17. Phytophthora ramorum can survive introduction into finished compost

    Directory of Open Access Journals (Sweden)

    Steven Swain

    2005-10-01

    Full Text Available Composted municipal green waste is a potential vehicle for the transmission of Phytophtora ramorum, the pathogen responsible for the disease known as sudden oak death. To assess the survival rate of the pathogen in compost, we introduced zoospores — a type of infectious propagule — into six composts of varying provenance and maturity. The compost samples represented three production facilities, two production techniques (turned windrow and forced air static pile and two levels of maturity (fresh, defined as aged for less than 1 week; and mature, aged for more than 4 weeks. Positive re-isolations — indicating survival of the pathogen — were obtained from all composts. The re-isolation rate from the compost from one of the three production facilities was greater than that obtained from an inert substrate (filter paper inoculated with the pathogen (P < 0.01, while re-isolation rates from the other two sources were statistically indistinguishable from those obtained from the inert substrate (P < 0.01. There was no significant difference in re-isolation rate between composts produced by the turned windrow method and composts produced by the forced air static pile technique. Re-isolation rates were greater from mature composts than from fresh composts (P < 0.01. The results show that P. ramorum may be present and infectious if introduced into finished compost, and that variations in compost characteristics appear to influence survival rates.

  18. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  19. Short-Circuit Short circuiting the carbon and nutrient cycles between urban and rural districts by establishing three new systems for source separation, collection and composting of organic waste in the greater Copenhagen area Final report presented to the EU-Life programme May 2006(LIFE02/ENV/DK/00150)

    OpenAIRE

    Magid, Jakob

    2006-01-01

    The overall objective of the Short-Circuit project was to promote the waste recycling concept using three sub-systems, i.e. collection of vegetable residues from the box scheme business Aarstiderne A/S and composting the residues at Krogerup farm, on-farm composting of urban waste at an experimental farm belonging to KVL and a community involved combined biogas production and composting system developed by Solum A/S. Data from the optimised systems formed the basis of a Life Cycle Analysis (e...

  20. Environmental Impact Evaluation of Community Composting by Using Life Cycle Assessment: A Case Study Based on Types of Compost Product Operations

    Directory of Open Access Journals (Sweden)

    Rizki AZIZ

    2016-03-01

    Full Text Available Life cycle assessment (LCA was applied to evaluate environmental impacts contributed by 2 community composting systems, consisting of powder and granular compost production. The main raw materials of these composts were waste from agricultural and agro industrial activities, including animal manures, and solid waste from palm oil mills and rice mills. Data from field operations of both of the composting systems were collected and analyzed. Both composting systems were classified into 5 sub systems, consisting of raw material collection, composting process, electricity consumption, material transfer, and distribution of the compost product to consumers. Impact assessments of both composting systems revealed that the composting process sub system was the main contributor on impact categories of acidification potential (AP, eutrophication potential (EP, global warming potential (GWP, and photochemical oxidation potential (POP, while on human toxicity potential (HTP the distribution sub system was the main contributor. In comparing both systems, it was found that granular compost systems contributed a higher impact than powder compost systems, at 1.1 times on GWP, while the remaining sub systems had almost similar impacts. In order to improve composting systems, it is recommended that compost blanket and fuel substitution be applied, to enable gaseous emission reduction to the composting process and transportation operations.

  1. Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo Carbon and nitrogen mineralization in an ultisol fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2006-08-01

    Full Text Available Estudos da mineralização do C e do N em solos que receberam aplicação de composto de lixo urbano são importantes para avaliar o comportamento desse resíduo no solo e dar subsídios para definir as doses adequadas às culturas, com vistas em atender à necessidade de N das plantas. Foram realizados dois experimentos em condições de laboratório com o objetivo de avaliar a mineralização de C e de N em um Argissolo textura média adubado com composto de lixo urbano. No primeiro experimento, utilizou-se delineamento inteiramente ao acaso, com cinco tratamentos e três repetições, com os tratamentos constituídos de cinco doses de composto de lixo urbano, equivalentes a 0, 30, 60, 90 e 120 t ha-1. No segundo experimento, empregou-se esquema fatorial, com delineamento inteiramente ao acaso e três repetições, combinando as mesmas cinco doses de composto de lixo urbano utilizadas no primeiro experimento e 11 tempos de incubação (0, 7, 14, 28, 42, 56, 70, 84, 98, 112 e 126 dias. Os maiores aumentos de N-NO3- no solo foram obtidos até os 42 dias de incubação, independentemente da dose de composto de lixo aplicada, percebendo-se, a partir dos 70 dias, tendência de estabilização. A fração de mineralização de C-orgânico em C-CO2 menor do que 2 % em 168 dias indica que o composto de lixo urbano é material que contribui para aumentar os estoques de matéria orgânica do solo. Na ausência de adubação nitrogenada complementar, a fração de mineralização de N-orgânico de 12 % em 126 dias evidencia que o composto de lixo urbano apresenta potencial fertilizante de liberação lenta de N para as plantas.Studies about nitrogen and carbon mineralization in soils amended with urban waste compost are important to evaluate the reactions of this waste in soil and to define the best rates for crops. Two experiments were carried out under laboratory conditions to evaluate carbon and nitrogen mineralization in an Ultisol fertilized with

  2. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    Science.gov (United States)

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. PMID:25819928

  3. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.

    Science.gov (United States)

    Zhang, Lili; Jia, Yangyang; Zhang, Xiaomei; Feng, Xihong; Wu, Jinjuan; Wang, Lushan; Chen, Guanjun

    2016-06-01

    Composting is a promising method for the management of agricultural wastes. However, results for wheat straw composts with different carbon-to-nitrogen ratios revealed that wheat straw was only partly degraded after composting for 25days, with hemicellulose and cellulose content decreasing by 14% and 33%, respectively. No significant changes in community structure were found after composting according to 454-pyrosequencing. Bacterial communities were represented by Proteobacteria and Bacteroidetes throughout the composting process, including relatively high abundances of pathogenic microbes such as Pseudomonas and Flexibacter, suggesting that innocent treatment of the composts had not been achieved. Besides, the significant lignocellulose degrader Thermomyces was not the exclusively dominant fungus with relative abundance only accounting for 19% of fungal communities. These results indicated that comparing with maize straw, wheat straw was an inefficient substrate for rapid natural lignocellulose-based composting, which might be due to the recalcitrance of wheat straw. PMID:26980627

  4. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.

    Science.gov (United States)

    Walker, David J; Clemente, Rafael; Bernal, M Pilar

    2004-10-01

    Chenopodium album L. was found to be one of the initial plant species colonising a heavy metal-contaminated site, polluted by pyritic (sulphide-rich) waste from the Aznalcóllar mine spill (South-western Spain). This indicates its importance in the re-vegetation of this soil. In a pot experiment, C. album was sown in soil collected from the contaminated site, either non-amended or amended with cow manure or compost produced from olive leaves and olive mill wastewater, in order to study the effect on heavy metal bioavailability and soil pH. In non-amended and compost-amended soils, soil acidification, probably resulting from oxidation and hydrolysis of sulphide, led to increases in the concentrations of soluble sulphate and plant-available Cu, Zn and Mn in the soil (extractable with 0.1 M CaCl(2)). Under these conditions, shoot growth of C. album was negligible and shoot concentrations of Zn (2,420-5,585 microg g(-1)) and Mn (5,513-8,994 microg g(-1)) were phytotoxic. Manure application greatly increased shoot growth and reduced the shoot concentrations of Cu, Zn, and Mn, and their plant-available concentrations in the soil. These effects appeared to be related to an increase of soil pH, due to an inhibition of sulphide oxidation/hydrolysis, relative to the non-amended soil. For metal sulphides-contaminated soil, liable to acidification, manure application appears to be able to enhance the initial stages of re-vegetation, by species such as C. album. PMID:15312738

  5. Influence of composted tobacco waste and farmyard manure applications on the yield and nutrient composition of lettuce (Lactuca sativa L. var. capitata

    Directory of Open Access Journals (Sweden)

    Sezai Delibacak

    2016-04-01

    Full Text Available The use of organic wastes in agriculture, forestry and land reclamation has been increasingly identified as an important issue for soil fertility, soil conservation and residue disposal. Using organic wastes in agriculture helps not only to dispose these materials economi¬cally, but also reduces negative effects on the envi¬ronment. In the present study, composted tobacco waste (CTW combined with farmyard manure (FM at different ratios was applied to Typic Xerofluvent soil, and the influence of these amendments on the yield and nutrient composition of butter head letttuce (Lactuca sativa L. var. capitata were investigated. The experiment was conducted in 18 parcels in a randomized-block design with three replications at the Agriculture Faculty’s Research Farm of Ege University in Menemen plain, in the Western Anatolia Region of Turkey (38°58′35.51″-38°58′36.03″N; 27°03′84.56″-27°03′89.81″E. Organic materials were applied to the soil after composting. The treatments were (1 control, (2 12.5 t ha-1 FM + 37.5 t ha-1 CTW, (3 25 t ha-1 FM + 25 t ha-1 CTW, (4 50 t ha-1 FM, (5 50 t ha-1 CTW, and (6 37.5 t ha-1 FM + 12.5 t ha-1 CTW. The maximum yield was obtained during the 1st vegetation period (62,7 t ha-1 in the 100 % CTW application. On account of the 2nd vegetation period’s coinciding with winter and the coldness of the months December, January and February, there happened a slowdown in the lettuce yield. The highest total yield of lettuce in both vegetation periods (102.7 t ha-1 was determined in 100% CTW application parcels. The lower lettuce yields were determined in the control parcels. CTW and FM applications raised N, P, K Ca, Mg, Na, Fe, Zn and Mn contents of the lettuce. According to the results obtained, it can be said that CTW can be used in agricultural fields just like FM.

  6. Sewage sludge composting: quality assessment for agricultural application.

    Science.gov (United States)

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration. PMID:26508019

  7. Dispersion of bioaerosols from composting facilities.

    OpenAIRE

    Drew, Gillian H; Tamer Vestlund, Asli; Taha, M. P. M.; Smith, Richard; Longhurst, Philip J.; Kinnersley, R.; Pollard, Simon J. T.

    2006-01-01

    The promotion of composting as an option for sustainable waste management has raised concerns regarding public health impacts of exposures to potentially hazardous bioaerosols. Recent source term experiments show that bioaerosol emissions are episodic and that peak emissions are related to compost agitation. The Environment Agency requires risk assessments for facilities that have sensitive receptors within 250m of their boundary. In order to improve current risk assessment ...

  8. Home-made compost's quality: A review

    OpenAIRE

    Trémier, A.

    2010-01-01

    Society is reconsidering composting, this ancient technology, for the treatment and recycling of municipal organic wastes. Municipalities are now encouraging the use of home composting when very little is known about the environmental impact of this practice as compared to other more conventional means. Furthermore, there is a need to establish a standard method to evaluate the impact of such a practice, when the diversified tools presently used produce data which cannot be compar...

  9. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    Science.gov (United States)

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  10. Het composteren van groente- en tuinafval in containers voor particulier gebruik = Composting of vegetable and garden waste in containers for household use

    OpenAIRE

    Riem Vis, F.

    1985-01-01

    In three experiments composting in different types of containers was studied. No differences between the containers were observed. Seedling tests showwed that with up to 50 % compost added to a sandy soil growth was stimulated. In the case of a 100 % compost crop damage occurred. Verschillende typen containers voor het composteren van tuin- en groenteafval voor particulier gebruik werden in dit onderzoek vergeleken. Uit het verloop van de temperatuur en van het zuurstofgehalte van de lucht bl...

  11. Effect of additives on NH3 and H2S emissions during kitchen waste composting%不同添加剂对厨余垃圾堆肥NH3和H2S排放的影响

    Institute of Scientific and Technical Information of China (English)

    杜龙龙; 李国学; 袁京; 杨金兵

    2015-01-01

    近年来中国的城镇化率越来越高,生活垃圾产量也随之剧增,作为生活垃圾中的宝贵资源,厨余垃圾的堆肥化处理得到广泛关注。为了减少厨余垃圾在堆肥化利用过程中的臭气排放,该研究以纯厨余垃圾堆肥作为CK1,以添加15%玉米秸秆的厨余垃圾堆肥CK2,并在CK2的基础上选择吸附剂(活性炭+沸石,膨润土)、表面活性剂(β-环糊精,鼠李糖脂)、堆肥菌剂(城市固体垃圾专用菌(SUKAZYE-MW),酵母菌)这3类材料作为添加剂,每种添加剂设置3个不同的添加量,以NH3和H2S作为监测物质,在实验室内使用广口瓶进行模拟堆肥,研究了不同添加量的各种添加剂对厨余垃圾堆肥过程中臭气减排效果的影响。研究结果表明,添加秸秆后可以减少NH3排放7%~23%,减少H2S排放38%~50%;在CK2的基础上添加2%的活性炭+沸石氨气控制效果最佳,与对照处理相比可分别使NH3的排放量再减少84%和79%,但2种吸附材料对H2S减排效果不佳;2种表面活性剂对NH3的减排效果均不明显,但添加1%的β-环糊精可以在CK2的基础上使H2S排放减少35%;与CK2相比添加0.4%的城市固体垃圾专用菌可以使NH3减排72%、H2S减排33%。该研究结果为厨余垃圾堆肥过程中臭气减排材料的选择提供了参考。%In recent years, the urbanization rate in China is steadily increasing, and the production of the municipal solid waste is also increasing. As the precious resource among the municipal solid waste, the kitchen waste composting has received widespread attention. In order to reduce the odor emission in the composting process of kitchen waste, this study investigated the effect of additives on the odor emissions (ammonia and hydrogen sulfide) of kitchen waste composting. Two control treatments were set in the study, the CK1 used pure kitchen waste to compost, and the mixture of kitchen waste and 15%(wet

  12. Composting bioaerosols : identification of new indicators using molecular tools

    OpenAIRE

    Wéry, Nathalie; Le Goff, Olivier; Bacheley, Hélène; Steyer, Jean-philippe; Godon, Jean-Jacques

    2013-01-01

    Bioaerosols generated at composting plants are released during processes that involve vigorous movement of material. They are a cause of concern because of their potential impact on the health of workers and residents living close to such facilities. The microbial diversity of bioaerosols collected at five open industrial composting plants treating different types of waste was characterized by a culture-independent approach. Core species of the composting bioaerosols were identified. Among th...

  13. Solid State Culture Conditions for Composting Sewage Sludge

    OpenAIRE

    N.A. Kabbashi; A. Fakhru’l-Razi; K. B. Ramachandran

    2012-01-01

    Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB) were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginni...

  14. COMPOSTING AQUATIC MACROPHYTES: SALVINIA AURICULATA AND EICHHORNIA

    Directory of Open Access Journals (Sweden)

    Ana Kleiber Pessoa Borges

    2011-07-01

    Full Text Available High population growth and densities in urban areas and the consumerism present in modern societies have pronounced effect on the generation of organic waste, which may become an environmental problem. Aerobic composting is one of the best known alternatives to treating these wastes. This study aimed to evaluate the applicability of composting as an alternative to the disposal of organic wastes from aquatic macrophytes Eichhornia crassipes and Salvinia auriculata collected in the reservoir UHE Luis Eduardo Magalhães, Tocantins, Brazil and also produce an organic compound from different combinations of macrophytes, prunning residues and organic waste generated by the Campus of Palmas of UFT, TO. The study was conducted in an area of 80m² in unprotected environment at the experimental station of the Campus of Palmas. The experiments were done as three replications in the dry season (from 18.09.2008 to 11.21.2008 and rainy season (from 03.09.2009 to 05.04.2009 and the parameters temperature, pH, total nitrogen and carbon, and organic matter were monitored along with counts of microorganisms. It was possible to produce compost from the combinations of organic wastes within 65 days of composting during the dry season and 55 days in the rainy season. The aquatic macrophytes resulted in a good raw material for composting, since there is not a destination for the excess plant materials removed by the cleaning process of the reservoir.

  15. Potential Mineralization of Various Organic Pollutants During Composting

    Institute of Scientific and Technical Information of China (English)

    S. HOUOT; C. VERGE-LEVIEL; M. POITRENAUD

    2012-01-01

    The objectives of this work were to determine the potential mineralization of various organic pollutants that are likely found in compostable materials during compoating,and to evaluate the participation of the microflora of the thermophilic and maturation composting phases in pollutant mineralization. Four composts were used: a biowaste compost (BloW),a municipal solid waste compost (MSW),a green waste compost (GW) and a co-compost of green waste and sludge (GW+S).In each composting plant,two samples were withdrawn:one in the thermophilic phase (fresh compost) and one in the maturation phase (mature compost) to have the microflora of thermophilic and maturation phases active,respectively.The mineralization of 5 organic pollutants,3 polycyclic aromatic hydrocarbons (PAHs) (i.e.,phenanthrene,fluoranthene and benzo(a)pyrene),1 herbicide (dicamba) and 1 polychlorinated biphenyl (PCB,congener 52),was measured in a laboratory setting during incubations at 60 ℃ in fresh composts and at 28 ℃ in mature composts.All molecules were 14C-labeled,which allowed the mineralization of the molecules to be measured by trapping of produced 14CO2 in NaOH.Their volatilization was also measured by trapping molecules on glass wool impregnated with paraffin oil.Mineralization of the organic molecules was only observed when the maturation microflora was present in the mature composts or when it was inoculated into the fresh compost.Phenanthrene mineralization of up to 60% in the fresh GW+S compost was the only exception.Mineralization of PAH decreased when the complexity of the PAH molecules increased.Mineralization of phenanthrene and fluoranthene reached 50%-70% in all mature composts.Benzo(a)pyrene was mineralized (30%) only in the MSW mature compost.Dicamba was moderately mineralized (30%-40%).Finally,no PCB mineralization was detected,but 20% of the PCB had volatilized after 12 d at 60 ℃.No clear difference was observed in the degrading capacity of the different

  16. Home and community composting for on-site treatment of urban organic waste : perspective for Europe and Canada

    OpenAIRE

    Adhikari, B.; Trémier, A.; MARTINEZ, J; Barrington, S.

    2010-01-01

    As a result of urbanization and economic prosperity, which has accelerated the generation of municipal solid waste (MSW) along with its organic fraction, the management of MSW is a challenge faced by urban centres worldwide, including the European Union (EU) and Canada. Within a concept of waste recovery, the source separation and on-site treatment of urban organic waste (UOW) can resolve some of the major economic issues faced by urban centres along with the environmental and social issues a...

  17. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola

    OpenAIRE

    Craft, C M; Nelson, E. B.

    1996-01-01

    Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spen...

  18. Effect of composting and vermicomposting on properties of particle size fractions.

    Science.gov (United States)

    Hanc, Ales; Dreslova, Marketa

    2016-10-01

    The objectives of the study were to compare the effects of the composting and the vermicomposting processes on the distribution of particles into three size fractions, and to assess the agrochemical properties of the size fractions of the composts and the vermicomposts. Three different mixtures of biowaste were subjected to two thermophilic pre-composting, and then the mixtures were subsequently subjected to 5months composting and vermicomposting under laboratory conditions. Vermicomposting was able to achieve the finer and more homogeneous final product compared to composting. For compost, the highest portion of the finest fraction was achieved from products which originated from kitchen waste containing used paper, followed by digestate with straw, and finally sewage sludge with garden biowaste. In most cases, compost particles which were less than 5mm exhibited the better agricultural potential than coarser compost. However, agrochemical properties of the finest vermicompost exceeded classical compost. PMID:26920625

  19. Agricola use of compost and vermicomposts of urban wastes: supplying of nutrients to soil and plant; Uso agricola de compost y vermicompost de basuras urbanas: capacidad de cesion de nutrientes al suelo y la plant

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Dpto. Agroecoliga y Proteccion Vegetal, Estacion Experimental del Zaidin, CSIC (Spain)

    1996-06-01

    Compost and vermicomposts from town refuse can be considered as a valuable resource for supplying nitrogen, potassium and some micro nutrients to soils and plants. Application of these mature organic materials increase crop yield, although they are less efficient than mineral fertilizers in order to obtain inmediate crops. (Author) 79 refs.

  20. Evaluation of two composts for the improvement of crop yield using tomato (Lycopersicon esculentum as test crop

    Directory of Open Access Journals (Sweden)

    Fawole Oluyemisi B.

    2016-01-01

    Full Text Available In search of a more environmentally friendly alternative to the use of chemical fertilizers, a study was conducted to evaluate the use of compost for improved crop productivity. We compared the succession of microorganisms in the compost heaps using hot bed method of composting. They contained grass clippings, sawdust, NPK fertilizer, ashes, corn cobs, bean chaff, vegetable stalks, newspaper shreds and soil arranged in layers in a round structure. Poultry dropping was the organic nitrogen source of one heap while pig waste was used for the other heap. Samples were taken weekly and analyzed using soil dilution method for isolation of moulds on potato dextrose agar medium. The qualities of composts after eight weeks were evaluated by performance and yield of tomato crops. Eleven fungal isolates were obtained in compost containing poultry dropping and nine fungal isolates were obtained from compost containing pig manure. The predominant mycoflora of poultry dropping compost at 3 weeks of composting was Fusarium pallidoroseum (23.08% while Aspergillus fumigatus (38.96% dominated compost containing pig waste. Fungi isolated from the composts included cellulolytic fungi like Chaetomium sp. and Phoma sp. Soil amended with both composts improved the growth and yield of tomato crop significantly. It was concluded that compost containing poultry droppings was richer and therefore encouraged higher microbial activity than compost containing pig waste. Knowledge of the microbial succession during composting and conditions required could further be employed to enhance composting.

  1. Rabbit manure composting

    OpenAIRE

    Llosera Vall, X.; Voltas Aguilar, Jordi; Pujolà Cunill, Montserrat; Soliva Torrentó, Montserrat

    1992-01-01

    Ten samples of rabbit manure representative of the different techniques of treatment and handling used by livestock farms in Catalonia have been characterized. Two of the materials with a different composition have been composted. The origin of materials influence the composting processes and the compost final characteristics. It seems to be relationated with the balance between humification and decomposition processes.

  2. Effects of biochar on organic matter dynamics in unamended soils and soils amended with municipal solid waste compost and sewage sludge

    Science.gov (United States)

    Plaza, César; Giannetta, Beatrice; Fernández, José M.; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2015-04-01

    Biochar is a loosely-defined C-rich solid byproduct obtained from biomass pyrolysis, which is intended for use as a soil amendment. A full understanding of the agronomic and environmental potential of biochar, especially its potential as a C sequestration strategy, requires a full understanding of its effects on native soil organic matter, as well as of its interactions with other organic amendments applied to soil. Here we determined the organic C distribution in an arable soil amended with biochar at rates of 0 and 20 t ha-1 in a factorial combination with two types of organic amendment (viz. municipal solid waste compost and sewage sludge) in a field experiment under Mediterranean conditions. The analysis of variance revealed that biochar and organic amendment factors increased significantly total organic C and mineral-associated organic C contents, and had little effect on intra-macroaggregate and intra-microaggregate organic C pools. Free soil organic C content was significantly affected by biochar application, but not by the organic amendments. Especially noteworthy were the interaction effects found between the biochar and organic amendment factors for mineral-associated organic C contents, which suggested a promoting action of biochar on C stabilization in organically-amended soils.

  3. Influence of different method composting's vegetable waste for microbial%蔬菜废弃物不同堆制方法对微生物数量的影响

    Institute of Scientific and Technical Information of China (English)

    王辉; 晋小军; 赵洁; 杨海兴; 张成荣

    2012-01-01

    以蔬菜废弃物为材料,采用厌氧覆膜、好氧覆膜、地下式好氧、地下式厌氧、地上式好氧和地上式厌氧6种堆制方法,分别对堆肥40d后堆肥中的微生物数量进行测定.结果表明:在6种堆制方法的两次试验中,同一处理中细菌、放线菌和真菌在数量上相差一个数量级;好氧覆膜处理的堆肥中细菌、放线菌和真菌数量相对较多,且微生物总数最多,分别为59.9×108和83.9×108cfu/g.因此,好氧覆膜处理的微生物腐解能力最强,操作简单,是处理蔬菜废弃物的最佳堆制方法.%For the materials with vegetable waste, through the anaerobic film coating, good oxygen film coating, underground type good oxygen, underground type anaerobic, the earth and the earth aerobic type of anaerobic six composting method respectively, the composting process of temperature and compost microbes were 40 days. The results in six composting method of two tests showed that; The same processing bacteria, actinomyces and fungi were in number one order of magnitude; Anaerobic treatment composting coated bacteria and fungi, actinomyces relative quantity was more, and most microbial total for 59. 9 × 108 cfu/g and 83. 9 × 108 cfu/g, respectively . So good oxygen treatment of the microbial corrosion coated best solution, the operation was simple, and the best composting vegetable waste treatment method.

  4. Biomethane digestate from horse manure, a new waste usable in compost for growing the button mushroom , Agaricus bisporus ?

    OpenAIRE

    Savoie, Jean-Michel; Vedier, R.; Blanc, Frederic; Minvielle, Nathalie; Rousseaut, T.; Delgenès, Jean-Philippe

    2011-01-01

    Mushroom cultivation is a direct utilization of their ecological role of organic matter degradation in the bioconversion of solid wastes generated from industry and agriculture into edible biomass, which could also be regarded as a functional food or as a source of drugs and pharmaceuticals. Significant changes are expected in the integrated management of wastes streams in the future due to the use of plant biomass for biofuel and energy production and other non-food crops. On the one ...

  5. Phytate Degradation by Fungi and Bacteria that Inhabit Sawdust and Coffee Residue Composts

    OpenAIRE

    Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2012-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the pl...

  6. Comparison of the chemical, physical and microbial properties of composts produced by conventional composting or vermicomposting using the same feedstocks.

    Science.gov (United States)

    Haynes, R J; Zhou, Y-F

    2016-06-01

    The chemical, physical and microbial properties of thermophilic composts and vermicomposts were compared using the same municipal green waste-based feedstocks: (i) municipal green waste alone, (ii) 75 % municipal green waste/25 % green garden waste and (iii) 75 % municipal green waste/25 % cattle manure. Temperatures reached 37 °C during composting of municipal green waste alone but when garden waste or cattle manure were added, temperatures reached 47 and 52 °C, respectively. At the end of vermicomposting (using Eisenia fetida), the number of earthworms present was greater than that added for the cattle manure-amended feedstock but much less for both the garden waste and municipal green waste alone treatments. The products formed in all treatments generally fell within suggested maturity indices for composts. Greater organic matter decomposition occurred during composting than vermicomposting resulting in composts having a significantly lower organic C content and a greater content of total N, extractable Mg, K, Na, P, and mineral N, a higher EC and a lower C/N ratio than the vermicomposts. For all three feedstocks, vermicomposts had a lower bulk density and greater total porosity and macroporosity than composts. For the garden waste- and cattle manure-amended feedstocks, vermicomposts had a higher microbial biomass C than the composts and for all three feedstocks, basal respiration and metabolic quotient were greatest for vermicomposts. It was concluded that composting is a robust process suitable for treatment of a range of organic wastes but, because of the nutritional requirements of the earthworms, vermicomposting is a much less robust and was only suitable for the cattle manure-amended feedstock. PMID:26888641

  7. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  8. Chemical transformations of organic matter during the composting of wood industry wastes (residues); Transformacoes quimicas da materia organica durante a compostagem de residuos da industria madeireira

    Energy Technology Data Exchange (ETDEWEB)

    Budziak, Cristiane R.; Maia, Claudia M.B.F.; Mangrich, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: mangrich@quimica.ufpr.br

    2004-06-01

    Composting of sawdust and paper mill sludge, using a 'Kneer' process reactor, was studied in an attempt to elaborate upon organic matter transformation during the process and to define parameters to measure the compost maturity level. Temperature, electron paramagnetic resonance data, ash and C, H, N and S contents, and a spectroscopic method using ultraviolet-visible (UV-VIS) for alkaline (pH = 8.5) and solid samples was used to study the maturity of the compost samples. These parameters were measured in 6 humic acids extracted from the compost samples during 29 days. The results of this work show that the 'Kneer' process is efficient in transforming ligno-celulitic residues in a short time (29 days), into an organic fertilizer material with application perspectives (author)

  9. Non-composted municipal solid waste byproduct influences soil and plant nutrients five years after soil reclamation

    Science.gov (United States)

    Concerns for the mounting supply of municipal solid waste being generated combined with decreasing landfill space have compelled military installations to evaluate alternative methods for disposal. One approach to reduce landfilling is the use of a new garbage-processing technology that sterilizes a...

  10. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application

    OpenAIRE

    Filipovic, Vilim; Coquet, Yves; Pot, Valerie; Houot, Sabine; Benoit, Pierre

    2014-01-01

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the ...

  11. Community level composting in a developing country: case study of KIWODET, Tanzania.

    Science.gov (United States)

    Oberlin, Aisa S; Szántó, Gábor L

    2011-10-01

    Environmentally sustainable waste management practices have a limited relevance and viability in developing countries. Despite a technological potential, composting initiatives often share this fate. Little is known about the functioning of community level composting, which is reportedly the optimal level for viable compost production. This paper presents a multidisciplinary analysis of factors influencing the success and failure of the composting initiative of KIWODET, a community based organization in Dar es Salaam, Tanzania. The results show that despite the ready availability and good compostability of the waste stream, not all fractions of municipal organic wastes qualify as feedstock. Negative consumer attitude hindered the acceptance of compost produced from residential wastes. KIWODET did manage to successfully implement a composting operation for commercial organic wastes. Their additional waste collection and sorting activities also contributed to an increased feedstock control as well as the integration of informal waste collecting activities. When KIWODET was forced to suspend its composting activities because of land use issues, their diversified waste sector activities proved crucial in reducing the negative financial impact on their overall performance. This paper emphasizes that successful composting initiatives can arise from local capacity in developing countries. However, the lack of municipal integration and support leaves such technically viable initiatives strongly vulnerable to external factors. PMID:21558081

  12. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. PMID:21752637

  13. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  14. Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study.

    Science.gov (United States)

    Gámiz, Beatriz; Pignatello, Joseph J; Cox, Lucía; Hermosín, María C; Celis, Rafael

    2016-01-15

    A large number of pesticides are chiral and reach the environment as mixtures of optical isomers or enantiomers. Agricultural practices can affect differently the environmental fate of the individual enantiomers. We investigated how amending an agricultural soil with composted olive-mill waste (OMWc) or its biochar (BC) at 2% (w:w) affected the sorption, degradation, and leaching of each of the two enantiomers of the chiral fungicide metalaxyl. Sorption of metalaxyl enantiomers was higher on BC (Kd ≈ 145 L kg(-1)) than on OMWc (Kd ≈ 22 L kg(-1)) and was not enantioselective in either case, and followed the order BC-amended>OMWc-amended>unamended soil. Both enantiomers showed greater resistance to desorption from BC-amended soil compared to unamended and OMWc-amended soil. Dissipation studies revealed that the degradation of metalaxyl was more enantioselective (R>S) in unamended and OMWc-amended soil than in BC-amended soil. The leaching of both S- and R-metalaxyl from soil columns was almost completely suppressed after amending the soil with BC and metalaxyl residues remaining in the soil columns were more racemic than those in soil column leachates. Our findings show that addition of BC affected the final enantioselective behavior of metalaxyl in soil indirectly by reducing its bioavailability through sorption, and to a greater extent than OMWc. BC showed high sorption capacity to remove metalaxyl enantiomers from water, immobilize metalaxyl enantiomers in soil, and mitigate the groundwater contamination problems particularly associated with the high leaching potential of the more persistent enantiomer. PMID:26433334

  15. Impact of municipal waste water of Quetta city on biomass, physiology and yield of canola (brassica napus l.)

    International Nuclear Information System (INIS)

    The present study was carried out in order to investigate the impact of municipal wastewater effluents of Quetta city on the biomass, physiology, and productivity of two canola (Brassica napus L.) cultivars viz., Oscar and Rainbow. Plants were grown in pots from seed to maturity during 2005-2006 growth season. Different concentrations of effluents (T1: 20% ,T2: 40%, T3: 60% T4: 80; T5: 100%) were supplied to plants as a soil drench compared to control plants (T0) receiving normal tap water. The wastewater effluents were highly alkaline in nature along with very high Electrical Conductivity, Biological Oxygen Demand; Chemical Oxygen Demand; Sodium Adsorption Ratio, Total Suspended Solids and minerals concentrations have found well above threshold limits set for the usage of municipal wastewater for irrigation purposes. Growth performance of both canola cultivars showed statistically significant effects on some physiological attributes. All treated plants showed reductions in growth and yield parameters, but T5 treated plants were most affected compared to control. There were significantly higher reductions in stomatal conductance (49% in Oscar; 53% in Rainbow), transpiration rate (62% Oscar; 67% in Rainbow), and photosynthetic rate (62% in Oscar; 69% in Rainbow) of T5 treatment plants compared with control. Both pigments of chlorophyll (a and b) responded efficiently to the applied stress of wastewater effluents showing reductions in chlorophyll a and b by 68-82% in cv. Oscar and 74-86% in cv. Rainbow. Similarly, fresh and dry biomass also showed reductions in different effluents treated plants (T1 to T5) ranging from 2-78% in both the cultivars of canola. Drastic reductions were recorded in the number of siliqua per plant (70-72%), seeds per plant (84-85%), seed weight per plant (87-90), and in the harvest index (72-74%) in cultivars Oscar and Rainbow, respectively than that of control. The overall result of the municipal wastewater impacts on canola cultivars are

  16. Factors Associated with Backyard Composting Behavior at the Household Level

    OpenAIRE

    Park, William M.; Lamons, Kevin S.; Roberts, Roland K.

    2002-01-01

    Communities in most states are under pressure to reduce the amount of solid waste going into landfills. Many are making efforts to encourage their citizens to practice backyard composting. A logit regression analysis was conducted to identify factors associated with backyard composting of yard and food wastes in a case study area. Sample data were obtained through a September 1997 telephone survey of 865 households residing in single-family dwellings in Knox County, Tennessee. Findings indica...

  17. Fate of pharmaceuticals and pesticides in fly larvae composting.

    Science.gov (United States)

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (pesticides into the environment. PMID:27177134

  18. Bioremediation of Heavy Metals and Organic Toxicants by Composting

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2002-01-01

    Full Text Available Hazardous organic and metallic residues or by-products can enter into plants, soils, and sediments from processes associated with domestic, municipal, agricultural, industrial, and military activities. Handling, ingestion, application to land or other distributions of the contaminated materials into the environment might render harm to humans, livestock, wildlife, crops, or native plants. Considerable remediation of the hazardous wastes or contaminated plants, soils, and sediments can be accomplished by composting. High microbial diversity and activity during composting, due to the abundance of substrates in feedstocks, promotes degradation of xenobiotic organic compounds, such as pesticides, polycyclic aromatic hydrocarbons (PAHs, and polychlorinated biphenyls (PCBs. For composting of contaminated soils, noncontaminated organic matter should be cocomposted with the soils. Metallic pollutants are not degraded during composting but may be converted into organic combinations that have less bioavailability than mineral combinations of the metals. Degradation of organic contaminants in soils is facilitated by addition of composted or raw organic matter, thereby increasing the substrate levels for cometabolism of the contaminants. Similar to the composting of soils in vessels or piles, the on-site addition of organic matter to soils (sheet composting accelerates degradation of organic pollutants and binds metallic pollutants. Recalcitrant materials, such as organochlorines, may not undergo degradation in composts or in soils, and the effects of forming organic complexes with metallic pollutants may be nonpermanent or short lived. The general conclusion is, however, that composting degrades or binds pollutants to innocuous levels or into innocuous compounds in the finished product.

  19. Effect of initial physical characteristics on sludge compost performance.

    Science.gov (United States)

    Trémier, Anne; Teglia, Cécile; Barrington, Suzelle

    2009-08-01

    To develop an active microbial activity quickly developing stabilizing thermophilic temperatures during the composting of wastewater sludge, the bulking agent (BA) plays a major role in establishing the recipe structure, exposed particle surface area and porosity. To optimize the biodegradation of a sludge compost recipe, the objective of this paper was to study the effect and interaction of initial moisture content (MC) and BA particle size distribution. Three 300 L insulated laboratory composters were used to treat two series of ten (10) recipes with different combinations of MC and BA particle size distribution. Using a to wastewater sludge to BA dry mass ratio of 1/6, the ten (10) recipes were repeated using two BA, residues recycled from a commercial sludge composting plant and crushed wood pallets. Each four week trial monitored O(2) uptake, temperature, compost consolidation and airflow distribution. The Central Composite Factor Design method produced a model from the results estimating the impact of a wider range of MC and BA particles size distribution. The MC directly affected the total O(2) uptake and therefore, organic matter biodegradation. The BA particle size distribution influenced compost consolidation with a MC crossed effect. Both BA particle size distribution and MC influenced compost airflow dispersion. Composting was optimized using the BA consisting of recycled green waste residues with particle size of 20-30 mm and a 55% MC. The predictive models suggested the need for further optimization of sludge and wood residue composting recipe. PMID:19231167

  20. Utilization of Poultry Waste (Composted Caged-Layer) as a Supplement for Sheep Fed Straw During Late Pregnancy

    OpenAIRE

    R., Raul Meneses

    1989-01-01

    The utilization of composed caged-layer waste (CCLW) in diets for pregnant ewes fed cereal straw was evaluated. Five sheep were assigned to five diets containing, 0, 5.72, 11.37, 23.80, and 32.69% CCLW in a 5x5 Latin square design. Water intake, feed intake and feces output were measured. Feed and feces were analyzed for dry matter, crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), organic matter, hemicellulose and minerals. Thus, nutrient digestibility and nitrogen ba...

  1. 生活垃圾堆肥过程中恶臭物质分析%Odor pollutants analyzing during municipal solid waste (MSW) composting

    Institute of Scientific and Technical Information of China (English)

    张红玉; 李国学; 杨青原

    2013-01-01

      恶臭污染已成为生活垃圾堆肥过程中的主要环境问题。以15~80 mm粒径段的生活垃圾作为研究对象,利用嗅觉测定法和GC-MS分析了不同阶段堆肥尾气的臭气浓度和恶臭化合物的种类及其排放浓度,并对不同堆肥阶段臭气浓度和恶臭物质排放浓度的相关性进行分析。结果表明,垃圾堆肥过程中共检测到50种挥发性有机物,其中含硫恶臭物质5种,烃类化合物25种,芳香烃类化合物14种,其他物质6种。通过相关性分析,发现硫化氢、甲硫醚、二硫化碳、二甲二硫、1,3二甲基苯和邻二甲苯均与臭气浓度呈极显著相关(p甲硫醚>二甲二硫>二硫化碳>1,3二甲基苯>邻二甲苯。甲硫醇的嗅阈值非常低,即使其排放浓度很低,也会带来严重的臭气污染;NH3虽然对臭气浓度的贡献相对较小,但是其排放量很大,因此也应该对这2种恶臭物质进行重点监测和控制。该研究结果为生活垃圾堆肥过程中恶臭物质的监测、制定控制策略提供参考。%Abstact:Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. The 15-80 mm MSW fraction used in this study was collected from the Xiaowuji MSW pre-sorting station of Beijing. The 15-80 mm MSW consisted of 67%kitchen waste, 18%paper, 6%plastic, and 9%other wastes. The treatments were analyzed using a 60 L heat insulated composting vessel with forced aeration systems. The vessel was loaded with about 29 kg of 15-80 mm MSW, and controlled by the C-LGX program, which enables aeration to be controlled automatically by time or inside temperature. Aeration consisted of pumping ambient air into the reactor continuously at a rate of 0.2 L/kg.min dry matter. Odors were analyzed using a Model 5975N Gas Chromatography-Mass Selective Detector (Agilent Technologies, USA) coupled with an Entech 7890 Preconcentrator (Entech Instruments Inc., CA, USA). An SOC

  2. Odor pollutants analyzing during municipal solid waste (MSW) composting%生活垃圾堆肥过程中恶臭物质分析

    Institute of Scientific and Technical Information of China (English)

    张红玉; 李国学; 杨青原

    2013-01-01

    Abstact:Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. The 15-80 mm MSW fraction used in this study was collected from the Xiaowuji MSW pre-sorting station of Beijing. The 15-80 mm MSW consisted of 67%kitchen waste, 18%paper, 6%plastic, and 9%other wastes. The treatments were analyzed using a 60 L heat insulated composting vessel with forced aeration systems. The vessel was loaded with about 29 kg of 15-80 mm MSW, and controlled by the C-LGX program, which enables aeration to be controlled automatically by time or inside temperature. Aeration consisted of pumping ambient air into the reactor continuously at a rate of 0.2 L/kg.min dry matter. Odors were analyzed using a Model 5975N Gas Chromatography-Mass Selective Detector (Agilent Technologies, USA) coupled with an Entech 7890 Preconcentrator (Entech Instruments Inc., CA, USA). An SOC-01 sampling device (Tianjin Dylan Auto Environmental Protection Sci-tech Company, Ltd. China) was used to collect the gas sample. Three-stage cryo-trapping was used to concentrate VCS’s in air samples before GC-MSD analysis. In the first stage, 50 mL air samples were drawn through a liquid nitrogen trap with glass beads at-150°C at a flow rate of 100 mL/min. After this, the first-stage trap was heated to 10°C and the trapped gases were transferred by 40 mL helium at a flow of 1.5 mL/min to a second-stage trap at-40°C. The second stage trap was then heated to 180°C, after which the thermally desorbed gases were transferred to a third-stage cryo-focusing capillary trap at-170°C by 30 mL helium at a rate of 1.5 mL/min. The cryo-focusing trap was then rapidly heated to 100°C and the VSC’s were finally transferred to the GC-MSD system for determination. For analysis, an HP-1 capillary column (60 m×0.32 mm×1.0 mm, Agilent Technologies, USA) was used with helium as the carrier gas. The GC oven temperature was initially set at-50°C, where it was held for 3 min, after

  3. Urban composts as an alternative for peat in forestry nursery growing media

    OpenAIRE

    López Núñez, Rafael; Cabrera, Francisco; Madejón, Engracia; Sancho, Felipe; Álvarez, José María

    2008-01-01

    Including urban composts in nursery growing media could reduce peat use and promote new markets for these products. The objective of this work was to study the effects of compost incorporation in forestry nursery growing media. Growing media were prepared mixing composts (0-75% in volume) from biosolids, municipal solid waste and pruning waste with peat. As control treatment, a peat-based substrate was employed. Hydrophysical and chemical properties of growing media were determined. Moreover ...

  4. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    OpenAIRE

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  5. The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil.

    Science.gov (United States)

    Pardo, Tania; Martínez-Fernández, Domingo; Clemente, Rafael; Walker, David J; Bernal, M Pilar

    2014-01-01

    The applicability of a mature compost as a soil amendment to promote the growth of native species for the phytorestoration of a mine-affected soil from a semi-arid area (SE Spain), contaminated with trace elements (As, Cd, Cu, Mn, Pb and Zn), was evaluated in a 2-year field experiment. The effects of an inorganic fertiliser were also determined for comparison. Bituminaria bituminosa was the selected native plant since it is a leguminous species adapted to the particular local pedoclimatic conditions. Compost addition increased total organic-C concentrations in soil with respect to the control and fertiliser treatments, maintained elevated available P concentrations throughout the duration of the experiment and stimulated soil microbial biomass, while trace elements extractability in the soil was rather low due to the calcareous nature of the soil and almost unaltered in the different treatments. Tissue concentrations of P and K in B. bituminosa increased after the addition of compost, associated with growth stimulation. Leaf Cu concentration was also increased by the amendments, although overall the trace elements concentrations can be considered non-toxic. In addition, the spontaneous colonisation of the plots by a total of 29 species of 15 different families at the end of the experiment produced a greater vegetation cover, especially in plots amended with compost. Therefore, the use of compost as a soil amendment appears to be useful for the promotion of a vegetation cover and the phytostabilisation of moderately contaminated soils under semi-arid conditions. PMID:23868726

  6. Biodegradation of polyurethane under composting conditions

    OpenAIRE

    Zafar, Urooj

    2013-01-01

    Plastic are a highly durable, lightweight and low cost family of polymeric materials that form an essential and integral component of today’s world. Their continued world-wide large scale manufacture has led them to be a major component of man-made waste. A large proportion of plastic waste is directed to the landfill sites, however their low degradation rates, scarcity of landfill sites and growing water and land pollution problems require alternatives to be developed. Composting is a natura...

  7. Processing of urban and agro-industrial residues by aerobic composting: review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.K.; Canditelli, M.; Fortuna, F.; Cornacchia, G. [ENEA, Trisaia (Italy). Centro Ricerche Energia

    1997-11-01

    The need for processing solid urban and agro-industrial wastes, the relevant characteristics of aerobic composting technology, and desirable features of input substrates are thoroughly discussed. An overview of the digestion of solid waste by an aerobic composting programme in Italy is also presented. (author)

  8. Analysis of the presence of improper materials in the composting process performed in ten MBT plants.

    Science.gov (United States)

    Montejo, C; Ramos, P; Costa, C; Márquez, M C

    2010-11-01

    Composting of the organic fraction of municipal solid waste (OFMSW) reduces the amount of biodegradable waste landfilled. However, the final product or compost used as organic soil amendment shows a large presence of improper materials and alarming concentrations of heavy metals. In this work, 30 samples of OFMSW before and after composting have been characterized to determine qualitatively and quantitatively this contamination and its origin. In addition, technical features of the equipment installed in 10 waste treatment plants have been assessed because of their influence on the streams involved in the composting process. Results show 78.2% of the samples stabilized by composting to be organic matter and the rest corresponds to improper materials, mainly paper, plastic and glass. Origin is due to the composting feedstocks, the OFMSW obtained by size separation in trommels which, due to non-source separation and poor selectivity, contains one third of impurities. In seven of the 30 samples household batteries were found. PMID:20594823

  9. 绿化植物废弃物与不同调理剂混合堆肥的效果研究%Effects of different amendments on composting of greenery waste

    Institute of Scientific and Technical Information of China (English)

    彭喜玲; 周建强; 方海兰

    2015-01-01

    为研究绿化植物废弃物与不同调理剂混合堆肥的效果,设置空白对照(处理1)、添加尿素(处理2)、添加尿素和菌剂(处理3)、添加尿素、菌剂和烟气脱硫石膏(处理4)4个处理,进行为期197 d 的堆肥试验。结果表明:尿素和菌剂对堆体的 pH 和 EC 值影响不大,烟气脱硫石膏能调节堆体的 pH 并提高堆体 EC 值;堆肥结束时,处理1的有机质分解效果不明显,处理2—处理4的有机质分解率依次为4.7%、5.8%、14.8%;4个处理的总养分在整个堆肥期间均呈上升趋势,堆肥结束时4个处理的总养分含量依次为4.07%、4.85%、5.31%和6.06%,均符合有机肥或有机基质相关质量要求;4个处理的终点 C?N 依次为22、17、16和12。添加尿素、菌剂、烟气脱硫石膏均能促进有机物质的分解,加速堆体腐熟,提高堆肥产品的质量,以处理4的堆肥效果最好。%To study the effect of different amendments on composting of greenery waste,treatment 1(green-ery waste only),treatment 2(greenery waste add urea),treatment 3(greenery waste add urea and bacterial rea-gent),treatment 4(greenery waste add urea,bacterial reagent and flue gas desulfurization gypsum)were carried out for 197 days.The results showed that,adding flue gas desulfurization gypsum could adjust pH and improve e-lectrical conductivity(EC)value,however,urea and bacterial reagent had no effect on pH and EC.During com-posting,the content of organic matter in treatment 1 did not change obviously,the decomposition rate of organic matter of treatment 2,3,4 was 4.7%,5.8%,14.8% respectively;The total nutrient increased in the whole composting period.when the experiment was finished,the content of total nutrient was 4.07%,4.85%,5.31%and 6.06%,final C?N in 4 treatments was 22,17,16 and 12 respectively.Therefore,above 3 individual amend-ments such as urea,bacterial reagent,flue gas desulfurization

  10. Compost plant of Medellin - An interesting project

    International Nuclear Information System (INIS)

    Empresas varias de Medellin acquired a composting plant (solid waste treatment plant) in the beginning of the 70's. This plant, manufactured in Spain, using French technology, started operation in 1972. It was bought from the machinery Pascua Hermanos y Compania ltda. Spanish consortium. The total investment cost by 1971 was of about $ 20' 000, 000 Colombian pesos. The composting plant was designed as a partial solution (180t/day) to the disposal of about 400 t/days of solid waste disposal in Medellin city. The operation steps of the plant were: collection cars into one of the three hoppers dumped solid waste. Then recyclable material was picked up by hand in a flat conveyor. Hammer mills, where non-crushable material was separated and collected in a reject conveyor, crushed organic material. Afterwards, organic material was screened and was taken by another conveyor into a rotary trommel where manure and organic wastes from the cattle market Plaza de Ferias, and from the municipal slaughterhouse, was planned to be added (this operation was never implemented). The organic portion was separated magnetically from ferrous materials and then conducted to the fermenting aisle, where it stayed for nine days; oxidation was increased by aeration by Archimedes screws. Product coming from the fermenting aisle was discharged in a screening system to classify the compost by granulometry. Again strange elements where taken away from the compost using collision with a ballistic separator. Finally, weight and size, and using belt conveyors and a rotary distributor classified compost, it was disposed in a open field, where it would stay for about thirty days. Social, technical, marketing, economic and administrative problems made difficult the operation of the plant that was closed down in 1985 and fully dismantled in 1988

  11. Biochar composts and composites.

    Science.gov (United States)

    Ekebafe, Marian Osazoduwa; Ekebafe, Lawrence Olu; Ugbesia, Stella Omozee

    2015-01-01

    Research has shown that the carbon content of wastes decreases during composting with an increase in the nitrogen content. This indicates that the increased microbial activity in the process results in an increased mineralisation rate of organic nitrogen. A formula containing biochar in the form of terra preta, biochar bokashi, biochar glomalin, biochar hydrogel and biochar mokusaku-eki could further enhance the stability of the system and its effectiveness as a soil ameliorant. It could increase the cation exchange capacity, reuse crop residue, reduce runoff, reduce watering, reduce the quantity of fertiliser increase crop yield, build and multiply soil biodiversity, strengthen and rebuild our soil food web, sequester atmospheric carbon in a carbon negative process, increase soil pH, restructure poor soils, and reduce carbon dioxide/methane/ nitrous oxide/ammonia emissions from gardens and fields. This paper considers these claims and also the wider environmental implications of the adoption of these processes. The intention of this overview is not just to summarise current knowledge of the subject, but also to identify gaps in knowledge that require further research. PMID:26288918

  12. Comparison between aerobic and anaerobic co-composting of agricultural residues.

    Science.gov (United States)

    El Sebaie, O D; Hussin, A H; Shalaby, E E; Mohamed, M G; Lbrahem, M T

    2000-01-01

    Fertile soil is the most important resource for food production. The agricultural area in Egypt is limited to 6 million faddans. This limited area has derived many farmers to use several types of chemical fertilizers, to enhance the fertility of the land and hence the productivity. Excessive application of chemical fertilizer lead to the build up of these residuals because they are superfluous. This will cause waste of money and also soil pollution. Ultimately, this would adversely affect the ecological system in the soil and surrounding environment, especially water bodies. Composting of organic solid wastes will address some of the problems of solid waste disposal and gives a beneficial product which may replace the expensive chemical fertilizers. Other organic compostable solid wastes could be utilized to produce this compost. Agricultural residues are cheap raw materials for such compost and are available in vast quantities as well. This compost can be used as a soil conditioner to improve soil characteristics and its productivity. Crop residues mixed with manure, may be co-composted to give a soil conditioner. Agricultural residues, about 106 million tons/year, may produce about 55 million tons/year of compost. Three co-composting were carried out at the experimental station of the Faculty of Agriculture in Abis. Two aerobic co-composting of winter and summer crop residues and one anaerobic co-composting inter rop esidue were produced. The development of the co-composting processes controlled by the temperature, moisture content, and chemical composition was studied. The aerobic co-composting of winter crop residues was found to be the best experiment as it complied with the standards of the Ministry of Agriculture Decree No. 100/1967. This co-compost is expected to be free from pathogenic microorganisms as the dominant temperature was almost about 50 degrees C from the 42nd day till the 101st day of the experiment. PMID:17219853

  13. The C-simulator as a tool to investigate the potential of household waste compost to increase soil organic matter in Flanders

    Science.gov (United States)

    Tits, Mia; Hermans, Inge; Elsen, Annemie; Vandendriessche, Hilde

    2010-05-01

    Soil organic matter (SOM) is an important parameter of the quality of arable land. At the global scale, agricultural soils are considered to be a major sink of carbon dioxide. Results of thousands of soil analyses carried out annually by the Soil Service of Belgium have shown that carbon stocks in Flemish agricultural land have dwindled in the past decades, and this in spite of the increased use of animal manure from intensive livestock holdings. In the framework of the improvement of the SOM content and at the same time the idea of organic waste recycling ("cradle to cradle"-principle), a long-term field experiment with household waste compost (HWC) was set up in 1997 by the Soil Service of Belgium. In this trial different HWC application rates and timings were realized yearly, in order to investigate its nutritive value for arable crops, its effect on crop yield and its long-term effect on soil fertility, pH and soil organic matter content. Yearly data on crop rotation, crop development and yield as well as soil and HWC analyses were obtained for each trial treatment. Climatic data were obtained from nearby weather stations. Also in the context of the SOM-problem, the Soil Service of Belgium and the University of Ghent have developed, at the request of the Flemish government, the C-simulator, a simple but efficient interactive tool to assist farmers with the carbon stock management on their arable land. By providing input on the current carbon status of a particular field, the crop rotation and the (organic) fertiliser plan, the program calculates the expected evolution of the soil organic carbon over a thirty year period. By consulting comparative lists of characteristics of different crops and organic manures the farmer can adjust his strategy for a more efficient organic matter management. The calculations of the C-simulator are based on the RothC model, which was calibrated for Flemish conditions through an extensive literature study. Specific data on the

  14. Seed germination bioassay using maize seeds for phytoxicity evaluation of different composted materials

    International Nuclear Information System (INIS)

    In this paper we evaluated the phytotoxicity of different composts obtained by two different composting methods using seed germination bioassay. Seeds of Zea mays were sown in 1:5 extract of composts and these were compared with the control (100% distilled water) for each type of material. Composting of herbal pharmaceutical solid waste (HPSW) was carried out using both conventional bin and pit method. HPSW was mixed separately with poultry manure, cow-manure and goat manure in three different ratios. Uncomposted and composted HPSW were tested to study the Phytotoxicity on Zea mays seed germination, after composting increase in percent germination as well as germination index (GI) values were observed in all combinations regardless, composted by pit or bin method. The results clearly showed that composting reduced Phytotoxicity. The results showed that use of completely composted organic waste reduces the phytotoxicity and is better than the use of uncomposted waste. It was found that pit method was more suitable than bin method. Herbal waste with goat manure in 1:1 ratio was found to be the most effective combination as compared to other combinations here. Germination was 100% and the germination index was 1.4 whereas uncomposted HPSW showed the lowest percent germination i.e., 77% and germination index 52.31 respectively. (author)

  15. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    Science.gov (United States)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  16. Compostagem aeróbia conjugada de lodo de tanque séptico e resíduos sólidos vegetais Conjugated aerobic composting of septic tank sludge and vegetable solid waste

    Directory of Open Access Journals (Sweden)

    André Gustavo da Silva

    2008-12-01

    Full Text Available O lodo sanitário, principal subproduto do tratamento de esgotos, constitui um dos maiores problemas ambientais urbanos da atualidade. Em meio a este contexto, objetivou-se nesse estudo avaliar o processo da compostagem conjugada de lodo de tanque séptico (LS e resíduos sólidos vegetais (RV e determinar a importância da temperatura para o processo de sanitização do substrato tratado. O experimento, inteiramente casualizado com três tratamentos e três repetições, consistiu de nove reatores aeróbios com 100 litros de capacidade. Os resíduos foram utilizados nas seguintes proporções - T1: 100% RV; T2: 5% LS + 95% RV; T3: 10% LS + 90% RV. A compostagem aeróbia conjugada mostrou ser uma alternativa viável para destruição de ovos de helminto e estabilização dos resíduos, sendo fundamentais para tal, a temperatura, o pH e as relações ecológicas presentes nos reatores.The sanitary sludge, principal byproduct of sewage treatment, constitutes one of the major municipal environmental problems of the present time. The present study was aimed to evaluate the composting of septic tank sludge (SS and vegetable solid waste (VW and to determine the importance of the temperature for the process of sanitization of the treated substrate. The experiment, entirely randomized with three treatments and three repetitions, constituted of nine aerobic reactors with 100 L capacity. The proportions of the wastes utilized were T1: 100%VW; T2: 5%SS + 95%VW; T3: 10%SS + 90%VW. The conjugated composting showed to be a feasible alternative for destruction of helminth eggs and stabilization of the wastes. The temperature, pH and ecological relations present in the reactors were fundamental for this purpose.

  17. Search for a method of analysis of the operation of sorting-composting plants for municipal wastes. Reliability of material balance statuses; Recherche d'une methode d'analyse du fonctionnement des usines de tri-compostage des dechets menagers. Fiabilite des bilans matiere

    Energy Technology Data Exchange (ETDEWEB)

    Aboulam, S.

    2005-04-15

    The assessment of a municipal solid waste composting plant aims at the realisation of the material balance and the analysis of the operation of the processing sequence. A precise material balance makes it possible to carry out a fine economic analysis. The method suggested is based on the analysis of each equipment before the establishment of the total assessment of the platform. That allows, in the event of insufficient output quality, to target the interventions and to improve the output without blaming the totality of the processing line. To arrive there, standardised methods of sampling and characterisation of municipal solid waste and compost were adapted to intermediate flows. A database, for the error analysis according to the formulas of Gy, is proposed and the software BILCO is used for the establishment of the statistically coherent material balance. During our work, we tested the equipments most used in composting plants: the composting area, the screens with average mesh from 20 to 50 mm and with finer mesh from 8 to 15 mm, the selective conveyor, the densitometric table and the rotating drum. All the equipments are tested in real size, in different plants, except the rotating drum and the average screen which were the subject of a study at the laboratory. A simulation of screening at 20 mm shows it is possible to detect the origin of the sampling errors made at the time of the analysis of this kind of equipment. A composting pilot of 750 l was worked out, to follow the loss of mass and the CO{sub 2}, CH{sub 4}, NH{sub 3} and N{sub 2}O outputs, during composting in rotating drums. The results obtained by the tests on the experimental drum were validated on an industrial drum. The hypothesis of the conservation of the mineral matter during the composting and the accuracy of the total organic matter content determination (ignition loss at 550 deg. C) were the subject of a parallel test. From the studied equipments, a standard processing line of municipal

  18. 白腐菌在有机固体废弃物堆肥中的研究进展%Application of White-Rot Fungi on Organic Solid Waste Composting

    Institute of Scientific and Technical Information of China (English)

    张婷婷; 吴京科; 祁娜; 孙向阳; 张强; 郝利峰

    2011-01-01

    The white-rot fungus has been applied widely because of its strong degradation ability and special metabolic type. The current status of white-rot fungus applied in organic solid waste composting was reviewed in the paper. The degradation mechanism of lignin by white-rot fungus and the application of white-rot fungi in the bioremediation of heavy metal bio-sorption in composting have been introduced especially. The prospect of white-rot fungi usage in other aspects was put forward.%白腐菌因具有极强的降解能力和特殊的代谢类型,在生物降解和修复中有广阔的应用前景.本文综述了白腐菌应用于有机固体废弃物堆肥的研究现状,主要介绍了白腐菌在堆肥中对难降解木质素的作用以及对重金属污染的修复.同时对白腐菌的应用前景做出展望.

  19. Plant bioassays to assess toxicity of textile sludge compost Bioensaios vegetais na avaliação da toxidade do composto de lodo têxtil

    OpenAIRE

    Ademir Sérgio Ferreira de Araújo; Regina Teresa Rosim Monteiro

    2005-01-01

    Composting of industrial wastes is increasing because of recycling requirements set on organic wastes. The evaluation of toxicity of these wastes by biological testing is therefore extremely important for screening the suitability of waste for land application. The toxicity of a textile sludge compost was investigated using seed germination and plant growth bioassays using soybean and wheat. Compost samples were mixed with water (seed germination bioassay) or nutrient solution (plant growth b...

  20. Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained

    OpenAIRE

    Morales, Ana Belén; Bustamante, María A.; Marhuenda Egea, Frutos Carlos; Moral, Raúl; Ros, Margarita; Pascual, José Antonio

    2016-01-01

    The growth of the agri-food industry has resulted in a strong increase in its sludge generation. This type of waste is often produced in high amounts, concentrated in certain areas, and shows characteristics similar to those of municipal sewage sludge (except for the absence of heavy metals). Composting has been widely studied as a viable alternative for the treatment and recycling of municipal sewage sludge, but little information is currently available concerning the composting of agri-food...

  1. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate ‘mask

    OpenAIRE

    Taha, M. P. M.; Drew, Gillian H; Tamer Vestlund, Asli; Aldred, David; Longhurst, Philip J.; Pollard, Simon J. T.

    2007-01-01

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days’ incubation. The results are of particular value to waste management operators...

  2. Teor de metais pesados e produção de alface adubada com composto de lixo urbano Level of heavy metals and yield of lettuce fertilized with urban solid waste compost

    Directory of Open Access Journals (Sweden)

    Cândido A. Costa

    2001-03-01

    Full Text Available Avaliou-se o emprego do composto de lixo urbano em três cultivos sucessivos da alface. O experimento foi realizado em campo, em Viçosa no período de outubro/95 a junho/96 num Latossolo Vermelho-Amarelo. Os tratamentos consistiram de quatro doses de composto de lixo (0, 10, 20 e 30 t ha-1 e três cultivares de alface ('Regina', 'Vitória' Verde Clara' e 'Brasil - 303', arranjadas no esquema fatorial 4 x 3, no delineamento em blocos casualizados, com quatro repetições, totalizando 48 parcelas. Cada parcela experimental foi constituída por quatro fileiras de cinco plantas, no espaçamento 25 x 30 cm, sendo as três linhas centrais consideradas como parcela. O composto foi adicionado apenas no primeiro cultivo. Determinou-se o peso da matéria fresca e da matéria seca da parte aérea das plantas e o teor de Zn, Cu, Pb, Cd, Ni e Cr na matéria seca do tecido vegetal, após a colheita no primeiro, segundo e terceiro cultivos, correspondente a 46, 142 e 222 dias da aplicação do composto, respectivamente. Houve aumento significativo da produção em resposta às doses do composto, principalmente no primeiro cultivo, em que as cultivares 'Regina', 'Vitória Verde Clara' e 'Brasil-303' produziram, respectivamente, 333,82; 337,81 e 303,60 g.planta-1(peso fresco. No segundo cultivo, o efeito diminuiu. Já no terceiro cultivo, não houve efeito do composto sobre a produção. O teor de metais pesados na planta foi aumentado, principalmente no primeiro cultivo, seguindo a seguinte ordem decrescente: Pb>Cd>Cu>Zn. No segundo cultivo, o efeito foi menor e no terceiro cultivo não houve efeito do composto, o que foi atribuído ao esgotamento do seu efeito. Nenhum dos elementos atingiu níveis considerados fitotóxicos.A field experiment was carried out to evaluate the influence of fertilization with urban solid waste on the level of heavy metal and yield of lettuce cultivars after three successive crops. The experiment was carried out from October/95 to

  3. PRODUCTION PROCESSES OF WASTE COMPOST AND ITS QUALITY AS ORGANIC FERTILIZER = PROCESSOS DE PRODUÇÃO DE COMPOSTOS DE LIXO E A SUA QUALIDADE COMO FERTILIZANTE ORGÂNICO

    Directory of Open Access Journals (Sweden)

    Soraya Despina Santos Voigtel

    2005-01-01

    Full Text Available The composting of organic waste may present real profits to the society and benefits for the solid residue public management in the city when it is correctly processed. The FABER-AMBRA system for domestic solid residue pre-treatment and DANO system for organic residue composting were compared based on organic composition quality generated for agricultural use. The DANO system is used at São José dos Campos and São Paulo City (Vila Leopoldina. The system uses rotating cylinder to accelerate the initial tax of compost. The material inside of the bioestabilizators for three days with rotating cylinder speed bigger than 1,5 rpm. The resultant product is called pre-compost and it does not have enough quality for agricultural use due to its maturation and pathogenic load. Therefore, it is necessaryto keep the composting material outside in piles to reach an acceptable maturation level. The System DANO implemented in Vila Leopoldina unit was modified by increasing the rotating cylinder speed or decreasing the period of permanence of the organic material in the bioestabilizadors. Results shows that more time in the storageyard for maturation was necessary. The bioestabilizado material produced by the FABER-AMBRA® system implemented at São Sebastião city takes six to nine months of maturation. The compost has the characteristics of maturity necessary to reduce volume and the organic load increasing the useful life of landfills. However, itcontains high concentration of heavy metal to be used as organic fertilizer. = A compostagem do lixo orgânico realizado de maneira correta apresenta ganhos reais à sociedade e benefícios incontestáveis para o gerenciamento público de resíduos sólidos no município. Os sistemas FABER-AMBRA® de pré-tratamento de resíduos sólidos domiciliares e DANO de compostagem de resíduo orgânico foramcomparados, em termos de qualidade dos compostos orgânicos gerados para uso na agricultura. O sistema DANO utiliza

  4. Microbiota Characterization of Compost Using Omics Approaches Opens New Perspectives for Phytophthora Root Rot Control

    Science.gov (United States)

    Blaya, Josefa; Marhuenda, Frutos C.; Pascual, Jose A.; Ros, Margarita

    2016-01-01

    Phytophthora root rot caused by Phytophthora nicotianae is an economically important disease in pepper crops. The use of suppressive composts is a low environmental impact method for its control. Although attempts have been made to reveal the relationship between microbiota and compost suppressiveness, little is known about the microorganisms associated with disease suppression. Here, an Ion Torrent platform was used to assess the microbial composition of composts made of different agro-industrial waste and with different levels of suppressiveness against P. nicotianae. Both bacterial and fungal populations responded differently depending on the chemical heterogeneity of materials used during the composting process. High proportions (67–75%) of vineyard pruning waste were used in the most suppressive composts, COM-A and COM-B. This material may have promoted the presence of higher relative abundance of Ascomycota as well as higher microbial activity, which have proved to be essential for controlling the disease. Although no unique fungi or bacteria have been detected in neither suppressive nor conducive composts, relatively high abundance of Fusarium and Zopfiella were found in compost COM-B and COM-A, respectively. To the best of our knowledge, this is the first work that studies compost metabolome. Surprisingly, composts and peat clustered together in principal component analysis of the metabolic data according to their levels of suppressiveness achieved. This study demonstrated the need for combining the information provided by different techniques, including metagenomics and metametabolomics, to better understand the ability of compost to control plant diseases. PMID:27490955

  5. Microbiota Characterization of Compost Using Omics Approaches Opens New Perspectives for Phytophthora Root Rot Control.

    Science.gov (United States)

    Blaya, Josefa; Marhuenda, Frutos C; Pascual, Jose A; Ros, Margarita

    2016-01-01

    Phytophthora root rot caused by Phytophthora nicotianae is an economically important disease in pepper crops. The use of suppressive composts is a low environmental impact method for its control. Although attempts have been made to reveal the relationship between microbiota and compost suppressiveness, little is known about the microorganisms associated with disease suppression. Here, an Ion Torrent platform was used to assess the microbial composition of composts made of different agro-industrial waste and with different levels of suppressiveness against P. nicotianae. Both bacterial and fungal populations responded differently depending on the chemical heterogeneity of materials used during the composting process. High proportions (67-75%) of vineyard pruning waste were used in the most suppressive composts, COM-A and COM-B. This material may have promoted the presence of higher relative abundance of Ascomycota as well as higher microbial activity, which have proved to be essential for controlling the disease. Although no unique fungi or bacteria have been detected in neither suppressive nor conducive composts, relatively high abundance of Fusarium and Zopfiella were found in compost COM-B and COM-A, respectively. To the best of our knowledge, this is the first work that studies compost metabolome. Surprisingly, composts and peat clustered together in principal component analysis of the metabolic data according to their levels of suppressiveness achieved. This study demonstrated the need for combining the information provided by different techniques, including metagenomics and metametabolomics, to better understand the ability of compost to control plant diseases. PMID:27490955

  6. HOW DO DEGRADABLE/BIODEGRADABLE PLASTIC MATERIALS DECOMPOSE IN HOME COMPOSTING ENVIRONMENT?

    OpenAIRE

    Magdalena Vaverková; Dana Adamcová; Jan Zloch

    2014-01-01

    This paper provides information about biodegradability of polymeric (biodegradable/degradable) materials advertised as 100%-degradable or certified as compostable, which may be a part of biodegradable waste, in home composting conditions. It describes an experiment that took place in home wooden compost bins and contained 9 samples that are commonly available in retail chains in the Czech Republic and Poland. The experiment lasted for the period of 12 weeks. Based on the results thereof it ca...

  7. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts

    OpenAIRE

    Lemunier, Mélanie; Francou, Cédric; Rousseaux, Sandrine; Houot, Sabine; Dantigny, Philippe; Piveteau, Pascal; Guzzo, Jean

    2005-01-01

    For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocyt...

  8. Brassicas limited in weed control

    OpenAIRE

    Kristiansen, Mr P

    2006-01-01

    This article discusses the limitations of using brassica cover crops for weed control. A brief overview of the role of cover crops is provided, followed by a short review of research looking at brassica cover crops.

  9. CONTROL OF SOIL-BORNE DISEASES BY DIFFERENT COMPOSTS IN POTTED VEGETABLE CROPS.

    Science.gov (United States)

    Pugliese, M; Benetti, A; Gilardi, G; Gullino, M L; Garibaldi, A

    2014-01-01

    The composting process and the type and nature of wastes and raw materials influence the maturity, quality and suppressiveness of composts. Variability in disease suppression also depends on the pathosystem, on soil or substrate type, on chemical-physical conditions, like pH and moisture, and on the microbial component of compost. The aim of the research was to evaluate the suppressiveness of composts, originated from green wastes and/or municipal biowastes, and produced by different composting plants located in Europe. The composts were tested against soil-borne pathogens in greenhouse on potted plants: Fusarium oxysporum f.sp. busilici/basil, Pythium ultimum/cucumber, Rhizoctonia solani/bean. Composts were blended with a peat substrate at different dosages (10, 20 and 50% vol./vol.) 14 days before seeding or transplanting. Pythium ultimum and Rhizoctonia solani were mixed into the substrate at 0.5 g of wheat kernels L(-1) 7 days before seeding, while, in the case of Fusarium oxysporum f.sp. basilici, chlamydospores were applied at 1 x 10(4) CFU/g. Seeds of basil, cucumber and bean were sown into 2 L pots in greenhouse. The number of alive plants was counted and above ground biomass was weighed 30 days after seeding. The number of infected cucumber and basil plants was significantly reduced by increasing dosages of composts, but municipal compost was phytotoxic when applied at high dosages compared to green compost. Moreover, municipal compost increased the disease caused by Rhizoctonia solani on bean. The use of compost in substrates can be a suitable strategy for controlling soil-borne diseases on vegetable crops, but results depend on type of composts, application rates and pathosystems. PMID:26084080

  10. Radiation sensitivity of hyperthermal composting microorganisms

    Science.gov (United States)

    Choi, Jong-Il; Yoon, Min-Chul; Kim, Jae-Hun; Yamashita, Masamichi; Kim, Geun Joong; Lee, Ju-Woon

    In the space station and vehicles designed for long human mission, high-temperature compost is a promising technology for decomposing organic waste and producing the fertilizers. In space, the microorganisms could have the changed biological activities or even be mutated by ionizing irradiation. Therefore, in this study, the effect of gamma irradiation on the sensitivity of bacteria in hyperthermal composting was investigated. The sequence analysis of the amplified 16s rDNA genes and amoA gene were used for the identification of composting microorganisms. Viability of microorganisms in compost soil after gamma irradiation was directly visualized with LIVE/DEAD Baclight viability kit. The dominant bacterial genera are Weissella cibaria and Leuconostoc sp. and fungus genera are Metschnikowia bicuspidate and Pichia guilliermondii, respectively. By the gamma irradiation up to the dose of 1 kGy, the microbial population was not changed. Also, the enzyme activities of amylase and cellulose were sustained by the gamma irradiation. These results show that these hyperthermia microorganisms might have the high resistance to gamma radiation and could be used for agriculture in the Space Station.

  11. Characteristics of waste composting in Castanea mollissima Bl.areas and evaluation of maturity%板栗产区废弃物堆肥特性及腐熟度评价

    Institute of Scientific and Technical Information of China (English)

    杨娜; 郭素娟; 张峰

    2009-01-01

    Compost by agricultural and forestry waste is one of the effective ways to reduce pollution, make use of resources and recycle. In this study, 7 different ratios of raw materials, which were leaves and hulls of Castanea mollissima BI., corn stalks and cow dung in Beijing Huairou area were set up, namely A, B, C, D, E, F, G, adopting EM treatment in the late autumn of 2008. Through determining temperature, moisture content, pH value, NH~+_4-N, NO~-_3-N,C/N in composting process, the effects of different ratios on compost maturity were researched. Simultaneously, Chinese cabbage seed germination index (GI) was adopted to evaluate maturity and physiological toxicity. The results showed that:1) in the composting process, temperature, NH~+_4-N and C/N had similar changing trends in different ratios, which rose in the first 14 days, then gradually decreased. The highest temperature of E was higher than the other six ratios, which reached 62℃. GI and NO~-_3-N presented a trend of rising. Moisture content kept declining and the pH maintained at 8-9.2) GI was positively correlated with pH and NO~-_3-N, and negatively correlated with NH~+_4-N and C/N; especially, GI was significantly correlated with NH~+_4-N, reached-0.799 6.3) In Beijing Huairou area, E (C. Mollissima leaves : C. Mollissima hull:corn stalks:cow dung=2.0:2.0:2.0:4.0) was the optimum combination of compost, its maturity efficient was high and the time reaching maturity was about 42 days.%利用农林废弃物进行堆肥,是减少环境污染、实现资源循环利用的有效途径之一.以北京市怀柔区板栗落叶、栗蓬、玉米秸秆、牛粪为原料,设置7种不同配比(A、B、C、D、E、F、G),采用有效微生物群(EM)技术,于2008年秋末进行堆肥试验.通过对堆肥过程中堆体的温度、含水率、pH值、NH~+_4-N、NO~-_3一N、C/N的测定,研究了不同配比对堆肥腐熟度的影响.同时,采用白菜种子发芽指数(GI)评价了堆肥的腐熟度和生理毒

  12. Fate of plastic residues in soils after urban compost applications: identification of pyrolysis molecular markers in the soil size fractions

    OpenAIRE

    Dignac, Marie-France; Doublet, Jeremy; Watteau, Françoise; Pechot, Nicolas; Houot, Sabine

    2011-01-01

    Plastics are made of inert organic polymers that may reside for long periods in terrestrial and aquatic environments. Despite the improvement of waste selective collection and of waste sorting before composting, plastic residues may be present in final composts. For that purpose, the agricultural use of municipal solid waste composts (MSW), made of the organic matter fraction of MSW obtained after collection of recyclable materials and the sorting of impurities, is regulated by a standard def...

  13. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola.

    Science.gov (United States)

    Craft, C M; Nelson, E B

    1996-05-01

    Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease

  14. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling

    Science.gov (United States)

    Faverial, Julie; Cornet, Denis; Paul, Jacky

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950

  15. Managing biowaste and promoting sustainability - profiling community composting

    OpenAIRE

    Slater, Rachel; Frederickson, James

    2008-01-01

    The voluntary and community waste sector makes an important contribution to waste objectives (Williams et al, 2006). The community composting sector would appear to be leading the development of innovative biowaste collection and processing systems in areas unsuitable for traditional kerbside. Such schemes can contribute to developing local areas by improving local soils and green spaces as well as diverting waste from landfill. However, this is often only part of the story. Well managed ...

  16. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar.

    Science.gov (United States)

    Darby, Ian; Xu, Cheng-Yuan; Wallace, Helen M; Joseph, Stephen; Pace, Ben; Bai, Shahla Hosseini

    2016-06-01

    This study aims to examine the effects of different organic treatments including compost (generated from cattle hide waste and plant material), compost mixed with biochar (compost + biochar) and a new formulation of organo-mineral biochar (produced by mixing biochar with clay, minerals and chicken manure) on carbon (C) nitrogen (N) cycling. We used compost at the rate of 20 t ha(-1), compost 20 t ha(-1) mixed with 10 t ha(-1) biochar (compost + biochar) and organo-mineral biochar which also contained 10 t ha(-1) biochar. Control samples received neither of the treatments. Compost and compost + biochar increased NH4 (+) -N concentrations for a short time, mainly due to the release of their NH4 (+) -N content. Compost + biochar did not alter N cycling of the compost significantly but did significantly increase CO2 emission compared to control. Compost significantly increased N2O emission compared to control. Compost + biochar did not significantly change N supply and also did not decrease CO2 and N2O emissions compared to compost, suggesting probably higher rates of biochar may be required to be added to the compost to significantly affect compost-induced C and N alteration. The organo-mineral biochar had no effect on N cycling and did not stimulate CO2 and N2O emission compared to the control. However, organo-mineral biochar maintained significantly higher dissolved organic carbon (DOC) than compost and compost + biochar from after day 14 to the end of the incubation. Biochar used in organo-mineral biochar had increased organic C adsorption which may become available eventually. However, increased DOC in organo-mineral biochar probably originated from both biochar and chicken manure which was not differentiated in this experiment. Hence, in our experiment, compost, compost + biochar and organo-mineral biochar affected C and N cycling differently mainly due to their different content. PMID:26924699

  17. SEQUENTIAL EXTRACTION AND SPECIATION OF HEAVY METALS IN THE PROCESS OF COMPOSTING OF WASTE GARBAGE = EXTRAÇÃO SEQUENCIAL E ESPECIAÇÃO DE METAIS PESADOS NO DECORRER DO PROCESSO DE COMPOSTAGEM DE RESÍDUOS SÓLIDOS DOMICILIARES

    OpenAIRE

    José Carlos Chitolina; Fábio Cesar da Silva; Valter Barbieri; Stefan Barradas Podsclan

    2012-01-01

    Environmental pollution by heavy metals caused by the intensification of industrial activities, agriculture and urbanization, especially the generation of solid waste and the necessity of treat them biologically is a growing problem, causing serious ecological impacts. It carried out sequential extraction for heavy metals speciation in organic trash during composting, objecting the understanding of chemical Cu, Mn and Zn transformations and environmental risks. The extractors utilized in seq...

  18. The use of compost for the biological pest control. An alternative for pesticides; Utilizacion de compost en el control biologico de plagas. Una alternativa a los plaguicidas quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, J. A.

    2000-07-01

    Traditional methods of controlling pests and diseases using chemical pesticides can provide highly effective pest control but these methods might be damaging to the environment. Compost or other organic matter added to soil has the potential to control many soil borne plant pathogens, therefore they can be used in the sustainable agriculture. The mechanisms of action of compost are not well defined, being a mix of mycoparasitism, antibiotic production and nutrient competition. Our research is focused on the potential action of compost from municipal wastes in the biological control on pest. The addition of organic waste compost improved the biological control against Pythium furthermore raised the organic matter content of an arid soil. The addition of urban waste to the soil also could act long-term against Pythium, reducing the application times. One of the compost fraction more active in biological control are the humic substances. Nowadays, composts cannot be used by themselves to prevent plant pathogens action, it also is needed some pesticide application, but the use of these pesticides can be considerably reduced with the application of compost. (Author)

  19. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  20. Production and characterization of APAT-RM004 (compost) and APAT-RM005 (agricultural soil) matrix reference materials

    International Nuclear Information System (INIS)

    Compost is the decomposed remnants of organic materials (usually those with plant origins) and it is used in gardening and agriculture, mixed in with the soil. It improves soil structure, increases the amount of organic matter, and provides nutrients. Compost is a common name for humus, which is the result of the decomposition of organic matter. Generally, compost is the raw material obtained by the aerobic decomposition of the organic residues of the municipal waste or of the vegetable market waste. Composting is the industrial operation to produce compost on a large scale and it is the controlled decomposition technique of organic matter. Rather than allowing nature to take its slow course, a composter provides an optimal environment in which decomposer can thrive. The compost raw material used to prepare the APAT-RM004 reference material has been obtained from an aerobic composting plant located near Rome (Italy). This plant produces compost from organic waste originating from municipal routine plant trimmings, pruning, lawn mowing and wastes deriving from vegetable markets. The homogeneity test was carried out on 10 different units (bottles) sequentially selected over the whole bottling process. This study has been carried by measuring the total contents of C by CHN-S considering a sample intake of 0.02g and by the determination of the Hg content by direct mercury analyzer (DMA-80) considering a sample intake of 0.5g. Both techniques achieve high precision levels and require little or no sample processing prior to analysis

  1. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  2. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Fornes, F.; Mendoza-Hernandez, D.; Belda, R. M.

    2013-06-01

    The feasibility of composted (C), composted plus vermicomposted (V1) and straight vermicomposted (V2) tomato crop waste as component of rooting media for Euonymus japonicus Microphylla and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF) at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v) were assayed. Physical, physico-chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water-holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC) was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO{sub 4} {sup 2}- and Na+ in this material. EC and the ions contributing to it (K+, SO{sub 4} {sup 2}-, Na+) showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5%) performed worse than vermicomposts V1 (av. rooting = 97%) and V2 (av. rooting = 98%) whilst the latter performed similarly to CF control (av. rooting = 100%). Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent. (Author) 39 refs.

  3. Brassica greens herbicide screening

    Science.gov (United States)

    The objective of this study was to screen herbicides for potential use in brassica greens. Plots were in a RBD with 4 replications. The study was direct seeded on May 19, 2009 with a seeding rate of 272,000 seeds/acre (‘Savanna’ mustard). Treatments included trifluralin PPI + DCPA pre-emergence ap...

  4. Aerobic in-vessel composting versus bioreactor landfilling using life cycle inventory models

    Energy Technology Data Exchange (ETDEWEB)

    Cabaraban, Maria T.I. [Xavier University, Ateneo de Cagayan, Chemical Engineering, Cagayan de Oro City (Philippines); Khire, Milind V. [Michigan State University, Civil and Environmental Engineering, A135 Engineering Research Complex, East Lansing, MI (United States); Alocilja, Evangelyn C. [Michigan State University, Biosystems and Agricultural Engineering, 204 Farrall Hall, East Lansing, MI (United States)

    2008-02-15

    Potential environmental impacts associated with aerobic in-vessel composting and bioreactor landfilling were assessed using life cycle inventory (LCI) tool. LCI models for solid waste management (SWM) were also developed and used to compare environmental burdens of alternative SWM scenarios. Results from the LCI models showed that the estimated energy recovery from bioreactor landfilling was about 9.6 megajoules (MJ) per kilogram (kg) of waste. Air emissions from in-vessel composting contributed to a global warming potential (GWP) of 0.86 kg of CO{sub 2}-equivalent per kg of waste, compared to 1.54 kg of CO{sub 2}-equivalent from bioreactor landfill. Waterborne emissions contributing to aquatic toxicity is less coming from in-vessel composting than from bioreactor landfilling. However, emissions to air and water that contribute to human toxicity are greater for the composting option than for the landfill option. Full costs for in-vessel composting is about 6 times greater than for the landfilling alternative. Integration of individually collected commingled recyclables, yard wastes, and residual wastes with windrow composting and bioreactor landfilling produces airborne and waterborne emissions with the least environmental effects among the alternatives considered. It also yields greater energy savings due to the conversion of the landfill gas (LFG) to electrical energy than the option that diverts yard waste, food waste and soiled paper for aerobic in-vessel composting. However, this scenario costs 68% more than that where the commingled collection of wastes is integrated with in-vessel composting and conventional landfilling, owing to increased collection costs. (orig.)

  5. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    Science.gov (United States)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  6. Occupational hygiene in a Finnish drum composting plant.

    Science.gov (United States)

    Tolvanen, Outi; Nykänen, Jenni; Nivukoski, Ulla; Himanen, Marina; Veijanen, Anja; Hänninen, Kari

    2005-01-01

    Bioaerosols (microbes, dust and endotoxins) and volatile organic compounds (VOCs) were determined in the working air of a drum composting plant treating source-separated catering waste. Different composting activities at the Oulu drum composting plant take place in their own units separated by modular design and constructions. Important implication of this is that the control room is a relatively clean working environment and the risk of exposure to harmful factors is low. However, the number of viable airborne microbes was high both in the biowaste receiving hall and in the drum composting hall. The concentration (geometric average) of total microbes was 21.8 million pcs/m3 in the biowaste receiving hall, 13.9 million pcs/m3 in the drum composting hall, and just 1.4 million pcs/m3 in the control room. Endotoxin concentrations were high in the biowaste receiving hall and in the drum composting hall. The average (arithmetic) endotoxin concentration was over the threshold value of 200 EU/m3 in both measurement locations. In all working areas, the average (arithmetic) dust concentrations were in a low range of 0.6-0.7 mg/m3, being below the Finnish threshold value of 5 mg/m3. In the receiving hall and drum composting hall, the concentrations of airborne microbes and endotoxins may rise to levels hazardous to health during prolonged exposure. It is advisable to use a respirator mask (class P3) in these areas. Detected volatile organic compounds were typical compounds of composting plants: carboxylic acids and their esters, alcohols, ketones, aldehydes, and terpenes. Concentrations of VOCs were much lower than the Finnish threshold limit values (Finnish TLVs), many of the quantified compounds exceeded their threshold odour concentrations (TOCs). Primary health effects due VOCs were not presumable at these concentrations but unpleasant odours may cause secondary symptoms such as nausea and hypersensitivity reactions. This situation is typical of composting plants where

  7. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil. PMID:25940492

  8. Investigation of biomethylation of arsenic and tellurium during composting

    International Nuclear Information System (INIS)

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg-1 methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg-1 methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  9. Urban Composting in the Technology and Engineering Classroom

    Science.gov (United States)

    Buelin-Biesecker, Jennifer

    2014-01-01

    The average American produces around 1,600 pounds of garbage every year, and it is estimated that 50 percent of that waste is material that could be composted (Clean Air Council, 2012). Instead, most is sent to landfills and incinerators. In technology and engineering education, a great deal of time is spent in talking, teaching, and thinking…

  10. PROBLEMS OF DEVELOPMENT OF COM-POUND COMPOST

    OpenAIRE

    Belyuchenko I. S.

    2013-01-01

    Compound compost during its formation involving organic and mineral wastes retains the organic matter by reducing its degradation products with nitrifying and denitrifying organisms due to its economical ex-penditure of phosphorus and calcium, increased am-monia and total nitrogen, formation in the process of development of calcium sulfate with participation in its formation of residue calcium salt and ammonia

  11. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution

    Science.gov (United States)

    Tsui, L.; Roy, W.R.

    2008-01-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N2. In contrast, when the corn stillage was pyrolyzed under N2, the yield was only 22%. The N2-BET surface area of corn stillage activated carbon was 439 m2/g, which was much greater than the maximum compost char surface area of 72 m2/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N2-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon. ?? 2007 Elsevier Ltd. All rights reserved.

  12. Antioxidant properties of Brassica vegetables

    OpenAIRE

    Soengas Fernández, María del Pilar; Sotelo Pérez, Tamara; Velasco Pazos, Pablo; Cartea González, María Elena

    2011-01-01

    Brassica vegetables include some economically interesting crops such as cabbage, broccoli, cauliflower, Brussels sprouts, kale and turnip, which are consumed all over the world. A high intake of Brassica vegetables reduces the risk of age-related chronic illness such as cardiovascular health and other degenerative diseases and reduces the risk of several types of cancer, thanks in part to the antioxidant properties of different compounds. Compared to other vegetables, Brassica vegetables have...

  13. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    Science.gov (United States)

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system. PMID:26819060

  14. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  15. Green house gas emissions from composting and mechanical biological treatment.

    Science.gov (United States)

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis. PMID:18338701

  16. Agricultural use of household compost in Brazzaville market gardening belt

    Directory of Open Access Journals (Sweden)

    Matondo, H.

    1990-01-01

    Full Text Available After the finalization of the household filth processing through aerobic fermentation or compostage, which allowed us to get an organic tool, so important in the plant production, the following communication studies the fertilising values of compost from household filth and raw wastes. Conducted in the fields, the study has revelead being successful with positive effects of the burying of compost upon the output of gardenmarket cultivation (in the Brazzaville poor soil. More over, the direct burying of household filth go along with depressive effects mainly on short-cycle vegetative cultivation.

  17. ANALYSIS OF FUNGI IN MUSHROOM COMPOST USING PCR AND TGGE OF RIBOSOMAL DNA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The fungal communities in mushroom compost phase Ⅱ was assessed using a combination of PCR amplification and sequencing of 18S rDNA from fungal isolates and "nested" PCR-TGGE analysis on the basis of DNA directly extracted from compost samples. The diversity of cultivated fungi isolated from compost samples was low. A total of 11 isolates were related to only 2 different species. One species, Chaetomium elatum, was identified within 10 isolates, and the other, with high similarity belonged to Penicillium expansum. The fungal flora associated with mushroom compost was then monitored with "nested" PCR-TGGE. The patterns obtained revealed the more complex existence of fungal communities from the original compost samples than from thoses enriched with food waste and cow slurry.

  18. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  19. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure.

    Science.gov (United States)

    Jindo, Keiji; Suto, Koki; Matsumoto, Kazuhiro; García, Carlos; Sonoki, Tomonori; Sanchez-Monedero, Miguel A

    2012-04-01

    The aim of this study was to assess the effect of a 2% (v/v) addition of biochar on the quality of a composting mixture prepared with poultry manure and different local organic wastes (rice husk and apple pomace). Compost quality was evaluated in terms of typical stabilisation indices, the microbial biomass and selected enzymatic activities related to the C, N and P cycles. The main effects of biochar were a 10% increase in C captured by humic substance extraction and a 30% decrease of water-soluble C, due to an enhanced degradation rate and/or the sorption of these labile compounds into the biochar. The urease, phosphatase and polyphenol oxidase activities of the biochar-blended compost were enhanced by 30-40% despite the lower amount of microbial biomass. Denaturing gradient gel electrophoresis revealed a higher diversity of fungi in biochar-amended compost, suggesting a change in microbial composition compared to the unamended compost. PMID:22377478

  20. Effects of air flow directions on composting process temperature profile

    International Nuclear Information System (INIS)

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO2 and O2 ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2

  1. Effects of composting with earthworm on the chemical and biological properties of agricultural organic wastes: A principal component analysis%蚯蚓堆制处理对农业有机废弃物的化学及生物学影响的主成分分析

    Institute of Scientific and Technical Information of China (English)

    刘婷; 任宗玲; 张池; 陈旭飞; 周波; 戴军

    2012-01-01

    在实验室可控条件下,以碳氮比28.7∶1的农业有机废弃物(牛粪和稻秆)为赤子爱胜蚓(Eisenia foetida)的培养基质,研究蚯蚓的堆制作用对有机物料的化学及生物学特性的影响.结果表明:蚯蚓堆制处理30 d后,基质pH值、碳氮比显著降低,全磷显著升高,而全氮、碱解氮、可溶性碳、速效磷、微生物生物量碳、呼吸速率和微生物熵分别提高8.5%、2.6%、1.8%、6.3%、21.2%、4.4%和30.0%,有机质、呼吸熵分别降低5.0%和21.9%.蚯蚓堆制处理后物料具有较高的转化酶、酸性和碱性磷酸酶活性,较低的过氧化氢酶和脲酶活性.多元数据分析结果显示,自然堆制和蚯蚓堆制处理物料的化学和生物学特性均呈现显著的差异性.蚯蚓堆制处理优于自然堆制处理,可以明显改善有机物料的化学、生物学性质,是一种高效率处理农业有机废弃物的技术.%Taking mixed agricultural organic wastes cattle manure and rice straw (C;N = 28.7;1) as the substrate of earthworm Eisenia foetida, an experiment was conducted to study the effects of earthworm on the changes of the chemical and biological properties of wastes during vermi-compos-ting. After 30 days of vermi-composting, the substrate' s pH and C/N decreased while the total P content increased significantly, and the total N, available N, dissolved organic carbon, available P content, microbial biomass-C, respiration rate, and microbial quotient increased by 8. 5% , 2. 6% , 1. 8% , 6. 3% , 21. 2% , 4. 4% , and 30. 0% whereas the organic matter content and metabolic quotient decreased by 5.0% and 21. 9% , respectively, as compared with natural composting. Vermi-composting made the substrate have higher invertase, acid phosphatase, and alkaline phospha-tase activities but lower catalase and urease activities. Principal component analysis and discriminant analysis confirmed the significant differences in the substrate' s chemical and

  2. The role of composting in sustainable agriculture; Il ruolo del compostaggio nell`agricoltura sostenibile

    Energy Technology Data Exchange (ETDEWEB)

    Sequi, P.; Benedetti, A.; Canali, S.; Tittarelli, F. [Istituto Sperimentale per la Nutrizione delle Piante, Rome (Italy)

    1996-03-01

    Incineration, landfill and recycling are three main strategies to face the problem of waste disposal, and may co-exist. However, it is essential to encourage recycling, the only sustainable practice among the three cited above which avoids the existence itself of wastes by transforming possible waste materials in a series of products. Composting, as sustainable transformation of potential wastes in organic fertilizers, tunes up with sustainable agriculture, and must be optimised and developed. The three requisites needed in order that agriculture can be considered sustainable are discussed, and the use of compost is shown to enhance sustainability, not only of the agricultural activity, but of a more general context of sustainable society.

  3. Development and Application of Agricultural Composting Reactor Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Jizong Jiao

    2015-06-01

    Full Text Available In this study, we have a research of the development and application of agricultural composting reactor experimental apparatus. In agriculture, conversion of straw, sludge and other junk to agricultural fertilizer have a broad market prospect, it not only benefit solid waste recycling but also increase food production and food quality. Currently, the existing composting reactor had several shortcomings in practical application process, such as uneven mixing, long composting reaction cycle, producing odor and low maturity. Considering of materials and spatial structure, ventilation system, stirring system, we designed and developed a new experimental device aerobic composting reactor with relatively simple structure. We used the material in experimental device to doing a series of experiments, it include stir even, temperature changes, moisture changes, changes of organic matter, ammonia nitrogen change, change of nitrate nitrogen, PH values and so on. Experimental results showed that standard organic fertilizer could be produced by the device. Moreover, it had more complete degradation of organic matter to improve the quality of the compost product. Experiments also showed that compared with other existing devices, using the device could ferment evenly, increase the speed of biochemical reactions and reduce the fermentation time.

  4. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N2O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH4+-N content (3950 mg l-1). Physicochemical properties, including the amount of N2O produced, were monitored during the composting process over 28 days. A rapid decline in NH4+-N in the first 4 days and increasing NO3--N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N2O. Higher leachate applications as much as tripled N2O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N2O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N2O, although excessive flux of N2O remains about high application rates over longer time periods. (Author)

  5. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  6. Recycling Engineering Of Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    This book introduces conception of waste, generation of waste with generation and circulation of waste, waste generation amount, and classification of waste, management of waste, collection of waste on plan of collection, transportation and device of waste, waste management system such as extended producer responsibility, manifest system, exchange system of waste, volume-rate garbage disposal system, recycling of waste, including disposal technology for recycling waste, sanitary landfill, incineration, composting and human waste of disposal.

  7. CHARGE DEVELOPMENT AND ACID-BASE CHARACTERISTICS OF SOIL AND COMPOST HUMIC ACIDS

    Directory of Open Access Journals (Sweden)

    P. A. CAMPITELLI

    2003-09-01

    Full Text Available In previous works, the acid-base properties, charging behavior and chemical heterogeneity of humic substances have been studied using different mathematical equations to fit the experimental data. The objective of this research is to study the charge behavior, acid-base properties and analyze the chemical heterogeneity of humic acids (HA extracted from soil and composted municipal solid waste by potentiometric titrations. The humic acids extracted from compost have some characteristics and behavior similar to those obtained from soil. The negative charge development of HA extracted from composted material are lower than those extracted from soil and increase as ionic strength increase. The amount of carboxylic groups is lower in compost HA than in soil HA The heterogeneity of HA extracted from compost is higher than those extracted from soil. As the time of composting period increase the humification processes that take place trends to produce compost HA that has similar characteristics to soil HA. We suggest that HA extracted from composted material are macromolecules "like soil humic acids", i.e. "humiclike fraction"

  8. A reclamation recipe: Composting answers reclamation worries

    International Nuclear Information System (INIS)

    A much simplified recipe for successful wellsite remediation, an alternative to landfill cuttings, is described. The process is co-composting, and the recipe consists of combining oil and gas wellbore cuttings with wood waste, spread it out thinly, allowing the resulting mixture to stand for a period of two years, and adding seed. The result is a stabilized, non-toxic soil with a lush green carpet of grass, the product of combining two waste material streams into a valuable product that is also environmentally benign. Co-composting is essentially a biodegradation process where the work is done by indigenous microorganisms in the wood waste. Proponents of this process claim that the forestry industry is only too happy to provide the needed raw material as stored piles of wood waste are a fire hazard and have no market value. The process was pioneered by Newpark Environmental Services. Since 1996 they have successfully reclaimed some 500 drilling sites in Alberta and British Columbia, combining an estimated 400,000 cu. m of wood waste and wellbore cuttings to provide nutrient-rich topsoil, frequently in heavily-forested areas. Although faced initially with skepticism, the Newpark system now appears to have won respectability and is about to become part of the mainstream in that bioremediation is being added to the Alberta Energy and Utilities Board's 'Guide 50', the industry's principal guide to site remediation. Part of the reason for the acceptance of bioremediation as an acceptable method for site remediation is a change of heart at the EUB itself; prior to 1996 the EUB was quite fond of 'land-farming', a process which not only requires a period of five to ten years, but is also less than effective, particularly in areas that received a lot of rain and snow. photos

  9. Serum total immunoglobin-E and health hazards in workers involved in land fill and compost areas of hazardous waste management plants

    Directory of Open Access Journals (Sweden)

    Ravi Babu Kalahasthi

    2012-01-01

    Full Text Available Background : The exposures of bio-aerosols have reported higher occupational health hazards, the association between serum total IgE levels and job categories and occupational health hazards of waste disposal area was limited. The present study was undertaken to assess the relationship between occupational health hazards and Serum total IgE in waste disposal area. Materials and Methods: One hundred eighty subjects working in waste disposal areas in different parts of Bangalore at Karnataka, India were enrolled into the study in 2009. Using questionnaire the respiratory morbidity and other work related problems in HWW was carried. The levels of serum total IgE in study subjects were determined by using Enzyme-linked -immunosorbent assay kits (DRG International Inc, USA. The differences of serum total IgE levels between the groups were computed by using non-parametric Mann-Whitney U test. SPSS 10.0 for windows version of statistical software was used in the analysis. Results: The levels of serum total IgE was significantly increased in landfill area (P=0.027 compose plant workers (P=0.020. The morbidity conditions such as respiratory and musculoskeletal found significantly higher in waste disposal workers as compared to controls. Conclusion: The levels of serum total IgE was significantly increased in land fill area and compose plant workers but no significant relationship was found between the levels of serum total IgE and occurrence of health related symptoms or past respiratory disease.

  10. Management Of Solid Waste Matter

    International Nuclear Information System (INIS)

    This book is written with data from, 84 Karlsruhe symposium, which tells US general introduction of waste disposal such as actualization of waste disposal, related law and direction of waste disposal, collect and transportation of waste matter, preconditioning of waste, collect of waste and recirculation, cases of recirculation, optimal process of waste incineration of waste, composting of waste, disposal of harmful waste, RDF with pilot and operational plant and sanitary landfill method.

  11. YIELD FORMING EFFECT OF APPLICATION OF COMPOSTS CONTAINING POLYMER MATERIALS ENRICHED IN BIOCOMPONENTS

    Directory of Open Access Journals (Sweden)

    Florian Gambuś

    2014-01-01

    Full Text Available In a pot experiment the impact of composts containing polymeric materials modified with biocomponents on the diversity of crops of oats and mustard was examined. The composts used in the study were produced in the laboratory from wheat and rape straw, and pea seed cleaning waste with 8-percent addition of chopped biopolymer materials (films which were prepared in the Central Mining Institute (GIG in Katowice. Three polymers differing in content of starch and density were selected for the composting. The pot experiment was conducted on three substrates: light and medium soil and on the sediment obtained after flotation of zinc and lead ores, coming from the landfill ZGH “Boleslaw” S.A. in Bukowno. The need for using such materials and substrates results from the conditions of processing some morphological fractions of municipal waste and from improving methods of reclamation. Yield enhancing effect of composts depends on the substrate on which the compost was used, cultivated plants and crop succession. Application of composts prepared with 8% of polymeric materials based on polyethylene, modified with starch as biocomponent, resulted in significantly lower yields in sandy (light soil in case of oats and, in some cases, in medium soil. Subsequent plant yield did not differ significantly between the objects fertilized with compost.

  12. MULTI-LAYER COMPOST AS AN IMPORTANT SOURCE OF ENRICHMENT OF SOIL NUTRI-ENTS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-03-01

    Full Text Available Multicomponent compost represents a good environment for a significant number of species of living organisms and populations which produce enzymes, vitamins and other active substances. Chemical and physical properties of complicated composts are heterogeneous and polydisperse interim systems, and on the gene pool of living organisms are a rich comprehensive substratum. The heterogeneity of complicated composts of characterized by a very wide range of organisms which using animal waste and isolating of germinating seeds and spores of higher and lower plants

  13. Increased aeration for improved large-scale composting of low-pH biowaste

    OpenAIRE

    Sundberg, Cecilia

    2005-01-01

    Biowaste composting at several plants in Scandinavia has been troubled by low pH in the collected waste as well as after the composting process. Our hypothesis was that increased aeration would give a higher and faster rise in pH during the composting process, and that this would give a higher decomposition rate. The objective was to test this hypothesis by experiments in full scale, with an emphasis on the role of temperature in the transition from acidic to neutral pH. Experiments were carr...

  14. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    OpenAIRE

    Zervakis, Georgios I.; Georgios Koutrotsios; Panagiotis Katsaris

    2013-01-01

    Two-phase olive mill waste (TPOMW, “alperujo”) is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their eff...

  15. Waste composting for urban and peri-urban agriculture: Closing the rural-urban nutrient cycle in Sub-Saharan Africa

    OpenAIRE

    Drechsel, P.; Kunze, D.

    2001-01-01

    Metadata only record One of the greatest future challenges for governments all over the world will be the provision of nutritional and affordable food for expanding urban populations. On a global scale urban settlements consume currently 70-80% of all resources. This centralized consumption results in problems at both ends of the food chain: soil nutrient mining in agricultural production areas and pollution and waste disposal problems in urban centers. Increasingly, municipal authorities ...

  16. Estimating fugitive bioaerosol releases from static compost windrows: feasibility of portable wind tunnel approach

    OpenAIRE

    Taha, M. P. M.; Pollard, Simon J. T.; Sarkar, Ujjaini; Longhurst, Philip J.

    2005-01-01

    An assessment of the fugitive release of bioaerosols from static compost piles was conducted at a green waste composting facility in South East England; this representing the initial stage of a programme of research into the influence of process parameters on bioaerosol emission flux. Wind tunnel experiments conducted on the surface of static windrows generated specific bioaerosol emission rates (SBER2s) at ground level of between 13 - 22 x10 3 cfu/m 2 /s for mesophilic acti...

  17. YIELD FORMING EFFECT OF APPLICATION OF COMPOSTS CONTAINING POLYMER MATERIALS ENRICHED IN BIOCOMPONENTS

    OpenAIRE

    Florian Gambuś; Jerzy Wieczorek; Tomasz Czech; Olga Gorczyca; Iwona Spałek; Katarzyna Urbańska; Jacek Babula; Monika Mierzwa-Hersztek; Henryk Rydarowski; Michał Kopeć

    2014-01-01

    In a pot experiment the impact of composts containing polymeric materials modified with biocomponents on the diversity of crops of oats and mustard was examined. The composts used in the study were produced in the laboratory from wheat and rape straw, and pea seed cleaning waste with 8-percent addition of chopped biopolymer materials (films) which were prepared in the Central Mining Institute (GIG) in Katowice. Three polymers differing in content of starch and density were selected for the co...

  18. Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment †

    OpenAIRE

    Johnson, Kenneth E.; Pometto, Anthony L.; Nikolov, Zivko L.

    1993-01-01

    The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and...

  19. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Directory of Open Access Journals (Sweden)

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  20. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  1. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  2. Influence of input material and operational performance on the physical and chemical properties of MSW compost.

    Science.gov (United States)

    Montejo, C; Costa, C; Márquez, M C

    2015-10-01

    Certain controversy exists about the use of compost from MSW (municipal solid waste) and, specifically, from the organic fraction of MSW that has not been separated at the source. In this case, the final composition of MSW compost is related to the performance of the separation process in MBT (Mechanical and Biological Treatment) plants as well as the composition of raw materials and the particular features of composting systems. In an effort to investigate the quality of MSW compost, 30 samples of this product obtained from 10 different MBT plants were studied. The main physical and chemical properties were analyzed and were compared with the requirements of current legislation. The composting systems used to produce these compost samples were studied and the input materials were characterized. The results reveal that the heavy metal content in MSW compost was below the legal restrictions in all samples but one; however, in most of them the percentage of Pb was high. The fertilizing potential of MSW compost has been demonstrated by its high nutrient concentrations, particularly N, K, P, Ca and Mg. Nevertheless, here the percentage of inert impurities with a size larger than 2 mm, such as plastic or glass, was seen to be excessively high exceeding in some cases the legal limit. The source of such pollution lies in the composting inputs, OFMSW (organic fraction of MSW), which showed high percentages of improper materials such as plastic (9%) or glass (11%). Accordingly, the performance of the sorting stage for the collection of the raw material must be improved, as must the refining process, since this does not remove the necessary amounts of these impurities from the final compost. PMID:26254992

  3. A guide on resources of waste

    International Nuclear Information System (INIS)

    This book is a guide on resources of waste, which includes general remarks, analysis of investigation on city resources of waste, disposal and recycling technology of resources of waste, mechanical distinguish, incineration system, pyrolysis refuse derived fuel, composting, the recycling case of resources of waste, such as waste oil, waste plastic, waste tire, waste wood, waste ceramics and waste con crete, integrated recycling system and the cases like landfill gas, composting plant U.S. Bureau of Mines recycling system and law related resources of waste.

  4. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  5. Compost Politics: Experimenting with Togetherness in Vermicomposting

    Directory of Open Access Journals (Sweden)

    Abrahamsson, Sebastian

    2014-05-01

    Full Text Available Emerging from the question of how to live together with our planet, more-than-human approaches to interspecies relations have often presented ‘cozy’ versions of conviviality (Whatmore 2002; Haraway 2008; Hinchliffe 2010. This was usually set against a (supposedly exclusionary politics of nature, in a move that betrayed a still largely humanist ethics. From the focus on friendly companions, to the attention to practices of care or living-together, the notion of companion species and their entanglements with humans has been polarized towards a pleasant and ‘nice’ version of coexistence. But, dealing with composting, it becomes clear that relations with the environment are never so neat and clean. What are, then, the modes of being together with the ‘dirty’ side of the ‘green’? What practices emerge at the mundane interstices of the ‘big picture’ of a functional ecology? Wasting, eating, rotting, consuming, transforming and becoming-with are brought together in a variety of ways in practices of composting-with earthworms. Reporting on our own and others’ attempts to ‘live-together’ with earthworms, this paper tracks the non-relations and asymmetries of the transformations of more-than-human materialities inside (and outside domestic composting bins. We argue that the example of living-together with dung earthworms sheds light on the interplays between attachment and detachment (Candea 2010, shifting the notion of conviviality from a green and comfortable ‘democratic collective’ (Latour 2004 to a messy, yet constantly productive and on-going coexistence.

  6. Transfer of auxinic herbicide resistance from Brassica kaber to Brassica juncea and Brassica rapa through embryo rescue

    OpenAIRE

    Mithila, J.; Hall, J Christopher

    2013-01-01

    Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A h...

  7. Transformation of nitrogen in sawdust compost and its uptake by tomato plants using 15N technique

    International Nuclear Information System (INIS)

    Sawdust composts as a suitable growing medium for growing tomato plants were studied. Nitrogen transformation in sawdust compost was investigated using 15N. Nitrogen in the different fractions showed that the total N was higher with the marble treatments. The lowest N content was established with the mineral fraction due to its uptake. High content of labelled fertilizer N was established with hydrolyzable parts of easy and uneasy hydrolyzable fractions. The addition of active cellulose degradable fungus to sawdust composts resulted in incorporation of higher amount of fertilizer N into organic fraction of the composts but this was not so easy available as in the sawdust composts not treated with fungus. The yield of tomato plants clearly indicates that sawdust compost stimulates formation of fruits, vegetable mass and roots. The yield at the sawdust treatments without inclusion of Cephalosporum sp. was as high as 137-155% compared to the manured soil as a control. The increase at the Cephalosporum sp. treatments was 60-63% higher than at the control manured soil. The increase of the roots varied from 20 to 78% but at the top vegetative mass it was 8-87%. It can be concluded that sawdust waste after aerobic composting could be used as growing medium for tomato production in greenhouse conditions

  8. Effect of granular porous media on the composting of swine manure

    International Nuclear Information System (INIS)

    This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO2 production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent

  9. PROBLEMS OF DEVELOPMENT OF COM-POUND COMPOST

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2013-12-01

    Full Text Available Compound compost during its formation involving organic and mineral wastes retains the organic matter by reducing its degradation products with nitrifying and denitrifying organisms due to its economical ex-penditure of phosphorus and calcium, increased am-monia and total nitrogen, formation in the process of development of calcium sulfate with participation in its formation of residue calcium salt and ammonia

  10. INFLUENCE OF COMPLEX COMPOST ON PHYSICAL PROPERTIES OF SOIL

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-01-01

    Full Text Available Complicated compost is used for recultivation of soils and represents a new direction in practical husbandry and ecology defining the artificial creation of complex mixtures of different wastes of industrial and agricul-tural production, as well as household residues and natural materials for the enrichment of organic and mineral dispersed and colloidal systems with purpose to improving their physical, chemical, biological and ecological functions

  11. State of the art of composting plants treatment organic matter of urban solid wastes in Catalonia (II); Situacion actual de las plantas de compostaje que tratan la fraccion organica de los residuos solidos municipales en Cataluna (II)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, L.; Faidella, L.; Gomez, A.; Ramirez, S.; Utrera, P.; Vergara, E. [Universidad Autonoma de Barcelona (Spain); Rieradevall, J.

    2000-07-01

    The analysis of designs has allowed some positive points and another aspects to improve in the centre working. The main proficient points are related with the suitable localisation, designs centres, compost quality and the management of process remnants. The future evolution of this type of treatment depends on the answer given to certain aspects that should improve. It's needful that the project makes suitable to the definite realities, the development of new application areas for compost and the search of social acceptance by means of reducing the associated impacts. Ah this process has to be done covered with a firm and clear normative. (Author) 10 refs.

  12. Composting paper mill deinking sludge with forced aeration

    Energy Technology Data Exchange (ETDEWEB)

    Brouillette, M.; Trepanier, L.; Gallichand, J.; Beauchamp, C. [Laval Univ., Quebec City, PQ (Canada)

    1996-04-01

    A composting strategy to dispose of deinking sludge was discussed. Deinking sludge is a waste by-product containing mainly paper fibres, clay particles and ink. Composting with forced aeration can reduce the volume and stabilize the sludge so it may be economically used in agricultural, landscaping and horticultural applications. In this study, static pile forced aeration was used as an alternative to mechanical pile turning. Two piles of 2 to 3 metres in height were used with three aeration pipes of different aeration levels. Results showed that 3 metre piles required longer aeration times to maintain temperatures in the required range of 50-65 degrees C. Water content remained within 60-71% for optimum composting. Fibre levels decreased gradually during the experiment, with cellulose being the most degraded. Aeration improved micro organic activity; organic nitrogen was also higher in aerated treatments. It was concluded that composting of deinking sludge with forced aeration is feasible in northeastern Canada even with outside temperatures as low as -20 degrees C. 20 refs., 4 tabs., 8 figs.

  13. Production and efficiency of organic compost generated by millipede activity

    Directory of Open Access Journals (Sweden)

    Luiz Fernando de Sousa Antunes

    2016-05-01

    Full Text Available ABSTRACT: The putrefactive activity of organisms such as diplopods in the edaphic macrof auna can be leveraged to promote the transformation of agricultural and urban waste into a low-cost substrate for the production of vegetable s