WorldWideScience

Sample records for brassica oleracea roots

  1. Draft Genome Sequence of a Kale (Brassica oleracea L.) Root Endophyte, Pseudomonas sp. Strain C9.

    Science.gov (United States)

    Laugraud, Aurelie; Young, Sandra; Gerard, Emily; O'Callaghan, Maureen; Wakelin, Steven

    2017-04-13

    Pseudomonas sp. strain C9 is a plant growth-promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control. Copyright © 2017 Laugraud et al.

  2. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  3. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  4. Brassica oleracea and B. napus.

    Science.gov (United States)

    Sparrow, Penny A C Hundleby Née; Irwin, Judith A

    2015-01-01

    With the accelerating advances in genetics and genomics research in Arabidopsis and Brassica, transformation technologies are now routinely being exploited to elucidate gene function as well as contributing to the development of novel enhanced crops. When a researcher's desired goal is simply to modify or introduce candidate genes into a Brassica, the availability of easy-to-follow protocols and knowledge of readily transformable genotypes becomes a valuable resource. In this chapter we outline a basic A. tumefaciens-mediated transformation method, using 4-day-old cotyledonary explants, that has been successfully applied to a range of different B. oleracea and B. napus genotypes. For demonstration purposes, we focus primarily on the diploid species B. oleracea using a model doubled haploid genotype, AG DH1012. After only 3-4 weeks on kanamycin selection the first transgenic shoots can be isolated. Transformation efficiencies are typically in the region of 15-25 % (based on 15-25 PCR-positive independent shoots from 100 inoculated explants). Most explants will produce multiple shoots (1-3+ per explant) and so the total number of transgenic shoots produced will exceed 15-25 per 100 explant experiment. The protocol is also applicable to B. napus and modifications specific to this species are highlighted accordingly. For researchers wishing to use their own plant genotype, tissue culture phenotypes that are conducive to efficient transformation are also highlighted within this chapter.

  5. MALDI-TOF characterization of hGH1 produced by hairy root cultures of Brassica oleracea var. italica grown in an airlift with mesh bioreactor.

    Science.gov (United States)

    López, Edgar García; Ramírez, Emma Gloria Ramos; Gúzman, Octavio Gómez; Calva, Graciano Calva; Ariza-Castolo, Armando; Pérez-Vargas, Josefina; Rodríguez, Herminia Guadalupe Martínez

    2014-01-01

    Expression systems based on plant cells, tissue, and organ cultures have been investigated as an alternative for production of human therapeutic proteins in bioreactors. In this work, hairy root cultures of Brassica oleracea var. italica (broccoli) were established in an airlift with mesh bioreactor to produce isoform 1 of the human growth hormone (hGH1) as a model therapeutic protein. The hGH1 cDNA was cloned into the pCAMBIA1105.1 binary vector to induce hairy roots in hypocotyls of broccoli plantlets via Agrobacterium rhizogenes. Most of the infected plantlets (90%) developed hairy roots when inoculated before the appearance of true leaves, and keeping the emerging roots attached to hypocotyl explants during transfer to solid Schenk and Hildebrandt medium. The incorporation of the cDNA into the hairy root genome was confirmed by PCR amplification from genomic DNA. The expression and structure of the transgenic hGH1 was assessed by ELISA, western blot, and MALDITOF-MS analysis of the purified protein extracted from the biomass of hairy roots cultivated in bioreactor for 24 days. Production of hGH1 was 5.1 ± 0.42 µg/g dry weight (DW) for flask cultures, and 7.8 ± 0.3 µg/g DW for bioreactor, with productivity of 0.68 ± 0.05 and 1.5 ± 0.06 µg/g DW*days, respectively, indicating that the production of hGH1 was not affected by the growth rate, but might be affected by the culture system. These results demonstrate that hairy root cultures of broccoli have potential as an alternative expression system for production of hGH1, and might also be useful for production of other therapeutic proteins. © 2013 American Institute of Chemical Engineers.

  6. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes

    National Research Council Canada - National Science Library

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph‐Alexander; Fan, Longjiang; Cai, Daguang

    2014-01-01

    .... To identify oilseed rape mi RNA s, we deep‐sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for mi RNA prediction and characterization...

  7. THE BRINE SHRIMP (ARTEMIA SALINA) LETHALITY OF Brassica oleracea var. capitata

    OpenAIRE

    O.T. TÜZÜN, E. GÜRKAN, F. HIRLAK,

    2015-01-01

    This work covers up the bio-activities of the five fractions obtained from the ethanolic extract of Brassica oleracea var. capitata (Cruciferae).Key Words: Brassica oleracea var. capitata, Brine shrimp (Artemia salina)

  8. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  9. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection

    NARCIS (Netherlands)

    Cheng, Feng; Wu, Jian; Cai, Chengcheng; Fu, Lixia; Liang, Jianli; Borm, Theo; Zhuang, Mu; Zhang, Yangyong; Zhang, Fenglan; Bonnema, Guusje; Wang, Xiaowu

    2016-01-01

    The closely related species Brassica rapa and B. oleracea encompass a wide range of vegetable, fodder and oil crops. The release of their reference genomes has facilitated resequencing collections of B. rapa and B. oleracea aiming to build their variome datasets. These data can be used to

  10. The broccoli (Brassica oleracea) phloem tissue proteome.

    Science.gov (United States)

    Anstead, James A; Hartson, Steven D; Thompson, Gary A

    2013-11-07

    The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.

  11. Genetic analysis of resistance to clubroot (Plasmodiophora brassicae) in Brassica oleracea. 1. Analysis of symptom grades

    NARCIS (Netherlands)

    Voorrips, R.E.; Kanne, H.J.

    1997-01-01

    The inheritance of resistance to clubroot, caused by Plasmodiophora brassicae, in Brassica oleracea was studied in the F1, F2and backcross progenies of four crosses between resistant and susceptible doubled haploid lines. The disease severity was scored visually on a 0–3 scale of symptom grades.

  12. Clubroot in the cole crops : the interaction between Plasmodiophora brassicae and Brassica oleracea

    NARCIS (Netherlands)

    Voorrips, R.E.

    1996-01-01

    The clubroot disease of the cole crops ( Brassica oleracea ) and other crucifers is caused by the fungus Plasmodiophora brassicae . It is an important disease, affecting an estimated 10 % of the total cultured area world-wide. The potential of

  13. Anti-ulcer activity of Brassica oleracea on induced ...

    African Journals Online (AJOL)

    The animals were sacrificed following mild anesthesia using chloroform inhalation. The dissected stomach and duodenum were examined macroscopically, tissue blocks taken, fixed in 10% formol saline and prepared for histopathological diagnosis. Brassica oleracea exhibited better healing activity of gastric ulcers than ...

  14. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea

  15. [Transposon expression and potential effects on gene regulation of Brassica rapa and B. oleracea genomes].

    Science.gov (United States)

    Zhao, Mei-Xia; Zhang, Biao; Liu, Sheng-Yi; Ma, Jian-Xin

    2013-08-01

    Transposons or transposable elements (TEs) are ubiquitous and most abundant DNA components in higher eukaryotes. Recent sequencing of the Brassica rapa and B. oleracea genomes revealed that the amplification of TEs is one of the main factors inducing the difference in genome size. However, the expressions of TEs and the TE effects on gene regulation and functions of these two Brassica diploid species were unclear. Here, we analyzed the RNA sequencing data of leaves, roots, and stems from B. rapa and B. oleracea. Our data showed that overall TEs in either genome expressed at very low levels, and the expression levels of different TE categories and families varied among different organs. Moreover, even for the same TE category or family, the expression activities were distinct between the two Brassica diploids. Forty-one and nine LTR retrotransposons with the transcripts that read into their adjacent sequences have the distances shorter than 2 kb and 100 bp compared to the downstream genes. These LTR retrotransposon readout transcriptions may produce sense or antisense transcripts of nearby genes, with the effects on activating or silencing corresponding genes. Meanwhile, intact LTRs were detected at stronger readout activities than solo LTRs. Of the TEs inserted into genes, the frequencies were ob-served at a higher level in B. rapa than in B. oleracea. In addition, DNA transposons were prone to insert or retain in the intronic regions of genes in either Brassica genomes. These results revealed that the TEs may have potential effects on regulating protein coding genes.

  16. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    Science.gov (United States)

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  17. Metabolic and bioactivity insights into Brassica oleracea var. acephala.

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Sousa, Carla; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-10-14

    Seeds of Brassica oleracea var. acephala (kale) were analyzed by HPLC/UV-PAD/MSn-ESI. Several phenolic acids and flavonol derivatives were identified. The seeds of this B. oleracea variety exhibited more flavonol derivatives than those of tronchuda cabbage (Brassica oleracea var. costata), also characterized in this paper. Quercetin and isorhamnetin derivatives were found only in kale seeds. Oxalic, aconitic, citric, pyruvic, malic, quinic, shikimic, and fumaric acids were the organic acids present in these matrices, malic acid being predominant in kale and citric acid in tronchuda cabbage seeds. Acetylcholinesterase (AChE) inhibitory activity was determined in aqueous extracts from both seeds. Kale leaves and butterflies, larvae, and excrements of Pieris brassicae reared on kale were also evaluated. Kale seeds were the most effective AChE inhibitor, followed by tronchuda cabbage seeds and kale leaves. With regard to P. brassicae material, excrements exhibited stronger inhibitory capacity. These results may be explained by the presence of sinapine, an analogue of acetylcholine, only in seed materials. A strong concentration-dependent antioxidant capacity against DPPH, nitric oxide, and superoxide radicals was observed for kale seeds.

  18. Light influence in the nutritional composition of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection.

    Science.gov (United States)

    Cheng, Feng; Wu, Jian; Cai, Chengcheng; Fu, Lixia; Liang, Jianli; Borm, Theo; Zhuang, Mu; Zhang, Yangyong; Zhang, Fenglan; Bonnema, Guusje; Wang, Xiaowu

    2016-12-20

    The closely related species Brassica rapa and B. oleracea encompass a wide range of vegetable, fodder and oil crops. The release of their reference genomes has facilitated resequencing collections of B. rapa and B. oleracea aiming to build their variome datasets. These data can be used to investigate the evolutionary relationships between and within the different species and the domestication of the crops, hereafter named morphotypes. These data can also be used in genetic studies aiming at the identification of genes that influence agronomic traits. We selected and resequenced 199 B. rapa and 119 B. oleracea accessions representing 12 and nine morphotypes, respectively. Based on these resequencing data, we obtained 2,249,473 and 3,852,169 high quality SNPs (single-nucleotide polymorphisms), as well as 303,617 and 417,004 InDels for the B. rapa and B. oleracea populations, respectively. The variome datasets of B. rapa and B. oleracea represent valuable resources to researchers working on evolution, domestication or breeding of Brassica vegetable crops.

  20. Phytotoxic Effects of Cinnamic Acid on Cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Singh, N. B.

    2013-04-01

    Full Text Available The present study deals with the effects of exogenous application of cinnamic acid (CA on growth and metabolism in growing seedlings of Brassica oleracea var. capitata (cabbage in hydroponic culture. CA was added at 0.5, 1.0 and 1.5 mM concentrations. CA has shown inhibitory effects on shoot and root length, fresh and dry weight of seedlings. CA significantly decreased the photosynthetic pigments, nitrate reductase activity and protein content. Graded concentrations of CA increased lipid peroxidation and sugar content. The increasing concentrations of CA significantly increased the antioxidative enzyme activities viz. superoxide dismutase, catalase, peroxidase against the oxidative stress caused by CA.

  1. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  2. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  3. Quantitative Genetic Analysis of Seed Vigour and Pre-Emergence Seedling Growth Traits in Brassica oleracea

    National Research Council Canada - National Science Library

    Mary Bettey; W. E. Finch-Savage; G. J. King; J. R. Lynn

    2000-01-01

    ..., and should therefore be considered in crop improvement. We measured traits associated with seed vigour and pre-emergence seedling growth in a segregating population of 105 doubled haploid Brassica oleracea lines...

  4. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  5. Chemical composition and herbicidal potent of cauliflower (Brassica oleracea var. botrytis) and cabbage turnip (Brassica oleracea var. gongylodes). Saad, I., Rinez, I., Ghezal, N., and Haouala, R. (Tunisia)

    OpenAIRE

    Inès Saad; Imen Rinez; Nadia Ghezal; Rabiaa Haouala

    2017-01-01

    This study was conducted to evaluate the phytochemical content and allelopathic potential of two cabbages botanical varieties leaves, ie. cauliflower (Brassica oleracea var. botrytis) and cabbage turnip (B. oleracea var. gongylodes). Their aqueous and organic extracts were evaluated on lettuce (Lactuca sativa) and one of the most dominant weeds in Tunisia, nettle-leaf goosefoot (Chenopodium murale). Field experiments were conducted to evaluate the smothering potential of the two v...

  6. Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L. and broccoli (Brassica oleracea var. italica L.

    Directory of Open Access Journals (Sweden)

    Suxia eYuan

    2015-12-01

    Full Text Available Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata and broccoli (Brassica oleracea var. italica were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 - 76.9%, compared with 52.2 - 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9 - 12 h or 0.4% colchicine for 3 - 9 h for cabbage and 0.05% colchicine for 6 - 12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.

  7. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.).

    Science.gov (United States)

    Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian

    2015-01-01

    Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9-12 h or 0.4% colchicine for 3-9 h for cabbage and 0.05% colchicine for 6-12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.

  8. Activity of Brassica oleracea leaf juice on foodborne pathogenic bacteria.

    Science.gov (United States)

    Brandi, Giorgio; Amagliani, Giulia; Schiavano, Giuditta F; De Santi, Mauro; Sisti, Maurizio

    2006-09-01

    Many vegetables of the Cruciferae family have been found to possess antimicrobial properties against several microorganisms of clinical importance. In this study, we reported the antibacterial effect of Brassica oleracea juice on several food-borne pathogens. The juice was found to be effective in inhibiting the growth of Salmonella Enteritidis, verotoxigenic Escherichia coli O157:H7, E. coli HB producing thermolabile toxin, nontoxigenic E. coli, and Listeria monocytogenes, but not Enterococcus faecalis. All cauliflower cultivars tested suppressed bacterial growth in a dose-dependent manner after 5 h of treatments, and the reduction in the number of viable cells ranged from 1 log with a 10% juice concentration to more than 3 log with a 20% juice concentration. The foodborne bacteria tested were also markedly reduced by isothiocyanates, natural components abundant in the genus Brassica, indicating that glucosinolate-derived isothiocyanates can play a major role in the antimicrobial activity of cauliflower. The antimicrobial effect of juice was reduced in presence of cysteine, suggesting that one mechanism of action of the juice involves blocking bacterial sulfhydryl groups.

  9. Identification of antioxidant capacity -related QTLs in Brassica oleracea.

    Science.gov (United States)

    Sotelo, Tamara; Cartea, María Elena; Velasco, Pablo; Soengas, Pilar

    2014-01-01

    Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason, this study aimed to: (1) study the relationship among different electron transfer (ET) methods for measuring AA, (2) study the relationship between these methods and phenolic, carotenoid and anthocyanin content, and (3) find QTLs of AA measured with ET assays and for phenolic, carotenoid and anthocyanin contents in leaves and flower buds in a DH population of B. oleracea as an early step in order to identify genes related to these traits. Low correlation coefficients among different methods for measuring AA suggest that it is necessary to employ more than one method at the same time. A total of 19 QTLs were detected for all traits. For AA methods, seven QTLs were found in leaves and six QTLs were found in flower buds. Meanwhile, for the content of metabolites with AA, two QTLs were found in leaves and four QTLs were found in flower buds. AA of the mapping population is related to phenolic compounds but also to carotenoid content. Three genomic regions determined variation for more than one ET method measuring AA. After the syntenic analysis with A. thaliana, several candidate genes related to phenylpropanoid biosynthesis are proposed for the QTLs found.

  10. Temperature sensitivity of resistance to two pathotypes of Plasmodiophora brassicae in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    R. L. Gabrielson

    2013-12-01

    Full Text Available Several methods were evaluated in an attempt to develop a greenhouse screening procedure that would predict field resistance of brassica breeding lines to clubroot disease caused by Plasmodiophora brassicae. Several Brassica oleracea cultivars and breeding lines bred for resistance to Plasmodiophora brassicae and a susceptible Chinese cabbage cultivar were exposed to high levels of inoculum of both pathotypes PB 6, PB 7 at 12, 15, 20, 25 and 30°C. No infection occurred on any host at 12°C. Chinese cabbage was heavily diseased from 15-30°C. Bagder Shipper cabbage, a cauliflower deriving resistance from this variety, and Oregon CR-1 broccoli were resistant to pathotype PB 6 at 15 and 20°C and partially resistant at 25 and 30°C. They were resistant to pathotype PB 7 and 15°C and almost totally susceptible at 20, 25° and 30°C. Oregon cabbage line OR 123 was resistant to pathotype PB 6 at 15°C at almost completely susceptible at 20, 25 and 30°C. It was resistant to pathotype PB 7 at all temperatures. Temperature sensitivity of resistance can partially explain why breeding lines are resistant in field trials and susceptible in greenhouse tests.

  11. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  12. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea

    NARCIS (Netherlands)

    Hol, W.H.G.; Boer, de W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H.M.; Putten, van der W.H.; Dam, N.M.

    2013-01-01

    Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica

  13. PENERAPAN PANJANG TALANG DAN JARAK TANAM DENGAN SISTEM HIDROPONIK NFT (Nutrient Film Technique PADA TANAMAN KAILAN (Brassica oleraceae var. alboglabra

    Directory of Open Access Journals (Sweden)

    Daviv Zali Vidianto

    2013-09-01

    Full Text Available Kailan vegetables is one kind of high economic value that can be grown in hydroponic NFT (Nutrient Film Technique. The purpose of this study to determine the effect of chamfer length and spacing of the system hydroponic NFT (Nutrient Film Technique on the growth and yield kailan (Brassica oleraceae var. Alboglabra. The research has been done in the greenhouse of the Faculty of Agriculture, University Department Agroekoteknologi Trunojoyo Madura District Kamal village Telang Bangkalan. Tat is was conducted in February-May 2012. Research using methods completely randomized design (CRD with non factorial treatment chamfer length 2 m with spacing of 15 cm (P1J1, chamfer length 2 m with spacing of 20 cm (P1J2, chamfer length of 4 m with spacing of 15 cm (P2J1 and chamfer length of 4 m with spacing of 20 cm (P2J2. The materials used are kailan seeds, fertilizers and hydroponics Goodplant acetic acid (CH3COOH. Observations were analyzed using analysis of variance and Duncan continued Test Distance (UJD level of 5%. P1J1 (chamfer length of 2 meters and 15 cm plant spacing gives the best effect on the variable root length, number of leaves and plant canopy wet weight. The treatment does’n effect to variable leaf area, root wet weight, dry weight, and root dry weight of the plant canopyKeyword : Brassica oleraceae var. Alboglabra, hydroponik NFT, chamfer length and spacing

  14. Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Oliviero, T.; Sman, van der R.G.M.; Verkerk, R.; Dekker, M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the degradation of the nutritional compounds glucoraphanin (GR) and vitamin C (Vc), and the inactivation of the enzyme myrosinase (MYR) in broccoli (Brassica oleracea var. italica) during drying with air temperatures in the range of 30e60 C. Dynamic optimization is applied to find

  15. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea

    NARCIS (Netherlands)

    Wang, X.; Lou, P.; Bonnema, A.B.; Yang, Boujun; He, H.; Zhang, Y.; Fang, Z.

    2005-01-01

    The dominant male sterility gene Ms-cd1 (c, cabbage; d, dominant) was identified as a spontaneous mutation in the spring cabbage line 79-399-3. The Ms-cd1 gene is successfully applied in hybrid seed production of several Brassica oleracea cultivars in China. Amplified fragment length polymorphism

  16. In vitro regeneration of eight cultivars of Brassica oleracea var. capitata.

    Science.gov (United States)

    Gerszberg, Aneta; Hnatuszko-Konka, Katarzyna; Kowalczyk, Tomasz

    Eight cultivars of Brassica oleracea var. capitata and two types of explant (hypocotyl and cotyledon) were tested for their potential to regenerate under in vitro conditions. Hypocotyl and cotyledon explants from 10-d-old seedlings were subcultured onto different callus induction media based on Murashige and Skoog (MS) basal medium supplemented with 1% sucrose and different concentrations and combinations of plant growth regulators. Hypocotyl explants were found to be more suitable for callus induction and organogenesis than cotyledon explants for all cultivars tested. In terms of regeneration, the cv. 'Amager' was significantly more responsive than the other cultivars tested and produced the highest number of shoots/buds per explant. Moreover, among five types of media tested, MS + 8.88 μM 6-benzyloaminopurine (BAP) + 0.53 μM α-naphthylacetic acid (NAA) was most effective for shoot regeneration. Rooting was achieved within 10-15 d on all the rooting media, but MS medium containing 5.37 μM NAA produced the maximum number of strong and healthy roots. Plantlets (95%) were subsequently established in the greenhouse, and no phenotypic variations were observed among regenerated plants. This plant regeneration protocol could be suitable for a wide range of cabbage cultivars.

  17. Histopathological and morphological alterations caused by plasmodiophora brassicae in brassica oleracea l.

    OpenAIRE

    Riascos, Donald; Ortiz, Emiro; Quintero, Daimy; Montoya, Lina; Hoyos Carvajal, Lilliana

    2012-01-01

    Plasmodiophora brassicae is a plant pathogen of the Brassicaceae family, which presents a remarkable ability to survive in soil and high capacity of infection, significantly reducing crop yields. The present histopathologycal study conducted with the aim of contributing to knowledge of the infection cycle of the pathogen, showed the presence of multinucleated plasmodia at cortex and periderm cells level in infected cabbage roots, as well as thickening and disruption of cell wall. As a result ...

  18. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  19. Early studies on the effect of peptide growth factor phytosulfokine-α on Brassica oleracea var. capitata L. protoplasts

    National Research Council Canada - National Science Library

    Agnieszka Kiełkowska; Adela Adamus

    2017-01-01

    .... We examined the effect of supplementation of liquid culture medium with 0.1 µM phytosulfokine-α (PSK-α) on protoplast viability and division frequencies in seven accessions of Brassica oleracea var...

  20. Evaluation of antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (cabbage) on Wistar rat gastric ulceration

    OpenAIRE

    Carvalho, Camilo Amaro de; Fernandes,Kenner Moraes; Matta, Sérgio Luiz Pinto; Silva, Marcelo Barreto da; De Oliveira, Leandro Licursi; Fonseca, Cláudio César

    2011-01-01

    CONTEXT: The cabbage (Brassica oleraceae var. capitata) is an herbaceous and leafy plant which belongs to the Brassicaceae family, native to coastal southern and Western Europe. Used in cooking for its nutritional value also has known anti-inflammatory activity. OBJECTIVE We studied the antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (AEB) in order to validate ethnobotanical claims regarding the plant use in the gastric disorders. METHOD: Acute gastric ulcers we...

  1. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics.

    Science.gov (United States)

    Ali, Sajid; Shahbaz, Muhammad; Shahzad, Ahmad Naeem; Khan, Hafiz Azhar Ali; Anees, Moazzam; Haider, Muhammad Saleem; Fatima, Ammara

    2015-01-01

    Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).

  2. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata in hydroponics

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2015-08-01

    Full Text Available Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata to elevated Cu2+ levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu2+ levels, although it was substantially decreased at ≥5 µ M Cu2+ in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu2+ indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu2+ the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins.

  3. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Young-Il Cho

    Full Text Available Numerous studies using single nucleotide polymorphisms (SNPs have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes, biological process (96 genes, and cellular component (96 genes. A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea, and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis, were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome, selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%, 415 of 425 BRP (97.6%, and 118 of 123 BRS (95.9% showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  4. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  5. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  6. Transposon variation by order during allopolyploidisation between Brassica oleracea and Brassica rapa.

    Science.gov (United States)

    An, Z; Tang, Z; Ma, B; Mason, A S; Guo, Y; Yin, J; Gao, C; Wei, L; Li, J; Fu, D

    2014-07-01

    Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE-associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE-associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter-Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE-associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self-pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety-two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR-REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. A homolog of the RPS2 disease resistance gene is constitutively expressed in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Malvas Celia C.

    2003-01-01

    Full Text Available In this study, we identified disease resistance gene homologs in Brassica oleracea and assessed their expression in lines resistant and susceptible to Xanthomonas campestris pv. campestris (Xcc. Two DNA fragments of approximately 2.5 kb (BI-16/RPS2 and Lc201/RPS2 were amplified by PCR from two Brassica lines using primers based on an RPS2 homologous sequence previously described in the Brassica oleracea ecotype B117. The sequences of these fragments shared high similarity (95-98% with RPS2 homologs from various Brassica species. The digestion of these fragments with restriction enzymes revealed polymorphisms at the Xba I restriction sites. The length polymorphisms were used as a co-dominant marker in an F2 population developed to segregate for resistance to Xcc, the causal agent of black rot. Linkage analysis showed no significant association between the marker and quantitative trait loci for black rot. RT-PCR with specific primers yielded an expected 453 bp fragment that corresponded to the RPS2 homologs in both resistant and susceptible lines inoculated with the pathogen, as well as in non-inoculated control plants. These results suggest that these homologs are constitutively expressed in B. oleracea.

  8. The effects of priming on vigor and viability of broccoli (Brassica oleracea var. italica Plenck) seeds

    OpenAIRE

    Jett, Lewis W.

    1994-01-01

    Seed priming is a controlled hydration process, followed by dehydration, that allows pregerminative metabolic activity to proceed without germination. The objective of this research was to investigate the effects of priming on intrinsic characteristics of seed germination including temperature, water, and development, in order to understand how priming affects the germination of broccoli (Brassica oleracea var. italica Plenck) seeds. Priming of broccoli seeds consistently impro...

  9. Colorless Chlorophyll Catabolites in Senescent Florets of Broccoli (Brassica oleracea var. italica)

    OpenAIRE

    Roiser, Matthias H.; M?ller, Thomas; Kr?utler, Bernhard

    2015-01-01

    Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two ?nonfluorescent? Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,...

  10. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea.

    Science.gov (United States)

    Mei, Jiaqin; Ding, Yijuan; Lu, Kun; Wei, Dayong; Liu, Yao; Disi, Joseph Onwusemu; Li, Jiana; Liu, Liezhao; Liu, Shengyi; McKay, John; Qian, Wei

    2013-02-01

    The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393-400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2-28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.

  11. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  12. Effects of dietary inclusion of discarded cabbage (Brassica oleracea ...

    African Journals Online (AJOL)

    Douglas Nkosi

    2016-02-16

    Boucque & Fiems, 1988). Incorporation of these by-products in the diets of ruminants has been reported to reduce the risk of acidosis, which is associated with high grain diets (Ferreira et al., 2011). Discarded cabbage (Brassica ...

  13. Production of Sauerkraut (Picked) from Cabbage (Brassica oleracea ...

    African Journals Online (AJOL)

    Cabbage (Brassiza oleracea) samples obtained from Bayreuth supermarkets stored at 4ºC were processed for sauerkraut (pickled) production. Microbiological and chemical characteristics of the sauerkraut during the 28 day fermentation period were investigated. The total bacterial count influenced from 2.3333 x 104 of ...

  14. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    OpenAIRE

    Christel Brunschwig; Louis-Jérôme Leba; Mona Saout; Karine Martial; Didier Bereau; Jean-Charles Robinson

    2016-01-01

    Euterpe oleracea (a?a?) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH?2,...

  15. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    Science.gov (United States)

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Till Arvid Diehn

    2015-04-01

    Full Text Available Aquaporins (AQPs are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea and other Brassica species. The recent releases of the genome sequences of B. oleracea and B. rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins.In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of A. thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re- name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  17. Development of Brassica oleracea-nigra monosomic alien addition lines: genotypic, cytological and morphological analyses.

    Science.gov (United States)

    Tan, Chen; Cui, Cheng; Xiang, Yi; Ge, Xianhong; Li, Zaiyun

    2017-12-01

    We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome. Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1-8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38-30.00%) than the other four (B3, B6, B7, B8) (5.04-8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.

  18. Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis

    OpenAIRE

    Gratacós-Cubarsí, M.; Ribas-Agusti, Albert; García-Regueiro, J.A.

    2010-01-01

    A method for the simultaneous determination of intact glucosinolates and main phenolic compounds (flavonoids and sinapic acid derivatives) in Brassica oleracea L. var. botrytis was proposed. A simplified sample extraction procedure and a UPLC separation were carried out to reduce the total time of analysis. B. oleracea samples were added with internal standards (glucotropaeolin and rutin), and extracted with boiling methanol. crude extracts were evaporated under nitrogen, redissolved in mobil...

  19. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests

    NARCIS (Netherlands)

    Ester, A.; Putter, de H.; Bilsen, van J.G.P.M.

    2003-01-01

    Four field experiments were carried out between 1999 and 2001, to assess the protection against cabbage root fly larvae (Delia radicum), flea beetle (Phyllotreta nemorum and P. undulata), cabbage aphid (Brevicoryne brassicae) and caterpillars achieved in white cabbage and cauliflower crops by

  20. Optimization of extraction yield and antioxidant properties of Brassica oleracea Convar Capitata Var L. leaf extracts.

    Science.gov (United States)

    Nawaz, Haq; Shad, Muhammad Aslam; Rauf, Ayesha

    2018-03-01

    Effects of extraction time and solvent polarity on antioxidant properties of Brassica oleracea leaves were optimized by response surface methodology using a central composite design. Five extraction times (12, 24, 36, 48 and 60h) and solvent polarities (dipole moment - hexane: 0.0, diethyl ether: 2.80, ethyl acetate: 4.40, methanol: 5.10 and water: 9.0D) were selected for optimization. Response surface analysis of data showed a significant increase (pextract yield and antioxidant potential, based on total phenolic acids, reducing abilities and free radical scavenging capacities, in response to an increase in extraction time and solvent polarity. The optimal response was obtained using relatively polar solvents (4.40-9.00D) and prolonged extraction times (50-60h). This suggests that most of the phytochemical constituents of B. oleracea leaves are polar and possess strong antioxidant potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Directory of Open Access Journals (Sweden)

    Giattina Emily

    2011-09-01

    Full Text Available Abstract Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF of Bacterial Artificial Chromosome (BAC clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account

  2. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Science.gov (United States)

    2011-01-01

    Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123

  3. Tronchuda cabbage (Brassica oleracea L. var. costata DC): scavenger of reactive nitrogen species.

    Science.gov (United States)

    Sousa, Carla; Valentão, Patrícia; Ferreres, Federico; Seabra, Rosa M; Andrade, Paula B

    2008-06-11

    The ability of tronchuda cabbage ( Brassica oleracea L. var. costata DC) to act as a scavenger of the reactive nitrogen species nitric oxide and peroxynitrite was investigated. The aqueous extracts obtained from tronchuda cabbage seeds and from its external and internal leaves exhibited a concentration dependent scavenging capacity. The antioxidant potential observed against the two reactive species was as follows: seeds > external leaves > internal leaves. In order to establish a possible correlation with the chemical composition of the extracts, the activity of ascorbic and sinapic acids and kaempferol 3- O-rutinoside was also studied. Among the compounds tested, sinapic acid showed the strongest antioxidant activity against both species.

  4. Eco-Friendly Corrosion Inhibition of Pipeline Steel Using Brassica oleracea

    Directory of Open Access Journals (Sweden)

    N. C. Ngobiri

    2015-01-01

    Full Text Available The inhibition capacity of Brassica oleracea (BO extract on the corrosion of pipeline steel in 0.5 M H2SO4 was evaluated using electrochemical techniques. The results showed an excellent inhibition efficiency which increased with initial increase in extract concentration and temperature to a point and decreased with further increase in BO extract concentration and temperature. Mixed inhibition behaviour was proposed for the action of BO. The unique behaviour of BO was attributed to the organic entities present in the extract.

  5. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Roiser, Matthias H; Müller, Thomas; Kräutler, Bernhard

    2015-02-11

    Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two "nonfluorescent" Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,19-dioxobilin-type "nonfluorescent" Chl-catabolite (DNCC), named Bo-DNCC. Analysis by nuclear magnetic resonance spectroscopy and mass spectrometry of these three linear tetrapyrroles revealed their structures. In combination with a comparison of their HPL-chromatographic properties, this allowed their identification with three known catabolites from two other brassicacea, namely two NCCs from oil seed rape (Brassica napus) and a DNCC from degreened leaves of Arabidopsis thaliana.

  6. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synchronizing legume residue nutrient release with Kale (Brassica oleracea var. acephala) uptake in a Nitrosol of Kabete, Kenya

    DEFF Research Database (Denmark)

    Onwonga, Richard N.; Chepkoech, Caroline; Wahome, R.G.

    fertility improvement for crop production e.g. kales (Brassica oleracea var. acephala) under organic farming systems. Chickpea (Cicer arietinum) and white lupin (Lupinus albus L.) are leguminous crops commonly intercropped with kales (Genga, 2014) and their influence on crop yield and soil nutrient status...

  8. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing

    Science.gov (United States)

    Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yie...

  9. Gastroprotective activity of hydroalcoholic extract obtained from the leaves of Brassica oleracea var. acephala DC in different animal models.

    Science.gov (United States)

    Lemos, Marivane; Santin, José Roberto; Júnior, Luiz Carlos Klein; Niero, Rivaldo; Andrade, Sérgio Faloni de

    2011-11-18

    Brassica oleracea var. acephala DC has been extensively used in Brazilian traditional medicine to treat gastric ulcer. This study was conducted to evaluate the antiulcerogenic property of hydroalcoholic extract obtained from the leaves of Brassica oleracea. Antiulcer assays were performed using the protocol of ulcer induced by ethanol/HCl, and non-steroidal anti-inflammatory drugs (NSAIDs). Parameters of gastric secretion (volume, pH and [H(+)]) were determined by the pylorus ligation model and mucus in gastric contents. In the ethanol-induced ulcer model, we observed a significant reduction in all the parameters analyzed, obtaining curative ratios of 58.8 ± 11.5, 86.2 ± 12.2 and 42.8 ± 6.6% for the groups treated with 50 and 100mg/kg of extract and omeprazole (30 mg/kg), respectively. The dose of 25mg/kg of hydroalcoholic extract of Brassica oleracea showed no significant results. In the indomethacin-induced ulcer, the percentages of ulcer inhibition were 64.3 ± 9.9, 66.4 ± 12.3 and 81.2 ± 7.5% for the groups treated with 50 and 100mg/kg extract and positive control (cimetidine, 100mg/kg), respectively. The results showed a significant increase in pH and mucus production in the groups treated with Brassica oleracea when compared with the control group. No sign of toxicity was observed in the acute toxicity study. The results of the present study show that hydroalcoholic extract of Brassica oleracea displays antiulcer activity, as demonstrated by the significant inhibition of ulcer formation induced using different models. The data suggest that the effectiveness of the extract is based on its ability to stimulate the synthesis of mucus, increase pH and decrease H(+) ions in the stomach. This work corroborates the ethnopharmacology use of Brassica oleracea preparations, contributing to its pharmacological validation by suggesting that preparations obtained from Brassica oleracea could be used for the development of new phytopharmaceuticals for the treatment of

  10. Histopathological and morphological alterations caused by Plasmodiophora brassicae in Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Riascos Donald

    2011-04-01

    Full Text Available

    Plasmodiophora brassicae is a plant pathogen of the Brassicaceae family, which presents a remarkable ability to survive in soil and high capacity of infection, significantly reducing crop yields. The present histopathologycal study conducted with the aim of contributing to knowledge of the infection cycle of the pathogen, showed the presence of multinucleated plasmodia at cortex and periderm cells level in infected cabbage roots, as well as thickening and disruption of cell wall. As a result of this disarray was observed in diseased tissues, mainly in the cortex, compared with healthy tissues in uninfected plants. The inoculation cabbage seedlings with dormant spores of P. brassicae at concentrations of 1 ∙ 107

  11. Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco.

    Science.gov (United States)

    Barrameda-Medina, Yurena; Blasco, Begoña; Lentini, Marco; Esposito, Sergio; Baenas, Nieves; Moreno, Diego A; Ruiz, Juan M

    2017-05-01

    Zn deficiency is currently listed as a major risk factor for human health. Recently, a complimentary solution to mineral malnutrition termed 'biofortification' has been proposed. The aim of this study was to investigate the possible effects of a Zn-biofortification program on Zn levels, amino acidic profile and the phytochemicals content in an edible leafy vegetable, such as Brassica oleracea cv. Bronco. Our results indicate that supplementation of 80-100μM Zn is optimal for maintaining the normal growth of plants and to promote the major Zn concentration in the edible part of B. oleracea. Any further increase of Zn supply induced an accumulation of total amino acids, and increased the enzymatic activities involved in sulfur assimilation and synthesis of phenols, finally resulting in a foliar accumulation of glucosinolates and phenolic compounds. Thus, it could be proposed that the growth of B. oleracea under 80-100μM Zn may increase the intake of this micronutrient and other beneficial compunds for the human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop

    National Research Council Canada - National Science Library

    Kumar, Pankaj; Srivastava, D K

    2015-01-01

    ... organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12...

  13. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop

    National Research Council Canada - National Science Library

    Kumar, Pankaj; Srivastava, D K

    2015-01-01

    Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses...

  14. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Variation of five major glucosinolate genes in Brassica rapa in relation to Brassica oleracea and Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Qiu, D.; Quiros, F.

    2010-07-01

    Glucosinolates and their derivatives isothiocyanates are important secondary metabolites in the Brassica cea that has biological activity, such as cancer protecting and bio fumigant properties. The putative ortho logs of five major genes in the glucosinolate biosynthetic pathway, Bra.GSELONG.a, Bra.GSALK.a, Bra.CYP83B1, Bra.SUR1.a and Bra.ST5.a, were cloned from both cDNA and genomic DNA from different subspecies of Brassica rapa. Inter species comparative analysis disclosed high conservation of exon number and size for GS-Elong, GS-Alk, GS-CYP83B1 and GS-ST5a among B. rapa, B. oleracea and A. thaliana. Splice site mutations caused the differences observed for exon numbers and sizes in GS-SUR1 among the three species. However, the exonic sequences were highly conserved for this gene. There were not major differences of intronic sizes among the three species for these genes, except for intron 1 for GS-Elong in two subspecies of B. rapa. The cloning of the putative ortho logs of all these major genes involved in the glucosinolate biosynthesis pathway of B. rapa and sequence analysis provide a useful base for their genetic manipulation and functional analysis. (Author) 31 refs.

  16. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets

    Directory of Open Access Journals (Sweden)

    Christel Brunschwig

    2016-12-01

    Full Text Available Euterpe oleracea (açaí is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH—2,2-diphenyl-1-picrylhydrazyl, FRAP—ferric feducing antioxidant power, and ORAC—oxygen radical absorbance capacity, in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry.

  17. Chemical Composition and Antioxidant Activity of Euterpe oleracea Roots and Leaflets.

    Science.gov (United States)

    Brunschwig, Christel; Leba, Louis-Jérôme; Saout, Mona; Martial, Karine; Bereau, Didier; Robinson, Jean-Charles

    2016-12-29

    Euterpe oleracea (açaí) is a palm tree well known for the high antioxidant activity of its berries used as dietary supplements. Little is known about the biological activity and the composition of its vegetative organs. The objective of this study was to investigate the antioxidant activity of root and leaflet extracts of Euterpe oleracea (E. oleracea) and characterize their phytochemicals. E. oleracea roots and leaflets extracts were screened in different chemical antioxidant assays (DPPH-2,2-diphenyl-1-picrylhydrazyl, FRAP-ferric feducing antioxidant power, and ORAC-oxygen radical absorbance capacity), in a DNA nicking assay and in a cellular antioxidant activity assay. Their polyphenolic profiles were determined by UV and LC-MS/MS. E. oleracea leaflets had higher antioxidant activity than E. oleracea berries, and leaflets of Oenocarpus bacaba and Oenocarpus bataua, as well as similar antioxidant activity to green tea. E. oleracea leaflet extracts were more complex than root extracts, with fourteen compounds, including caffeoylquinic acids and C-glycosyl derivatives of apigenin and luteolin. In the roots, six caffeoylquinic and caffeoylshikimic acids were identified. Qualitative compositions of E. oleracea, Oenocarpus bacaba and Oenocarpus bataua leaflets were quite similar, whereas the quantitative compositions were quite different. These results provide new prospects for the valorization of roots and leaflets of E. oleracea in the pharmaceutical, food or cosmetic industry, as they are currently by-products of the açaí industry.

  18. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement.

    Science.gov (United States)

    Zaghdoud, Chokri; Alcaraz-López, Carlos; Mota-Cadenas, César; Martínez-Ballesta, María del Carmen; Moreno, Diego A; Ferchichi, Ali; Carvajal, Micaela

    2012-01-01

    The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  19. The Influence of pH on Microspore Embryogenesis of White Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Tina Oana CRISTEA

    2013-12-01

    Full Text Available In vitro microspore culture is one of the top techniques utilised now-a-days for the obtaining of double haploid plants in many plant species, including Brassica. The pH of the medium is a critical factor for the success of In vitro microspore culture as it influences the invertase enzyme activity, translated at cellular level through an acceleration or reduction of sucrose cleavage. The results published until now shows rather contradictory findings, as the response of microspores have been proved to be highly depending on genotypes, most of them being focused on Brassica napus. Thus, in the present study, the effect of different NLN liquid medium pH, ranging between 5.0 to 7.0 were tested in order to establish the most suitable pH for the expression of embryogenic competences of microspores cultivated on medium In vitro and ultimately for the obtaining of microspore-derived embryos. Among the 11 values of pH tested, the best results were obtained on variants with pH 5.8 and 6.0, both in what concern the maintaining of microspores viability and the number of microspore-derived embryos. The findings of the present study provide a strong base for the establishment of an efficient protocol for the In vitro culture of microspore at Brassica oleracea L. genotypes with Romanian origin.

  20. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea).

    Science.gov (United States)

    Green, Jonathan P; Foster, Rosie; Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E

    2015-01-01

    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  1. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Hypocotyl and shoot tip explants, 5-8 mm in size, were excised from 6-day-old broccoli seedlings. The explants were cultured on. MS medium incorporated with different concentrations of plant growth regulators for shoot proliferation and root formation. For shoot induction and multiplication from hypocotyl ...

  2. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  3. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  4. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Science.gov (United States)

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  5. Valor nutricional e potencial nutracêutico de inflorescências de couve-nabo (Brassica napus var napus) e couve-tronchuda (Brassica oleraceae var costata).

    OpenAIRE

    Barros, Lillian; Batista, Cátia Emanuela Oliveira; Carvalho, Ana Maria; Ferreira, Isabel C.F.R.

    2012-01-01

    Na Península Ibérica as verduras (silvestres ou tradicionalmente cultivadas) têm sido alimentos importantes na dieta humana. O valor nutricional de verduras e os seus benefícios para a saúde têm sido reconhecidos como importantes alvos de investigação. Os grelos, inflorescências da couve-nabo (Brassica napus L. var. napus) e os espigos, inflorescências da couve-tronchuda (Brassica oleracea L. var. costata DC.) são exemplos de espécies tradicionalmente cultivadas e amplamente consumidas nas re...

  6. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization.

    Science.gov (United States)

    Yu, Jingyin; Hu, Fan; Dossa, Komivi; Wang, Zhaokai; Ke, Tao

    2017-06-23

    Glycosyltransferases comprise a highly divergent and polyphyletic multigene family that is involved in widespread modification of plant secondary metabolites in a process called glycosylation. According to conserved domains identified in their amino acid sequences, these glycosyltransferases can be classified into a single UDP-glycosyltransferase (UGT) 1 superfamily. We performed genome-wide comparative analysis of UGT genes to trace evolutionary history in algae, bryophytes, pteridophytes, and angiosperms; then, we further investigated the expansion mechanisms and function characterization of UGT gene families in Brassica rapa and Brassica oleracea. Using Hidden Markov Model search, we identified 3, 21, 140, 200, 115, 147, and 147 UGTs in Chlamydomonas reinhardtii, Physcomitrella patens, Selaginella moellendorffii, Oryza sativa, Arabidopsis thaliana, B. rapa, and B. oleracea, respectively. Phylogenetic analysis revealed that UGT80 gene family is an ancient gene family, which is shared by all plants and UGT74 gene family is shared by ferns and angiosperms, but the remaining UGT gene families were shared by angiosperms. In dicot lineage, UGTs among three species were classified into three subgroups containing 3, 6, and 12 UGT gene families. Analysis of chromosomal distribution indicates that 98.6 and 71.4% of UGTs were located on B. rapa and B. oleracea pseudo-molecules, respectively. Expansion mechanism analyses uncovered that whole genome duplication event exerted larger influence than tandem duplication on expansion of UGT gene families in B. rapa, and B. oleracea. Analysis of selection forces of UGT orthologous gene pairs in B. rapa, and B. oleracea compared to A. thaliana suggested that orthologous genes in B. rapa, and B. oleracea have undergone negative selection, but there were no significant differences between A. thaliana -B. rapa and A. thaliana -B. oleracea lineages. Our comparisons of expression profiling illustrated that UGTs in B. rapa performed more

  7. Bemisia tabaci, Brevicoryne brassicae and Thrips tabaci abundance on Brassica oleracea var. acephala Abundância de Bemisia tabaci, Brevicoryne brassicae e Thrips tabaci em Brassica oleracea var. acephala

    Directory of Open Access Journals (Sweden)

    Germano Leão Demolin Leite

    2005-03-01

    Full Text Available Kale Brassica oleracea var. acephala is attacked by whitefly Bemisia tabaci, aphid Brevicoryne brassicae and Thrips tabaci. One of the main reasons for extensive insecticide application is the lack of information about factors that control insect population. The objectives of this study were to investigate the relationships between predators and parasitoids, organic compound leaves, levels of leaf nitrogen and potassium, total rainfall, relative humidity, sunlight and median temperature on the abundance of whitefly, aphid, and thrips in kale genotype "Talo Roxo". The beating tray method, direct counting and magnifying lens were used to estimate the number of these pests, predators and parasitoids. Median temperature, sunlight and relative humidity correlated to the amount of leaf nonacosane, which in turn was associated with aphids population increase. A tendency in the reduction of aphids and thrips populations with increase in total rainfall was observed. The whitefly can be a harmful pest in kale producing regions of higher temperature and smaller rainfall. In regions which present moderate temperature, where there is a high incidence of aphids, genotype with low leaf wax content should be chosen. Natural enemies, especially the parasitoid Adialytus spp., can control agents of the aphids population in kale.A couve, Brassica oleracea var. acephala, é atacada por mosca-branca Bemisia tabaci, pulgão Brevicoryne brassicae e tripes Thrips tabaci. Uma das principais razões para o uso intensivo de inseticidas é a falta de informação sobre os fatores que controlam a população de insetos. O objetivo deste estudo foi investigar as relações entre predadores e parasitóides, compostos orgânicos foliares, níveis foliares de nitrogênio e de potássio, pluviosidade total, umidade relativa, insolação e temperatura média na abundância da mosca-branca, pulgões e tripes em couve genótipo Talo Roxo. Foi usado o método da batida em bandeja

  8. Plant regeneration from leaf protoplasts of Brassica oleracea var. italica CV Green Comet broccoli.

    Science.gov (United States)

    Robertson, D; Earle, E D

    1986-02-01

    A procedure is described for regeneration of plants from leaf protoplasts of the hybrid broccoli cultivar, Green Comet (Brassica oleracea var italica). The totipotency of protoplasts isolated from plants regenerated from hypocotyl explants (GCR) was greater than that of protoplasts from plants grown directly from seed (GC). Using medium B developed by Pelletier et al (1983), division efficiencies greater than 70% were obtained in leaf protoplasts isolated from GCR. Approximately 1% of these protoplasts formed calli on solidified medium; 77% of the calli regenerated shoots. In contrast, protoplasts from seed-grown material showed a lower division efficiency (15-22%) and fewer protoplast-derived calli produced shoots. Some of the 178 protoplast-derived plants grown to maturity had variant phenotypes.

  9. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    Science.gov (United States)

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Diversity of Kale (Brassica oleracea var. sabellica): Glucosinolate Content and Phylogenetic Relationships.

    Science.gov (United States)

    Hahn, Christoph; Müller, Anja; Kuhnert, Nikolai; Albach, Dirk

    2016-04-27

    Recently, kale has become popular due to nutritive components beneficial for human health. It is an important source of phytochemicals such as glucosinolates that trigger associated cancer-preventive activity. However, nutritional value varies among glucosinolates and among cultivars. Here, we start a systematic determination of the content of five glucosinolates in 25 kale varieties and 11 non-kale Brassica oleracea cultivars by HPLC-DAD-ESI-MS(n) and compare the profiles with results from the analysis of SNPs derived from a KASP genotyping assay. Our results demonstrate that the glucosinolate levels differ markedly among varieties of different origin. Comparison of the phytochemical data with phylogenetic relationships revealed that the common name kale refers to at least three different groups. German, American, and Italian kales differ morphologically and phytochemically. Landraces do not show outstanding glucosinolate levels. Our results demonstrate the diversity of kale and the importance of preserving a broad genepool for future breeding purposes.

  11. EFFECTS OF INORGANIC AND ORGANIC FERTILIZERS ON GROWTH AND PRODUCTION OF BROCOLI (BRASSICA OLERACEA L.

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2009-10-01

    Full Text Available A field experiment was conducted in research and production station, El- Nubaria location, National Research Centre, Egypt during winter season, 2008, to study the effect of different solution fertilizers formula and organic manure on vegetative growth, heads yield quantity and quality as well as nutrient composition of broccoli (Brassica oleracea var. italica.The obtained results showed that all mineral solution fertilizers gave a significant synergistic effect for broccoli growth, yield quantity and quality as well as nutrients composition compared the control (mineral N, P, K recommended fertilizers. The mineral formula 19: 19: 19 recorded the highest growth heads, yield and quality along with mineral content in broccoli. Using farmyard manure plus inorganic fertilizers enhanced all growth and yield parameters. Applying farmyard manure plus the mineral solution fertilizer formula 19: 19: 19 caused the superior and optimum figures of broccoli growth, mineral composition as well as heads yield quantity and quality. Organic manure alone recorded the lowest one.

  12. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  13. Kinetics of Changes in Glucosinolate Concentrations during Long-Term Cooking of White Cabbage (Brassica oleracea L. ssp. capitata f. alba)

    NARCIS (Netherlands)

    Volden, J.; Wicklund, T.; Verkerk, R.; Dekker, M.

    2008-01-01

    Brassica vegetables are the predominant dietary source of glucosinolates (GLS) that can be degraded in the intestinal tract into isothiocyanates, which have been shown to possess anticarcinogenic properties. The effects of pilot-scale long-term boiling on GLS in white cabbage (Brassica oleracea L.

  14. Development of male sterile Eruca sativa carrying a Raphanus sativus/Brassica oleracea cybrid cytoplasm.

    Science.gov (United States)

    Nothnagel, Thomas; Klocke, Evelyn; Schrader, Otto; Linke, Bettina; Budahn, Holger

    2016-02-01

    Alloplasmic male sterile breeding lines of Eruca sativa were developed by intergeneric hybridization with CMS- Brassica oleracea, followed by recurrent backcrosses and determination of the breeding value. Male sterile breeding lines of rocket salad (Eruca sativa) were developed by intergeneric hybridization with cytoplasmic male sterile (CMS) cauliflower (Brassica oleracea) followed by recurrent backcrosses. Five amphidiploid F1 plants (2n = 2x = 20, CE), achieved by manual crosses and embryo rescue, showed an intermediate habit. The plants were completely male sterile and lacked seed set after pollination with the Eruca parent. Allotetraploid F1-hybrid plants (4n = 4x = 40, CCEE) obtained after colchicine treatment were backcrossed six times with pollen of the Eruca parent to select alloplasmic diploid E. sativa lines. The hybrid status and the nucleo-cytoplasmic constellation were continuously controlled by RAPD and Southern analysis during subsequent backcrosses. The ploidy level was investigated by flow cytometry and chromosome analysis. Premeiotic (sporophytic) and postmeiotic (pollen abortive) defects during the anther development were observed in the alloplasmic E. sativus plants in comparison to the CMS-cauliflower donor. No further incompatibilities were noticed between the CMS-inducing cybrid cytoplasm and the E. sativa nuclear genome. The final alloplasmic E. sativa lines were diploid with 2n = 2x = 22 chromosomes and revealed complete male sterility and restored female fertility. Plant vigor and yield potential of the CMS-E. sativa BC5 lines were comparable to the parental E. sativus line. In conclusion, the employed cybrid-cytoplasm has been proven as a vital source of CMS for E. sativa. The developed lines are directly applicable for hybrid breeding of rocket salad.

  15. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    Science.gov (United States)

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea.

    Science.gov (United States)

    Gao, Qiguo; Shi, Songmei; Liu, Yudong; Pu, Quanming; Liu, Xiaohuan; Zhang, Ying; Zhu, Liquan

    2016-09-01

    M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of Bo

  17. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica Cultivars to Salinity and Nutritional Quality Improvement

    Directory of Open Access Journals (Sweden)

    Chokri Zaghdoud

    2012-01-01

    Full Text Available The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψπ, root hydraulic conductance (L0, and stomatal conductance (Gs. The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  18. Effect of Calcium Chloride and Cooling on Post-Harvest Brussels Cabbage (Brassica Oleracea L.

    Directory of Open Access Journals (Sweden)

    Alfonso Rincón Pérez

    2014-11-01

    Full Text Available In recent years, the demand of crucifers has increased and particularly of Brussels sprouts (Brassica genus, species Brassica oleracea L.; mainly due to their functional properties; however, this vegetable is perishable and with inadequate techniques in postharvest handling, considerable losses are generated. The objective of this research was to determine the effect of calcium chloride and cooling on postharvest behavior of Brussels sprouts. A completely randomized design was performed, treatments corresponded to three storage temperatures (4°C, 8°C and temperature (18°C and three concentrations of calcium chloride (0%, 2% and 4% were used. Sprouts were harvested at commercial maturity on a farm irrigation district in Usochicamocha, Boyacá Department; of uniform size, excellent plant health and free from mechanical damage conditions. For 19 days of storage, weight loss, respiratory rate and total chlorophyll were measured. Sprouts stored at room temperature lasted 11days postharvest, while cooled lasted for 19 days. A significant effect in reducing weight loss between those sprouts which were stored at 4°C and 8°C and treated with calcium chloride solution at 4% was observed. For the respiratory rate was observed a significant reduction insprouts stored at 4°C. Therefore the most favorable temperature for the storage of Brussels sprouts is 4°C and calcium chloride solution 4%,useful information for producers and marketers.

  19. The Effect of Fluorescent Lamp Distance on Plant Growth Kailan (Brassica Oleraceae) with Wick System Hydroponic in the Room (Indoor)

    OpenAIRE

    Susilowati, Eka

    2015-01-01

    Fluorescent light is one kind of lamp that can be used in hydroponics systems in the room (indoor). The distance of lights placement to the plant needs to be precisely determined to obtain optimal plant growth. The objectives of this study was to determine the effect of fluorescent lamp distance on plant growth of kailan (Brassica oleraceae) with wick system hydroponics in the room (indoor). Research used a randomized complete block (RCB). There were five treatments such as one treatment ...

  20. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata

    Directory of Open Access Journals (Sweden)

    Wang Wanxing

    2012-10-01

    Full Text Available Abstract Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186 was C03, and the chromosome with smallest number of markers (99 was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps.

  1. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  2. In vivo examination of the anticoagulant effect of the Brassica oleracea methanol extract

    Directory of Open Access Journals (Sweden)

    Khan Rafeeq Alam

    2015-01-01

    Full Text Available The anticoagulant effect of the methanol extract of Brassica oleracea var. capitata (MEB was examined in rabbits. The animals were divided into five groups, each comprising seven animals. Three groups were administered increasing doses of MEB (200, 300, and 500 mg/kg, respectively; one group received warfarin (0.54 mg/kg; animals in the control group received saline (1 ml/day equivalent to the volume of doses applied to the treated and standard animals. Biochemical tests were performed on the 16th and 31st days of dosing. Animals that were administered MEB (500 mg MEB/kg 30 days displayed increases of 24.07 s, 28.79 s and 4.08 s in activated partial thromboplastin (aPTT, fibrinogen (Fg and thrombin time (TT. Compared to the control, the increase in aPTT and Fg was highly significant and the increase in TT was significant. The anticoagulant effect exhibited by MEB in rabbits may be due to inactivation or inhibition of factors affecting coagulation.

  3. EFEITO RESIDUAL DO TARO CONSORCIADO COM LEGUMINOSAS NOS TEORES DOS PIGMENTOS FOTOSSINTETIZANTES DE BRASSICA OLERACEA

    Directory of Open Access Journals (Sweden)

    Rafael Costa de Sant'Ana

    2016-10-01

    Full Text Available Avaliou-se o efeito residual do consórcio taro e crotalarias sob duas posições de plantio nos teores dos pigmentos fotossintetizantes do repolho (Brassica oleracea var. capitata L.. O experimento foi conduzido no Instituto Federal do Espírito Santo – campus Santa Teresa no período de agosto a novembro de 2015, dois meses após a colheita do cultivo anterior. O delineamento experimental utilizado foi o de blocos casualizados, em esquema fatorial com dois fatores para posição (distribuição espacial nos sentidos norte-sul e leste-oeste e três fatores para a cultura (efeito residual do consórcio taro (Colocassia esculenta (L. Schott com a Crotalaria juncea, Crotalaria spectabilis, mais o taro solteiro correspondendo a 6 tratamentos com 4 repetições. Não foram observadas diferenças estatísticas entre os teores de pigmentos fotossintetizantes para os fatores consórcio e posição, provavelmente este resultado foi devido ao elevado vigor do hibrido utilizado, ASTRUS PLUS.

  4. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene.

    Science.gov (United States)

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-08-28

    Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.

  5. Analysis and Antioxidant Activity of Extracts from Broccoli (Brassica oleracea L.) Sprouts.

    Science.gov (United States)

    Jang, Hae Won; Moon, Joon-Kwan; Shibamoto, Takayuki

    2015-02-04

    Samples prepared from fresh broccoli (Brassica oleracea L.) sprouts by water distillation or freeze-drying were examined for antioxidant activity using three assays. All samples exhibited dose-dependent antioxidant activity. The antioxidant activity ranged from 74.48 ± 0.46% (less volatile sample) to 93.2 ± 0.2% (dichloromethane extract sample) at the level of 500 μg/mL. Both dichloromethane extract samples from a water distillate of broccoli sprouts and freeze-dried broccoli sprouts showed potent antioxidant activity, which was comparable to that of BHT. Among the 43 compounds positively identified by gas chromatography-mass spectrometry, 5-methylthiopentylnitrile (31.64 μg/g) was found in the greatest concentration, followed by 4-methylthiobutylisothiocyanate (14.55 μg/g), 4-methylthiobutylnitrile (10.63 μg/g), 3-methylthiopropylisothiocyanate (3.00 μg/g), and 4-methylpentylisothiocyanate (2.48 μg/g). These isothiocyanates are known to possess antioxidant properties. Possible phenolic antioxidants found are 4-(1-methylpropyl)phenol (0.012 μg/g), 4-methylphenol (0.159 μg/g), and 2-methoxy-4-vinylphenol (0.009 μg/g). The present study demonstrates that broccoli sprouts are a good source of natural antioxidants.

  6. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    Science.gov (United States)

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  7. Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Büchert, Agustin M; Gómez Lobato, Maria E; Villarreal, Natalia M; Civello, Pedro M; Martínez, Gustavo A

    2011-01-30

    Broccoli (Brassica oleracea L.) is a rapidly perishable vegetable crop. Several postharvest treatments have been applied in order to delay de-greening. Since light has been shown to have an effect on pigment accumulation during development and darkness is known to induce senescence, the effect of continuous and periodic exposure to low-intensity white light at 22 °C on postharvest senescence of broccoli heads was assayed. Exposure to a constant dose of 12 micromol m(-2) s(-1) was selected as the most suitable treatment and was employed for subsequent experiments. During the course of the treatments, hue and L* values as well as chlorophyll content and visual observation of florets indicated an evident delay in yellowing in treated samples compared with controls. No statistically significant differences in total protein content were found, but soluble protein content was higher in treated samples. Total and reducing sugar as well as starch levels decreased during postharvest senescence, with lower values in control samples. The results of this study indicate that storage under continuous low-intensity light is an efficient and low-cost treatment that delays postharvest senescence while maintaining the quality of harvested broccoli florets. 2010 Society of Chemical Industry.

  8. Collembola Diversity between Chemical Pesticide and Bioinsecticide in Broccoli Farm (Brassica oleraceae var. italica)

    Science.gov (United States)

    Sanjaya, Y.; Suhara

    2017-02-01

    The existance of Collembola diversity was determined by how land system work. Farming systems with excessive pesticide application can reduce number of Collembola. On the other hand nowaday people aware of environment by using bioinsecticide. The Method were comparing two land system which use Chemical pestisice and Bioinsecticide. Procedure were using Trapping wells (PMS) in three plots; T0: control without treatment, T1: Chemical Insecticide, T2 : Bioinsecticide for 24 hours. The factors that measure are abiotic factors by taking 10 grams of soil planting Broccoli (Brassica oleraceae var Italica), after 24 hours of taking separates it with other land animals, then identifying Collembola species were using Microcam based on identification book of Collembola. The result showed that density and Biodiversity of land system bioinsecticide was the highest value and indic. It was found also that in Broccoli farm dicovered 3 Familia and 8 species of Collembola both litter and soil. Species found that Isotomurus sp, Seira sp, Lepidosira sp, Coecobrya sp, Callyntura sp, Homidia sp, Sallina sp and Ascocytrus sp, three Family is derived from Isotomidae, Entomobryidae and Paronellid.

  9. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses.

    Science.gov (United States)

    Lin, Hsin-Hung; Lin, Kuan-Hung; Chen, Su-Ching; Shen, Yu-Hsing; Lo, Hsiao-Feng

    2015-12-01

    The production of broccoli (Brassica oleracea) is largely reduced by waterlogging and high temperature stresses. Heat-tolerant and heat-susceptible broccoli cultivars TSS-AVRDC-2 and B-75, respectively, were used for physiological and proteomic analyses. The objective of this study was to identify TSS-AVRDC-2 and B-75 proteins differentially regulated at different time periods in response to waterlogging at 40 °C for three days. TSS-AVRDC-2 exhibited significantly higher chlorophyll content, lower stomatal conductance, and better H2O2 scavenging under stress in comparison to B-75. Two-dimensional liquid phase fractionation analyses revealed that Rubisco proteins in both varieties were regulated under stressing treatments, and that TSS-AVRDC-2 had higher levels of both Rubisco large and small subunit transcripts than B-75 when subjected to high temperature and/or waterlogging. This report utilizes physiological and proteomic approaches to discover changes in the protein expression profiles of broccoli in response to heat and waterlogging stresses. Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.

  10. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase).

    Science.gov (United States)

    Mahn, Andrea; Angulo, Alejandro; Cabañas, Fernanda

    2014-12-03

    Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.

  11. Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil.

    Science.gov (United States)

    Manna, Koushik; Kundu, Manik Chandra; Saha, Biplab; Ghosh, Goutam Kumar

    2018-01-16

    A field experiment was conducted in winter season of 2015-2016 in the dry lateritic soil of Eastern India to study the effect of different thicknesses of nonwoven jute agrotextile mulches (NJATM) along with other mulches on soil health, growth and productivity of broccoli (Brassica oleracea L.). The experiment was conducted in randomized block design with six treatments viz., T 1 (control, i.e. no mulching), T 2 (300 gsm NJATM), T 3 (350 gsm NJATM), T 4 (400 gsm NJATM), T 5 (rice straw) and T 6 (black polythene mulch), each of which was replicated four times. The highest average curd weight (355.25 g) and yield (8.53 t ha -1 ) of broccoli were recorded in T 3 treatment. The lowest density of broad leaved weed, sedges and grasses were recorded in T 6 treatment which was statistically at par with T 4 . All the treatments composing of NJATM increased the population of all the soil microbes except bacteria in the root rhizosphere of broccoli from their initial population. On average, the highest population of fungi (54.0 × 10 3  cfu per g) and actinomycetes (134.75 × 10 3  cfu per g) was recorded with T 3 and T 4 treatments respectively in the post-harvest soil. The soil moisture was conserved in all treatments compared to control showing highest moisture content in T 4 treatment. Organic carbon and available N, P and K contents of soil were increased in all mulch treated plots compared to control, and their initial value and their highest value were recorded in T 3 . The NJATM of 350 gsm thickness was very effective compared to other mulches in increasing the growth and productivity of broccoli by suppressing weeds, increasing moisture, microbial population and nutrient content of the lateritic soil.

  12. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, D K

    2015-04-01

    Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.

  13. Effects of Biofertilizer Containing Microbial of N-fixer, P Solubilizer and Plant Growth Factor Producer on Cabbage (Brassica oleraceae var. Capitata Growth And Soil Enzymatic Activities: A Greenhouse Trial

    Directory of Open Access Journals (Sweden)

    Sarjiya Antonius

    2012-05-01

    Full Text Available The objective of this greenhouse study was to evaluate the effects of four different concentrations of biofertilizers containing Pseudomonas sp., Bacillus sp. and Streptomyces sp. on soil properties and to evaluate the growth of Brassica oleraceae var. capitata. The application treatments included control (no fertilizer and four concentration of diluted biofertilizer per pot (20 ml, 40 ml, 60 mland 80 ml. The application of biofertilizer containing benefi cial bacteria signifi cantly increased the growth of B. oleraceae. The useof biofertilizer resulted higher biomass weight and length as well as root length. This greenhouse study also indicated that differentamount of biofertilizer application had almost similar effects. Microbial inoculum not only increased plant harvest, but also improvedsoil properties, such as number of microorganisms, respiration and urease activities.

  14. Evaluation of the genotoxic and antigenotoxic potential of Brassica oleracea L. var. acephala D.C. in different cells of mice.

    Science.gov (United States)

    Gonçalves, Álvaro Luiz Martini; Lemos, Marivane; Niero, Rivaldo; de Andrade, Sérgio Faloni; Maistro, Edson Luis

    2012-09-28

    Brassica oleracea L. var. acephala D.C. has been extensively used in Brazilian traditional medicine to treat gastric ulcer. This study was conducted to evaluate the in vivo genotoxic and/or antigenotoxic potential of a Brassica oleraceae hydroalcoholic extract obtained from the leaves, in different cells of mice. Analyses were performed using the comet assay, on leukocytes (collected 4 and 24 h after treatment), liver, brain, bone marrow and testicular cells (collected 24 h after treatment), and using the micronucleus test (MN) in bone marrow cells. Eight groups of albino Swiss mice were treated (N=6): control (C), positive control (doxorubicin 80 mg/kg (DXR)), and six experimental groups, which received 500, 1000 and 2000 mg/kg of Brassica oleraceae extract alone by gavage, while a further three groups received the same doses plus DXR (80 mg/kg). We calculated the damage scores, and their averages were compared by ANOVA followed by the Tukey test for multiple comparisons. The results demonstrated that none of the tested doses of Brassica oleraceae extract showed genotoxic effects by the comet assay, or clastogenic effects by the MN test. On the other hand, for all cells evaluated, the three tested doses of the Brassica extract promoted inhibition of DNA damage induced by DXR. Under our experimental conditions, Brassica oleraceae leaf extract showed no genotoxic or clastogenic effects in different cells of mice. However, it did show a significant decrease in DNA damage induced by doxorubicin. It is suggested that the antigenotoxic properties of this extract may be of great pharmacological importance, and may be beneficial for cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-04

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops.

  17. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-01

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops. PMID:26727246

  18. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked.

    Science.gov (United States)

    Sikora, Elżbieta; Bodziarczyk, Izabela

    2012-01-01

    Cabbage vegetables, like Brassica group, are perceived as very valuable food products. They have a very good nutritive value, high antioxidant activity and pro-healthy potential. Especially, kale (Brassica oleracea L. var. acephala) is characterized by good nutritional and pro-healthy properties, but this vegetable is not popular in Poland. The aim of this work was to assess the chemical composition and antioxidant activity of kale variety Winterbor F(1) and investigation of cooking process on selected characteristics. The chemical composition and antioxidant activity were determined in leaves of kale Winterbor F(1) variety after three subsequent years of growing. In one season, analyses were performed on raw and cooked leaves. The investigated kale was characterized by high average contents of: β-carotene (6.40 mg/100 g f.m.), vitamin C (62.27 mg/100 g f.m.), alimentary fiber (8.39 g/100 g f.m.) and ash (2.11 g/100 g f.m.). The average amounts of nitrites (III) and (V) were 3.36 mg NaNO(2)/kg f.m. and 1206.4 mg NaNO(3)/kg f.m., respectively. The investigated kale contained polyphenolic compounds at average level of 574.9 mg of chlorogenic acid/100 g f.m., and its antioxidant activity measured as ABTS radical scavenging ability was 33.22 μM Trolox/g of fresh vegetable. It was observed a significant lowering of antioxidant compounds as a result of cooking. The losses of vitamin C were at about 89%, polyphenols at the level of 56%, in calculation on dry mass of the product. The highest stability was shown in the case of beta-carotene, for which the losses were at about 5%. Antioxidant activity of cooked vegetable lowered and reached the level of 38%. There were also some losses observed in macro-components from 13% for zinc to 47% for sodium. The contents of harmful nitrites and nitrates in calculation on dry mass were significantly lower as a result of cooking, by 67% and 78%, respectively. Winterbor F(1) variety of kale has a great nutritive value and high

  19. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage (Brassica oleracea) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2, respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1, seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380) were found, whereas in the region of BoHL2, two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  20. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Tian, Ming; Hui, Maixia; Thannhauser, Theodore W; Pan, Siyi; Li, Li

    2017-01-01

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S) and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica) growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  1. Bacterial contamination of kale (Brassica oleracea Acephala) along the supply chain in Nairobi and its environment.

    Science.gov (United States)

    Kutto, E K; Ngigi, M W; Karanja, N; Kange'the, E; Bebora, L C; Lagerkvist, C J; Mbuthia, P G; Njagi, L W; Okello, J J

    2011-02-01

    To assess the microbiological safety of kale (Brassica oleracea Acephala) produced from farms and those sold at the markets with special focus on coliforms, E.coli and Salmonella. A cross sectional study. Peri-Urban farms (in Athi River, Ngong and Wangige), wet markets (in Kawangware, Kangemi and Githurai), supermarkets and high-end specialty store both within Nairobi city. Mean coliform count on vegetables from farms were 2.6 x 10(5) +/- 5.0 x 10(5) cfu/g while those from the wet markets were 4.6 x 10(6) +/- 9.1 x 10(6) cfu/g, supermarkets, 2.6 x 10(6) +/- 2.7 x 10(6) and high-end specialty store 4.7 x 10(5) +/- 8.9 x 10 (5). Coliform numbers obtained on kales from the wet markets and supermarkets were significantly higher (p coliform loads as those from the farms. E. coli prevalence in the wet markets, supermarkets and high-end specialty store were: 40, 20 and 20%, respectively. Salmonella was detected on 4.5 and 6.3% of samples collected from the farms in Wangige and wet market in Kawangware, respectively. Fecal coliforms in water used on farms (for irrigation) and in the markets (for washing the vegetables) exceeded levels recommended by World Health Organization (WHO) of 10(3) organisms per 100 milliliter while Salmonella was detected in 12.5% of washing water samples collected from Kangemi market. Poor cultivation practices and poor handling of vegetables along the supply chain could increase the risk of pathogen contamination thus puting the health of the public at risk, therefore good agricultural and handling practices should be observed.

  2. Effect of extracts of the reproductive organs of brassica oleracea L. on morphogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    R.N. KIRAKOSJAN

    2014-07-01

    Full Text Available Currently, cabbage is the most common vegetable. The reason is very tasty and chemical composition. It contains 2,6-5,7% sugar, 1,1-2,3% of the proteins, minerals phosphorus, potassium, magnesium, zinc, manganese, iodine, etc. The most important problem of selection is still reducing the time to development new varieties.Broad prospects in the intensification of the selection process opens the application of modern techniques of applied genetics and applied biotechnology, combined with hybridization and selection. Great theoretical and practical interest, in particular, the use of haploidy. Method dihaploids allows significant acceleration of the process of selection of all cultivated plants.Work carried out on varieties and F1 hybrids of the genus Brassica: cabbage (B. oleracea L.: F1 hybrid Jubilei, line ET1 and AMF 3L. Plants - donors were grown in a greenhouse of the Breeding Timofeev-station of RSAU-MTAA during the year. Objects of our research were isolated anthers, microspores, ovaries and ovules of cabbage.Studied the effects of extracts derived from the reproductive organs of cabbage. As the solvent used: DMSO, acetone, alcohol and water. The extracts were added to a sterile medium. For cabbage we have optimized steps of obtaining regenerated plants by direct embryogenesis from microspores of isolated anthers. Found that the presence of hormones in MS medium at a concentration of NAA 1 mg / l, Dropp - 0.01 mg / l stimulated the process of direct embryogenesis. In these conditions the microspores in anther maintain their viability for a long growing in in vitro. The addition of DMSO-based extracts and acetone resulted in the induction of development of the ovaries and ovules. This was manifested in the growth of the ovaries and the formation of larger ovules. In variants with water and alcohol, this effect was not observed.

  3. Salinity in the germination of Brassicas oleracea L. var. itálica

    Directory of Open Access Journals (Sweden)

    Kilson Pinheiro Lopes

    2014-10-01

    Full Text Available The demand for vegetable seeds with high quality and the achievement of vigorous seedlings is increasing, because these characteristics determine the success of the production. The use of some areas such as arid and semiarid regions runs into some obstacles such as salinity and potential sodicity of water used for irrigation, whose main purpose is to provide adequate moisture for growth and development of plants in order to increase productivity and consequently, reduce the effects of drought. This study aims to assess the seed germination and vigor of broccoli (Brassica oleracea L. var. itálica cv. Santana, under the influence of salt stress. The experiment was conducted at the Laboratory of Analysis of Seeds and Seedlings of the Centro de Ciências e Tecnologia Agroalimentar da Universidade Federal de Campina Grande, PB-Pombal, in completely randomized design, with treatments arranged in 2x5 factorial scheme, corresponding to two lots of seeds (not aged and aged and osmotic potentials of five soaking solution (0, –0.2, –0.4, –0.6 and –0.8 MPa. Seeds were germinated in Petri dishes on two sheets of filter paper moistened with saline (NaCl at different concentrations and maintained in germination temperature of 20-30º C and photoperiod-eight hours, after were subjected to assessment of their physiological quality through tests of germination and vigor. The presence of salts in the soaking solution resulted in decreased seed vigor as the osmotic potential of the soaking solution has become more negative, indicating that the seeds of broccoli cultivar Santana has low tolerance to salinity.

  4. Two novel bioactive glucosinolates from Broccoli (Brassica oleracea L. var. italica) florets.

    Science.gov (United States)

    Survay, Nazneen Shaik; Kumar, Brajesh; Jang, Mi; Yoon, Do-Young; Jung, Yi-Sook; Yang, Deok-Chun; Park, Se Won

    2012-09-01

    Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20 mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5 mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625 μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625 μg/mL and <1250 μg/mL, respectively, when compared to ampicillin (IC(50) ≤ 39 μg/mL) as a positive control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    Science.gov (United States)

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  6. Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Cakar, Jasmina; Parić, Adisa; Maksimović, Milka; Bajrović, Kasim

    2012-02-01

    Broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)] contains substantial quantities of bioactive compounds, which are good free radical scavengers and thus might have strong antitumor properties. Enhancing production of plant secondary metabolites could be obtained with phytohormones that have significant effects on the metabolism of secondary metabolites. In that manner, in vitro culture presents good model for manipulation with plant tissues in order to affect secondary metabolite production and thus enhance bioactive properties of plants. Estimation of the antioxidative and antitumor properties of broccoli cultivated in different in vitro conditions. In vitro germinated and cultivated broccoli seedlings, as well as spontaneously developed calli, were subjected to Soxhlet extraction. Antioxidative activity of the herbal extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) radical method. Antitumor properties of the extracts were determined using crown-gall tumor inhibition (potato disc) assay. Three, 10, 20, and 30 days old broccoli seedlings, cultivated in vitro on three different Murashige-Skoog media, two types of callus, and seedlings from sterile filter paper were used for extraction. In total, 15 aqueous extracts were tested for antioxidative and antitumor potential. Three day-old seedlings showed the highest antioxidative activity. Eleven out of 15 aqueous extracts demonstrated above 50% of crown-gall tumor inhibition in comparison with the control. Tumor inhibition was in association with types and concentrations of phytohormones presented in growing media. It is demonstrated that phytohormones in plant-growing media could affect the bioactive properties of broccoli either through increasing or decreasing their antioxidative and antitumor potential.

  7. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2017-08-01

    Full Text Available Selenium (Se is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  8. Atmospheric H2S as sulphur source for Brassica oleracea : Consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway

    NARCIS (Netherlands)

    Westerman, S; Stulen, I.; Suter, M; Brunold, C; De Kok, LJ

    Short-term exposure of Brassica oleracea L. (curly kale) to atmospheric H2S levels (0.2-0.8 muL .L-1), which an sufficient to meet the plants sulphur requirement, resulted in a decrease in the activity of adenosine 5'-phosphosulphate reductase (APR) in the shoot. The reduction in APR activity was

  9. The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Everaarts, A.P.; Willigen, de P.

    1999-01-01

    The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica) was studied in four field experiments. The methods of application were broadcast application vs band placement and split application. Maximum uptake of nitrogen

  10. Assessing the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (brassica oleracea L. var. italica) sprouts and florets

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...

  11. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.).

    Science.gov (United States)

    Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat

    2017-03-01

    Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L-1 of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H2O2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.

  12. Effect of chlormequat (cycocel) on the growth of ornamental cabbage and kale (Brassica oleracea) cultivars 'Kamome White' and 'Nagoya Red'.

    Science.gov (United States)

    Gholampour, Abdollah; Hashemabadi, Davood; Sedaghathoor, Shahram; Kaviani, Behzad

    2015-01-01

    The effect of concentration and application method of chlormequat (cycocel), a plant growth retardant, on plant height and some other traits in Brassica oleracea cultivars 'Kamome White' and 'Nagoya Red' was assessed. Plant growth retardants are commonly applied to limit stem elongation and produce a more compact plant. The experiment was done as a factorial in randomized completely blocks design (RCBD) with four replications. Plants (40 days after transplanting) were sprayed and drenched with 500, 1000 and 1500 mg l(-1) cycocel. In each experiment, control untreated plants. Data were recorded the 60 and 90 days after transplanting. Based on analysis of variance (ANOVA), the effect of different treatments and their interaction on all traits was significant at 0.05 or 0.01 level of probability. Treatment of 1500 mg I(-1) cycocel resulted in about 50 and 20% shorter plants than control plants, 60 and 90 days after transplant. The growth of Brassica oleracea cultivar 'Kamome White' and 'Nagoya Red' decreased with increased cycocel concentration. Foliar sprays of cycocel controlled plant height of both cultivars. Results indicated that the shortest plants (9.94 and 11.59 cm) were those sprayed with 1500 mg l(-1) cycocel in cultivar 'Kamome White' after 60 and 90 days, respectively. The largest number of leaves (33.94) and highest leaf diameter (9.39 cm) occurred in cv. 'Nagoya Red', when drench was used. Maximum dry matter (14.31%) accumulated in cv. 'Nagoya Red', treated with spray.

  13. Evaluation of antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (cabbage on Wistar rat gastric ulceration

    Directory of Open Access Journals (Sweden)

    Camilo Amaro de Carvalho

    2011-12-01

    Full Text Available CONTEXT: The cabbage (Brassica oleraceae var. capitata is an herbaceous and leafy plant which belongs to the Brassicaceae family, native to coastal southern and Western Europe. Used in cooking for its nutritional value also has known anti-inflammatory activity. OBJECTIVE We studied the antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (AEB in order to validate ethnobotanical claims regarding the plant use in the gastric disorders. METHOD: Acute gastric ulcers were induced in rats by the oral administration of acetylsalicylic acid. The gastroprotective potential of the AEB (0.250, 0.500 and 1.000 mg.kg-1/body weight was compared with omeprazole (20 mg.kg-1/body weight. RESULTS: The stomach analysis indicated that treatment with AEB inhibited the gastric damage. The gastroprotective activity as evidenced by its significant inhibition in the formation of ulcers induced by chemical agent with a maximum of 99.44% curation (250 mg.kg-1 body weight in acetylsalicylic acid-induced ulcers. CONCLUSIONS: The AEB demonstrated good antiulcerogenic activities which justify the inclusion of this plant in the management of gastric disorders. Further experiments are underway to determine which antiulcer mechanisms involved in gastroprotection.

  14. Brassica oleracea L. Var. costata DC and Pieris brassicae L. aqueous extracts reduce methyl methanesulfonate-induced DNA damage in V79 hamster lung fibroblasts.

    Science.gov (United States)

    Sousa, Carla; Fernandes, Fátima; Valentão, Patrícia; Rodrigues, António Sebastião; Coelho, Marta; Teixeira, João P; Silva, Susana; Ferreres, Federico; Guedes de Pinho, Paula; Andrade, Paula B

    2012-05-30

    Brassica oleracea L. var. costata DC leaves and Pieris brassicae L. larvae aqueous extracts were assayed for their potential to prevent/induce DNA damage. None of them was mutagenic at the tested concentrations in the Ames test reversion assay using Salmonella His(+) TA98 strains, with and without metabolic activation. In the hypoxanthine-guanine phosphoribosyltransferase mutation assay using mammalian V79 fibroblast cell line, extracts at 500 μg/mL neither induced mutations nor protected against the mutagenicity caused by methyl methanesulfonate (MMS). In the comet assay, none of the extracts revealed to be genotoxic by itself, and both afforded protection, more pronounced for larvae extracts, against MMS-induced genotoxicity. As genotoxic/antigenotoxic effects of Brassica vegetables are commonly attributed to isothiocyanates, the extracts were screened for these compounds by headspace-solid-phase microextraction/gas chromatography-mass spectrometry. No sulfur compound was detected. These findings demonstrate that both extracts could be useful against damage caused by genotoxic compounds, the larvae extract being the most promising.

  15. Carotenoids, polyphenols and micronutrient profiles of Brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity.

    Science.gov (United States)

    Kaulmann, Anouk; Jonville, Marie-Caroline; Schneider, Yves-Jacques; Hoffmann, Lucien; Bohn, Torsten

    2014-07-15

    The consumption of phytochemicals such as carotenoids and polyphenols within whole fruits and vegetables has been associated with decreased incidence of various inflammation and oxidative stress related chronic diseases, which may be due to direct antioxidant effects, or indirect mechanisms such as affecting signal transduction/gene expression. Within the present study, we investigated the antioxidant composition of two major groups of vegetables and fruits, Brassica oleraceae and prunus spp., and estimated their contribution to antioxidant capacity. For this purpose, 17 plum and 27 Brassica varieties were collected in Luxembourg, and analysed for their individual polyphenol and carotenoid profile, vitamin C, dietary fibre, and minerals/trace elements, and their correlation with markers of antioxidant capacity (FRAP, ABTS, Folin-Ciocalteu). Total carotenoid and polyphenol content varied considerably between the different Brassica and plum varieties, with highest concentrations in the variety Kale (13.3 ± 0.58 mg/100g wet weight) and Cherry plum (1.96 ± 0.28 mg/100g) for carotenoids; and Kale (27.0 ± 0.91 mg/100g) and Kirks plum (185 ± 14 mg/100g) for polyphenols. In developed multiple linear-regression-models for Brassica, flavonoids, anthocyanins, lutein and vitamin C were found to be the best predictors of antioxidant capacity as assessed by FRAP (R(2)=0.832) and flavonoids, neochlorogenic acid and vitamin C as assessed by ABTS (R(2)=0.831); while for plums these were selenium, total sugars, chlorogenic acid and vitamin C (R(2)=0.853), and selenium, chlorogenic acid and flavonoids for FRAP (R(2)=0.711). When considering Brassica and plum consumption in Luxembourg, it is estimated that both contribute to an antioxidant intake equivalent to 26 and 6 mg per day of ascorbic acid equivalents, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Atrazine-resistant cytoplasmic male-sterile-nigra broccoli obtained by protoplast fusion between cytoplasmic male-sterile Brassica oleracea and atrazine-resistant Brassica campestris.

    Science.gov (United States)

    Christey, M C; Makaroff, C A; Earle, E D

    1991-12-01

    Protoplast fusion was used to combine the cytoplasmic traits of atrazine resistance and male sterility in Brassica oleracea var. italica (broccoli). Leaf protoplasts from broccoli with the petaloid B. nigra type of cytoplasmic male sterility were fused with hypocotyl protoplasts from an atrazine-resistant biotype of B. campestris var. oleifera cv Candle (oilseed rape). A total of 19 colonies regenerated shoots, all of which were broccolilike in phenotype, i.e., lacked trichomes. Four shoots, all from one colony, were atrazine resistant, surviving and growing in the presence of 25 μM atrazine. A leaf piece assay also confirmed that they were atrazine resistant. Molecular analysis showed that they contain chloroplasts from the atrazine-resistant B. campestris parent and mitochondria from the B. nigra parent. No recombination or rearrangement of the mitochondrial genomes in the fusion products was detected. These four plants and their progeny all showed the petaloid B. nigra type of male sterility.

  17. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae.

    Directory of Open Access Journals (Sweden)

    Shiv S Verma

    Full Text Available Canola (oilseed rape, Brassica napus L. is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations. P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs, hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.

  18. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Les principaux ravageurs des choux pommés [Brassica oleracea var capitata subs sabouda à Bukavu et ses environs

    Directory of Open Access Journals (Sweden)

    Walangululu, JM.

    2000-01-01

    Full Text Available The Major Pests of Cabbage (Brassica oleracea var. capitata subs sabouda in Bukavu and Around. As stated by farmers growing vegetables and as observed on local markets, cabbage in Bukavu and around is damaged by pests. The present work was intended to identify pests damaging this crop, which is now a cash crop in this region, in order to design control methods. Results revealed that one aphid species (Brevicoryne brassicaej, the common cutworm (Agrotis segetum and some Caterpillar species (Plutella xylostella, Hellula undalis, Spodoptera exempta and Trichoplusia ni are major pests causing a loss of plantlets estimated from 0 to 53.8 %, mainly one month after planting. Damage on the first five leaves of the head of cabbage, estimated from 3.5 to 55.8 % of plants were attributed to sporadic pests as the tobacco cricket (Brachytrupes mem-branaceus, the common cutworm (Agrotis segetum, chickens, some grasshoppers, snails and a tortoise beetle species (Henosepilachna elateris.

  20. UTILIZACIÓN DEL SUBPRODUCTO DE FIQUE: LICOR VERDE, COMO CONTROLADOR DE PLAGAS EN EL CULTIVO DE REPOLLO (Brassica oleracea DO FIQUE SUBPRODUTOS UTILIZAÇÃO: LICOR VERDE COMO UM CONTROLADOR DE PRAGAS NA CULTURA DO REPOLHO (Brassica oleracea FIQUE SUBPRODUCT UTILIZATION: GREEN LIQUOR AS A PEST CONTROL IN THE CULTURE OFCABBAGE (Brassica oleracea

    Directory of Open Access Journals (Sweden)

    JHON F. IMBACHÍ-HOYOS

    2012-06-01

    Full Text Available En el vivero forestal 'La Florida' de la Corporación Autónoma Regional del Cauca CRC, se evaluó el efecto del extracto de fique (Furcraea sp como controlador de plagas en el cultivo de repollo (Brassica oleracea. Se utilizaron cuatro tratamientos (blanco, solución extracto de fique al 30% v/v, 20% v/v, 10% v/v. Las mediciones se hicieron durante seis semanas para vigor, altura, diámetro, daño por plagas y daño por enfermedades. La aplicación fue de una vez durante las tres primeras semanas; y las tres siguientes la aplicación fue de dos por semana. Los resultados se analizaron utilizando el paquete estadístico SPSS 11.5, se realizó una ANOVA con un nivel de confianza del 95% (p = 0,05 y una prueba de Tuckey. El análisis muestra que la aplicación del extracto dos veces por semana (extracto de fique al 30% v/v, presentó el mejor control de plagas, disminuyendo la presencia de daños por las plagas: mariposa blanca (Pieris sp. palomilla (Plutella xylostella y áfidos (Brevicoryne brassicae y Myzus persicae.No viveiro floresta 'La Florida' da Corporação Autônoma Regional do Cauca (CRC se abalizou o efeito do extrato de fique (Furcraea sp como controlador de plagas no cultivo de repolho (Brassica oleracea. Utilizarão- se quatro tratamentos (Branco, solução extrato de fique a 30% v/v, 20% v/v e 10% v/v. As medições fizeram-se durante seis semanas para vigor, altura, diâmetro, dano por pragas y dano por enfermidades. A aplicação foi de uma vez durante as três primeiras semanas; y as três seguintes a aplicação foi de duas por semanas. Os resultados analisaram-se utilizando o paquete estadístico SPSS 11.5, realizaram-se uma ANOVA com um nível de confiança dos 95% (p = 0,05 e uma proba de Tuckey. A análise mostra que a aplicação do extrato duas vezes por semana (extrato de fique a 30% v/v, apresentou o melhor controle de pragas reduzindo a presencia de danos por as pragas: Borboleta branca (Pieris sp, mariposa (Plutella

  1. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) : 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestns).

    Science.gov (United States)

    Song, K; Osborn, T C; Williams, P H

    1990-04-01

    RFLPs were used to study genome evolution and phylogeny in Brassica and related genera. Thirtyeight accessions, including 10 accessions of B. rapa (syn. campestris), 9 cultivated types of B. oleracea, 13 nine-chromosome wild brassicas related to B. oleracea, and 6 other species in Brassica and allied genera, were examined with more then 30 random genomic DNA probes, which identified RFLPs mapping to nine different linkage groups of the B. rapa genome. Based on the RFLP data, phylogenetic trees were constructed using the PAUP microcomputer program. Within B. rapa, accessions of pak choi, narinosa, and Chinese cabbage from East Asia constituted a group distinct from turnip and wild European populations, consistent with the hypothesis that B. rapa had two centers of domestication. A wild B. rapa accession from India was positioned in the tree between European types and East Asian types, suggesting an evolutionary pathway from Europe to India, then to South China. Cultivated B. oleracea morphotypes showed monophyletic origin with wild B. oleracea or B. alboglabra as possible ancestors. Various kales constitute a highly diverse group, and represent the primitive morphotypes of cultivated B. oleracea from which cabbage, broccoli, cauliflower, etc. probably have evolved. Cauliflower was found to be closely related to broccoli, whereas cabbage was closely related to leafy kales. A great diversity existed among the 13 collections of nine-chromosome wild brassicas related to B. oleracea, representing various taxonomic states from subspecies to species. Results from these studies suggested that two basic evolutionary pathways exist for the diploid species examined. One pathway gave rise to B. fruticulosa, B. nigra, and Sinapis arvensis, with B. adpressa or a close relative as the initial ancestor. Another pathway gave rise to B. oleracea and B. rapa, with Diplotaxis erucoides or a close relative as the initial ancestor. Raphanus sativus and Eruca sativus represented

  2. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages.

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-11-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  3. Neofunctionalization of Duplicated Tic40 Genes Caused a Gain-of-Function Variation Related to Male Fertility in Brassica oleracea Lineages1[W][OPEN

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-01-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. PMID:25185122

  4. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Science.gov (United States)

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  5. Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbani

    2015-03-01

    Full Text Available Common purslane (Portulaca oleracea L. is an annual plant as one of the natural sources for noradrenaline hormone. In this research, hairy root culture of purslane was established by using Agrobacterium rhizogenes strain ATCC 15834. In the following, Box-Behnken model of response surface methodology (RSM was employed to optimize B5 medium for the growth of P. oleracea L. hairy root line. According to the results, modelling and optimization conditions, including sucrose, CaCl2.H2O, H2PO4 and NO3-/NH4+ concentrations on maximum dry weight (0.155 g and noradrenaline content (0.36 mg.g-1 DW was predicted. These optimal conditions predicted by RSM were confirmed the enhancement of noradrenaline production as an application potential for production by hairy root cultures.

  6. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea.

    Science.gov (United States)

    Lyu, Meiling; Liang, Ying; Yu, Youjian; Ma, Zhiming; Song, Limin; Yue, Xiaoyan; Cao, Jiashu

    2015-06-01

    BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea. BoMF25 is the homologous gene of At4g35670, a PG gene in Arabidopsis thaliana with a high expression level at the tricellular pollen stage. Collinear analysis revealed that the orthologous gene of BoMF25 in Brassica campestris (syn. B. rapa) genome was probably lost because of genome deletion and reshuffling. Sequence analysis indicated that BoMF25 contained four classical conserved domains (I, II, III, and IV) of PG protein. Homology and phylogenetic analyses showed that BoMF25 was clustered in Clade F. The putative promoter sequence, containing classical cis-acting elements and pollen-specific motifs, could drive green fluorescence protein expression in onion epidermal cells. Quantitative RT-PCR analysis suggested that BoMF25 was mainly expressed in the anther at the late stage of pollen development. In situ hybridization analysis also indicated that the strong and specific expression signal of BoMF25 existed in pollen grains at the mature pollen stage. Subcellular localization showed that the fluorescence signal was observed in the cell wall of onion epidermal cells, which suggested that BoMF25 may be a secreted protein localized in the pollen wall.

  7. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli).

    Science.gov (United States)

    Singhal, Uma; Khanuja, Manika; Prasad, Ram; Varma, Ajit

    2017-01-01

    In the present work, novel nanotool called 'nano-embedded fungus' formed by impact of synergistic association of ZnO-nanorods and fungus Piriformospora indica DSM 11827, for growth of Brassica oleracea var. botrytis (Broccoli) is reported. ZnO-nanorods were synthesized by mechanical assisted thermal decomposition process and characterized by scanning electron microscopy (SEM) for morphology, X-ray diffraction for structural studies and UV-vis absorption spectroscopy for band gap determination. Nanoembedded fungus is prepared by optimizing ZnO-nanorods concentration (500 ppm) which resulted in the increased biomass of P. indica, as confirmed by dry weight method, spore count, spread plate and microscopy techniques viz. SEM and confocal microscopy. Enhancement in B. oleracea var. botrytis is reported on treatment with nanoembedded fungus. According to the authors, this is the first holistic study focusing on the impact of ZnO-nanorods in the enhancement of fungal symbiont for enhanced biomass productivity of B. oleracea plant.

  8. Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid

    OpenAIRE

    Vrchovska, V.; Sousa, C.; Valentão, P.; Ferreres, F.; PEREIRA, J. A.; Seabra, R.M.; Andrade, P.B.

    2006-01-01

    The ability of the aqueous extract of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves to act as a scavenger of DPPH- and reactive oxygen species (superoxide radical, hydroxyl radical and hypochlorous acid) was investigated. A phytochemical study was also undertaken, and thirteen phenolic compounds and five organic acids were identified and quantified. Tronchuda cabbage extracts exhibited antioxidant capacity in a concentration-dependent manner in all assays, ...

  9. Biological effects of pollution and problems of the environment in the region of Birsesti (Town of Jiu), Romania. [Triticum vulgare; Zea mays; Brassica oleracea; Vitis vinifera

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, A.; Neamu, G.

    1973-01-01

    The vegetation around Birsesti showed diminished chlorophyll pigment by as much as 20% below control plants. In Triticum vulgare, Zea mays and Brassica oleracea there was a reduction in functioning stomata. The mechanical blockage by cement dust induced changes in the leaf veins. Plant productivity and dry weight were reduced. A reduction of 250% in Vitis vinifera cultivation was reduced to about 1/3 that of unaffected areas. 16 references, 7 figures, 1 table.

  10. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system.

    Science.gov (United States)

    Dos Reis, Luzia Caroline Ramos; de Oliveira, Viviani Ruffo; Hagen, Martine Elisabeth Kienzle; Jablonski, André; Flôres, Simone Hickmann; de Oliveira Rios, Alessandro

    2015-04-01

    Brassica vegetables have been shown to have antioxidant capacities due to the presence of carotenoids, flavonoids and vitamins. This study evaluates the influence of different processing conditions (boiling, steaming, microwaving and sous vide) on the stability of flavonoids, carotenoids and vitamin A in broccoli and cauliflower inflorescences grown in an organic system. Results indicated that sous vide processing resulted in greater antioxidant capacity and that all processes contributed in some way to an increased content of antioxidant compounds in both cauliflower and broccoli. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Survival of pathogens of Brussels sprouts (Brassica oleracea Gemifera group) in crop residues

    NARCIS (Netherlands)

    Köhl, J.; Vlaswinkel, M.E.T.; Groenenboom-de Haas, B.H.; Kastelein, P.; Hoof, van R.A.; Wolf, van der J.M.; Krijger, M.C.

    2011-01-01

    Mycosphaerella brassicicola (ringspot), Alternaria brassicicola and A. brassicae (dark leaf spot) and Xanthomonas campestris pv. campestris (black spot) can infect leaves of Brussels sprouts resulting in yield losses. Infections of outer leaves of sprouts cause severe losses in quality. Crop

  12. Myrosinase stability in broccoli (Brassica oleracea var. italica). Influence of temperature and water activity

    OpenAIRE

    Castelo-Branco, João Diogo Cristovão Pinto

    2010-01-01

    Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia Epidemiological studies have shown that a diet rich in Brassica vegetables is associated with a decreasing risk of incidence of some types of cancer. These health promoting effects are most likely due to the breakdown products of glucosinolates formed by the action of myrosinase which catalyzes the hydrolysis of glucosinolates, found in Brassica plants. Industrial processing of food can affect the content, compo...

  13. Evaluation of the effects of gamma radiation in minimally processed vegetables of Brassica oleracea species; Avaliacao dos efeitos da radiacao gama em vegetais da especie Brassica oleracea minimamente processados

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Thaise Cristine Fernandes

    2009-07-01

    The consumption of collard greens (Brassica oleracea cv. acephala) and broccoli (Brassica oleracea L. var. italica) has been inversely associated with morbidity and mortality caused by degenerative diseases. These species are highly consumed in Brazil, which enables its use as minimally processed (MP). The growing worldwide concern with the storage, nutritional quality and microbiological safety of food has led to many studies aimed at microbiological analysis, vitamin and shelf life. To improve the quality of these products, radiation processing can be effective in maintaining the quality of the product, rather compromising their nutritional values and sensory. The aim of this study was to evaluate the effectiveness of gamma radiation from {sup 60}Co at doses of 0, 1.0 and 1.5 kGy on the reduction of microbiota in these plants, and analyze their nutritional and sensory characteristics. The methodology used in this study was microbiological analysis, colorimetric analysis, analysis of phenolic compounds, antioxidant analysis and sensory analysis. The microbiological analysis showed a decrease in the development of populations of aerobic microorganisms, psychotropic and yeast and mold with increasing doses of radiation. The sensory analysis showed no significant difference between different times of cooking analyzed. The analysis of phenolic compounds, significant differences between the samples, suggesting that with increasing dose of irradiation was an increase in the amount of phenolic compounds found in broccoli and collard greens MP. It can be observed that the sample of control collard greens showed high antioxidant activity and for the samples treated by irradiation was a decrease of percentage. In contrast the samples of broccoli show an increase in the rate of scavenging DPPH with increase of the dose of radiation. The colorimetric analysis revealed that for samples of MP collard greens and broccoli foil of no significant differences, but for samples of

  14. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  15. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae. However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  16. Isolation and characterization of a J domain protein that interacts with ARC1 from ornamental kale (Brassica oleracea var. acephala).

    Science.gov (United States)

    Lan, Xingguo; Yang, Jia; Cao, Mingming; Wang, Yanhong; Kawabata, Saneyuki; Li, Yuhua

    2015-05-01

    A novel J domain protein, JDP1, was isolated from ornamental kale. The C-terminus of JDP1 specifically interacted with ARC1, which has a conserved role in self-incompatibility signaling. Armadillo (ARM)-repeat containing 1 (ARC1) plays a conserved role in self-incompatibility signaling across the Brassicaceae and functions downstream of the S-locus receptor kinase. Here, we identified a J domain protein 1 (JDP1) that interacts with ARC1 using a yeast two-hybrid screen against a stigma cDNA library from ornamental kale (Brassica oleracea var. acephala). JDP1, a 38.4-kDa protein with 344 amino acids, is a member of the Hsp40 family. Fragment JDP1(57-344), originally isolated from a yeast two-hybrid cDNA library, interacted specifically with ARC1 in yeast two-hybrid assays. The N-terminus of JDP1 (JDP1(1-68)) contains a J domain, and the C-terminus of JDP1 (JDP1(69-344)) contains an X domain of unknown function. However, JDP1(69-344) was required and sufficient for interaction with ARC1 in yeast two-hybrid assays and in vitro binding assays. Moreover, JDP1(69-344) regulated the trafficking of ARC1 from the cytoplasm to the plasma membrane by interacting with ARC1 in Arabidopsis mesophyll protoplasts. Finally, Tyr(8) in the JDP1 N-terminal region was identified to be the specific site for regulating the interaction between JDP1 and BoARC1 in yeast two-hybrid assays. Possible roles of JDP1 as an interactor with ARC1 in Brassica are discussed.

  17. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  18. Genomic Changes in Resynthesized Brassica napus and Their Effect on Gene Expression and Phenotype

    National Research Council Canada - National Science Library

    Robert T. Gaeta; J. Chris Pires; Federico Iniguez-Luy; Enrique Leon; Thomas C. Osborn

    2007-01-01

    .... We analyzed genetic, epigenetic, gene expression, and phenotypic changes in ∼50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa...

  19. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores

    NARCIS (Netherlands)

    Bruinsma, M.; Dam, van N.M.; Loon, van J.J.A.; Dicke, M.

    2007-01-01

    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves

  20. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores.

    NARCIS (Netherlands)

    Bruinsma, M.; Van Dam, N.M.; van Loon, J.J.A.; Dicke, M.

    2007-01-01

    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves

  2. Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa–B. oleracea monosomic alien addition lines

    Science.gov (United States)

    Heneen, Waheeb K.; Geleta, Mulatu; Brismar, Kerstin; Xiong, Zhiyong; Pires, J. Chris; Hasterok, Robert; Stoute, Andrew I.; Scott, Roderick J.; King, Graham J.; Kurup, Smita

    2012-01-01

    Background and Aims Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. Methods A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. Key Results The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker

  3. The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Rangkadilok, Nuchanart; Tomkins, Bruce; Nicolas, Marc E; Premier, Robert R; Bennett, Richard N; Eagling, David R; Taylor, Paul W J

    2002-12-04

    The effects of post-harvest and packaging treatments on glucoraphanin (4-methylsulfinylbutyl glucosinolate), the glucosinolate precursor of anticancer isothiocyanate sulforaphane [4-methylsulfinylbutyl isothiocyanate], were examined in broccoli (Brassica oleracea var. italica) during storage times. The results showed that at 20 degrees C, 55% loss of glucoraphanin concentration occurred in broccoli stored in open boxes during the first 3 days of the treatment and 56% loss was found in broccoli stored in plastic bags by day 7. Under both air and controlled atmosphere (CA) storage, glucoraphanin concentration appeared to fluctuate slightly during 25 days of storage and the concentrations under CA was significantly higher than those stored under air treatment. In modified atmosphere packaging (MAP) treatments, glucoraphanin concentration in air control packaging decreased significantly whereas there were no significant changes in glucoraphanin concentration in MAP with no holes at 4 degrees C and two microholes at 20 degrees C for up to 10 days. Decreases in glucoraphanin concentration occurred when the broccoli heads deteriorated. In the present study, the best method for preserving glucoraphanin concentration in broccoli heads after harvest was storage of broccoli in MAP and refrigeration at 4 degrees C. This condition maintained the glucoraphanin concentration for at least 10 days and also maintained the visual quality of the broccoli heads.

  4. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress.

    Science.gov (United States)

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories based on amino acid sequence similarity and were also compared with BrbZIP and AtbZIP transcription factors. Based on this BolbZIP identification and classification, cold stress-responsive BolbZIP genes were screened in inbred lines, BN106 and BN107, using RNA sequencing data and qRT-PCR. The expression level of the 3 genes, Bol008071, Bol033132, and Bol042729, was significantly increased in BN107 under cold conditions and was unchanged in BN106. The upregulation of these genes in BN107, a cold-susceptible inbred line, suggests that they might be significant components in the cold response. Among three identified genes, Bol033132 has 97% sequence similarity to Bra020735, which was identified in a screen for cold-related genes in B. rapa and a protein containing N-rich regions in LCRs. The results obtained in this study provide valuable information for understanding the potential function of BolbZIP transcription factors in cold stress responses.

  5. Determination of Mineral Constituents, Phytochemicals and Antioxidant Qualities of Cleome gynandra, Compared to Brassica oleracea and Beta vulgaris

    Directory of Open Access Journals (Sweden)

    Mack Moyo

    2018-01-01

    Full Text Available The study compared mineral, chemical and antioxidant qualities of Cleome gynandra, a wild leafy vegetable, with two widely consumed commercial vegetables, Brassica oleracea and Beta vulgaris. Mineral nutrients were quantified with inductively coupled plasma mass spectrometry (ICP-MS, phenolic compounds using ultra-high performance liquid chromatography coupled to a mass spectrometer (UHPLC-MS and β-carotene and vitamin C using high performance liquid chromatography with a photodiode array detector (HPLC-PDA. The antioxidant potential was evaluated using 2,2–diphenyl−1–picryl hydrazyl (DPPH and oxygen radical absorbance capacity (ORAC assays. Cleome gynandra had highest concentrations of phosphorus, potassium, calcium, iron, zinc, ascorbic acid, total phenolics, and flavonoids; whereas sodium, magnesium, manganese, copper and β-carotene were higher for B. vulgaris. The significantly higher antioxidant activity (P ≤ 0.05 exhibited by C. gynandra in comparison to the two commercial vegetables may be due to its significantly high levels of vitamin C and phenolic acids. These findings on the mineral, chemical and antioxidant properties of C. gynandra provide compelling scientific evidence of its potential in adding diversity to the diet and contributing toward the daily nutritional requirements of millions of people for food and nutritional security.

  6. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  7. Responses of growing Japanese quails that received selenium from selenium enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chantiratikul, Anut; Chinrasri, Orawan; Pakmaruek, Pornpan; Chantiratikul, Piyanete; Thosaikham, Withpol; Aengwanich, Worapol

    2011-12-01

    The objectives of this study were to determine the effect of selenium (Se) from Se-enriched kale sprout (Brassica oleracea var. alboglabra L.) on the performance and Se concentrations in tissues of growing Japanese quails. Two hundred quails were divided into five treatments. Each treatment consisted of four replicates and each replicate contained ten quails in a completely randomize design. The experiment was conducted for 5 weeks. The treatments were T1, control diet; T2, control diet plus 0.2 mg Se/kg from sodium selenite; T3, T4, and T5, control diet plus 0.2, 0.5, and 1.0 mg Se/kg from Se-enriched kale sprout. The results revealed that Se supplementation had no impact on feed intake, performance, and carcass characteristics of quails (p > 0.05). However, Se supplementation from both sodium selenite and Se-enriched kale sprout increased (p kale sprout. The results indicate that Se from Se-enriched kale sprout offers no advantage over Se from sodium selenite on tissue Se concentration.

  8. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract.

    Science.gov (United States)

    Pourjavaher, Simin; Almasi, Hadi; Meshkini, Saeed; Pirsa, Sajad; Parandi, Ehsan

    2017-01-20

    This work aimed to develop and characterize a smart label for pH monitoring based on bacterial cellulose (BC) nanofibers doped with anthocyanins extracted from red cabbage (Brassica oleracea). The relationship between the concentration of anthocyanins (32 and 193mgL(-1)) and the morphological properties and color response efficiency of pH indicator labels was investigated. The FT-IR results reflected that some new interactions have occurred between BC membrane and anthocyanins. The XRD analyses showed a decrease in diffraction intensities of BC by addition of concentrated form of anthocyanins. SEM results indicated that concentrated anthocyanins caused to partial disintegration and deformation of the cellulose microfibrils with more cracks on the labels. But the intrinsic morphology and structure of the BC nanofibers were preserved by addition of diluted anthocyanins. A concentration dependent decrease was observed in the tensile strength of anthocyanin loaded labels but elongation percentage and moisture absorption of BC was increased by addition of anthocyanins. The color variation in different pH range (2-10) was measured with the CIELab methodology. The label containing diluted anthocyanins showed a more clear response to pH variation. Therefore, it has potential to be used as a visual indicator of the pH variations during storage of packaged food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  10. Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea).

    Science.gov (United States)

    Kurilich, Anne C; Britz, Steven J; Clevidence, Beverly A; Novotny, Janet A

    2003-08-13

    The ability to study bioavailability of nutrients from foods is an important step in determining the health impact of those nutrients. This work describes a method for studying the bioavailability of nutrients from kale (Brassica oleracea var. Acephala) by labeling the nutrients with carbon-13, feeding the kale to an adult volunteer, and analyzing plasma samples for labeled nutrients. Results showed that conditions for producing atmospheric intrinsically labeled kale had no detrimental effect on plant growth. Lutein, beta-carotene, retinol, and phylloquinone were analyzed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analysis of plasma samples showed that labeled lutein peaked in plasma at 11 h (0.23 microM), beta-carotene peaked at 8 (0.058 microM) and 24 h (0.062 microM), retinol peaked at 24 h (0.10 microM), and phylloquinone peaked at 7 h (3.0 nM). This method of labeling kale with (13)C was successful for producing clearly defined kinetic curves for (13)C-lutein,(13)C-beta-carotene, (13)C-retinol, and (13)C-phylloquinone.

  11. Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB)

    Science.gov (United States)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Broccoli (Brassica oleracea L. ssp.) has a relatively high nutrient content, especially as a source of vitamins, minerals and fiber and contain bioactive compounds that act as antioxidants. In order to increase the nutritional value and innovate new products, fermentation process involving rich-antioxidants lactic acid bacteria (LAB) was done. The aim of this study is to determine the content of bioactive components, such as total polyphenols, total acid and antioxidant activity of the mixed culture of LAB (L. bulgaricus, S. thermophulus, L. acidophilus, Bd. bifidum)-fermented broccoli extracts. Ratio of fermented broccoli extract and concentration of starter cultureLAB was varied in the range of 5, 10, 15 and 20% (v/v), and the alterations of characteristics of the fermented broccoli extract, before and after fermentation (0 and 24 hours), were evaluated. The results showed that fermentation functional beverage broccoli with different concentrations of LAB cultures affect the antioxidant activity, total polyphenols, total acid and total cell of LAB generated. The optimum conditions obtained for the highest antioxidant activity of 6.74%, at aculture concentration of 20% during fermentation time of 24 h with a pH value of 4.29, total sugar of 10.89%, total acids of 0.97%, total polyphenols of 0.076%, and total LAB of 13.02 + 0.05 log cfu /ml.

  12. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves.

    Science.gov (United States)

    Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen

    2014-07-30

    Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.

  13. Oviposition behavior and performance aspects of Ascia monuste (Godart, 1919 (Lepidoptera, Pieridae on kale (Brassica oleracea var. acephala

    Directory of Open Access Journals (Sweden)

    Catta-Preta Patrícia Diniz

    2003-01-01

    Full Text Available Host part selection by ovipositing females of Ascia monuste (Godart, 1919 (Lepidoptera, Pieridae on kale (Brassica oleracea var. acephala was determined in greenhouse and field. Performance of offspring (larval period, efficiency of food utilization, number of eggs/female and others was investigated under laboratory conditions. In the field, the number of A. monuste egg clutches on the apical and medium parts of kale leaves was greater than on the basal part. In greenhouse, A. monuste exhibited a strong preference for the apical part of kale leaves for ovipositing. The best results on food utilization indices, pupal mass and female wing size were obtained with the leaf apical part. This part of kale leaves exhibited the highest nitrogen and protein concentration and the smallest water content, when compared to the other leaf parts. However, the apical part of the leaves seems not to provide ovipositing females with enough protection against birds, making them easy preys in the field. We suggest that good relationship between oviposition preference and performance of offspring was hindered by predation in field conditions.

  14. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  15. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production.

    Science.gov (United States)

    Sendi, H; Mohamed, M T M; Anwar, M P; Saud, H M

    2013-01-01

    Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for Kai-lan (Brassica oleracea var. Alboglabra) production replacing peat moss (PM) in growth media. The treatments evaluated were 100% PM (control), 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v) with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  16. Spent Mushroom Waste as a Media Replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra Production

    Directory of Open Access Journals (Sweden)

    H. Sendi

    2013-01-01

    Full Text Available Peat moss (PM is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW for Kai-lan (Brassica oleracea var. Alboglabra production replacing peat moss (PM in growth media. The treatments evaluated were 100% PM (control, 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100% and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  17. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    Science.gov (United States)

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  18. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    McKenzie, Marian J; Chen, Ronan K Y; Leung, Susanna; Joshi, Srishti; Rippon, Paula E; Joyce, Nigel I; McManus, Michael T

    2017-12-01

    The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Renata Wojciechowska

    2013-09-01

    Full Text Available The study was designed to determine the possible relationship between Brassica oleracea var. italica seedlings stored at 2°C in the dark for seven and fourteen days, respectively, and the level of certain antioxidant parameters in particular organs. A parallel objective of the experiment was to determine if the reaction of seedlings to low temperature might be persistent in fully developed plants until harvest time. After 14 days of chilling a significant increase in the glutathione content was observed in the seedling leaves in comparison to the non-chilled plants. During vegetation in field conditions this effect was maintained in leaves up to the stage of formation of flower buds. At harvest the highest content of glutathione was demonstrated in broccoli heads, obtained from plants, which were previously chilled in the seedling phase for two weeks. Peroxidase activity in broccoli seedlings increased each year of the three-year study due to the duration of the cooling time, whereas in the case of catalase the changes were not so distinct. At harvest time the activity of both enzymes in the leaves and flower buds fluctuated according to the particular year of study.

  20. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2015-11-01

    Full Text Available Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4, methylthioalkylmalate synthase 1 (MAM1 and dihomomethionine N-hydroxylase (CYP79F1, were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey. Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g−1 DW (dry weight. Expression levels of BCAT4 and MAM1 were high at vegetative–reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  2. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-05-05

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores

    OpenAIRE

    Bruinsma, M; Dam, van, J.T.P.; Loon, van, C.D.; Dicke, M

    2007-01-01

    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control pla...

  5. SEPARATION AND IDENTIFICATION OF NORMAL HYDROCARBON, NONADECANE IN THE CABBAGE VEGETABLES SAMPLES (Brassica oleracea VAR. CAPITATA F. ALBA BY GAS CHROMATOGRAPHY–MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2010-06-01

    Full Text Available Toxic normal hydrocarbon (NH, nonadecane in the methanolic extract of the whole of cabbage samples collected from different districts of Bangladesh was analyzed by GC-MS. It was observed that NH deposition on the samples takes place in different morphological parts of the biological materials. The NH, nonadecane, was found in the cabbage samples collected from the highway road side by the extraction of methanol. The identification and quantification of the title compounds have not been reported previously in the cabbage sample.   Keywords: Cabbage; brassica oleracea var. capitata f. alba; quantification; normal hydrocarbon, nonadecane, GC-MS

  6. Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Liu, Xiao-Ping; Gao, Bao-Zhen; Han, Feng-Qing; Fang, Zhi-Yuan; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Liu, Yu-Mei; Li, Zhan-Sheng; Cai, Cheng-Cheng; Yu, Hai-Long; Li, Zhi-Yuan; Zhang, Yang-Yong

    2017-03-14

    Due to its variegated and colorful leaves, ornamental kale (Brassica oleracea L. var. acephala) has become a popular ornamental plant. In this study, we report the fine mapping and analysis of a candidate purple leaf gene using a backcross population and an F2 population derived from two parental lines: W1827 (with white leaves) and P1835 (with purple leaves). Genetic analysis indicated that the purple leaf trait is controlled by a single dominant gene, which we named BoPr. Using markers developed based on the reference genome '02-12', the BoPr gene was preliminarily mapped to a 280-kb interval of chromosome C09, with flanking markers M17 and BoID4714 at genetic distances of 4.3 cM and 1.5 cM, respectively. The recombination rate within this interval is almost 12 times higher than the usual level, which could be caused by assembly error for reference genome '02-12' at this interval. Primers were designed based on 'TO1000', another B. oleracea reference genome. Among the newly designed InDel markers, BRID485 and BRID490 were found to be the closest to BoPr, flanking the gene at genetic distances of 0.1 cM and 0.2 cM, respectively; the interval between the two markers is 44.8 kb (reference genome 'TO1000'). Seven annotated genes are located within the 44.8 kb genomic region, of which only Bo9g058630 shows high homology to AT5G42800 (dihydroflavonol reductase), which was identified as a candidate gene for BoPr. Blast analysis revealed that this 44.8 kb interval is located on an unanchored scaffold (Scaffold000035_P2) of '02-12', confirming the existence of assembly error at the interval between M17 and BoID4714 for reference genome '02-12'. This study identified a candidate gene for BoPr and lays a foundation for the cloning and functional analysis of this gene.

  7. Effects of belowground biota on primary and secondary metabolites in Brassica oleracea

    NARCIS (Netherlands)

    Wurst, S.; Langel, R.; Rodger, S.; Scheu, S.

    2006-01-01

    Soil organisms in direct and indirect interaction with plant roots affect aboveground herbivores, likely by inducing different plant responses. We investigated the combined effects of the root-knot nematode Meloidogyne incognita (in direct interaction with roots) and the endogeic earthworm

  8. Validation of fixed sample size plans for monitoring lepidopteran pests of Brassica oleracea crops in North Korea.

    Science.gov (United States)

    Hamilton, A J; Waters, E K; Kim, H J; Pak, W S; Furlong, M J

    2009-06-01

    The combined action of two lepidoteran pests, Plutella xylostella L. (Plutellidae) and Pieris rapae L. (Pieridae),causes significant yield losses in cabbage (Brassica oleracea variety capitata) crops in the Democratic People's Republic of Korea. Integrated pest management (IPM) strategies for these cropping systems are in their infancy, and sampling plans have not yet been developed. We used statistical resampling to assess the performance of fixed sample size plans (ranging from 10 to 50 plants). First, the precision (D = SE/mean) of the plans in estimating the population mean was assessed. There was substantial variation in achieved D for all sample sizes, and sample sizes of at least 20 and 45 plants were required to achieve the acceptable precision level of D < or = 0.3 at least 50 and 75% of the time, respectively. Second, the performance of the plans in classifying the population density relative to an economic threshold (ET) was assessed. To account for the different damage potentials of the two species the ETs were defined in terms of standard insects (SIs), where 1 SI = 1 P. rapae = 5 P. xylostella larvae. The plans were implemented using different economic thresholds (ETs) for the three growth stages of the crop: precupping (1 SI/plant), cupping (0.5 SI/plant), and heading (4 SI/plant). Improvement in the classification certainty with increasing sample sizes could be seen through the increasing steepness of operating characteristic curves. Rather than prescribe a particular plan, we suggest that the results of these analyses be used to inform practitioners of the relative merits of the different sample sizes.

  9. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  10. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    Science.gov (United States)

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway.

    Science.gov (United States)

    Sotelo, Tamara; Velasco, Pablo; Soengas, Pilar; Rodríguez, Víctor M; Cartea, María E

    2016-01-01

    Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales.

  12. Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica Oleracea var. Italica) Using Mitochondrial Markers.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Broccoli (Brassica oleracea var. italica) is an important commercial vegetable crop. As part of an efficient pollination system, cytoplasmic male sterility (CMS) has been widely used for broccoli hybrid production. Identifying the original sources of CMS in broccoli accessions has become an important part of broccoli breeding. In this study, the diversity of the CMS sources of 39 broccoli accessions, including 19 CMS lines and 20 hybrids, were analyzed using mitochondrial markers. All CMS accessions contained the ogu orf138-related DNA fragment and the key genes of nap CMS, pol CMS, and tour CMS were not detected. The 39 CMS accessions were divided into five groups using six orf138-related and two simple sequence repeat markers. We observed that ogu CMS R3 constituted 79.49% of the CMS sources. CMS6 and CMS26 were differentiated from the other accessions using a specific primer. CMS32 was distinguished from the other accessions based on a 78-nucleotide deletion at the same locus as the orf138-related sequence. When the coefficient was about 0.90, five CMS accessions (13CMS6, 13CMS23, 13CMS24, 13CMS37, and 13CMS39) exhibiting abnormal floral organs with poor seed setting were grouped together. The polymerase chain reaction amplification profiles for these five accessions differed from those of the other accessions. We identified eight useful molecular markers that can be used to detect CMS types during broccoli breeding. Our data also provide important information relevant to future studies on the possible origins and molecular mechanisms of CMS in broccoli.

  13. RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic).

    Science.gov (United States)

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide

  14. Potency of microfiltration membrane process in purifying broccoli (Brassica oleracea L.) fermented by lactic acid bacteria (LAB) as functional food

    Science.gov (United States)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.

  15. A study on the GC-MS analysis of bioactive components and pancreato-protective effect of methanolic extract of Brassica oleracea L. var. botrytis.

    Science.gov (United States)

    Rajapriya, Sadanandan; Geetha, Arumugam; Ganesan Kripa, Kavasseri

    2017-09-01

    The ever-increasing problem of pancreatitis due to alcohol abuse demands evaluation of novel drugs of plant origin. This study explores the therapeutic effects of the methanolic extract of Brassica oleraceae (MEBO) on ethanol and cerulein induced pancreatitis in rats. The MEBO was subjected to GC-MS and HPLC analysis. Male albino Wistar rats were divided into various groups, fed with alcohol (36% of total calories for 5 weeks) and cerulein (20 μg/kg b.wt i.p, weekly thrice for last three weeks) with or without MEBO (40 mg/kg b.wt). Serum lipase, amylase, IL-1β, IL-18, caspase-1, lipid peroxides, oxidative stress index and antioxidant status were assessed in pancreas. Six compounds were identified in GC-MS analysis. Co-administration of MEBO reduced the pancreatic marker enzymes in serum, IL-1β, IL-18 and caspase-1 and increased the antioxidant status of pancreas. The pancreato-protective effect of Brassica oleraceae may be attributed to well-known anti-inflammatory flavonoids, luteolin, quercetin and myricetin.

  16. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    Science.gov (United States)

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica

    Directory of Open Access Journals (Sweden)

    Susanne eNeugart

    2016-03-01

    Full Text Available Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 µmol m-2 s-1 or 100 µmol m-2 s-1 at 10°C, or at 400 µmol m-2 s-1 with 5°C or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5°C or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides

  18. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  19. Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms

    NARCIS (Netherlands)

    Kabouw, P.; Van der Putten, W.H.; Van Dam, N.M.; Biere, A.

    2010-01-01

    Intraspecific variation in plants can affect soil organisms. However, little is known about whether the magnitude of the effect depends on the degree of interaction with the roots. We analyzed effects of plant intraspecific variation on root herbivores and other soil organisms that interact directly

  20. Effects of intraspecific variation in white cabbage (Brassica oleracea var. Capitata) on soil ogranisms

    NARCIS (Netherlands)

    Kabouw, P.; Putten, van der W.H.; Dam, van N.M.; Biere, A.

    2010-01-01

    Intraspecific variation in plants can affect soil organisms. However, little is known about whether the magnitude of the effect depends on the degree of interaction with the roots. We analyzed effects of plant intraspecific variation on root herbivores and other soil organisms that interact directly

  1. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli)

    Science.gov (United States)

    Singhal, Uma; Khanuja, Manika; Prasad, Ram; Varma, Ajit

    2017-01-01

    In the present work, novel nanotool called ‘nano-embedded fungus’ formed by impact of synergistic association of ZnO-nanorods and fungus Piriformospora indica DSM 11827, for growth of Brassica oleracea var. botrytis (Broccoli) is reported. ZnO-nanorods were synthesized by mechanical assisted thermal decomposition process and characterized by scanning electron microscopy (SEM) for morphology, X-ray diffraction for structural studies and UV-vis absorption spectroscopy for band gap determination. Nanoembedded fungus is prepared by optimizing ZnO-nanorods concentration (500 ppm) which resulted in the increased biomass of P. indica, as confirmed by dry weight method, spore count, spread plate and microscopy techniques viz. SEM and confocal microscopy. Enhancement in B. oleracea var. botrytis is reported on treatment with nanoembedded fungus. According to the authors, this is the first holistic study focusing on the impact of ZnO-nanorods in the enhancement of fungal symbiont for enhanced biomass productivity of B. oleracea plant. PMID:29089926

  2. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli

    Directory of Open Access Journals (Sweden)

    Uma Singhal

    2017-10-01

    Full Text Available In the present work, novel nanotool called ‘nano-embedded fungus’ formed by impact of synergistic association of ZnO-nanorods and fungus Piriformospora indica DSM 11827, for growth of Brassica oleracea var. botrytis (Broccoli is reported. ZnO-nanorods were synthesized by mechanical assisted thermal decomposition process and characterized by scanning electron microscopy (SEM for morphology, X-ray diffraction for structural studies and UV-vis absorption spectroscopy for band gap determination. Nanoembedded fungus is prepared by optimizing ZnO-nanorods concentration (500 ppm which resulted in the increased biomass of P. indica, as confirmed by dry weight method, spore count, spread plate and microscopy techniques viz. SEM and confocal microscopy. Enhancement in B. oleracea var. botrytis is reported on treatment with nanoembedded fungus. According to the authors, this is the first holistic study focusing on the impact of ZnO-nanorods in the enhancement of fungal symbiont for enhanced biomass productivity of B. oleracea plant.

  3. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    lloyd eLoza-Muller

    2015-11-01

    Full Text Available Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58 and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

  4. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores.

    Science.gov (United States)

    Bruinsma, Maaike; Van Dam, Nicole M; Van Loon, Joop J A; Dicke, Marcel

    2007-04-01

    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved.

  5. Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea.

    Science.gov (United States)

    Thamilarasan, Senthil Kumar; Park, Jong-In; Jung, Hee-Jeong; Nou, Ill-Sup

    2014-06-03

    Cabbage (Brassica oleracea) is one of the most important leaf vegetables grown worldwide. The entire cabbage genome sequence and more than fifty thousand proteins have been obtained to date. However a high degree of sequence similarity and conserved genome structure remain between cabbage and Arabidopsis; therefore, Arabidopsis is a viable reference species for comparative genomics studies. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains transcriptional factors that play a crucial role in plant growth and development, as well as response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea. In the present study, 226 AP2/ERF TFs were identified from B. oleracea based on the available genome sequence. Based on sequence similarity, the AP2/ERF superfamily was classified into five groups (DREB, ERF, AP2, RAV and Soloist) and 15 subgroups. The identification, classification, phylogenetic construction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction network were then predicted and analyzed. AP2/ERF transcription factor expression levels exhibited differences in response to varying abiotic stresses based on expressed sequence tags (ESTs). BoCBF1a, 1b, 2, 3 and 4, which were highly conserved in Arabidopsis and B. rapa CBF/DREB genes families were well characterized. Expression analysis enabled elucidation of the molecular and genetic level expression patterns of cold tolerance (CT) and susceptible lines (CS) of cabbage and indicated that all BoCBF genes responded to abiotic stresses. Comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes and BoCBF family genes in B. oleracea is required to fully elucidate AP2/ERF, which will provide rich resources and opportunities to understand

  6. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea. Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b, ST5c, AOP2, FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea subspecies

  7. Estudio de adaptabilidad de tres híbridos de coliflor (Brassica oleracea, L) de colores (Coliflor Sunset, Coliflor Verde Trevi y Coliflor Grafiti), bajo condiciones orgánicas de cultivo, en la zona de El Quinche –Ecuador 2011

    OpenAIRE

    Vásquez Sánchez, Yolanda Patricia

    2012-01-01

    This research theme is "Study of adaptability of three hybrids of cauliflower (Brassica oleracea, l) colors (sunset Cauliflower, green cauliflower and cauliflower trevi grafiti) under organic farming conditions in the area of El Quinche-Ecuador 2011 "was held in the province of Pichincha, Quito Canton, Quinche Parish, Barrio San Miguel, whose objectives were: General Purpose Assess the suitability of three hybrids of cauliflower (Brassica oleracea L.) Under organic farming c...

  8. Histopathology of Brassica oleracea var. capitata subvar. alba infected with Heterodera cruciferae Franklin, 1945 (Tylenchida: Heteroderidae)

    Science.gov (United States)

    Because anatomical changes induced by the cabbage cyst nematode (Heterodera cruciferae) have been insufficiently characterized, here we describe these changes in the root tissues of white head cabbage varieties commonly grown in the Black Sea Region of Turkey, where cabbage-growing areas are heavily...

  9. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi

  10. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  11. EFFECT OF HIGH INTENSITY LED LIGHT ON THE GERMINATION AND GROWTH OF BROCCOLI SEEDLINGS (BRASSICA OLERACEA L.

    Directory of Open Access Journals (Sweden)

    Guillermo Paniagua-Pardo

    2015-11-01

    Full Text Available Dado su alto valor nutricional y los beneficios a la salud por los compuestos anticancerígenos que posee, el brócoli (Brassica oleraceaL. se ha convertido en un cultivo de importancia dentro de las hortalizas, por lo que es necesario incrementar su consumo y producción por la sociedad mexicana. Esta investigación planteó como objetivo evaluar el efecto de la luz LED de alta intensidad de distinta longitud de onda (rojo, azul y verde, en germinación y crecimiento de plántulas de brócoli, evaluando las variables velocidad de germinación (VG, porcentaje de germinación (PGF, longitud media de hipocótilo (LMH, peso fresco (PF y seco (PS de las plántulas, en busca de alternativas de iluminación para la producción en ambiente controlado. Los tiempos de exposición con luz roja, azul y verde, proveniente de LEDs de alta intensidad fueron de 12, seis y tres horas, con un complemento de tiempo para los últimos dos tratamientos con luz LED blanca. Se utilizó un diseño experimental completamente al azar, con cuatro repeticiones de 30 semillas por unidad experimental. Se obtuvieron diferencias estadísticas significativas entre los tratamientos de las variables evaluadas. Los tratamientos con luz roja presentaron los mayores valores de VG, donde el rojo por 12 horas fue el mejor con incrementos del 25% contra el control. La variable LMH en el tratamiento verde por 12 horas tuvo incremento del 39% respecto al control, convirtiéndose en el mejor. Por otro lado, en la variable PF, el mayor peso se presentó en el tratamiento verde por 12 horas con un incremento contra el control del 16%. Finalmente en la variable PS, el mayor peso se presentó en el tratamiento rojo por 12 horas con un incremento contra el control del 6%. Estos resultados mostraron que las respuestas fisiológicas producidas por la exposición a distintas longitudes de onda de luz LED de alta intensidad en semilla de brócoli variaron de acuerdo con el tiempo de exposición y

  12. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn.

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2009-04-08

    Kale is a leafy green vegetable belonging to the Brassicaceae family, a group of vegetables including cabbage, broccoli, cauliflower, and Brussels sprouts, with a high content of health-promoting phytochemicals. The flavonoids and hydroxycinammic acids of curly kale ( Brassica oleracea L. ssp. oleracea convar. acephala (DC.) Alef. var. sabellica L.), a variety of kale, were characterized and identified primarily through HPLC-DAD-ESI-MS(n) analysis. Thirty-two phenolic compounds including glycosides of quercetin and kaempferol and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid were tentatively identified, providing a more complete identification of phenolic compounds in curly kale than previously reported. Moreover, three hydroxycinnamic acids and one flavonoid with an unusual high grade of glycosylation, quercetin-3-disinapoyl-triglucoside-7-diglucoside, have been tentatively identified for the first time. The influence of different extraction conditions (extraction method, solvent type, solvent/solid ratio, and duration of extraction) was investigated. The total flavonol and hydroxycinnamic acid contents in curly kale determined as rutin equivalents (RE) were 646 and 204 mg of RE/100 g of fresh weight (fw), respectively. The contents of individual flavonoids ranged from 2 to 159 mg of RE/100 g of fw, with main compounds kaempferol-3-sinapoyl-diglucoside-7-diglucoside (18.7%) and quercetin-3-sinapoyl-diglucoside-7-diglucoside (16.5%). After acidic hydrolysis, two flavonol aglycones were identified in curly kale, quercetin and kaempferol, with total contents of 44 and 58 mg/100 g of fw, respectively.

  13. Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale ( Brassica oleracea L. convar. acephala var. sabellica cv. 'Redbor').

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2010-11-10

    This study focuses on the characterization and quantification of polyphenols in the edible leaves of red curly kale ( Brassica oleracea L. convar. acephala (DC.) Alef. var. sabellica L.), variety 'Redbor F1 hybrid'. The kale was grown at an experimental field (59° 40' N) in the years 2007-2009. The analysis of kale extract by HPLC-DAD-ESI-MS has allowed the determination of 47 different acylated and nonacylated flavonoid glycosides and complex hydroxycinnamic acids. Those compounds included mono- to tetraglycosides of quercetin, kaempferol, and cyanidin and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid. Among the compounds characterized, four flavonols, three anthocyanins, and three phenolic acids were identified in the Brassica family for the first time. Aglycones and conjugated polyphenols were quantified by HPLC-DAD using commercially available standards. The main flavonol, anthocyanin, and phenolic acid were kaempferol-3-sinapoyl-diglucoside-7-diglucoside, cyanidin-3-sinapoyl-feruloyl-diglucoside-5-glucoside, and disinapoyl-diglucoside, respectively, each representing 9.8, 10.3, and 4.9% of the total amount of 872 mg polyphenol equivalents per 100 g of fresh kale. Variations between individual plants and growing seasons were of the same order of magnitude for total phenolics and total monomeric anthocyanins.

  14. PERTUMBUHAN VEGETATIF DAN PRODUKTIVITAS BERBAGAI KULTIVAR BROKOLI (Brassica oleracea L. var. italica Plenck. INTRODUKSI DI DESA BATUR, KECAMATAN KINTAMANI, KABUPATEN BANGLI, BALI

    Directory of Open Access Journals (Sweden)

    Ni Kadek Raleni

    2015-11-01

    Full Text Available Broccoli (Brassica oleracea L. var. italica Plenck. is a vegetable crop belongs to Brassicaceae family.  Broccoli has high nutrition, high in fiber and contains isotiacyanate that has anticancer activity.  Broccoli market in Indonesia, particularly in modern supermarkets, increases 15-20% per year, however, productivity was still low, therefore effort to increase broccoli production in Indonesia need to be investigated. Field trial was conducted at Batur Village, Kintamani District, Bangli Regency, Bali, to find out cultivars that were adapted in tropical region. Introduced cultivars being trialed were ‘Alborada’,‘Belstar’, ‘Fiesta’, ‘Sarasota’, ‘Bay Meadows’, ‘Castle Dome’, ‘Liutenant’, ‘Iron Man’, ‘Marathon’, ‘Green Gold’, ‘Imperial’, ‘Green Magic’ and ‘Lucky’ as control.  Variable observed were vegetative growth, curding period, and productivity of each cultivar.  This study employed Randomized Completely Block Design with 3 replicates (plots and 8 plants each plot.  Data were analyzed using ANOVA (Analysis of variance on Costat program, followed by Duncan’s Multiple Range Test (DMRT on 1% level.  Results show that each cultivar varied in adaptability in tropical region. ‘Castle Dome’ has the highest productivity, while ‘Fiesta’ was the lowest. Keywords: Brassica, field trial, cultivar

  15. Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus.

    Science.gov (United States)

    Wen, Jing; Zhu, Lixia; Qi, Liping; Ke, Hongmei; Yi, Bin; Shen, Jinxiong; Tu, Jinxing; Ma, Chaozhi; Fu, Tingdong

    2012-06-01

    Yellow-seeded Brassica napus was for the first time developed from interspecific crosses using yellow-seeded B. juncea (AABB), yellow-seeded B. oleracea (CC), and black-seeded artificial B. napus (AACC). Three different mating approaches were undertaken to eliminate B-genome chromosomes after trigenomic hexaploids (AABBCC) were generated. Hybrids (AABCC, ABCC) from crosses AABBCC × AACC, AABBCC × CC and ABCC × AACC were advanced by continuous selfing in approach 1, 2 and 3, respectively. To provide more insight into Brassica genome evolution and the cytological basis for B. napus resynthesis in each approach, B-genome chromosome pairing and segregation were intensively analyzed in AABCC and ABCC plants using genomic in situ hybridization methods. The frequencies at which B-genome chromosomes underwent autosyndesis and allosyndesis were generally higher in ABCC than in AABCC plants. The difference was statistically significant for allosyndesis but not autosyndesis. Abnormal distributions of B-genome chromosomes were encountered at anaphase I, including chromosome lagging and precocious sister centromere separation of univalents. These abnormalities were observed at a significantly higher frequency in AABCC than in ABCC plants, which resulted in more rapid B-genome chromosome elimination in the AABCC derivatives. Yellow or yellow-brown seeds were obtained in all approaches, although true-breeding yellow-seeded B. napus was developed only in approaches 2 and 3. The efficiency of the B. napus construction approaches was in the order 1 > 3 > 2 whereas this order was 3 > 2 > 1 with respect to the construction of yellow-seeded B. napus. The results are discussed in relation to Brassica genome evolution and the development and utilization of the yellow-seeded B. napus obtained here.

  16. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt M.; Enkerli, Jürg; Widmer, Franco

    2015-01-01

    Metarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark. Thirty-six root samples...

  18. brassica oleracea l

    African Journals Online (AJOL)

    pc

    2012-09-11

    Sep 11, 2012 ... abscission, senescence and growth retardation can negatively affect the success of the in vitro regeneration. The accumulation of this gas in the culture recipients. *Corresponding author. E-mail: tinaoana@yahoo.com. Tel: 0040744772174. Abbreviations: BAP, Benzylaminopurine; NAA, naphthylacetic.

  19. brassica oleracea l

    African Journals Online (AJOL)

    pc

    2012-09-11

    Sep 11, 2012 ... 4 times. After sterilization, the buds were dissected, the anther filaments removed and under aseptic conditions, the anthers were inoculated in sterile tubes on basal MS (Murashige-Skoog, 1962) nutrient medium supplemented with BAP 8.9 µM and NAA 2.7 µM. Starting with this basic mineral and hormonal ...

  20. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea

    Science.gov (United States)

    2013-01-01

    Background The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. Results Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. Conclusions Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage. PMID:23586706

  1. Obtenção de corante do repolho roxo (Brassica oleracea por dois métodos de extração

    Directory of Open Access Journals (Sweden)

    J. C. Almeida

    2015-12-01

    Full Text Available O repolho é uma hortaliça folhosa, com grande versatilidade, não somente pelo seu valor nutritivo. Além de colorir a mistura, destaca-se pelo elevado teor de antocianinas e compostos fenólicos, contribuindo para a prevenção de doenças cardiovasculares, bem como de alguns tipos de câncer. As antocianinas são largamente encontradas na natureza e responsáveis pela maioria das colorações azuis, violeta e vermelhas de flores e frutos, sendo sua principal utilização como corante natural na indústria. O presente trabalho tem como objetivo a obtenção de um corante, antocianina, de repolho roxo (Brassica oleracea por dois métodos distintos de extração. No corrente estudo, o extrato foi obtido por meio de procedimento alcoólico e aquoso. As características avaliadas foram: pH; acidez total titulável; Teor de sólidos solúveis (°Brix; umidade; cinzas; proteínas; extração e quantificação de antocianinas totais; Vitamina C. O resultado encontrado para antocianina no repolho roxo in natura foi de 6,58 mg/100g, para o extrato por método alcoólico foi de 4,58 mg/100g e 5,33 mg/100g para o extrato aquoso. Observou-se que a extração pelo método aquoso teve um rendimento melhor, correspondente a 50% do seu valor inicial, a extração alcoólica foi de 30% do seu volume inicial.Red cabbage dye obtaining (Brassica oleracea by two extraction methodsAbstract: Cabbage is avegetable crop with great versatility, not limited to its nutritional value. Besides coloring the mixture, it stands out for its high quantity of anthocyanin and phenolic compounds, which contribute to prevention of cardiovascular diseases and some types of cancer. Anthocyanins are widely found in nature and are responsible for the majority of blue, violet and red present in flowers and fruits. Thus, its main utilization is in industries as a natural dye. This study aims to obtain a colorant, anthocyanin, the red cabbage (Brassica oleracea by two different

  2. Acclimation of photosynthesis to elevated CO sub 2 in five C sub 3 species. [Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, Brassica oleracea

    Energy Technology Data Exchange (ETDEWEB)

    Sage, R.F. (Univ. of Georgia, Athens (USA)); Sharkey, T.D. (Univ. of Wisconsin, Madison (USA)); Seemann, J.R. (Univ. of Nevada, Reno (USA))

    1989-02-01

    The effect of long-term (weeks to months) CO{sub 2} enhancement on (a) the gas-exchange characteristics, (b) the content and activation state of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) leaf nitrogen, chlorophyll, and dry weight per area were studied in five C{sub 3} species (Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, and Brassica oleracea) grown at CO{sub 2} partial pressures of 300 or 900 to 1000 microbars. Long-term exposure to elevated CO{sub 2} affected the CO{sub 2} response of photosynthesis in one of three ways: (a) the initial slope of the CO{sub 2} response was unaffected, but the photosynthetic rate at high CO{sub 2} increased (S. tuberosum); (b) the initial slope decreased but the CO{sub 2}-saturated rate of photosynthesis decreased (B. oleracea, S. melongena). In all five species, growth at high CO{sub 2} increased the extent to which photosynthesis was stimulated following a decrease in the partial pressure of O{sub 2} or an increase in measurement CO{sub 2} above 600 microbars. This stimulation indicates that a limitation on photosynthesis by the capacity to regenerate orthophosphate was reduced or absent after acclimation to high CO{sub 2}. Leaf nitrogen per area either increased (S. tuberosum, S. melongena) or was little changed by CO{sub 2} enhancement. The content of rubisco was lower in only two of the fives species, yet its activation state was 19% to 48% lower in all five species following long-term exposure to high CO{sub 2}. These results indicate that during growth in CO{sub 2}-enriched air, leaf rubisco content remains in excess of that required to support the observed photosynthetic rates.

  3. Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth

    NARCIS (Netherlands)

    Van Dam, N.M.; Oomen, M.W.A.T.

    2008-01-01

    Many induced responses in plants are systemic. Therefore, root-induced responses may alter leaf quality for shoot herbivores. Previously, we found that root and shoot application of jasmonic acid (JA) to feral Brassica oleracea both induced glucosinolates in the leaves. However, the types of

  4. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts.

    Science.gov (United States)

    Hassini, Ismahen; Baenas, Nieves; Moreno, Diego A; Carvajal, Micaela; Boughanmi, Neziha; Martinez Ballesta, Maria Del Carmen

    2017-06-01

    Brassica spp. sprouts are rich in nutrients and bioactive compounds, especially glucosinolates and phenolic acid derivatives, and the composition of these young germinating seeds can be altered by several external factors. In this study two cabbage varieties (Brassica oleracea var. capitata, red and white) were studied using seed priming (KCl 50 mmol L-1 ; NaCl 150 mmol L-1 ) and MeJA spraying (25 µmol L-1 ) to elicit the phytochemical content of edible sprouts. The red variety was richer in glucosinolates and phenolic compounds than the white one but not in mineral nutrients. Seed priming enhanced the potassium (K) content and flavonols in both varieties, while the total content of glucosinolates was reduced after seed priming only in the red variety. The white variety responded better than the red one to KCl seed priming, increasing the flavonols (89%). Salinity did not induce any change in the phytochemical content of these two varieties. Elicitation with sprayed MeJA was effective in significantly increasing the content of indolic glucosinolates glucobrassicin (5.7-fold) and neoglucobrassicin (9.7-fold) in the red cultivar. In the white variety, in addition to glucobrassicin (19.4-fold) and neoglucobrassicin (9.4-fold), 4-hydroxyglucobrassicin (2.3-fold) was also enhanced. MeJA also elicited significant amounts of anthocyanins (41%) and chlorogenic acid derivatives (329%) in the white variety. KCl seed priming and MeJA elicitation promoted the phytochemical composition of the cabbage varieties, especially in the white variety. The application of NaCl resulted in less efficient elicitation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba).

    Science.gov (United States)

    Volden, Jon; Wicklund, Trude; Verkerk, Ruud; Dekker, Matthijs

    2008-03-26

    Brassica vegetables are the predominant dietary source of glucosinolates (GLS) that can be degraded in the intestinal tract into isothiocyanates, which have been shown to possess anticarcinogenic properties. The effects of pilot-scale long-term boiling on GLS in white cabbage (Brassica oleracea L. ssp. capitata f. alba cv. 'Bartolo') was experimentally determined and mathematically modeled. Cabbage was boiled, resulting in a dramatic decrease of 56% in the total GLS levels within the plant matrix during the first 2 min. After 8-12 min of boiling, the decrease progressed to over 70%. Progoitrin had an exceptionally higher decline rate in comparison to all other GLS. As boiling progressed the concentration of all GLS continued to decrease at a lower rate for the remaining cooking period. A mathematical model was used to describe the concentration profile of the GLS in the plant matrix, based on leaching of GLS to the water phase due to cell lysis and thermal degradation of the GLS both in the plant matrix and in the water phase. The model described the concentration profiles very well. Estimated lysis and degradation rate constants for white cabbage differed from those reported in the literature for red cabbage. The degradation rate constants found were significantly higher in the plant matrix when compared to those in the water phase for all GLS. Identification of the kinetics of decline of GLS during cooking can aid in designing processing and preparation methods and determining the conditions for the optimal effects of ingestion of Brassicaceae toward cancer prevention.

  6. Culture and fusion of pollen protoplasts of Brassica oleracea L. var. italica with haploid mesophyll protoplasts of B. rapa L. ssp. pekinensis.

    Science.gov (United States)

    Liu, Fan; Ryschka, U; Marthe, F; Klocke, E; Schumann, G; Zhao, H

    2007-01-01

    Hybrid callus was formed from the successful protoplast fusion between pollen protoplasts of Brassica oleracea var. italica and haploid mesophyll protoplasts of Brassica rapa. The pollen protoplast isolation frequency in broccoli was highly related to the ratio of trinucleate pollens in the male gametophyte population. Large quantities of pollen protoplasts with high vigor could be isolated, and the isolation frequency reached up to 90% in 6.0-7.0 mm long flower buds with about 94.7% trinucleate-stage pollens. Pollen protoplasts could be collected and purified by discontinuous gradient centrifugation. In 1% Na-alginate embedding culture, cell divisions were observed but no further development was found. The haploid mesophyll protoplasts were isolated from in vitro haploid plants of B. rapa. Results strongly showed the variability in culturability of mesophyll protoplasts from different haploid lines. Both pollen protoplasts and haploid mesophyll protoplasts retained a stable round shape in the designed prefusion solution with an osmotic pressure of 0.74 osmol/kg. Polyethylene glycol was used for the protoplast fusion, and 40% polyethylene glycol 4000 enabled the highest fusion frequency of about 20%. Some postfusion protoplasts showed cell divisions up to callus proliferation. Calli were screened by random amplified polymorphic DNA analysis for their hybrid character. Results revealed the existence of the hybrid calli. Some of the hybrid calli grew well with green color and shoot primordia. According to our knowledge, this is the first report about a hybrid formation between two haploid protoplasts. Potential comprehensive applications, as well as problems of this technique, are discussed.

  7. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.).

    Science.gov (United States)

    Erdei, Anna Laura; Kósa, Annamária; Kovács-Smirová, Lilla; Böddi, Béla

    2016-04-01

    The photoreduction and photooxidation processes of different protochlorophyll(ide) forms were studied in the innermost leaves of cabbage (Brassica oleracea var. capitata L.) under monochromatic irradiations. Room-temperature fluorescence emission spectra were measured from the same leaf spots before and after illumination to follow the wavelength dependence of the photochemical reactions. Short-wavelength light of 7 µmol photons m(-2) s(-1) (625-630 nm) provoked mainly bleaching, and longer wavelengths (630-640 nm) caused both bleaching and photoreduction, while above 640 nm resulted in basically photoreduction. When bleached leaves were kept in darkness at room temperature, all protochlorophyll(ide) forms regenerated during 72 h. Oxygen-reduced environment decreased the extent of bleaching suggesting the involvement of reactive oxygen species. These results confirm that the short-wavelength, 628 nm absorbing, and 633 nm emitting protochlorophyll(ide) form in etiolated cabbage leaves sensibilizes photooxidation. However, the 628 nm light at low intensities stimulates the photoreduction of the longer wavelength protochlorophyllide forms. Kinetic measurements showed that photoreduction saturates at a low PFD (photon flux density) compared to bleaching, suggesting that the quantum yield of photoreduction is higher than that of bleaching.

  8. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  9. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate.

    Science.gov (United States)

    Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra

    2013-05-07

    The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  10. Phenotypic plasticity of Myzus persicae (Hemíptera: Aphididae raised on Brassica oleracea L. var. acephala (kale and Raphanus sativus L. (radish

    Directory of Open Access Journals (Sweden)

    Peppe Fernanda Borja

    2003-01-01

    Full Text Available The study of variability generated by phenotypic plasticity is crucial for predicting evolutionary patterns in insect-plant systems. Given sufficient variation for plasticity, host race formation can be favored and maintained, even simpatrically. The plasticity of size and performance (assessed by the lifetime fitness index r m of six clones of Myzus persicae was tested, with replicates allowed to develop on two hosts, kale (Brassica oleracea var. acephala and radish (Raphanus sativus. The clones showed significant variability in their plasticity. Reaction norms varied through generations and negative genetic correlation, although not significant, tend to increase with the duration of host use. The lack of plasticity in lifetime fitness among generalist clones occurred as an after-effect of the highly plastic determinants. Significant morphological plasticity in host used was observed, but no variation in the plastic responses (GxE interaction was detected. Strong selection for a larger size occurred among individuals reared on radish, the most unfavorable host. Morphological plasticity in general body size (in a multivariate sense was not linear related to fitness plasticity. These observations suggest that a high potential for the evolution of host divergence favors host race formation.

  11. Characterization of fermented broccoli (Brassica oleracea L. and spinach (Amaranthus sp. produced using microfiltration membrane as folic acid source for smart food formula

    Directory of Open Access Journals (Sweden)

    Susilowati Agustine

    2017-01-01

    Full Text Available Purifying and drying both fermented biomasses of broccoli (Brassica oleracea L. and spinach (Amaranthus sp. by Kombucha culture has been conducted to recover concentrate and powder of folic acid. The aims of this study is to determine the differences of particles characteristics and compositions of concentrate and powder from both mentioned folic acid source through Micro Filtration (MF membrane and without MF membrane. The best folic acid produced by MF membrane process (room temperature, stirrer rotation speed 400 rpm, pressure 40 psia and 30 minutes and drying (30 °C, 22 cm Hg and 24 hours were resulted in biomass of the concentrate and powder with compositions of total solids 6.29 % and 96.91 %, total polyphenol 0.25 % and 0.06 %, folic acid 58.8 μg/mL and 54.33 μg/mL, reducing sugar 105.34 mg/mL and 441.39 mg/mL, and total acids 0.57 % and 2.33 %, respectively. In optimum condition, fermented spinach concentrate contributed to particles distribution with diameter size (Ø between 0,4 and 100 μm (75.45 %, and with Ø between 100 and 1000 μm (26.3 %, otherwise, the process without MF membrane was resulted the particles distribution respectively 74.1 % and 25.9% by each interval of Ø.

  12. Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass.

    Science.gov (United States)

    Li, Hui; Liu, Qian; Zhang, Qingli; Qin, Erjun; Jin, Chuan; Wang, Yu; Wu, Mei; Shen, Guangshuang; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The curd is a specialized organ and the most important product organ of cauliflower (Brassica oleracea L. var. botrytis). However, the mechanism underlying the regulation of curd formation and development remains largely unknown. In the present study, a novel homologous gene containing the Organ Size Related (OSR) domain, namely, CDAG1 (Curd Development Associated Gene 1) was identified in cauliflower. Quantitative analysis indicated that CDAG1 showed significantly higher transcript levels in young tissues. Functional analysis demonstrated that the ectopic overexpression of CDAG1 in Arabidopsis and cauliflower could significantly promote organ growth and result in larger organ size and increased biomass. Organ enlargement was predominantly due to increased cell number. In addition, 228 genes involved in the CDAG1-mediated regulatory network were discovered by transcriptome analysis. Among these genes, CDAG1 was confirmed to inhibit the transcriptional expression of the endogenous OSR genes, ARGOS and ARL, while a series of ethylene-responsive transcription factors (ERFs) were found to increased expression in 35S:CDAG1 transgenic Arabidopsis plants. This implies that CDAG1 may function in the ethylene-mediated signal pathway. These findings provide new insight into the function of OSR genes, and suggest potential applications of CDAG1 in breeding high-yielding crops. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Effects of the 3D-clinorotation on endogenous substances of broccoli sprout (Brassica oleracea var. italica) and its food safety

    Science.gov (United States)

    Hiraishi, K.; Tomita-Yokotani, K.; Wakabayashi, K.; Hashimoto, H.; Miyagawa, T.; Yamashita, M.

    Habitation in outer space is one of our challenges in this century We are studying on space agriculture to provide foods for space living people However careful assessment should be made on the effects of exotic environment on the endogenous production of biologically active substances and food safety of plants cultivated in space Broccoli sprout Brassica oleracea var italica is known to produce sulforaphane 4-methylsulfinybutyl isothiocyanate which is effective to function as an antioxidant and enhance immunity Because of such substance it is recognized to be good food materials Broccoli sprouts were then cultivated for 3 days under the 3D-clinorotation The amount of sulforaphane produced by this treatment showed no significant difference compared to the ground control Secondly we examined population of microorganisms adhered on the surface of sprout cultivated under the 3D-clinorotation Number of the microorganisms colony formed was statistically higher than the control Mold species was identified to penicillium sp based on the microscopic observation Poor construction of plant cell wall elements cellulose lignin etc is well known effects of microgravity Defense function of the broccoli plant cells might be weakened against microorganism We also speculate other possible causes for the high rate of contamination such as photosynthetic activity of the plant or microclimate air flow heat transport and humidity around the seedling affected by pseudo-microgravity or the 3D-clinorotation Those factors may relate to the difference in proliferation

  14. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    Science.gov (United States)

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  15. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  16. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods.

    Science.gov (United States)

    Thomas, Minty; Badr, Ashraf; Desjardins, Yves; Gosselin, Andre; Angers, Paul

    2018-04-15

    The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Changes in SeMSC, Glucosinolates and Sulforaphane Levels, and in Proteome Profile in Broccoli (Brassica oleracea var. Italica Fertilized with Sodium Selenate

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2013-05-01

    Full Text Available The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC, total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica. Two experimental groups were considered: plants treated with 100 mmol/L sodium selenate (final concentration in the pot and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  18. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Genome-wide Investigation of microRNAs and Their Targets in Brassica rapa ssp. pekinensis Root with Plasmodiophora brassicae Infection

    Directory of Open Access Journals (Sweden)

    Xiaochun Wei

    2016-07-01

    Full Text Available Increasing evidence has revealed that microRNAs play a pivotal role in the post transcriptional regulation of gene expression in response to pathogens in plants. However, there is little information available about the expression patterns of miRNAs and their targets in Chinese cabbage (Brassica rapa ssp. pekinensis under Plasmodiophora brassicae stress. In the present study, using deep sequencing and degradome analysis, a genome-wide identification of miRNAs and their targets during P. brassicae stress was performed. A total of 221 known and 93 potentially novel miRNAs were successfully identified from two root libraries of one control (635-10CK and P. brassicae-treated Chinese cabbage samples (635-10T. Of these, 14 known and 10 potentially novel miRNAs were found to be differentially expressed after P. brassicae treatment. Degradome analysis revealed that the 223 target genes of the 75 miRNAs could be potentially cleaved. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the putative target genes of the miRNAs were predominately involved in selenocompound metabolism and plant hormone signal transduction. Then the expression of 12 miRNAs was validated by quantitative real-time PCR (qRT-PCR. These results provide insights into the miRNA-mediated regulatory networks underlying the stress response to the plant pathogen P. brassicae.

  20. rDNA-based characterization of a new binucleate Rhizoctonia spp. causing root rot on kale in Brazil

    NARCIS (Netherlands)

    Kuramae, E.E.; Buzeto, A.L.; Nakatani, A.K.; Souza, N.L.

    2007-01-01

    In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate

  1. Utilização de substâncias naturais para o manejo de Lipaphis erysimi (Kaltenbach, 1843) (Hemiptera: Aphididae) em cultivo orgânico de brócolis, Brassica oleracea var. italica (Brassicaceae).

    OpenAIRE

    Broglio,S.M.F.; SANTOS, A. J. N. dos; DIAS, N. da S.; VALENTE, E. C. N.; MICHELETTI, L. B.

    2014-01-01

    Objetivou-se avaliar o efeito de extratos aquosos de folhas de nim, Azadirachta indica, frutos de pimenta-malagueta, Capsicum frutescens, rama e folhas de melão-de-são-caetano, Mormodica charantia, sementes de pimenta-do-reino, Piper nigrum e NeenMax® (óleo de nim 2% i.a) para o manejo do pulgão, Lipaphis erysimi, em cultivo orgânico de Brassica oleracea. Aplicações dos extratos a 10% (v/v) foram realizadas semanalmente, durante cinco semanas. Avaliou-se o número de plantas infestadas, porcen...

  2. Proteome level changes in the root of Brassica alboglabra induced ...

    African Journals Online (AJOL)

    Ten spots of interest have been identified by LC/MS/MS showing significant increases in differential protein expression between B. alboglabra roots treated with alachlor as compared to the untreated group which include HSC-cognate binding proteins, adenosylmethionine synthetase and beta-tubulin involved in defence ...

  3. The influence of clinorotation on root cell differentiation in Brassica Rapa seedlings

    Science.gov (United States)

    Kalinina, Yana

    2005-08-01

    In this work we present the results of anatomical and ultrastructural investigations of root apices of Brassica rapa 6-day old seedlings grown in the stationary conditions and under slow horizontal clinorotation. The main attention was paid to the structural and functional organization of cells non-specialized for gravity perception during their growth and differentiation in a root. It was shown a decrease in length of the root growth zone due to reduction of the cell number in cell files under clinorotation. We conclude that the meristem proliferation activity was depressed under clinorotation. Some ultrastructural rearrangements of mitochondria in the distal elongation zone (DEZ) and increasing of their partial volume per cell were also observed. It is assumed that these changes reflect the intensification of mitochondrium functional activity in a DEZ cortex cells during clinorotation. An analysis of the experimental results supposes plants sense disorientation in the gravitational field as a stress.

  4. Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties.

    Science.gov (United States)

    Kuppusamy, Palaniselvam; Ichwan, Solachuddin J A; Parine, Narasimha Reddy; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Govindan, Natanamurugaraj

    2015-03-01

    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens. Copyright © 2015. Published by Elsevier B.V.

  5. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  6. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures.

    Science.gov (United States)

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress

    Science.gov (United States)

    2010-01-01

    Background Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. Results All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls - from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. Conclusions All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously

  8. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  9. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    Science.gov (United States)

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  10. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae populations on kale, Brassica oleracea var. acephala (Brassicaceae plants.

    Directory of Open Access Journals (Sweden)

    Reinildes Silva-Filho

    Full Text Available Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  11. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  12. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Moreno, Diego A; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-01-30

    The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions. Three different decreased N fertilisation regimes (NO3(-)/NH4(+) ratios of 100:0, 50:50 and 0:100 respectively) were combined with ambient (380 ppm) and elevated (800 ppm) [CO2 ] under non-saline (0 mmol L(-1) NaCl) and saline (80 mmol L(-1) NaCl) conditions. Nutrients (minerals, soluble protein and total amino acids) and natural antioxidants (glucosinolates, phenolic acids, flavonoids and vitamin C) were determined. In NH4(+) -fed broccoli plants, a marked growth reduction was shown and a redistribution of amino acids to cope with NH4(+) toxicity resulted in higher levels of indolic glucosinolate and total phenolic compounds. However, the positive effect of the higher [CO2] - ameliorating adverse effects of salinity--was only observed when N was supplied as NO3(-). Under reduced N fertilisation, the total glucosinolates were increased by a decreased NO3(-)/NH4 (+) ratio and elevated [CO2] but were unaffected by salinity. Under future climatic challenges, such as increased salinity and elevated [CO2], a clear genotypic dependence of S metabolism was observed in broccoli plants. In addition, an influence of the form in which N was supplied on plant nutritional quality was observed; a combined NO3(-)/NH4(+) (50:50) supply allowed broccoli plants not only to deal with NH4(+) toxicity but also to modify their glucosinolate content and profile. Thus, for different modes of N fertilisation, the interaction with climatic factors must be considered in the search for an optimal balance between yield and nutritional quality. © 2015 Society of Chemical Industry.

  13. INFLUÊNCIA DA ESPESSURA E INTEGRIDADE DE COBERTURA PLÁSTICA NA GERMINAÇÃO DE Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Amanda Duim Ferreira

    2017-02-01

    Full Text Available Objetivou-se avaliar a influência da espessura e integridade de coberturas plásticas na germinação de sementes de repolho (Brassica oleracea var. capitata cultivadas principalmente na região serrana do Espírito Santo.  O experimento foi conduzido no Laboratório de Tecnologia de Sementes no Campus São Mateus da Universidade Federal do Espírito Santo (UFES, em esquema fatorial 2 x 2, com quatro repetições em delineamento inteiramente casualizado. Os tratamentos consistiram de duas espessuras de cobertura dos recipientes (0,06 mm - plástico fino; 0,10 mm - plástico grosso e a ausência ou presença de furos centralizados na secção superior dos recipientes. As contagens foram feitas do primeiro ao sétimo dia, sendo avaliados os seguintes parâmetros: porcentagem de germinação, índice de velocidade de germinação, tempo médio de germinação, coeficiente de velocidade de germinação e perda de água diária. Verificou-se que não há influência significativa da integridade da cobertura plástica sobre a germinação e é preferível o uso de coberturas plásticas com menor espessura de modo a possibilitar as trocas gasosas.

  14. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Vanina A. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Orejas, Joaquin [Facultad de Ingenieria, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Medina, Maria I. [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina); Agostini, Elizabeth, E-mail: eagostini@exa.unrc.edu.ar [Departamento de Biologia Molecular, FCEFQN, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Cordoba (Argentina)

    2011-01-15

    Research highlights: {yields}B. napus hairy roots were effectively used for a large scale removal of 2,4-DCP. {yields} High removal efficiencies were obtained (98%) in a short time (30 min). {yields} Roots were re-used for six consecutive cycles with high efficiency. {yields} Post removal solutions showed no toxicity. {yields} This method could be used for continuous and safe treatment of phenolic effluents. - Abstract: Chlorophenols are harmful pollutants, frequently found in the effluents of several industries. For this reason, many environmental friendly technologies are being explored for their removal from industrial wastewaters. The aim of the present work was to study the scale up of 2,4-dichlorophenol (2,4-DCP) removal from synthetic wastewater, using Brassica napus hairy roots and H{sub 2}O{sub 2} in a discontinuous stirred tank reactor. We have analyzed some operational conditions, because the scale up of such process was poorly studied. High removal efficiencies were obtained (98%) in a short time (30 min). When roots were re-used for six consecutive cycles, 2,4-DCP removal efficiency decreased from 98 to 86%, in the last cycle. After the removal process, the solutions obtained from the reactor were assessed for their toxicity using an acute test with Lactuca sativa L. seeds. Results suggested that the treated solution was less toxic than the parent solution, because neither inhibition of lettuce germination nor effects in root and hypocotyl lengths were observed. Therefore, we provide evidence that Brassica napus hairy roots could be effectively used to detoxify solutions containing 2,4-DCP and they have considerable potential for a large scale removal of this pollutant. Thus, this study could help to design a method for continuous and safe treatment of effluents containing chlorophenols.

  15. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.

    Science.gov (United States)

    Liu, Xiao Xia; Zhou, Kai; Hu, Yan; Jin, Rong; Lu, Ling Li; Jin, Chong Wei; Lin, Xian Yong

    2015-08-15

    Excessive accumulation of oxalate in numerous vegetables adversely affects their quality as food. While it is known that nitrate could effectively stimulate oxalate accumulation in many vegetables, little information is available about the mechanism of nitrate-induced oxalate accumulation. In this study, we examined the association of oxalate synthesis with nitrate uptake and assimilation in two genotypes of spinach (Spinacia oleracea L.), Heizhenzhu and Weilv. Increasing nitrate levels resulted in enhanced synthesis of oxalate, as well as increased root uptake of nitrate and leaf activities of nitrate reductase (NR) and glutamine synthetase (GS) for both genotypes. Correlation analysis revealed that oxalate accumulation in spinach leaves was positively related with rate of nitrate uptake by roots, as well as leaf activities of NR and GS. Addition of plasmalemma H(+)-ATPase inhibitor sodium vanadate (Na3VO4) significantly decreased leaf oxalate accumulation in both genotypes. Presence of NR or GS inhibitors led to reduction of leaf oxalate contents, GS/NR activities and decreased nitrate uptake rate. Significantly higher levels of nitrate root uptake, leaf NR and GS activities were observed in the high-oxalate genotype Heizhenzhu than in Weilv. Oxalate synthesis in leaves of spinach is not only positively associated with root uptake of nitrate, but also with its assimilation within the plants. © 2014 Society of Chemical Industry.

  16. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply

    OpenAIRE

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L.; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R.; Shi, Lei

    2017-01-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nuc...

  17. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    Science.gov (United States)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur

  18. Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour.

    Directory of Open Access Journals (Sweden)

    Pallab Kumar Ghosh

    2015-01-01

    Full Text Available Indole acetic acid is a phytohormone which plays a vital role in plant growth and development. The purpose of this study was to shed some light on the production of IAA in roots, nodules, and symbionts of an aquatic legume Neptunia oleracea and its possible role in nodular symbiosis. The symbiont (N37 was isolated from nodules of this plant and identified as Rhizobium undicola based on biochemical characteristics, 16S rDNA sequence homology, and DNA-DNA hybridization results. The root nodules were found to contain more IAA and tryptophan than root; however, no detectable amount of IAA was found in root. The IAA metabolizing enzymes IAA oxidase, IAA peroxidase (E.C.1.11.1.7, and polyphenol oxidase (E.C.1.14.18.1 were higher in root than nodule but total phenol and IAA content were reversed. The strain N37 was found to produce copious amount of IAA in YEM broth medium with tryptophan and reached its stationary phase at 20 h. An enrichment of the medium with mannitol, ammonium sulphate, B12, and 4-hydroxybenzaldehyde was found to promote the IAA production. The presence of IAA metabolizing enzymes and IAA production with PGPR traits including ACC deaminase activity of the symbionts was essential for plant microbe interaction and nodule function.

  19. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions.

    Science.gov (United States)

    Meychik, N R; Nikolaeva, Yu I; Yermakov, I P

    2006-07-01

    Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.

  20. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea L.) genotypes by inhibiting root uptake of nitrate.

    Science.gov (United States)

    Liu, Xiaoxia; Lu, Lingli; Chen, Qiuhui; Ding, Wenya; Dai, Peibin; Hu, Yan; Yu, Yan; Jin, Chongwei; Lin, Xianyong

    2015-11-01

    Excessive accumulation of oxalate negatively affects nutritional value of many vegetables, such as spinach (Spinacia oleracea L.). Mixed solution of ammonium and nitrate could effectively reduce oxalate accumulation, while the mechanism involved remains unknown. High (Heizhenzhu) and low (Weilv) oxalate-accumulated spinach genotypes were used in this study to investigate the association of oxalate accumulation and root uptake of nitrogen. Exposure of increasing nitrate or mixed-nitrogen (nitrate:ammonium = 1:1) significantly increased leaf total and soluble oxalate contents. In contrast, increasing ammonium did not result in elevation of leaf oxalate. Correlation analysis confirmed that leaf oxalate accumulation was positively associated with root uptake of nitrate but not ammonium. Moreover, addition of ammonium significantly reduced nitrate uptake rate, and subsequently decreased leaf oxalate accumulation. The results suggest that oxalate synthesis in spinach leaves is associated with its root uptake of nitrate, and ammonium is able to reduce oxalate accumulation by inhibiting uptake of nitrate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis, Arabidopsis thaliana and yellow lupin (Lupinus luteus mitochondria under cold and heat stress

    Directory of Open Access Journals (Sweden)

    Rurek Michal

    2010-08-01

    Full Text Available Abstract Background Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis, Arabidopsis thaliana and yellow lupin (Lupinus luteus mitochondria under cold and heat stress. Results All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls - from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. Conclusions All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to

  2. Extracts from Brassica oleracea L. convar. acephala var. sabellica inhibit TNF-α stimulated neutrophil adhesion in vitro under flow conditions.

    Science.gov (United States)

    Kuntz, Sabine; Kunz, Clemens

    2014-06-01

    The beneficial effects of vegetables such as leafy cabbage (Brassica oleracea) on health are attributed to their anti-oxidative and anti-inflammatory potential. Therefore, we investigated whether curly kale extracts affect cytokine induced expression of endothelial cell adhesion molecules as well as the adhesion of leukocytes to endothelial cells depending on their polyphenol content and composition. Curly kale leaves were extracted applying two solvents with different polarities (methanolic extracts (ME) and aqueous water extracts (WE)). The anti-oxidant capacity (TEAC-assay (Trolox Equivalent Antioxidant Capacity)), the polyphenol content and the composition were determined colorimetrically. The anti-inflammatory effects were measured in vitro using human umbilical vein endothelial cells (HUVECs). HUVECs were pre-incubated with extracts for 24 h and thereafter stimulated for 5 h with TNF-α (10 ng mL(-1)). Finally, the expression of cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 was determined by semi-quantitative RT-PCR and leukocyte adhesion was observed using a flow adhesion assay. ME have the highest anti-oxidant activity (ME, 66.5 ± 10.9 vs. WE, 45.5 ± 6.7 mmol L(-1) TEAC), polyphenol (ME, 25.8 ± 2.4. vs. WE, 10.8 ± 1.8 mmol L(-1) GAE), flavonoid (ME, 17.9 ± 1.7 vs. WE, 5.3 ± 2.7 mmol L(-1) RE) and flavonol concentrations (ME, 5.8 ± 0.6 vs. WE, 2.1 ± 0.5 mmol L(-1) RE) in comparison to WE. The TEAC and polyphenol values well-correlated with their effect on cell adhesion. Using 10% ME, reduced adhesion of leukocytes to HUVECs was measured (36 ± 13%), whereas 10% WE reduced cell adhesion to 57 ± 5% of the TNF-α stimulated controls (100%). Concomitant with the reduced leukocyte cell adhesion in the flow assay, ME and WE significantly reduced the TNF-α induced expression of cell adhesion molecules: E-selectin (ME, 51.3 ± 10.7 vs. WE, 76.3 ± 11.9%), ICAM-1 (ME, 74.6 ± 10.2 vs. WE, 81.6 ± 7.9%) and VCAM-1 mRNA expression (ME, 35.0 ± 14.0 vs

  3. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus.

    Science.gov (United States)

    Han, Yong-Liang; Song, Hai-Xing; Liao, Qiong; Yu, Yin; Jian, Shao-Fen; Lepo, Joe Eugene; Liu, Qiang; Rong, Xiang-Min; Tian, Chang; Zeng, Jing; Guan, Chun-Yun; Ismail, Abdelbagi M; Zhang, Zhen-Hua

    2016-03-01

    Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 (-) to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 (-) was retained in roots of Xiangyou15. Moreover, NO3 (-) concentration in xylem sap, [(15)N] shoot:root (S:R) and [NO3 (-)] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 (-) in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 (-) long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 (-) in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 (-) allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

    Science.gov (United States)

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-08-11

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  5. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  6. Differential Gene Expression in Brassica rapa Roots After Reorientation and Clinorotation.

    Science.gov (United States)

    Edge, Andrea; Hasenstein, Karl H.

    Seedlings align their growth axes parallel to the gravity vector. Any growth adjustment affects genes. We examined these changes in Brassica rapa roots that were reoriented and clinorotated. Gene expression levels related to the actin cytoskeleton (ACT7 and ADK1) and auxin transport (IAA5, PIN1, PIN3, AGR1, ARG1) were assessed in roots grown for 42 hours and then either reoriented to 90° for 15 min, 1, 2 and 3 hours or clinorotated vertically or horizontally for 42 hrs at 2 rpm. After these treatments, roots from 20 seedlings were divided into three sections, the root tip, elongation zone, and maturation zone. The samples from corresponding treatments were combined for RNA extraction, reverse transcription and analysis by quantitative PCR. The results show that gene expression changes in response to duration of reorientation and orientation during clinorotation. All genes, except PIN1 and AGR1 were upregulated in the tip after 2 hours of reorientation. Expression of genes also varied between the root sections except for PIN1, which was uniformly expressed. ADK1 was the only gene that showed consistent down-regulation in all three root regions in vertically and horizontally clinorotated roots (ca 30% of controls). In contrast, ADK1 was upregulated (more than 150 fold) in the tip of roots that were reoriented for 2 hours but little upregulation after one hour (less than 2 fold compared to controls). Our results indicate that gene expression during the gravitropic response changes over time with the tip region being the most dynamic tissue in the root. The large upregulation of ADK1 at 2 h after reorientation may be related to the persistence of the gravitropic response. Because of the variability of the expression profiles, analyses that are based on the entire root miss tissue specific changes in gene expression. Differences in gene expression after vertical and horizontal clinorotation indicates that the graviresponse system is sensitive not just to the magnitude

  7. Influência de genótipos de couve (Brassica oleracea L. var. acephala DC. na biologia de Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae Influence of cabbage genotypes (Brassica oleracea L. var. acephala DC. on the biology of Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Junior

    2011-08-01

    Full Text Available Objetivou-se, com este trabalho, avaliar a influência de alguns genótipos de couve (Brassica oleracea L. var. acephala DC. no desenvolvimento de Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae. Os genótipos avaliados foram: Manteiga de Ribeirão Pires I-2620, Roxa I-919, Manteiga de São José, Manteiga de Monte Alegre, Pires 2 de Campinas, Couve Comum, Couve de Arthur Nogueira 2, Couve de Arthur Nogueira 1. Lagartas recém-eclodidas foram mantida em discos foliares de 8 cm de diâmetro para cada genótipo. Foram analisados os seguintes parâmetros: duração e viabilidade das fases larval e pupal, longevidade e fecundidade de adultos, utilizando análises paramétricas e de agrupamentos para interpretação dos dados. Observou-se um prolongamento em dias no ciclo de P. xylostella, aumento no peso de pupa e maiores valores de viabilidade e fecundidade, durante a segunda geração. O genótipo Couve de Arthur Nogueira 2 foi menos favorável ao desenvolvimento de P. xylostella nas duas gerações, e Couve Comum demonstrou maior influência negativa ao inseto na segunda geração. Manteiga de Ribeirão Pires I-2620 foi o mais suscetível nas duas gerações, agrupando com este na segunda geração Pires 2 de Campinas e Manteiga de São José.The purpose of this study was to evaluate the effect of cabbage genotypes (Brassica oleracea L. var. acephala DC. on growth of Plutella xylostella (Lepidoptera: Plutellidae. The genotypes evaluated were: Manteiga of Ribeirão Pires I-2620, Roxa I919, Manteiga of São José, Manteiga of Monte Alegre, Pires 2 of Campinas, Couve Comum, Couve of Arthur Nogueira 2, Couve of Arthur Nogueira 1. Neonate larvae were reared in 8 cm leaf discs of each genotype. The parameters evaluated were: period and viability of the larval and pupal stages, sex ratio, longevity and fecundity of adults. Parametric and Cluster analyses were used for data analysis. Overall, it was observed a developmental delay in the P

  8. Brassica rapa hairy root extracts promote skin depigmentation by modulating melanin production and distribution.

    Science.gov (United States)

    Sena, Luigi Michele; Zappelli, Claudia; Apone, Fabio; Barbulova, Ani; Tito, Annalisa; Leone, Antonella; Oliviero, Teresa; Ferracane, Rosalia; Fogliano, Vincenzo; Colucci, Gabriella

    2017-07-03

    Skin whitening products, used for ages by Asian people for cultural and esthetic purposes, are very popular nowadays in Western countries as well, where the need to inhibit skin spots after sun exposure has become not only a cosmetic but also a health-related issue. Thus, the development of effective and safe depigmenting agents derived from natural products gets continuous attention by cosmetic brands and consumers. The aim of this study was to determine the effects of two preparations, obtained from the hairy root cultures of the species Brassica rapa, on melanogenesis and the expression of the extracellular matrix proteins involved in a correct pigment distribution. The two preparations, obtained by water-ethanol extraction and by digestion of cell-wall glycoproteins of the root cells, were chemically characterized and tested on skin cell cultures and on human skin explants to investigate on their dermatological activities. Both the extracts were able to decrease melanin synthesis pathway in melanocytes and modulate the expression of genes involved in melanin distribution. One of the extracts was also effective in inducing the expression of laminin-5 and collagen IV, involved into the maintenance of tissue integrity. The two extracts, when tested together on human skin explants, demonstrated a good synergic hypopigmenting activity. Taken together, the results indicate that the extracts from B. rapa root cultures can be employed as cosmetic active ingredients in skin whitening products and as potential therapeutic agents for treating pigmentation disorders. © 2017 Wiley Periodicals, Inc.

  9. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    Science.gov (United States)

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    NARCIS (Netherlands)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J.A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus,

  11. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    Science.gov (United States)

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  12. Effects of fixation protocol and gravistimulation on cytoskeletal organization in Brassica rapa roots

    Science.gov (United States)

    Edge, Andrea; Hasenstein, Karl H.

    2012-07-01

    In preparation for a flight experiment we have studied the optimization of the staining protocols for microtubules and actin filaments in Brassica rapa seedlings. Microtubules (MT) were stained with monoclonal antibody (mAb) YOL 1/34. F-actin (FA) staining was achieved with C4 mAb antibody. Fixative prepared more than three weeks before use produces specimens that stained poorly. Storage in fixative for more than four weeks resulted in noticeably poorer staining. Staining was best in cortical cells but more difficult and less consistent in cap cells, especially for FA. In addition, the quality of staining of root cap cells was dependent on the age of the formaldehyde. The organization of the MTs corresponded with previously published descriptions; FA was prominent in the stele with thick and numerous parallel bundles; cortical cells showed less dense and less directional organization of mostly thinner filaments. FA organization was determined by tissue rather than by differential elongation. The organization of MTs in cortical cells of curving roots was uniformly circular and perpendicular to the long cell axis despite different cell length. The effect of clinorotation around the horizontal axis and centrifugation on the cytoskeletal organization was inconsistent. (Supported by NASA grant NNX10AP91G)

  13. Genetic diversity and relationships among cabbage ( Brassica ...

    African Journals Online (AJOL)

    The integration of our data with historical documents confirmed that traditional cabbage landraces cultivated in North of China were first introduced from Russia. Key words: Amplified fragment length polymorphism (AFLP), genetic diversity, cabbage (Brassica oleracea var. capitata), landraces, population structure.

  14. Efeito de extratos de plantas silvestres da família Solanaceae sobre o controle de Brevicoryne brassicae em couve (Brassica oleracea var. acephala Extracts effect of wild plants of the Solanaceae family on Brevicoryne brassicae control in cabbage (Brassica oleracea var. acephala

    Directory of Open Access Journals (Sweden)

    Patrícia Braga Lovatto

    2004-08-01

    Full Text Available O objetivo principal deste trabalho foi testar o efeito de extratos de plantas silvestres da família Solanaceae disponíveis na região do Vale do Rio Pardo, RS, sobre o pulgão-da-couve (Brevicoryne brassicae, praga agrícola de significativa importância. Nove espécies tóxicas de Solanaceae estão disponíveis na região de estudo: seis pertencem ao gênero Solanum, uma ao gênero Brugmansia e duas são cultivadas e pertencem ao gênero Nicotiana e Capsicum. A fim de determinar a capacidade de repelência e o efeito inseticida, foram testadas as seguintes espécies: B. suaveolens (trombeteira, C. annuum var. variegated (pimenta-de-jardim, N. tabacum var. virginia (fumo, S. aculeatissimum (joá-bravo, S. americanum (erva-moura, S. diflorum (tomatinho, S. fastigiatum var. acicularium (jurubeba, S. fastigiatum var. fastigiatum (jurubeba e S. sisymbriifolium (arrebenta-cavalo. Para obtenção dos extratos foram utilizadas folhas, flores e frutos aplicando-se duas técnicas distintas de elaboração: decocção do material fresco e extração a frio do material seco. Quanto à capacidade de repelência dos extratos, os tratamentos utilizando material fresco de S. fastigiatum var. acicularium (frutos verdes e maduros, 2,5% e 5% de concentração e S. diflorum (frutos verdes e maduros, 2,5% e 5% de concentração demonstraram maior eficácia. Nos testes sobre a biologia do inseto os tratamentos mais eficazes como inseticida foram S. fastigiatum var. fastigiatum e var. acicularium (folhas a 10% de concentração.The objective of this study was to test the effect of plant extracts from Solanaceae available in Vale do Rio Pardo region, RS, on the aphid Brevicoryne brassicae, agricultural pest of significant importance. Nine toxic Solanaceae species are available in the area of study: six are wild belonging to the genus Solanum, one to the genus Brugmansia, and two are cultivated and belong to the genus Nicotiana and Capsicum. To determine the

  15. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.

    Science.gov (United States)

    Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao

    2017-10-01

    Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg-1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Matromorfie in Brassica oleracea L.

    NARCIS (Netherlands)

    Eenink, A.H.

    1975-01-01

    INLEIDING

    De ontwikkeling van een diploid embryo uit een onbevruchte eicel van een diploide plant, mede ten gevolge van de stimulerende invloed van soort- of geslachtsvreemd pollen, wordt matromorfie of pseudogame diploide parthenogenese genoemd (EENINK, 1974a).

    Afwijkingen in

  17. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities.

    Science.gov (United States)

    Shi, Lei; Shi, Taoxiong; Broadley, Martin R; White, Philip J; Long, Yan; Meng, Jinling; Xu, Fangsen; Hammond, John P

    2013-07-01

    Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.

  18. Structural changes in the main root of brassica rapa l. seedlings under clinorotation

    Science.gov (United States)

    Kalinina, Y.

    In order to understand the level of the influence of gravity upon root growth and development the complex investigations has to be carried out. The aim of our work was the research of formation of root growth zones in altered gravity. With this purpose the root anatomy of 6-day old Brassica rapa L. seedlings grown on the Hogland's medium at illumination 12000 luxes and temperature 24-25°C on a slowly rotating horizontal clinostat and at 1 g was investigated using light microscopy. It has been shown that clinorotation causes a decrease of the length of root growth zones: meristematic zone - on 38 %, transition zone (distal elongation zone) - on 50 %, and elongation zone - on 64 %. The greatest differences between control and clinostat variants are revealed in the length of both the layers of periblem in the meristematic zone and epidermis in the distal elongation zone. The reliable difference between cell sizes of the all investigated zones in the control and experiment was not found. Only in a cortex of transition zone was marked the decreasing of cell length on 16 % in subepidermal layer and on 20 % in the other layer of a cortex. In the same time, the reduction of cell number in protoderm on 41 % and in the both periblem outer layer on 50 % and the inner layer on 47 % of the meristematic zone was revealed. The lack of significant difference in sizes of meristematic cells along with the simultaneous decrease of cell number allowed us to conclude that proliferation activity of meristem is depressed under clinorotation. The information about the most gravisensitive processes and strategies of adaptation to microgravity is a basis of our understanding of plants' growth and development under the long-term influence of this factor in space flight. Thus, the obtained results are the addition to our knowledge in root development in the absence of gravity but further investigations are going on and still more are required. Electron microscopic examinations are the next

  19. Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2016-12-01

    Turnip (Brassica rapa ssp. rapa) is an important vegetable crop producing glucosinolates (GSLs) and phenolic compounds. The GSLs, phenolic compound contents and transcript levels in hairy root cultures, as well as their antioxidant, antimicrobial and anticancer activity were studied in turnip. Transgenic hairy root lines were confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR. GSLs levels (glucoallysin, glucobrassicanapin, gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and 4-hydroxyglucobrassicin) and their gene expression levels (BrMYB28, BrMYB29, BrMYB34, BrMYB51, BrMYB122, CYP79 and CYP83) significantly increased in hairy roots compared with that in non-transformed roots. Furthermore, hairy roots efficiently produced several important individual phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids). Colorimetric analysis revealed that the highest levels of total phenol, flavonoid contents, and their gene expression levels (PAL, CHI and FLS) in hairy roots than non-transformed roots. Our study provides beneficial information on the molecular and physiological active processes that are associated with the phytochemical content and biosynthetic gene expression in turnip. Moreover, antioxidant activity, as measured by DPPH scavenging activity, reducing potential, phosphomolybdenum and ferrous ion chelating ability assays was significantly higher in hairy roots. Hairy root extracts exhibited higher antimicrobial activity against bacterial and fungal species. The extract of hairy roots showed inhibition of human breast and colon cancer cell lines.

  20. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica

    Directory of Open Access Journals (Sweden)

    Paul John Hunter

    2014-02-01

    Full Text Available Brassicas are among the most widely grown and important crops worldwide. Phosphorus (P is a key mineral element in the growth of all plants and is largely supplied as inorganic rock-phosphate, a dwindling resource, which is likely to be an increasingly significant factor in global agriculture. In order to develop crops which can abstract P from the soil, utilize it more efficiently, require less of it or obtain more from other sources such as soil organic P reservoirs, a detailed understanding the factors that influence P metabolism and cycling in plants and associated soil is required. This review focuses on the current state of understanding of root trait, rhizodeposition and rhizosphere community interaction as it applies to P solubilization and acquisition, with particular reference to Brassica species. Physical root characteristics, exudation of organic acids (particularly malate and citrate and phosphatase enzymes are considered and the potential mechanisms of control of these responses to P deficiency examined. The influence of rhizodeposits on the development of the rhizosphere microbial community is discussed and the specific features of this community in response to P deficiency are considered; specifically production of phosphatases, phytases and phosphonate hydrolases. Finally various potential approaches for improving overall P use efficiency in Brassica production are discussed.

  1. Phylogenetic relationships within and among Brassica species from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... Brassica oleracea var. virids) and fifteen tetraploid cultivars (Brassica napus) from the national winter canola variety trials (NWCVT) were evaluated using 13 sets of random amplified polymorphic DNA. (RAPD) associated with blackleg resistance in Brassica nigra. 126 highly polymorphic bands with an.

  2. In vitro propagation of Ethiopian mustard ( Brassica carinata A ...

    African Journals Online (AJOL)

    Brassica carinata (A. Braun) is an amphi-diploid species that originated from interspecific hybridization between Brassica nigra and Brassica oleracea in the highlands of Ethiopia. The crop has many desirable agronomic traits but with oil quality constraints like high erucic acid and glucosinolate contents. In this study, two ...

  3. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    Science.gov (United States)

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization

    Science.gov (United States)

    Santaella, Catherine; Schue, Mathieu; Berge, Odile; Heulin, Thierry; Achouak, Wafa

    2008-01-01

    Microbial exopolysaccharides (EPSs) play key roles in plant–microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root–soil interface, root colonization, but not in biofilm formation. PMID:18507672

  5. Whole-Genome Re-Alignment Facilitates Development of Specific Molecular Markers for Races 1 and 4 of Xanthomonas campestris pv. campestris, the Cause of Black Rot Disease in Brassica oleracea.

    Science.gov (United States)

    Rubel, Mehede Hassan; Robin, Arif Hasan Khan; Natarajan, Sathishkumar; Vicente, Joana G; Kim, Hoy-Taek; Park, Jong-In; Nou, Ill-Sup

    2017-11-24

    Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a seed borne disease of Brassicaceae. Eleven pathogenic races have been identified based on the phenotype interaction pattern of differential brassica cultivars inoculated with different strains. Race 1 and 4 are the two most frequent races found in Brassica oleracea crops. In this study, a PCR molecular diagnostic tool was developed for the identification of Xcc races 1 and 4 of this pathogen. Whole genomic sequences of races 1, 3, 4 and 9 and sequences of three other Xanthomonas pathovars/species (X. campestris pv. incanae (Xci), X. campestris pv. raphani (Xcr) and X.euvesicatoria (Xev) were aligned to identify variable regions among races. To develop specific markers for races 1 and 4, primers were developed from a region where sequences were dissimilar in other races. Sequence-characterized amplified regions (SCAR) and insertion or deletion of bases (InDel) were used to develop each specific set of primers. The specificity of the selected primers was confirmed by PCR tests using genomic DNA of seven different Xcc races, two strains of X. campestris pathovars and other species of bacteria. Bacterial samples of the races 1 and 4 isolates were collected from artificially inoculated cabbage leaves to conduct bio-PCR. Bio-PCR successfully detected the two Xcc isolates. By using our race-specific markers, a potential race 1 strain from the existing Korean Xcc collection was identified. The Xcc race 1 and 4-specific markers developed in this study are novel and can potentially be used for rapid detection of Xcc races through PCR.

  6. Whole-Genome Re-Alignment Facilitates Development of Specific Molecular Markers for Races 1 and 4 of Xanthomonas campestris pv. campestris, the Cause of Black Rot Disease in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Mehede Hassan Rubel

    2017-11-01

    Full Text Available Black rot, caused by Xanthomonas campestris pv. campestris (Xcc, is a seed borne disease of Brassicaceae. Eleven pathogenic races have been identified based on the phenotype interaction pattern of differential brassica cultivars inoculated with different strains. Race 1 and 4 are the two most frequent races found in Brassica oleracea crops. In this study, a PCR molecular diagnostic tool was developed for the identification of Xcc races 1 and 4 of this pathogen. Whole genomic sequences of races 1, 3, 4 and 9 and sequences of three other Xanthomonas pathovars/species (X. campestris pv. incanae (Xci, X. campestris pv. raphani (Xcr and X. euvesicatoria (Xev were aligned to identify variable regions among races. To develop specific markers for races 1 and 4, primers were developed from a region where sequences were dissimilar in other races. Sequence-characterized amplified regions (SCAR and insertion or deletion of bases (InDel were used to develop each specific set of primers. The specificity of the selected primers was confirmed by PCR tests using genomic DNA of seven different Xcc races, two strains of X. campestris pathovars and other species of bacteria. Bacterial samples of the races 1 and 4 isolates were collected from artificially inoculated cabbage leaves to conduct bio-PCR. Bio-PCR successfully detected the two Xcc isolates. By using our race-specific markers, a potential race 1 strain from the existing Korean Xcc collection was identified. The Xcc race 1 and 4-specific markers developed in this study are novel and can potentially be used for rapid detection of Xcc races through PCR.

  7. Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel

    2010-01-01

    Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica).

    Science.gov (United States)

    Sahamishirazi, Samira; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-10-01

    This study describes the development of near-infrared spectroscopy (NIRS) calibration to determine individual and total glucosinolates (GSLs) content of 12 new-bred open-pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Six individual GSLs were identified using high-performance-liquid chromatography (HPLC). The NIRS calibration was established based on modified partial least squares regression with reference values of HPLC. The calibration was analyzed using coefficient of determination in prediction (R2) and ratio of preference of determination (RPD). Large variation occurred in the calibrations, R2 and RPD due to the variability of the samples. Derived calibrations for total-GSLs, aliphatic-GSLs, glucoraphanin and 4-methoxyglucobrassicin were quantitative with a high accuracy (RPD=1.36, 1.65, 1.63, 1.11) while, for indole-GSLs, glucosinigrin, glucoiberin, glucobrassicin and 1-methoxyglucobrassicin were more qualitative (RPD=0.95, 0.62, 0.67, 0.81, 0.56). Overall, the results indicated NIRS has a good potential to determine different GSLs in a large sample pool of broccoli quantitatively and qualitatively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. EFEITO DE DIFERENTES NÍVEIS DE BORO, NA PRESENÇA E AUSÊNCIA DE MATÉRIA ORGÂNICA, NA CULTURA DO REPOLHO (Brassica oleraceae var. capitata EFFECTS OF DIFFERENT BORAX RATES AND MANURE ON CABBAGE (Brassica oleraceae var. Capitata Crop

    Directory of Open Access Journals (Sweden)

    Lázaro José Chaves

    2007-09-01

    Full Text Available

    Com o objetivo de verificar o efeito de diferentes níveis de boro na cultura do repolho, na presença e ausência de matéria orgânica, foi instalado na Escola de Agronomia da UFG um experimento em blocos casualizados, com parcelas subdivididas, com 3 repetições. A cultivar utilizada foi Matsukase. Os tratamentos com boro constaram da aplicação de 0, 20, 40, 80, 160 e 320 kg/ha de Bórax comercial, combinadas com doses de 0 e 75 t/ha de esterco de curral. A adubação orgânica aumentou o diâmetro, a altura e o peso de cabeça, mas as relações peso de cabeça/peso total e diâmetro/altura de cabeça não apresentaram diferenças significativas. A aplicação de boro apresentou respostas significativas, na ausência de adubação orgânica, para peso de cabeça, altura de cabeça e relação peso/diâmetro de cabeça. A produção física máxima foi estimada para uma dosagem de 101 kg/ha de bórax. Na presença de adubação orgânica, não houve efeito significativo da adubação com Bórax sobre a produção do repolho.

    PALAVRAS-CHAVE: Adubação orgânica; boro; Brassica oleraceae var. captata; repolho.

    The experiment was carried out at Goiás Federal University (UFG, Brazil, in order to verify the effect of different borax levels in presence or absence of manure, for cabbage cv. Matsukase crop. Boron was applied at 0, 20, 40, 80, 160 and 320 kg/ha of commercial Borax, combined to doses of 0 or 75 ton/ha corral manure. Organic fertilization increased head diameter, height and weight, but did not interfere on head weight/total weight nor head diameter/head height ratios. Boron application showed significant responses when organic fertilization was absent, regarding to head weight, head height and weight/head diameter ratio. The highest

  10. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.

    Science.gov (United States)

    Pallai, Rajash; Hynes, Russell K; Verma, Brij; Nelson, Louise M

    2012-02-01

    Pseudomonas fluorescens 6-8, a rhizosphere isolate previously shown to enhance root elongation of canola ( Brassica napus L.), was characterized for its ability to produce indole-3-acetic acid and cytokinins in pure culture and in the rhizosphere of canola under gnotobiotic conditions in comparison with the cytokinin-producing strain P. fluorescens G20-18 and its mutant CNT2. Strain 6-8 produced isopentenyl adenosine, zeatin riboside, and dihydroxyzeatin riboside at levels similar to those of G20-18, but only very low concentrations of indole-3-acetic acid. In a gnotobiotic assay canola inoculated with 6-8 and G20-18 had higher concentrations of isopentenyl adenosine and zeatin riboside in the rhizosphere and greater root length than the noninoculated control. The ability of strain 6-8 to colonize canola roots was assessed following transformation with the green fluorescent protein and inoculation onto canola seed in a gnotobiotic assay. Higher populations of strain 6-8 were observed on the proximal region of the root closest to the seed than on the mid and distal portions 9 days after seed inoculation. The ability of P. fluorescens 6-8 to produce cytokinins, colonize the roots of canola seedlings, and enhance root elongation may contribute to its ability to survive in the rhizosphere and may benefit seedling growth.

  11. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The effect of nitrogen and sulphur fertilization on yield and quality of kohlrabi (Brassica oleracea, L. Efeito da adubagem com o nitrogénio e enxofre ao rédito e à qualidade das couves-rábanos (Brassica oleracea, L.

    Directory of Open Access Journals (Sweden)

    Tomáš Losák

    2008-04-01

    Full Text Available In a greenhouse pot experiment with kohlrabi, variety Luna, we explored the joint effect of N (0.6 g N per pot = 6 kg of soil and S in the soil (25-35-45 mg kg-1 of S on yields, on N, S and NO3- content in tubers and leaves, and on alterations in the amino acids concentration in the tubers. S fertilisation had no effect on tuber yields. The ranges of N content in tubers and leaves were narrow (between 1.42-1.48 % N and 1.21-1.35 % N, respectively and the effect of S fertilisation was insignificant. S concentration in the tubers ranged between 0.59 and 0.64 % S. S fertilisation had a more pronounced effect on the S concentration in leaf tissues where it increased from 0.50 to 0.58 or to 0.76 % S under the applied dose. The NO3- content was higher in tubers than in leaves. Increasing the S level in the soil significantly reduced NO3- concentrations in the tubers by 42.2-53.6 % and in the leaves by 8.8-21.7 %. Increasing the S content in the soil reduced the concentration of cysteine + methionine by 16-28 %. The values of valine, tyrosine, aspartic acid and serine were constant. In the S0, S1, and S2 treatments the levels of threonine, isoleucine, leucine, arginine, the sum of essential amino acids and alanine decreased from 37 to 9 %. The histidine concentration increased with increasing S fertilisation. S fertilisation of kohlrabi can be recommended to stabilize the yield and reduce the undesirable NO3- contained in the parts used for consumption.Deficiência aguda de S no solo tem sido observada na Europa desde os anos 1980. O couve-rábano é uma das plantas com maior exigência nesse nutriente e sua interação com o N é frequentemente relatada na literatura. Este trabalho foi conduzido em casa de vegetação visando testar o efeito da aplicação de S, na presença de N, na produção e qualidade de couve-rábano (Brassica oleracea, L., variedade Lua. As plantas foram cultivadas em vasos contendo 6 kg de solo, aos quais foram aplicados 0

  13. Enhancement of phenolic and flavonoid compounds in cabbage (Brassica oleraceae following application of commercial seaweed extracts of the brown seaweed, (Ascophyllum nodosum

    Directory of Open Access Journals (Sweden)

    Theodora Lola-Luz

    2013-06-01

    Full Text Available Brassica crops are rich is phytochemical compounds and frequent consumption of these vegetables has been associated with a lower risk in cancer, heart disease, hypertension and stroke. The effect of three commercial extracts of the brown seaweed, Ascophyllum nodosum, on phytochemical content and yield in cabbage plants was tested under field conditions in two consecutive crops. Total phenolic content was higher in all seaweed treated plants, with the highest increase recorded with AlgaeGreenTM (3.5 l ha-1 with a 2 fold increase relative to the control. The other commercial seaweed extract, XT achieved a lower increases of 1.3 fold (3.5 l ha-1. Similar increases were recorded in total flavonoid content. No statistically significant increases in yield were recorded with any of the seaweed extracts tested. The results suggest that seaweed extracts stimulated an increased accumulation of phytochemicals in cabbage but had no significant effect in yield under these experimental conditions.

  14. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica).

    Science.gov (United States)

    Olsen, Helle; Grimmer, Stine; Aaby, Kjersti; Saha, Shikha; Borge, Grethe Iren A

    2012-08-01

    Brassica vegetables contain a diverse range of phytochemicals with biological properties such as antioxidant and anticancer activity. However, knowledge about how biological activities are affected by processing is lacking. A green cultivar and a red cultivar of curly kale were evaluated for water/methanol-soluble phytochemicals before and after processing involving blanching, freeze storage, and boil-in-bag heat treatment. In both kale cultivars, processing resulted in a significant decrease of total phenolics, antioxidant capacity, and content and distribution of flavonols, anthocyanins, hydroxycinnamic acids, glucosinolates, and vitamin C. Interestingly, the red curly kale cultivar had a higher capacity to withstand thermal loss of phytochemicals. The extracts of both green and red curly kale inhibited the cell proliferation of three human colon cancer cell lines (Caco-2, HT-29, and HCT 116). However, extracts from fresh plant material had a significantly stronger antiproliferative effect than extracts from processed plant material.

  15. Proposed Method for Estimating Health-Promoting Glucosinolates and Hydrolysis Products in Broccoli (Brassica oleracea var. italica) Using Relative Transcript Abundance.

    Science.gov (United States)

    Becker, Talon M; Jeffery, Elizabeth H; Juvik, John A

    2017-01-18

    Due to the importance of glucosinolates and their hydrolysis products in human nutrition and plant defense, optimizing the content of these compounds is a frequent breeding objective for Brassica crops. Toward this goal, we investigated the feasibility of using models built from relative transcript abundance data for the prediction of glucosinolate and hydrolysis product concentrations in broccoli. We report that predictive models explaining at least 50% of the variation for a number of glucosinolates and their hydrolysis products can be built for prediction within the same season, but prediction accuracy decreased when using models built from one season's data for prediction of an opposing season. This method of phytochemical profile prediction could potentially allow for lower phytochemical phenotyping costs and larger breeding populations. This, in turn, could improve selection efficiency for phase II induction potential, a type of chemopreventive bioactivity, by allowing for the quick and relatively cheap content estimation of phytochemicals known to influence the trait.

  16. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Science.gov (United States)

    Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco

    2017-01-01

    A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which

  17. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    Directory of Open Access Journals (Sweden)

    Thomas W Kirchner

    Full Text Available A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions

  18. Two Plastid DNA Lineages—Rapa/Oleracea and Nigra—within the Tribe Brassiceae Can Be Best Explained by Reciprocal Crosses at Hexaploidy: Evidence from Divergence Times of the Plastid Genomes and R-Block Genes of the A and B Genomes of Brassica juncea

    Science.gov (United States)

    Gupta, Vibha; Paritosh, Kumar; Pradhan, Akshay K.; Pental, Deepak

    2014-01-01

    Brassica species (tribe Brassiceae) belonging to U's triangle—B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC) and B. carinata (BBCC)—originated via two polyploidization rounds: a U event producing the three allopolyploids, and a more ancient b genome-triplication event giving rise to the A-, B-, and C-genome diploid species. Molecular mapping studies, in situ hybridization, and genome sequencing of B. rapa support the genome triplication origin of tribe Brassiceae, and suggest that these three diploid species diversified from a common hexaploid ancestor. Analysis of plastid DNA has revealed two distinct lineages—Rapa/Oleracea and Nigra—that conflict with hexaploidization as a single event defining the tribe Brassiceae. We analysed an R-block region of A. thaliana present in six copies in B. juncea (AABB), three copies each on A- and B-genomes to study gene fractionation pattern and synonymous base substitution rates (Ks values). Divergence time of paralogues within the A and B genomes and homoeologues between the A and B genomes was estimated. Homoeologous R blocks of the A and B genomes exhibited high gene collinearity and a conserved gene fractionation pattern. The three progenitors of diploid Brassicas were estimated to have diverged approximately 12 mya. Divergence of B. rapa and B. nigra, calculated from plastid gene sequences, was estimated to have occurred approximately 12 mya, coinciding with the divergence of the three genomes participating in the b event. Divergence of B. juncea A and B genome homoeologues was estimated to have taken place around 7 mya. Based on divergence time estimates and the presence of distinct plastid lineages in tribe Brassiceae, it is concluded that at least two independent triplication events involving reciprocal crosses at the time of the b event have given rise to Rapa/Oleracea and Nigra lineages. PMID:24691069

  19. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots

    Energy Technology Data Exchange (ETDEWEB)

    Vadas, Timothy M., E-mail: tvadas@umbc.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States); Ahner, Beth A., E-mail: baa7@cornell.ed [Department of Biological and Environmental Engineering, Cornell University, 320 Riley-Robb Hall, Ithaca, NY 14853 (United States)

    2009-08-15

    This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb-glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation. - Cysteine and glutathione mediate the transport of lead and cadmium into plant roots.

  20. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    Science.gov (United States)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic

  1. Generation and characterization of Brassica rapa ssp. pekinensis–B ...

    Indian Academy of Sciences (India)

    The alien linkage groups were identified using 42 B. oleracea var. capitata linkage group-specific markers as B. oleracea linkage groups C2, C3, C6, C7 and C8. Based on the chromosomal karyotype of root tip cells, these five MAALs added individual chromosomes from B. oleracea var. capitata: chr 1 (the longest), chr 2 or ...

  2. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    Science.gov (United States)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  3. Resposta da couve Tronchuda (Brassica oleracea var. costata à aplicação de azoto e boro e de um fertilizante orgânico autorizado em Agricultura Biológica Tall cabbage (Brassica oleracea var. costata response to the application of nitrogen, boron and an organic amendment permitted in organic farming

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2009-01-01

    .The Portuguese are one of the greatest brassica consumers in the entire world. Tall cabbage is grown in Portugal over an area greater than 1000 ha. Tall cabbage consumption is very popular at Christmas time. In this work, results from nitrogen and boron application, as conventional fertilisers, and from the use of Dix10, an organic amendment (˜ 10 % total N permitted in organic farming, are reported. Young cabbage plants were prepared in a greenhouse in micro-pots and transplanted with protected roots on August 29, 2005, spaced at 0.8x0.5 m between and within rows. The soil was loamy textured with 0.83 % organic matter, pH(H2O 5.2, and with median P and high K content levels. Six treatments were established: SAd treatment, without any fertilization; Dix10, applied in a rate equivalent to 80 kg N/ha; NB and N+, with 80 and 160 kg N/ha as urea, respectively; and B-and B+ treatments, without B and with 4.4 kg B/ha as borax. Boron treatments were fertilised with 80 kg N/ha and N treatments with 2.2 kg B/ha. Thus, NB is a median treatment with 80 kg N/ha and 2.2 kg B/ha. SAd plants yielded 13.7 Mg biomass/ha and took up 33.9 kg N/ha and 40.9 g B/ha, which are values significantly lower than that obtained on fertilised plots. In Dix10 treatment, cabbage yielded 18 Mg biomass/ha and took up 45.1 and 51.3 g B/ha. NB treatment produced higher biomass (38.6 Mg/ha and N uptake (107.9 kg/ha than SAd and Dix10 treatments. N+ treatment did not increase the yield, neither N uptake if compared with NB. B+ treatment has not any influence in biomass yield but increased tissue B content and B uptake. In N+ treatment there was a significant decrease in tissue B concentration and B uptake, which suggests antagonism of N over the uptake of B. The biomass yields and the apparent N and B recoveries showed that the lower biomass yielded in SAd and Dix10 treatments were due to a shortage of soil N availability in these treatments during the growing season.

  4. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  5. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  6. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  7. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  8. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions

    Science.gov (United States)

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  9. (Brassica oleracea) ON GROWTH, OBESITY, LIPIDAEMIA AND ...

    African Journals Online (AJOL)

    PROF EKWUEME

    of the poultry industry and demand for poultry products. Breeding strategies including crossing and selection ... Synthetic products such as aspirin, ibrupofen, chloroquine, paracetamol, may be effective (Tauseef et ... aspirin, ibuprofen and acetamorphen administration. (Balog and Hester, 1991; Cyrus et al., 2002; Tauseef et.

  10. BACTERIAL CONTAMINATION OF KALE (Brassica oleracea ...

    African Journals Online (AJOL)

    2011-02-02

    Feb 2, 2011 ... of Agricultural Sciences P.O. Box 7013-75007, Uppsala, Sweden, P. G. Mbuthia, ... respectively. salmonella was detected on 4.5 and 6.3% of samples collected from the ... towards formulation of respective control strategies,.

  11. Bacterial contamination of Kale ( Brassica oleracea acephala ...

    African Journals Online (AJOL)

    Fecal coliforms in water used on farms (for irrigation) and in the markets (for washing the vegetables) exceeded levels recommended by World Health Organization (WHO) of 103 organisms per 100 milliliter while Salmonella was detected in 12.5% of washing water samples collected from Kangemi market. Conclusion: Poor ...

  12. BACTERIAL CONTAMINATION OF KALE (Brassica oleracea ...

    African Journals Online (AJOL)

    2011-02-02

    Feb 2, 2011 ... urban areas and sold in various markets of Nairobi. It included bacterial ... in the evening to enable large coverage of traders who trade at different .... of kale traders used public transport (39%) while some used open trucks.

  13. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth.

    Science.gov (United States)

    Montalbán, Blanca; Croes, Sarah; Weyens, Nele; Lobo, M Carmen; Pérez-Sanz, Araceli; Vangronsveld, Jaco

    2016-10-02

    The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 µM Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 µM Cd.

  14. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population str...

  15. [Polyphase character of the dependence of Brassica napus germ root and hypocotyl growth on zeatin and thidiazuron concentrations with view of applicability to biological life support systems].

    Science.gov (United States)

    Komarova, G I; Babosha, A V

    2010-01-01

    Physiologically active substances are considered as a potential component of plant cultivation technologies for biological life support systems. In spacelight, plant reactions to growth-regulating agents may be changed by the specific stress factors such as microgravity, radiation, and trace admixtures in cabin air. Complex character of the concentration dependence of PAS efficiency and consequent variability generate a need to optimize plant growth regulating technologies in order to stabilize the wanted effect. Pattern of the concentration dependence of zeatin and tidiazurone effects on roots and hypocotyls growth was analyzed in rape germs. 24-hour Brassica napus germs grown in the dark in thermostat at 24 degrees C were transferred to Petri dishes with solutions of cytokinins under study for continued incubation under the same conditions for the next 24 hours. Roots and hypocotyls were measured. Zeatin concentration curve for roots was multiphase and, in addition to the general trend towards greater inhibition with increase of phyto-hormone concentration and had clearly defined minimum and maximum. The dependence of root growth inhibition on tidiazurone concentration also was not monotonic and had a distinct similarity with the zeatin curve. Gradual increase of tidiazurone concentration used in combination with zeatin brought about a predictable gradual twist of the zeatin curve; however, in most of the instances no additive cytokinin effect was observed. A supposition can be made that PAS interaction with the phytohormone regulation system may be a factor in variability of activity of these substances.

  16. Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) evaluated through next-generation sequencing technology.

    Science.gov (United States)

    de Campos, Samanta B; Youn, Jung-Won; Farina, Roberto; Jaenicke, Sebastian; Jünemann, Sebastian; Szczepanowski, Rafael; Beneduzi, Anelise; Vargas, Luciano K; Goesmann, Alexander; Wendisch, Volker F; Passaglia, Luciane M P

    2013-04-01

    Crop production may benefit from plant growth-promoting bacteria. The knowledge on bacterial communities is indispensable in agricultural systems that intend to apply beneficial bacteria to improve plant health and production of crops such as canola. In this work, the diversity of root bacterial communities associated to two different developmental phases of canola (Brassica napus L.) plants was assessed through the application of new generation sequencing technology. Total bacterial DNA was extracted from root samples from two different growth states of canola (rosette and flowering). It could be shown how bacterial communities inside the roots changed with the growing stage of the canola plants. There were differences in the abundance of the genera, family, and even the phyla identified for each sample. While in both root samples Proteobacteria was the most common phylum, at the rosette stage, the most common bacteria belonged to the family Pseudomonadaceae and the genus Pseudomonas, and in the flowering stage, the Xanthomonadaceae family and the genus Xanthomonas dominated the community. This implies in a switch in the predominant bacteria in the different developmental stages of the plant, suggesting that the plant itself interferes with the associated microbial community.

  17. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus.

    Science.gov (United States)

    Shen, Enhui; Zou, Jun; Hubertus Behrens, Falk; Chen, Li; Ye, Chuyu; Dai, Shutao; Li, Ruiyan; Ni, Meng; Jiang, Xiaoxue; Qiu, Jie; Liu, Yang; Wang, Weidi; Zhu, Qian-Hao; Chalhoub, Boulos; Bancroft, Ian; Meng, Jinling; Cai, Daguang; Fan, Longjiang

    2015-12-01

    The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    Science.gov (United States)

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  19. Evaluating the Antibacterial Properties of Polyacetylene and Glucosinolate Compounds with Further Identification of Their Presence within Various Carrot (Daucus carota) and Broccoli (Brassica oleracea) Cultivars Using High-Performance Liquid Chromatography with a Diode Array Detector and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry Analyses.

    Science.gov (United States)

    Hinds, L; Kenny, O; Hossain, M B; Walsh, D; Sheehy, E; Evans, P; Gaffney, M; Rai, D K

    2017-08-23

    Ongoing consumer concerns over using synthetic additives in foods has strongly influenced efforts worldwide to source suitable natural alternatives. In this study, the antibacterial efficacy of polyacetylene and glucosinolate compounds was evaluated against both Gram positive and Gram negative bacterial strains. Falcarinol [minimum inhibitory concentration (MIC) = 18.8-37.6 μg/mL] demonstrated the best overall antibacterial activity, while sinigrin (MIC = 46.9-62.5 μg/mL) was the most active glucosinolate compound. High-performance liquid chromatography with a diode array detector analysis showed falcarinol [85.13-244.85 μg/g of dry weight (DW)] to be the most abundant polyacetylene within six of the eight carrot (Daucus carota) cultivars investigated. Meanwhile, sinigrin (100.2-244.3 μg/g of DW) was the most abundant glucosinolate present within the majority of broccoli (Brassica oleracea) cultivars investigated using ultra performance liquid chromatography-tandem mass spectrometry analysis. The high abundance of both falcarinol and sinigrin within these respective species suggests that they could serve as potential sources of natural antibacterial agents for use as such in food products.

  20. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  1. Screening of Chinese brassica species for anti-cancer sulforaphane ...

    African Journals Online (AJOL)

    Natural sulforaphane and erucin have been of increasing interest for nutraceutical and pharmaceutical industries due to their anti-cancer effect. The sulforaphane and/or erucin contents in seeds of 43 different Chinese Brassica oleracea L. varieties were analyzed by HPLC and GC-MS. Among them, 21 cultivars seed meal ...

  2. Mineral, vitamin C and crude protein contents in kale ( Brassica ...

    African Journals Online (AJOL)

    This study compares mineral, vitamin C and crude protein contents at different harvesting stages in kale (Brassica oleraceae var. acephala). Three different harvest periods as first harvest stage (at the rosette stage), second harvest stage (at the budding stage) and third harvest stage (at the flowering/blooming stage) were ...

  3. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Thomas, C L; Graham, N S; Hayden, R; Meacham, M C; Neugebauer, K; Nightingale, M; Dupuy, L X; Hammond, J P; White, P J; Broadley, M R

    2016-04-06

    Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR;Brassica napus) varieties. Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49;P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49;P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46;P < 0·01) and zinc (r = 0·58;P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa, while lowest cross-transferability (91.93%) was obtained for Eruca sativa. The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea/B. nigra/B. rapa and B. carinata/B. napus/B. oleracea. C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  5. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  6. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L. at Varying Plant Densities

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11 and a hybrid variety Zhongyouza 12 (ZYZ 12 at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD population than did the low plant density (LPD population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI, pod photosynthesis, and radiation use efficiency (RUE after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume. These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China.

  7. The control of club-root (Plasmodiophora brassicae Wor. on cabbage seedlings with trifluralin and napropamid herbicides

    Directory of Open Access Journals (Sweden)

    J. Robak

    2015-06-01

    Full Text Available The herbicides Treflan EC 2 (24% trifluralin and Devrinol 50 (50% napropamid applied separately decreased efficiently the incidence of club-root on cabbage seedlings in pot experiments. If these herbicides were applied together with the fungicide Bavistin {50% carbendazim the control of the disease was in some cases more efficient, as compared with Bavistin used alone. The higher the organic matter content in the soil, the lower the phytotoxicity and dub-root controlling activity of herbicides. Thus, on peat soil the 'herbicides could be applied in much higher rates than on pseudopodsolic soil.

  8. Compost enhances parasitization of Brevicoryne brassicae (L.) by Diaeretiella rapae (M’Intosh) in broccoli under different levels of crop diversification and plant competition

    OpenAIRE

    Ponti, Luigi; Altieri, Miguel A.; Gutierrez, Andrew P.

    2008-01-01

    The effects of intercropping via competition on crop biomass, pest [cabbage aphid Brevicoryne brassicae (L.)] abundance and natural enemy [the parasitoid Diaeretiella rapae (M’Intosh)] efficacy were studied in the Brassica oleracea L. var. italica system. From May to December 2004, insect populations and yield parameters were monitored in summer and fall in broccoli monoculture and polyculture systems with or without competition from Brassica spp. (mustard), or Fagopyrum esculentum Moench (bu...

  9. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress

    Science.gov (United States)

    Feigl, Gábor; Lehotai, Nóra; Molnár, Árpád; Ördög, Attila; Rodríguez-Ruiz, Marta; Palma, José M.; Corpas, Francisco J.; Erdei, László; Kolbert, Zsuzsanna

    2015-01-01

    Background and Aims Zinc (Zn) is an essential micronutrient naturally present in soils, but anthropogenic activities can lead to accumulation in the environment and resulting damage to plants. Heavy metals such as Zn can induce oxidative stress and the generation of reactive oxygen and nitrogen species (ROS and RNS), which can reduce growth and yield in crop plants. This study assesses the interplay of these two families of molecules in order to evaluate the responses in roots of two Brassica species under high concentrations of Zn. Methods Nine-day-old hydroponically grown Brassica juncea (Indian mustard) and B. napus (oilseed rape) seedlings were treated with ZnSO4 (0, 50, 150 and 300 µm) for 7 d. Stress intensity was assessed through analyses of cell wall damage and cell viability. Biochemical and cellular techniques were used to measure key components of the metabolism of ROS and RNS including lipid peroxidation, enzymatic antioxidants, protein nitration and content of superoxide radical (O2·−), nitric oxide (NO) and peroxynitrite (ONOO−). Key Results Analysis of morphological root damage and alterations of microelement homeostasis indicate that B. juncea is more tolerant to Zn stress than B. napus. ROS and RNS parameters suggest that the oxidative components are predominant compared with the nitrosative components in the root system of both species. Conclusions The results indicate a clear relationship between ROS and RNS metabolism as a mechanism of response against stress caused by an excess of Zn. The oxidative stress components seem to be more dominant than the elements of the nitrosative stress in the root system of these two Brassica species. PMID:25538112

  10. Uptake and transport of iron ions (Fe+2, Fe+3 supplied to roots or leaves in spinach (Spinacia oleracea L. plants growing under different light conditions

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2013-07-01

    Full Text Available In experiments carried out in a phytotron using aqueous cultures, there was investigated the effect of root or foliar application of different types of iron salts on spinach plant productivity, leaf and root iron content as well as the rate of transport of iron from the roots to the leaves. Plants were grown in Hoagland's solution with a single concentration at two fluorescent light intensities: 290 and 95 µmol × m-2 × s-1 PAR. To fertilize the plants, iron was supplied at a dose of 25 mg Fe in the nutrient solution or as foliar sprays using the following salts: 1 – Fe 0; 2 – FeCl2 × 4H2O; 3 – FeCl3 × 4H2O; 4 – FeSO4 × 7H2O; 5 – Fe2(SO43 × nH2O; 6 – Fe-Cit. The obtained results showed that the productivity of spinach plants treated with FeCl2 and FeSO4 using foliar sprays and of those fed with Fe-citrate (Fe-Cit through the roots was significantly higher than in the case of the other salts used. Root application of the salts used had a significant effect on root iron content, whereas their foliar application significantly affected leaf iron content. In this respect, ferrous salts were generally the most beneficial, while ferric salts were the least beneficial. The rate of transport of iron to the leaves, irrespective of the method of its application, was clearly higher for ferrous salts and Fe-Cit than for ferric salts. The free proline content in the leaves of plants not fertilized with Fe was 2–4 times lower than in plants supplied with this nutrient. An irradiance of 290 µmol × m-2 × s-1 had a positive effect on plant productivity and root Fe content. .

  11. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) -chloroplast genome and cytodeme congruence.

    Science.gov (United States)

    Warwick, S I; Black, L D

    1991-07-01

    Chloroplast DNA restriction sites for 20 endonucleases were mapped using cpDNA probes from Brassica juncea and site variation was surveyed in 33 diploid taxa of the Subtribe Brassicinae. A total of 419 mutations was observed, including both site (i.e., gain/ loss) and fragment length (i.e., insertions or deletions); 221 (53%) mutations showed variation at the interspecific level. Phylogenetic analysis indicated a clear division of the subtribe into two ancient evolutionary lineages. These were (I) the "Nigra" lineage: Brassica nigra, B. fruticulosa, B. tournefortii, Sinapis pubescens, S. alba, S. flexuosa, S. arvensis, Coincya cheiranthos, Erucastrum canariense, and Hirschfeldia incana, and (II) the "Rapa/ Oleracea" lineage: Brassica rapa, B. oleracea ssp. oleracea and ssp. alboglabra, B. rupestris-villosa complex (B. rupestris, B. drepanensis, B. macrocarpa, B. villosa), B. barrelieri, B. deflexa, B. oxyrrhina, B. gravinae, Diplotaxis erucoides, D. tenuifolia, Eruca sativa, Raphanus raphanistrum, R. sativus, and Sinapis aucheri. In the "Nigra" lineage, Brassica nigra was most closely related to the annual Sinapis species, S. arvensis and S. alba. In the "Rapa/Oleracea" lineage, the Brassica rapa and B. oleracea genomes formed a distinct group whose closest relatives were the wild species of the B. oleracea (n=9) complex (i.e., B. rupestris-villosa complex). Species with n=7 chromosomes exist in both lineages. Hirschfeldia incana (n=7), in the "Nigra" lineage, was most closely related to Sinapis pubescens. In the "Rapa/Oleracea" lineage three taxa with n=7 - B. deflexa, D. erucoides, and S. aucheri - were closely related, advanced in the lineage, and were the closest apparent relatives (particularly D. erucoides) to B. rapa, B. oleracea, and its wild relatives. Levels of genetic divergence suggested by the cpDNA data were consistent with cytodeme recognition in the subtribe, but provided evidence for inconsistencies in the current generic delimitations based on

  12. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    Science.gov (United States)

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  13. Investigation of selenium-containing root exudates of Brassica juncea using HPLC-ICP-MS and ESI-qTOF-MS.

    Science.gov (United States)

    Vonderheide, Anne P; Mounicou, Sandra; Meija, Juris; Henry, Heather F; Caruso, Joseph A; Shann, Jodi R

    2006-01-01

    Selenium-containing root exudates were investigated in a known selenium accumulator model plant. Indian mustard (Brassica juncea) plants were grown hydroponically and supplemented with selenite (SeO(3)(2-)) in a 25% Hoagland's nutrient solution. Additive concentrations were 0, 1, 5 and 20 microg mL(-1) Se with five replicate plants per treatment level. Plants were exposed to the respective Se solutions for two weeks, then placed in deionized water for two more weeks. The hydroponic solutions were collected for analysis after the first two weeks of selenium supplementation (day 14) and twice during the deionized water period (days 21 and 28). Separation by ion-pairing high performance liquid chromatography was followed by inductively coupled plasma-mass spectrometry (ICP-MS) for selenium specific detection. Chromatographic peaks unable to be identified by retention-time matching were collected for analysis by electrospray ionization mass spectrometry (ESI-MS). Additional chemical experiments were performed for structural elucidation. Several selenium-containing compounds were identified in the exudate-containing solution and two were identified as selenocystine and the selenosulfate (SSeO(3)(2-)) ion. The presence of dimethylselenide (CH(3)SeCH(3)) is also observed but cannot be attributed exclusively to plant exudation because plants were not grown in sterile conditions. Further, the incorporation of fortified selenoamino acids into peptide structures was found to occur under neutral pH conditions, suggesting that exuded enzymes might facilitate such a reaction. Finally, physiological differences resulting from selenium supplementations were noted and discussed.

  14. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.

    Science.gov (United States)

    Koeslin-Findeklee, Fabian; Becker, Martin A; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J

    2015-07-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Genetic Dissection of Root Morphological Traits Related to Nitrogen Use Efficiency in Brassica napus L. under Two Contrasting Nitrogen Conditions

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-09-01

    Full Text Available As the major determinant for nutrient uptake, root system architecture (RSA has a massive impact on nitrogen use efficiency (NUE. However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL was used to investigate root morphology (RM, an important component for RSA and NUE-related traits under high-nitrogen (HN and low-nitrogen (LN conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE, providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23 detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed.

  16. Genetic Dissection of Root Morphological Traits Related to Nitrogen Use Efficiency in Brassica napus L. under Two Contrasting Nitrogen Conditions

    Science.gov (United States)

    Wang, Jie; Dun, Xiaoling; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    As the major determinant for nutrient uptake, root system architecture (RSA) has a massive impact on nitrogen use efficiency (NUE). However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL) was used to investigate root morphology (RM, an important component for RSA) and NUE-related traits under high-nitrogen (HN) and low-nitrogen (LN) conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE), providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels) were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly) and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23) detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed. PMID:29033971

  17. Catalytic properties of three catalases from Kohlrabi ( Brassica ...

    African Journals Online (AJOL)

    Catalase (EC 1.11.1.6) was extracted from kohlrabi bulbs (Brassica oleracea gongylodes) with 0.05 M phosphate buffer, pH 7.0. On the basis of kinetic studies and activity stain for catalase, only three isoenzymes of catalases were detected in kohlrabi bulbs extract with pH optima at 4.5, 6.5 and 10. Highest catalytic ...

  18. Catalytic properties of three catalases from Kohlrabi (Brassica ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... Catalase (EC 1.11.1.6) was extracted from kohlrabi bulbs (Brassica oleracea gongylodes) with 0.05 M phosphate buffer, pH 7.0. On the basis of kinetic studies and activity stain for catalase, only three isoenzymes of catalases were detected in kohlrabi bulbs extract with pH optima at 4.5, 6.5 and 10. Highest ...

  19. Transgenic tobacco plants expressing BoRS1 gene from Brassica ...

    Indian Academy of Sciences (India)

    Unknown

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the. Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through ...

  20. Expression analysis of four flower-specific promoters of Brassica spp ...

    African Journals Online (AJOL)

    The 5'-flanking region of ca. 1200 bp upstream of the translation start site (TSS) of a putative cell wall protein gene was cloned from Brassica campestris, B. chinensis, B. napus and B. oleracea, and transferred to tobacco via Agrobacterium-mediation after fused to promoter-less beta-glucuronidase (GUS) reporter gene.

  1. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  2. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  3. Brassica napus

    Indian Academy of Sciences (India)

    2011-12-16

    Dec 16, 2011 ... Abstract. Experiments were conducted on rapeseed (Brassica napus L.) using a diallel design with nine parents: Youcai 601, Double 20-. 4, Huashuang 3, Gaoyou 605, Zhongyou 821, Eyouchangjia, Zhong R-888, Tower and Zheshuang 72. The seed developmental process was divided into five stages, ...

  4. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    Science.gov (United States)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J. A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus, Brassica juncea, and Brassica carinata) that arose through interspecific hybridizations. Despite being extensively studied because of its commercial relevance, several aspects of the origin of the Brassica species and the relationships within and among these six species still remain open questions. Here, we successfully de novo assembled 60 complete chloroplast genomes of Brassica genotypes of all six species. A complete map of the single nucleotide variants and insertions and deletions in the chloroplast genomes of different Brassica species was produced. The chloroplast genome consists of a Large and a Small Single Copy (LSC and SSC) region between two inverted repeats, and while these regions of chloroplast genomes have very different molecular evolutionary rates, phylogenetic analyses of different regions yielded no contradicting topologies and separated the Brassica genus into four clades. B. carinata and B. juncea share their chloroplast genome with one of their hybridization donors B. nigra and B. rapa, respectively, which fits the U model. B. rapa, surprisingly, shows evidence of two types of chloroplast genomes, with one type specific to some Italian broccoletto accessions. B. napus clearly has evidence for two independent hybridization events, as it contains either B. rapa chloroplast genomes. The divergence estimation suggests that B. nigra and B. carinata diverged from the main Brassica clade 13.7 million years ago (Mya), while B. rapa and B. oleracea diverged at 2.18 Mya. The use of the complete chloroplast DNA sequence not only provides insights into comparative genome analysis but also paves the way for a better understanding of the phylogenetic

  5. Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: Regulation of sulfur uptake and assimilation

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Hawkesford, M.J.; De Kok, L.J.

    2016-01-01

    Brassica juncea and Brassica rapa were able to utilize foliarly absorbed H2S and SO2 as sulfur source for growth and resulted in a decreased sink capacity of the shoot for sulfur supplied by the root and subsequently in a partial decrease in sulfate uptake capacity of the roots. Sulfate-deprived

  6. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    OpenAIRE

    Koeslin-Findeklee, Fabian; Martin A. Becker; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent fact...

  7. Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris Mesorhizobium loti MP6 rizosférico competente induz encurvamento do pelo daraiz, inibe Sclerotinia sclerotiorum e estimula o crescimento de mostarda indiana (Brassica campestris

    Directory of Open Access Journals (Sweden)

    Shikha Chandra

    2007-03-01

    Full Text Available The bacterial strain Mesorhizobium loti MP6, isolated from root nodules of Mimosa pudica induced growth and yield of Brassica campestris. The isolate MP6 secreted hydroxamate type siderophore in Chrom-Azurol Siderophore (CAS agar medium. Production of hydrocyanic acid (HCN, indole acetic acid (IAA and phosphate solubilizing ability was also recorded under normal growth conditions. Root hair curling was observed through simple glass-slide technique. In vitro study showed a significant increase in population of M. loti MP6 in rhizosphere due to root exudates of B. campestris. In dual culture technique the strain showed a strong antagonistic effect against Sclerotinia sclerotiorum, a white rot pathogen of Brassica campestris. The growth of S. sclerotiorum was inhibited by 75% after prolonged incubation. Efficient root colonization of mustard seedlings was confirmed by using a streptomycin-resistant marker M. loti MP6strep+. The M. loti MP6 coated seeds proved enhanced seed germination, early vegetative growth and grain yield as compared to control. Also, a drastic decline (99% in the incidence of white rot was observed due to application of M. loti MP6.A cepa bacteriana Mesorhizobium loti MP6 isolada de nódulos de raiz de Mimosa pudica induziu o crescimento e o rendimento de Brassica campestris. A cepa MP6 secretou sideróforo do tipo hidroxamato em meio sólido Chrom-Azurol Siderophore (CAS. Em condições normais de crescimento, a cepa foi também capaz de produzir de ácido cianídrico (HCN e acido indolacético (AIA e solubilizar fosfato. O encurvamento do pelo da raiz foi observado usando a simples técnica de lâmina e lamínula. Estudos in vitro mostraram um aumento significativo na população de M. loti MP6 na rizosfera devido aos exsudatos de B. campestris. Empregando-se técnica de co-cultura, a cepa mostrou um grande efeito antagônico contra o fungo Sclerotinia sclerotiorum, o patógeno da podridão branca de Brassica campestris. Ap

  8. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa.

    Science.gov (United States)

    Jiang, Congcong; Ramchiary, Nirala; Ma, Yongbiao; Jin, Mina; Feng, Ji; Li, Ruiyuan; Wang, Hao; Long, Yan; Choi, Su Ryun; Zhang, Chunyu; Cowling, Wallace A; Park, Beom Seok; Lim, Yong Pyo; Meng, Jinling

    2011-10-01

    Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.

  9. Nutritive effect of cabbage ( Brassica oleracea ) on growth, obesity ...

    African Journals Online (AJOL)

    Cabbage supplementation suppressed broiler eosinophil levels, indicating effects on mediators of innate immune surveillance, but did not influence any other blood haematological parameter, though Broilers exhibited higher (p<0.05) total WBC count and proportion (%) of WBC represented by neutrophils, basophils and ...

  10. Effects of dietary inclusion of discarded cabbage (Brassica oleracea ...

    African Journals Online (AJOL)

    Douglas Nkosi

    2016-02-16

    Feb 16, 2016 ... DC/kg (DC150) and 200 g DC/kg (DC200) were fed ad libitum to 36 South African Dorper lambs (22.0 ± 1.3 ... resource-poor livestock production systems in South Africa (Nkosi & Meeske, 2010). ... have confirmed that cabbage contains 86 - 140 g dry matter (DM)/kg, 137 - 280 g crude protein (CP)/kg DM,.

  11. Brassica oleracea pollen, a new source of occupational allergens

    NARCIS (Netherlands)

    Hermanides, H. K.; Laheÿ-de Boer, A. M.; Zuidmeer, L.; Guikers, C.; van Ree, R.; Knulst, A. C.

    2006-01-01

    BACKGROUND: Vegetable pollen is a rare source of occupational allergens. Occupational allergy has only been described in the case of paprika pollen and tomato pollen. We describe a new source of occupational pollen allergy. AIM: To study the incidence and the impact of broccoli and cauliflower

  12. Survey of cabbage experimental hybrids (Brassica oleracea var. capitata L.

    Directory of Open Access Journals (Sweden)

    Červenski Janko

    2006-01-01

    Full Text Available Cabbage takes up significant area in vegetable sowing structure, and one of the factors of improving this production is adequate varieties selection. During the breeding process, experimental hybrids are tested in relation to currently grown varieties and hybrids in production. In this paper the characteristics of 18 cabbage genotypes are presented, out of which there are 9 experimental hybrids, 4 varieties and 5 hybrids from broader production. Cabbage genotypes in the trial are of differing length of growing season, as well as differing head weight. Properties variability analysis was performed using PCA method, where two main components were chosen based on screen test, and these were used to define 57.7%. Head weight and head diameter are properties based on which the tested hybrids were graded into quantitatively different groups.

  13. Transfer of heavy metals from soil to cabbage ( Brassica oleracea ...

    African Journals Online (AJOL)

    In this research work the accumulation of heavy metal and its transfer from the growing medium which is soil to the vegetable mainly cabbage was investigated. Twenty sampling sites were selected from irrigated farmlands of Kaduna metropolis were there is intense agricultural practice, and one control site were there is ...

  14. Stability of head weight in cabbage accessions ( Brassica oleracea ...

    African Journals Online (AJOL)

    ... study years and accessions x year interactions. The parameter stability test showed that seven of the accessions (Kopenhaski and Elisa-F1 as early type; Tucana-F1 as summer type; Srpski melez, SG-3014, Ljubljanski and Rodeo-F1 as late type) significantly deviated from the regression line. Four of the seven accessions ...

  15. Local cabbage ( Brassica oleracea var. capitata L.) populations from ...

    African Journals Online (AJOL)

    The populations were collected in Vojvodina, North Province of Serbia, country located at the crossroads of Central and Southeastern Europe. Fresh cabbages are late-maturing white cabbages suitable for fresh consumption and biological fermentation. The third is a newly developed cultivar, bred by family selection.

  16. Broccoli (Brassica oleracea var. italica head initiation under field conditions

    Directory of Open Access Journals (Sweden)

    Alina Kałużewicz

    2012-12-01

    Full Text Available A two–year study on the influence of temperature on broccoli head initiation was carried out at the ''Marcelin'' experimental station of the Poznań University of Life Sciences. In each year of the study, plants were planted in the field at four dates. The evaluation of the developmental phase of the broccoli shoot apex was based on the analysis of microscope slides. The date of head initiation was assumed as the day on which the first of the examined apices were found to be at the early generative phase. The plant characteristics (number of leaves, leaf area and stem diameter on the date of initiation were also determined. Variation in length of the period from planting to head initiation was found both between dates of planting and between experimental years. The shortest period from planting to initiation was when the plants were planted in April and June (17-18 days in the first year and the longest one for planting in April in the first year of the study (29 days. The length of the period from planting to head initiation depended on mean daily air temperature. The higher the temperature was, the shorter was the period.

  17. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  18. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.

  19. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  20. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts

    Directory of Open Access Journals (Sweden)

    Shahbazi Nafeseh

    2013-09-01

    Full Text Available   Objective(s: To evaluate the influences of aqueous extracts of plant parts (stem, leaves, and root of Portulaca oleracea L. on bioformation of silver nanoparticles (AgNPs.   Materials and Methods: Synthesis of silver nanoparticles by different plant part extracts of Portulaca oleracea L. was carried out and formation of nanoparticles were confirmed and evaluated using UV-Visible spectroscopy and AFM. Results: The plant extracts exposed with silver nitrate showed gradual change in color of the extract from yellow to dark brown. Different silver nanoperticles were formed using extracts of different plant parts. Conclusion: It seems that the plant parts differ in their ability to act as a reducing and capping agent.

  1. Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4(+) assimilation and nitrogen derived protective compounds.

    Science.gov (United States)

    Navarro-León, Eloy; Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2016-07-01

    Zinc (Zn) deficiency is a major problem in agricultural crops of many world regions. N metabolism plays an essential role in plants and changes in their availability and their metabolism could seriously affect crop productivity. The main objective of the present work was to perform a comparative analysis of different strategies against Zn deficiency between two plant species of great agronomic interest such as Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. For this, both species were grown in hydroponic culture with different Zn doses: 10μM Zn as control and 0.01μM Zn as deficiency treatment. Zn deficiency treatment decreased foliar Zn concentration, although in greater extent in B. oleracea plants, and caused similar biomass reduction in both species. Zn deficiency negatively affected NO3(-) reduction and NH4(+) assimilation and enhanced photorespiration in both species. Pro and GB concentrations were reduced in L. sativa but they were increased in B. oleracea. Finally, the AAs profile changed in both species, highlighting a great increase in glycine (Gly) concentration in L. sativa plants. We conclude that L. sativa would be more suitable than B. oleracea for growing in soils with low availability of Zn since it is able to accumulate a higher Zn concentration in leaves with similar biomass reduction. However, B. oleracea is able to accumulate N derived protective compounds to cope with Zn deficiency stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Production of wide hybrids and backcross progenies between Diplotaxis erucoides and crop brassicas.

    Science.gov (United States)

    Vyas, P; Prakash, S; Shivanna, K R

    1995-03-01

    Intergeneric hybrids were produced between D. erucoides (♀), a wild species, and four cultivated species of Brassica, B. campestris, B. juncea, B. napus and B. oleracea, through embryo rescue. The hybrid nature of these plants was confirmed through morphological and cytological studies. Backcross pollinations with the pollen of the respective cultivars yielded BC progenies in the hybrids D. erucoides x B. juncea and D. erucoides x B. napus but not in D. erucoides x B. campestris and D. erucoides x B. oleracea. The hybrid D. erucoides x B. campestris was also used as a bridge species and crossed with B. juncea to raise the hybrid and backcross progenies. F2 progenies were more amenable than f1 hybrids for raising backcross progenies. Although D. erucoides is considered to be a close relative of B. campestris and B. oleracea, incompatibility barriers of this species with different cultivars do not reflect this relationship.

  3. (Spinacia oleracea L.) tissue culture

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... Spinach (Spinacia oleracea L.) is an important vegetable crop of which dioecy in nature has made cultivar improvement difficult using .... hormonal treatments at callous formation stage in all cultivars. Treatment. Means of callous ... hormones in the medium (Molvig and Rose, 1994), as shown in our present ...

  4. Effect of Heavy Metals in Plants of the Genus Brassica.

    Science.gov (United States)

    Mourato, Miguel P; Moreira, Inês N; Leitão, Inês; Pinto, Filipa R; Sales, Joana R; Martins, Luisa Louro

    2015-08-04

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra.

  5. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  6. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.

    Science.gov (United States)

    The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...

  8. Especificidade de hospedeiro nas interações Xanthomonas campestris pv. campestris - brássicas Host specificity in interaction Xanthomonas campestris pv. campestris - brassicas

    Directory of Open Access Journals (Sweden)

    Dulândula Silva Miguel-Wruck

    2010-06-01

    Full Text Available Face às escassas informações acerca da variabilidade patogênica de isolados brasileiros de Xanthomonas campestris pv. campestris, realizou-se um estudo para avaliar a especificidade patogênica de trinta e três isolados do patógeno, provenientes de várias regiões do Brasil e do exterior, a oito espécies de brássicas, através de inoculação por meio de injeção da suspensão bacteriana nas folhas. Desse total, 12 isolados foram obtidos de couve-comum (Brassica oleracea var. acephala, nove de repolho (B. oleracea var. capitata, cinco de couve-flor (B. oleracea var. botrytis, dois de canola (B. napus, um de brócolos (B. oleracea var. italica, um de couve-chinesa (B. chinensis, um de couve-rábano (B. oleracea var. gongylodes e dois de rabanete (Raphanus sativus. A avaliação da patogenicidade dos isolados da bactéria, frente aos hospedeiros em estudo, demonstrou que 14 deles não apresentaram especificidade, originando sintomas em todas as diferentes plantas inoculadas. Os 19 isolados restantes, entretanto, apresentaram relativo grau de especificidade, não causando doença em uma ou mais das plantas inoculadas.Considering the lack of information in literature about the pathogenic variability of Brazilian isolates of Xanthomonas campestris pv. campestris, a study was carried out to determine the pathogenic specificity of 33 isolates of this bacterium originated from several regions of Brazil and overseas to eight different Brassica species, through inoculation by means of injection of the bacterial suspension in leaves. From these isolates, 12 were obtained from collard greens (Brassica oleracea var. acephala, nine from cabbage (B. oleracea var. capitata, five from cauliflower (B. oleracea var. botrytis, two from canola (B. napus, one from broccoli (B. oleracea var. italica, one from Chinese cabbage (B. chinensis, one from kohlrabi (B. oleracea var. gongylodes and two from radish (Raphanus sativus. The pathogenicity of the bacterium

  9. Flowering Time Gene Variation in Brassica Species Shows Evolutionary Principles.

    Science.gov (United States)

    Schiessl, Sarah V; Huettel, Bruno; Kuehn, Diana; Reinhardt, Richard; Snowdon, Rod J

    2017-01-01

    Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We have deep-sequenced all paralogs of 35 Arabidopsis thaliana flowering regulators using Sequence Capture followed by Illumina sequencing in two selected accessions of the vegetable species Brassica rapa and Brassica oleracea, respectively. Using these data, we were able to call SNPs, InDels and copy number variations (CNVs) for genes from the total flowering time network including central flowering regulators, but also genes from the vernalisation pathway, the photoperiod pathway, temperature regulation, the circadian clock and the downstream effectors. Comparing the results to a complementary data set from the allotetraploid species Brassica napus, we detected rearrangements in B. napus which probably occurred early after the allopolyploidisation event. Those data are both a valuable resource for flowering time research in those vegetable species, as well as a contribution to speciation genetics.

  10. Flowering Time Gene Variation in Brassica Species Shows Evolutionary Principles

    Directory of Open Access Journals (Sweden)

    Sarah V. Schiessl

    2017-10-01

    Full Text Available Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We have deep-sequenced all paralogs of 35 Arabidopsis thaliana flowering regulators using Sequence Capture followed by Illumina sequencing in two selected accessions of the vegetable species Brassica rapa and Brassica oleracea, respectively. Using these data, we were able to call SNPs, InDels and copy number variations (CNVs for genes from the total flowering time network including central flowering regulators, but also genes from the vernalisation pathway, the photoperiod pathway, temperature regulation, the circadian clock and the downstream effectors. Comparing the results to a complementary data set from the allotetraploid species Brassica napus, we detected rearrangements in B. napus which probably occurred early after the allopolyploidisation event. Those data are both a valuable resource for flowering time research in those vegetable species, as well as a contribution to speciation genetics.

  11. The position of localized soil compaction determines root and subsequent shoot growth responses.

    Science.gov (United States)

    Montagu, K D; Conroy, J P; Atwell, B J

    2001-11-01

    Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.

  12. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Akbar Safari Sinegani

    2017-01-01

    Full Text Available Introduction: The study of symbiotic relationship between arbuscular mycorrhizal fungi (AMF and medicinal plants is very important. Information about the symbiosis of medicinal plant species with AMF in the semi-arid regions of Iran is rare. This information allows increasing knowledge of the biology and ecology of these plant species. Materials and methods: The existence of AM symbiosis in 48 medicinal plant species (belonging to 9 families was studied by root staining. Soil around the root of each species was sampled and analyzed for all soil properties which may be interrelated to AM symbiosis. The importance of different soil properties in AMF and plant biological relationship and the dependency of root colonization and spore formation by AMF on soil properties were statistically analyzed. Results: Among them Lepidium sativum, Brassica oleracea, Cheiranthus cheiri, Beta vulgaris, Spinacia oleracea, Malva sylvestris, Zygophyllum fabago, Arctium Lappa have not been colonized by AM fungi. Colonization and spore density of perennial plants were slightly higher than those of annual plants and were varied among different plant families. Soil texture and available phosphorous were the most important soil properties affecting fungal root colonization and spore numbers. Discussion and conclusion: Although in accordance with other researches, most of the medicinal plants from Brassicaceae family had no mycorrhizal symbiosis, a few of them had this type of symbiosis. Dependency of spore formation by AM fungi on soil properties was higher than dependency of root colonization percentage on soil properties. Increasing root colonization and spore numbers with increasing the percentage of sand and decreasing the percentage of clay and available phosphorous in soils show that plants are more depended on mycorrhizal symbiosis in hard environments and less productive soils.

  13. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida state

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2014-04-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  14. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida State

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2016-03-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  15. Proteomic analysis of Brassica alboglabra in Response to Herbicide ...

    African Journals Online (AJOL)

    Aishah

    2013-05-15

    May 15, 2013 ... Chinese kale (Brassica alboglabra) is a famous and extensively grown vegetable in Southeast Asia. Despite its nutritional values, .... possibility of affecting the protein level. The plants parts used were cut leaves, stems and roots and weighed before subjection to protein extraction. The roots were washed ...

  16. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg-1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg-1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg-1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Anthocyanins facilitate tungsten accumulation in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  18. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Xiafang [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: xfsheng604@sohu.com; Xia Juanjuan; Jiang Chunyu; He Linyan; Qian Meng [MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2008-12-15

    Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation. - Heavy metal-resistant endophytic bacteria from rape have the potential of promoting the growth and lead uptake of rape.

  19. Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement

    Directory of Open Access Journals (Sweden)

    Guixiang Wang

    2016-08-01

    Full Text Available Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower ‘Korso’ (Brassica oleracea var. botrytis, 2n = 18, CC genome and black mustard ‘G1/1’ (Brassica nigra, 2n = 16, BB genome. However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits and physiological (black rot/club root resistance characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from ‘Korso’. Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms analysis identified the presence of ‘G1/1’ DNA segments (average 7.5%. Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1% was significantly higher than presence of novel bands (1.4%, and the presence of fragments specific to B. carinata (BBCC 2n = 34 were common (average 15.5%. Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4% was more frequent than hypomethylation (4.8%. Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  20. Zakres żywicieli grzyba Plasmodiophora brassicae Wor. [The host range of the fungus Plasmodiophora brassicae Wor.

    Directory of Open Access Journals (Sweden)

    B. Nowicki

    2015-06-01

    Full Text Available On the basis of clubs present on roots and resting-spores present in root cells it was shown that 132 plant species and varietes from the family Cruciferae out of 174 tested were susceptible to infection with Plasmodiophora brassicae. The susceptible plants included all the species cultivated in Poland and all the common weeds with the exception of Barbarea vulgaris.

  1. Small RNA changes in synthetic Brassica napus.

    Science.gov (United States)

    Fu, Ying; Xiao, Meili; Yu, Huasheng; Mason, Annaliese S; Yin, Jiaming; Li, Jiana; Zhang, Dongqing; Fu, Donghui

    2016-09-01

    Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization. Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1-S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.

  2. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  3. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895 Dowson 1939, on Brassicas in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2012-01-01

    Full Text Available Brassicas form the most important group of vegetable crops in Montenegro. The cabbage(Brassica oleracea var. capitata is most commonly grown, although other brassicas,particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly producedsince recently. One of the specialties of vegetable production in Montenegro is growing ofcollard (Brassica oleracea var. acephala, which is the simplest variety of the Brassica oleraceaspecies and in the nearest relation with their wild ancestor – the sylvestris variety.Diseases are the main restrictive factors for successful production of these vegetables.Susceptibility of the cultivars and inadequate control often result in more or less damagedcrops in some plots.Causal agents of brassica diseases, especially bacterial, have not been investigated inMontenegro until 2009. Since the symptoms observed in 2009 were „V” shaped leaf edgenecrosis and black rot of vascular tissue, it was assumed that they were caused by plantpathogenic bacterium Xanthomonas campestris pv. campestris.Samples of the infected plants were collected from different localities in Montenegro.Isolation and identification of the bacterium were performed using laboratory methodsaccording to Schaad (1980, Lelliott and Stead (1987 and Arsenijević (1997. Examinationof chosen bacterial isolates was conducted using both, classical bacteriological methods(examination of their pathogenic, morphological, cultivation and biochemical and physiologicalcharacteristics, and ELISA test.The obtained results confirmed the presence of X.campestris pv. campestris (Pammel,1895 Dowson 1939, on cabbage, kale, broccoli and collard in Montenegro. This is the firstexperimental evidence that collard is the host of X. campestris pv. campestris in Montenegro.

  4. Contamination of Chinese Cabbage Soil with Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Jae-Woo Soh

    2013-09-01

    Full Text Available This research was performed to establish basic technology for Chinese cabbage clubroot chemical control by investigating the soil contamination of Plasmodiophora brassicae in major producing regions of fall Chinese cabbage. PCR primers were developed to detect P. brassicae, a causal agent of Chinese cabbage club-root that generally occurs in Cruciferae family. A primer set, PbbtgF761 and PbbtgR961, specifically amplified a 245 bp fragment from P. brassicae only. At places well known for fall Chinese cabbage, 10 out of 33 in Haenam-gun, 5 out of 13 in Yeongam-gun and Yeonggwang-gun, 1 out of 6 in Gochang-gun, 2 out of 12 in Hongseong-gun, and 5 out of 17 in Dangjin-si resulted positive for P. brassicae contamination. The results show that the soil contamination rate of P. brassicae was 30.3% in Haenam-gun, 38.5% in Yeongam-gun and Yeonggwang-gun, 16.7% in Gochang-gun, 16.7% in Hongseong-gun, and 29.4% in Dangjin-si. The six places where Chinese cabbage clubroot was visible by naked eye were 100% confirmed by the PCR test of the P. brassicae contaminated soil. Thus, simple PCR test may be utilized as an index to decide on chemical control of P. brassicae.

  5. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    Science.gov (United States)

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    Science.gov (United States)

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  7. Accumulation of heavy metals in Spinacia oleracea irrigated with paper mill effluent and sewage.

    Science.gov (United States)

    Pathak, Chakresh; Chopra, A K; Srivastava, Sachin

    2013-09-01

    The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49 ± 5.97 mg/kg) and root (363.94 ± 11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.

  8. Phytoremediation of fluoride with garden ornamentals Nerium oleander, Portulaca oleracea, and Pogonatherum crinitum.

    Science.gov (United States)

    Khandare, Rahul V; Desai, Shaileshkumar B; Bhujbal, Sourabh S; Watharkar, Anuprita D; Biradar, Shivtej P; Pawar, Pankaj K; Govindwar, Sanjay P

    2017-03-01

    Nursery grown plants of Nerium oleander, Pogonatherum crinitum, and Portulaca oleracea were observed to remove fluoride up to 92, 80, and 73%, respectively, from NaF solution at the concentration of 10 mg L-1 within 15 days. Concentration range of 10-50 mg L-1 of fluoride revealed a constant decrease of removal from 92 to 51% within 15 days by N. oleander, while the biomass (one to five plants) showed enhancement in removal from 74 to 98% in 10 days. Translocation and bioaccumulation factors calculated after fluoride contents in roots and leaves of N. oleander, P. crinitum, and P. oleracea were 1.85, 1.19, and 1.43, and 9.8, 3.6, and 2.2, respectively. P . oleracea, P. crinitum, and N. oleander showed reductions in chlorophyll contents by 40, 57 and 25 and 8%, carbohydrates by 50, 44, and 16%, and proteins by 38, 53, and 15%, respectively. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in the roots of P. oleracea, P. crinitum, and N. oleander were observed to be induced by 400, 383, and 500%; 80, 105, and 424%; and 153, 77, and 71%, respectively, while the leaves showed induction in SOD, CAT, and GPX activities by 550, 315, and 165%; 196, 227, and 243%; and 280, 242, and 184%, respectively. Results endorsed the superiority of N. oleander for fluoride removal over other plant species.

  9. A Complex Recombination Pattern in the Genome of Allotetraploid Brassica napus as Revealed by a High-Density Genetic Map

    Science.gov (United States)

    Yi, Bin; Fan, Chuchuan; Edwards, David; Batley, Jacqueline; Zhou, Yongming

    2014-01-01

    Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. rapa, B. oleracea, as well as Arabidopsis, which has a common ancestor with these three species, will provide valuable information about the generation and evolution of allopolyploidy. Based on a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, we performed a comparative genomic analysis of B. napus with Arabidopsis and its progenitor species B. rapa and B. oleracea. Based on the collinear relationship of B. rapa and B. oleracea in the B. napus genetic map, the B. napus genome was found to consist of 70.1% of the skeleton components of the chromosomes of B. rapa and B. oleracea, with 17.7% of sequences derived from reciprocal translocation between homoeologous chromosomes between the A- and C-genome and 3.6% of sequences derived from reciprocal translocation between non-homologous chromosomes at both intra- and inter-genomic levels. The current study thus provides insights into the formation and evolution of the allotetraploid B. napus genome, which will allow for more accurate transfer of genomic information from B. rapa, B. oleracea and Arabidopsis to B. napus. PMID:25356735

  10. Rapid Separation of Indole Glucosinolates in Roots of Chinese Cabbage (Brassica rapa Subsp. Pekinensis by High-Performance Liquid Chromatography with Diode Array Detection

    Directory of Open Access Journals (Sweden)

    Alfredo Aires

    2017-01-01

    Full Text Available Glucosinolates are a class of sulphur-containing plant compounds with diverse biological properties. They have been found exclusively in the Brassicaceae family plants and studied exhaustively in biosynthetic and application perspectives. The aim of this current study is to present a simple and updated method to quantify indole glucosinolate content in hairy root cultures of Chinese cabbage by HPLC-DAD-UV/Vis. Method validation controls were performed and recovery experiments were assayed. The data was statically treated and compared with published works. The current method allowed a feasible identification of indole glucosinolates and it was possible to identify accurately three indole glucosinolate compounds (glucobrassicin, 4-methoxyglucobrassicin, and 1-methoxyglucobrassicin in roots of Chinese cabbage. The method demonstrated a good linearity (R2>0.99, a good precision, and selectivity sensitivity. In conclusion, this protocol provides an accessible method to extract and quantify glucosinolates in plant samples. Thus, based on our results, the method is valid and can be extended to other plant or food matrices.

  11. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop.

    Science.gov (United States)

    Hwang, Sheau-Fang; Strelkov, Stephen E; Feng, Jie; Gossen, Bruce D; Howard, Ron J

    2012-02-01

    Plasmodiophora brassicae causes clubroot disease in cruciferous plants, and is an emerging threat to Canadian canola (Brassica napus) production. This review focuses on recent studies into the pathogenic diversity of P. brassicae populations, mechanisms of pathogenesis and resistance, and the development of diagnostic tests for pathogen detection and quantification. Plasmodiophora brassicae is a soil-borne, obligate parasite within the class Phytomyxea (plasmodiophorids) of the protist supergroup Rhizaria. Clubroot development is characterized by the formation of club-shaped galls on the roots of affected plants. Above-ground symptoms include wilting, stunting, yellowing and premature senescence. DISEASE CYCLE: Plasmodiophora brassicae first infects the root hairs, producing motile zoospores that invade the cortical tissue. Secondary plasmodia form within the root cortex and, by triggering the expression of genes involved in the production of auxins, cytokinins and other plant growth regulators, divert a substantial proportion of plant resources into hypertrophic growth of the root tissues, resulting in the formation of galls. The secondary plasmodia are cleaved into millions of resting spores and the root galls quickly disintegrate, releasing long-lived resting spores into the soil. A serine protease, PRO1, has been shown to trigger resting spore germination. PHYSIOLOGICAL SPECIALIZATION: Physiological specialization occurs in populations of P. brassicae, and various host differential sets, consisting of different collections of Brassica genotypes, are used to distinguish among pathotypes of the parasite. DETECTION AND QUANTIFICATION: As P. brassicae cannot be cultured, bioassays with bait plants were traditionally used to detect the pathogen in the soil. More recent innovations for the detection and quantification of P. brassicae include the use of antibodies, quantitative polymerase chain reaction (qPCR) and qPCR in conjunction with signature fatty acid analysis

  12. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Science.gov (United States)

    Panjabi, Priya; Jagannath, Arun; Bisht, Naveen C; Padmaja, K Lakshmi; Sharma, Sarita; Gupta, Vibha; Pradhan, Akshay K; Pental, Deepak

    2008-01-01

    Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions

  13. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis.

    Science.gov (United States)

    Owji, Hajar; Hajiebrahimi, Ali; Seradj, Hassan; Hemmati, Shiva

    2017-12-01

    Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  15. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa[C][W

    Science.gov (United States)

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A.; Wang, Xiaowu

    2013-01-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers. PMID:23653472

  16. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  17. Brassicas limited in weed control

    OpenAIRE

    Kristiansen, P

    2006-01-01

    This article discusses the limitations of using brassica cover crops for weed control. A brief overview of the role of cover crops is provided, followed by a short review of research looking at brassica cover crops.

  18. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    Science.gov (United States)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  19. A new time-saving transformation system for Brassica napus

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep. 21: 599-604. Ce´sar Petri, SL, Nuria A, Jose E, Lorenzo B (2008). An antibiotic- based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Sci.

  20. Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae.

    Science.gov (United States)

    Hawkins, G P; Nykiforuk, C L; Johnson-Flanagan, A M; Boothe, J G

    1996-08-01

    Molecular genetics is becoming an important tool in the breeding and selection of agronomically important traits. BN28 is a low temperature induced gene in Brassicaceae species. PCR and Southern blot analysis indicate that BN28 is polymorphic in the three diploid genomes: Brassica rapa (AA), Brassica nigra (BB), and Brassica oleracea (CC). Of the allotetraploids, Brassica napus (AACC) is the only species to have inherited homologous genes from both parental genomes. Brassica juncea (AABB) and Brassica carinata (BBCC) have inherited homologues from the AA and CC genomes, respectively, while Sinapsis arvensis (SS) contains a single homologue from the BB genome and Sinapsis alba (dd) appears to be different from all the diploid parents. All species show message induction when exposed to low temperature. However, differences in expression were noticed at the protein level, with silencing occurring in the BB genome at the level of translation. Results suggest that silencing is occurring in diploid species where duplication may not have occurred. Molecular characterization and inheritance of BN28 homologues in the Brassicaceae may play an important role in determining their quantitative function during exposure to low temperature. Key words : Brassicaceae, BN28, inheritance, polymorphism.

  1. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    Science.gov (United States)

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.

  2. Genome-Wide Survey and Characterization of Fatty Acid Desaturase Gene Family in Brassica napus and Its Parental Species.

    Science.gov (United States)

    Xue, Yufei; Chen, Baojun; Wang, Rui; Win, Aung Naing; Li, Jiana; Chai, Yourong

    2018-02-01

    Rapeseed (Brassica napus) is an important oilseed crop worldwide, and fatty acid (FA) compositions determine the nutritional and economic value of its seed oil. Fatty acid desaturases (FADs) play a pivotal role in regulating FA compositions, but to date, no comprehensive genome-wide analysis of FAD gene family in rapeseed and its parent species has been reported. In this study, using homology searches, 84, 45, and 44 FAD genes were identified in rapeseed, Brassica rapa, and Brassica oleracea genomes, respectively. These FAD genes were unevenly located in 17 chromosomes and 2 scaffolds of rapeseed, 9 chromosomes and 1 scaffold of B. rapa, and all the chromosomes of B. oleracea. Phylogenetic analysis showed that the soluble and membrane-bound FADs in the three Brassica species were divided into four and six subfamilies, respectively. Generally, the soluble FADs contained two conserved histidine boxes, while three highly conserved histidine boxes were harbored in membrane-bound FADs. Exon-intron structure, intron phase, and motif composition and position were highly conserved in each FAD subfamily. Putative subcellular locations of FAD proteins in three Brassica species were consistent with those of corresponding known FADs. In total, 25 of simple sequence repeat (SSR) loci were found in FAD genes of the three Brassica species. Transcripts of selected FAD genes in the three species were examined in various organs/tissues or stress treatments from NCBI expressed sequence tag (EST) database. This study provides a critical molecular basis for quality improvement of rapeseed oil and facilitates our understanding of key roles of FAD genes in plant growth and development and stress response.

  3. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  4. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2016-09-01

    Full Text Available Botrytis-induced kinase1 (BIK1, a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1 and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2 and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P. brassicae. Compared with that of the wild-type plants, the root hair and cortical infection rate of bik1 mutant were significantly reduced by about 40-50%. A considerable portion of bik1 roots failed to form typical galls. Even if some small galls were formed, they were filled with multinucleate secondary plasmodia. The bik1 plants accumulated less reactive oxygen species (ROS at infected roots than other mutants and wild-type plants. Exogenous salicylic acid (SA treatment alleviated the clubroot symptoms in wild-type plants, and the expression of the SA signaling marker gene PR1 was significantly increased in bik1. Both sid2 (salicylic acid induction-deficient 2 and npr1-1 (non-expresser of PR genes that regulate systemic acquired resistance (SAR mutants showed increased susceptibility to P. brassicae compared with wild-type plants. These results suggest that the resistance of bik1 to P. brassicae is possibly mediated by SA inducible mechanisms enhance the resistance to clubroot disease.

  5. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity.

    Science.gov (United States)

    Steinwender, Bernhardt M; Enkerli, Jürg; Widmer, Franco; Eilenberg, Jørgen; Kristensen, Hanne L; Bidochka, Michael J; Meyling, Nicolai V

    2015-11-01

    Metarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark. Thirty-six root samples from each of the three crops were collected within an area of approximately 3ha. The roots were rinsed with sterile water, homogenized and the homogenate plated onto selective media. A subset of 126 Metarhizium isolates were identified to species by sequencing of the 5' end of the gene translation elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed that six multilocus genotypes (MLGs) were present among the M. brunneum and M. robertsii isolates, respectively. A single MLG of M. brunneum represented 66.7%, 79.1% and 79.2% of the total isolates obtained from oat, rye and cabbage, respectively. The isolation of Metarhizium spp. and their MLGs from roots revealed a comparable community composition as previously reported from the same agroecosystem when insect baiting of soil samples was used as isolating technique. No specific MLG association with a certain crop was found. This study highlights the diversity of Metarhizium spp. found in the rhizosphere of different crops within a single agroecosystem and suggests that plants either recruit fungal associates from the surrounding soil environment or even govern the composition of Metarhizium populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome

    Science.gov (United States)

    2013-01-01

    Background Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. Results We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. Conclusion A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in

  7. Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species

    Science.gov (United States)

    2012-01-01

    Background Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare. Results In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus. Conclusions Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance. PMID:23216693

  8. Analysis of Interrelationships of Phenological and Morphological Traits and Grain Yield of Brassica Species under Contrasting Moisture Regimes

    Directory of Open Access Journals (Sweden)

    F. Rashidi

    2016-05-01

    Full Text Available In this study 36 canola genotypes from seven different species including Brassica. napus, B. rapa, B. oleracea, B. juncea, B. carinata, B. nigra and B. friticulosa were evaluated under non-stressed, moderate and sever drought stress conditions during 2011-2012 in a field experiment. The relationships among different traits were assessed. Results of analysis of variance (ANOVA indicated high variation among genotypes for most of the studied traits. Cultivar by environment interaction was significant for most of the traits, suggesting differential genotypic responses to moistures conditions. The correlation results for the three B. napus, B. rapa and B. oleracea were divided in three levels of watering regime and the coefficients were found to be species-specific but overall correlation coefficients showed that there was significant and positive correlations between grain yield and number of pods per plant and 1000 grain weight, irrespective of watering regime. Results of stepwise regression were suggestive of species and watering-specificity. Under non-stress conditions the greatest direct effect on grain yield belonged to pod length for B. napus and number of pods per plant for B. rapa and B. oleracea. Results indicated that in order to improve grain yield indirectly, breeding strategies should be specific for each Brassica species.

  9. Unique chromosome behavior and genetic control in Brassica x Orychophragmus wide hybrids: a review.

    Science.gov (United States)

    Li, Zai-yun; Ge, Xian-hong

    2007-06-01

    Researchers recognized early that chromosome behavior, as other morphological characters, is under genetic control and gave some cytogenetical examples such as the homoeologous chromosome pairing in wheat. In the intergeneric sexual hybrids between cultivated Brassica species and another crucifer Orychophragmus violaceus, the phenomenon of parental genome separation was found under genetic control during mitosis and meiosis. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids (B. rapa, B. nigra and B. oleracea) might contribute to the different cytology of hybrids with three tetraploids (B. napus, B. juncea and B. carinata). The finding that genome-specific retention or loss of chromosomes in hybrids of O. violaceus with B. carinata and synthetic Brassica hexaploids (2n=54, AABBCC) is likely related to nucleolar dominance gives new insight into the molecular mechanisms regarding the cytology in these hybrids. It is proposed that the preferential expressions of genes for centromeric proteins from one parent (such as the well presented centromeric histone H3) are related with chromosome stability in wide hybrids and nucleolar dominance is beneficial to the production of centromere-specific proteins of the rRNAs-donor parent and to the stability of its chromosomes.

  10. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Science.gov (United States)

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  11. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  12. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  13. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. Kn/Ks values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  14. Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil.

    Science.gov (United States)

    Hou, Jing-; Liu, Guan-Nan; Xue, Wei; Fu, Wen-Jun; Liang, Bao-Cui; Liu, Xin-Hui

    2014-03-01

    The present study aimed to determine the toxic effects of chromium (Cr) on cabbage (Brassica oleracea), cucumber (Cucumis sativus), lettuce (Lactuca sativa), wheat (Triticum aestivum), and corn (Zea mays), and identify the sensitive plant species and appropriate bioassays for potential use in phytotoxicity assessment of Cr in soil. Results showed that seed germination might not be a sensitive assay for assessing Cr toxicity because at most of the Cr levels there were no toxic effects. Root elongation was more sensitive to Cr than seed germination. The lowest concentration of adverse effect (LOAEC) of lettuce was 20 mg Cr/kg(-1) soil, and that of the other 4 species was 50 mg Cr/kg(-1) soil. The mitotic index fluctuated with increasing Cr concentration, thus it was insufficient to assess toxicity of Cr in soil. However, micronucleus assay showed that 5 mg Cr/kg(-1) soil caused a significant increase in micronucleus frequency in cabbage, cucumber, and lettuce. For wheat and corn, however, the LOAEC was 20 and 50 mg/Cr/kg(-1) soil, respectively. Furthermore, the analysis of Cr accumulation showed that lettuce significantly accumulated Cr for all the tested concentrations. However, corn and wheat significantly accumulated Cr only with the highest tested dose. This may explain the higher inhibitory effects of Cr on root growth. It can be concluded that root elongation and micronucleus assay are good indicators to assess the phytotoxicity of Cr in soil. Lettuce is the most sensitive species for indicating the toxicity of Cr in soil. © 2013 SETAC.

  15. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences

    Directory of Open Access Journals (Sweden)

    Hurban Patrick

    2009-05-01

    Full Text Available Abstract Background The Brassica species include an important group of crops and provide opportunities for studying the evolutionary consequences of polyploidy. They are related to Arabidopsis thaliana, for which the first complete plant genome sequence was obtained and their genomes show extensive, although imperfect, conserved synteny with that of A. thaliana. A large number of EST sequences, derived from a range of different Brassica species, are available in the public database, but no public microarray resource has so far been developed for these species. Results We assembled unigenes using ~800,000 EST sequences, mainly from three species: B. napus, B. rapa and B. oleracea. The assembly was conducted with the aim of co-assembling ESTs of orthologous genes (including homoeologous pairs of genes in B. napus from each of the A and C genomes, but resolving assemblies of paralogous, or paleo-homoeologous, genes (i.e. the genes related by the ancestral genome triplication observed in diploid Brassica species. 90,864 unique sequence assemblies were developed. These were incorporated into the BAC sequence annotation for the Brassica rapa Genome Sequencing Project, enabling the identification of cognate genomic sequences for a proportion of them. A 60-mer oligo microarray comprising 94,558 probes was developed using the unigene sequences. Gene expression was analysed in reciprocal resynthesised B. napus lines and the B. oleracea and B. rapa lines used to produce them. The analysis showed that significant expression could consistently be detected in leaf tissue for 35,386 unigenes. Expression was detected across all four genotypes for 27,355 unigenes, genome-specific expression patterns were observed for 7,851 unigenes and 180 unigenes displayed other classes of expression pattern. Principal component analysis (PCA clearly resolved the individual microarray datasets for B. rapa, B. oleracea and resynthesised B. napus. Quantitative differences in

  16. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    Science.gov (United States)

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  17. Comparison of five major trichome regulatory genes in Brassica villosa with orthologues within the Brassicaceae.

    Directory of Open Access Journals (Sweden)

    Naghabushana K Nayidu

    Full Text Available Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1, GLABRA 2 (GL2, ENHANCER OF GLABRA 3 (EGL3, and TRANSPARENT TESTA GLABRA 1 (TTG1 and the negative regulator TRIPTYCHON (TRY, were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae.

  18. Nitrate reductase activity in cabbage (Brassica oleracae var. capitata seedlings affected by the different nitrogen fertilizer forms

    Directory of Open Access Journals (Sweden)

    Metin Turan

    2013-12-01

    Full Text Available The effect of different nitrogen fertilizer (potassium nitrate, ammonium nitrate, ammonium sulphate, urea and farmyard manure on nitrate reductase activity in cabbage (Brassica oleracea var. capitata seedlings were studied. pH of the plant growth niedia was higher in the nitrate fertilizer treatment than the ammonium and other fertilizer forms. NO3--N application increased NRA in plant, but NH4+-N decreased NRA in plant. Harvesting date and different fertilizer doses increased NRA while NH4+-N decreased plant nitrate uptake. There was a significant relationship between NRA and fertilizer types.

  19. An Ultra-Performance Liquid Chromatoghraphy-Tandem Mass Spectrometry (UPLC-MS/MS) Method for the Rapid and Sensitive Determination of Sulforaphane and Sulforaphane Nitrile in Brassica Vegetables

    OpenAIRE

    Alvarez Jubete, Laura; Smyth, Thomas J.; Valverde, Juan; Rai, Dilip K.; Barry-Ryan, Catherine

    2013-01-01

    A rapid UPLC-MS/MS method has been developed and validated for the simultaneous analysis of sulforaphane and sulforaphane nitrile from Brassica Oleracea L. This method was developed utilising an Acquity BEH C8 column with gradient elution combined with tandem mass spectrometry detection, using positive ion electrospray ionisation in multiple reaction monitoring (MRM) mode. The method was validated for linearity, sensitivity, precision, accuracy, matrix effects and recovery. The retention time...

  20. Case study of Spinacia oleracea L.

    African Journals Online (AJOL)

    The objective of the study was to measure concentrations of Cu, Ni and Zn in Spinacia oleracea cultivated at a site near the copper and nickel mine in Selebi Phikwe. The mean concentrations (in dry matter-basis) of Cu, Zn and Ni in the whole plant system were 7.30 ± 2.51, 6.02 ± 2.16 and 0.03 ± 0.02, mg/kg, respectively.

  1. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus.

    Science.gov (United States)

    Ge, Xian-Hong; Wang, Jing; Li, Zai-Yun

    2009-07-01

    In sexual hybrids between cultivated Brassica species and another crucifer, Orychophragmus violaceus (2n = 24), parental genome separation during mitosis and meiosis is under genetic control but this phenomenon varies depending upon the Brassica species. To further investigate the mechanisms involved in parental genome separation, complex hybrids between synthetic Brassica allohexaploids (2n = 54, AABBCC) from three sources and O. violaceus were obtained and characterized. Genomic in situ hybridization, amplified fragment length polymorphism (AFLP) and single-strand conformation polymorphism (SSCP) were used to explore chromosomal/genomic components and rRNA gene expression of the complex hybrids and their progenies. Complex hybrids with variable fertility exhibited phenotypes that were different from the female allohexaploids and expressed some traits from O. violaceus. These hybrids were mixoploids (2n = 34-46) and retained partial complements of allohexaploids, including whole chromosomes of the A and B genomes and some of the C genome but no intact O. violaceus chromosomes; AFLP bands specific for O. violaceus, novel for two parents and absent in hexaploids were detected. The complex hybrids produced progenies with chromosomes/genomic complements biased to B. juncea (2n = 36, AABB) and novel B. juncea lines with two genomes of different origins. The expression of rRNA genes from B. nigra was revealed in all allohexaploids and complex hybrids, showing that the hierarchy of nucleolar dominance (B. nigra, BB > B. rapa, AA > B. oleracea, CC) in Brassica allotetraploids was still valid in these plants. The chromosomes of three genomes in these synthetic Brassica allohexaploids showed different genome-specific stabilities (B > A > C) under induction of alien chromosome elimination in crosses with O. violaceus, which was possibly affected by nucleolar dominance.

  2. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn.

    Science.gov (United States)

    Amer, Nasser; Al Chami, Ziad; Al Bitar, Lina; Mondelli, Donato; Dumontet, Stefano

    2013-01-01

    Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L(-1)), and 3 concentrations of Ni (1, 2 and 5 mg L(-1)). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea. Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.

  4. The progress of intersubgenomic heterosis studies in Brassica napus

    African Journals Online (AJOL)

    The new nomenclature of Brassica has been suggested in a previous study by same authours where the symbols of Ar, Aj and An represented the A genome in the Brassica rapa, Brassica juncea and Brassica napus, Bb, Bj and Bc for the B genome of Brassica nigra (black mustard), B. juncea and Brassica carinata, Co, Cn ...

  5. A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species

    Energy Technology Data Exchange (ETDEWEB)

    Op de Beeck, M., E-mail: maarten.opdebeeck@ua.ac.b [Research Group of Plant and Vegetation Ecology, University of Antwerp, Campus Drie Eiken, Department of Biology, Universiteitsplein 1, 2160 Wilrijk (Belgium); De Bock, M., E-mail: maarten.debock@ua.ac.b [Research Group of Molecular Plant Physiology and Biotechnology, University of Antwerp, Campus Groenenborger, Department of Biology, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Vandermeiren, K., E-mail: kavan@var.fgov.b [Veterinary and Agrochemical Research Centre (VAR), Leuvensesteenweg 17, 3080 Tervuren (Belgium); Temmerman, L. de, E-mail: ludet@var.fgov.b [Veterinary and Agrochemical Research Centre (VAR), Leuvensesteenweg 17, 3080 Tervuren (Belgium); Ceulemans, R., E-mail: reinhart.ceulemans@ua.ac.b [Research Group of Plant and Vegetation Ecology, University of Antwerp, Campus Drie Eiken, Department of Biology, Universiteitsplein 1, 2160 Wilrijk (Belgium)

    2010-10-15

    In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g{sub st}) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g{sub st} variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g{sub st} variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O{sub 3} flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.

  6. Taxonomy Icon Data: cabbage [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available _oleracea_S.png Brassica_oleracea_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&...t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Brassica+oleracea&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Brassica+oleracea&t=NS ...

  7. Effects of Crude Extracts of Portulaca oleracea on Haematological ...

    African Journals Online (AJOL)

    Dr Olaleye

    Recent studies have also shown that extracts of P. oleracea cause reduction in locomotion activity and an increase in the onset time of pentylenetetrazole (PTZ) induced convulsion in rats. (Radhakrishnan et al., 2001). This study was aimed at investigating the effects of aqueous and methanolic extracts of Portulaca oleracea.

  8. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing

    Directory of Open Access Journals (Sweden)

    Bus Anja

    2012-06-01

    Full Text Available Abstract Background The complex genome of rapeseed (Brassica napus is not well understood despite the economic importance of the species. Good knowledge of sequence variation is needed for genetics approaches and breeding purposes. We used a diversity set of B. napus representing eight different germplasm types to sequence genome-wide distributed restriction-site associated DNA (RAD fragments for polymorphism detection and genotyping. Results More than 113,000 RAD clusters with more than 20,000 single nucleotide polymorphisms (SNPs and 125 insertions/deletions were detected and characterized. About one third of the RAD clusters and polymorphisms mapped to the Brassica rapa reference sequence. An even distribution of RAD clusters and polymorphisms was observed across the B. rapa chromosomes, which suggests that there might be an equal distribution over the Brassica oleracea chromosomes, too. The representation of Gene Ontology (GO terms for unigenes with RAD clusters and polymorphisms revealed no signature of selection with respect to the distribution of polymorphisms within genes belonging to a specific GO category. Conclusions Considering the decreasing costs for next-generation sequencing, the results of our study suggest that RAD sequencing is not only a simple and cost-effective method for high-density polymorphism detection but also an alternative to SNP genotyping from transcriptome sequencing or SNP arrays, even for species with complex genomes such as B. napus.

  9. Phytoextraction and dissipation of lindane by Spinacia oleracea L.

    Science.gov (United States)

    Dubey, Rama Kant; Tripathi, Vishal; Singh, Nandita; Abhilash, P C

    2014-11-01

    Remediation and management of organochlorine pesticide (OCPs) contaminated soil is becoming a global priority as they are listed in the Stockholm list of persistent organic pollutants (POPs) for global elimination. Lindane is a OCPs candidate recently included in the Stockholm list. However, India has an exemption to produce lindane for malaria control. Because of its widespread use during the last few decades, lindane contaminated soils are found in almost all parts of India. Since phytoremediation is widely acknowledged as an innovative strategy for the clean-up of contaminated soils; the present study was aimed to evaluate the phytoextraction and dissipation of lindane by a leafy vegetable Spinacia oleracea L (Spinach). The test plant was grown in different concentrations of lindane (5, 10, 15 and 20 mg kg(-1)) and harvested at 10, 30 and 45 days. At 45 days, the concentrations of lindane in root and leaf of Spinach growing in four different concentrations were reached up to 3.5, 5.4, 7.6 and 12.3 mg kg(-1) and 1.8, 2.2, 3 and 4.9 mg kg(-1), respectively. There was a significant difference (pSpinach can be used for the phytoremediation of lindane. However, more studies are required to prevent the toxicity of harvested parts. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A and C genome distinction and chromosome identification in brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization.

    Science.gov (United States)

    Howell, Elaine C; Kearsey, Michael J; Jones, Gareth H; King, Graham J; Armstrong, Susan J

    2008-12-01

    The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.

  11. An ultrastructural study of Olpidium brassicae and its transmission of tobacco necrosis virus

    NARCIS (Netherlands)

    Temmink, J.H.M.

    1971-01-01

    This thesis concerns transmission of tobacco necrosis virus (TNV) by zoospores of Olpidiumbrassicae. Electron microscopic observations were made on: a. the fungus, the virus, and the outer layers of seedling roots of two host species (part I); b. ultrastructural aspects of the

  12. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.

    Science.gov (United States)

    Molnár, Árpád; Feigl, Gábor; Trifán, Vanda; Ördög, Attila; Szőllősi, Réka; Erdei, László; Kolbert, Zsuzsanna

    2018-01-01

    Selenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.). Selenate treatment resulted in large selenium accumulation in both Brassica organs, while selenite showed slight root-to-shoot translocation resulting in a much lower selenium accumulation in the shoot. Shoot and root growth inhibition and cell viability loss revealed that Brassica tolerates selenate better than selenite. Results also show that relative high amounts of selenium are able to accumulate in Brassica leaves without obvious visible symptoms such as chlorosis or necrosis. The more severe phytotoxicity of selenite was accompanied by more intense protein tyrosine nitration as well as alterations in nitration pattern suggesting a correlation between the degree of Se forms-induced toxicities and nitroproteome size, composition in Brassica organs. These results imply the possibility of considering protein tyrosine nitration as novel biomarker of selenium phytotoxicity, which could help the evaluation of asymptomatic selenium stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anticonvulsant properties of Euterpe oleracea in mice.

    Science.gov (United States)

    Souza-Monteiro, José Rogerio; Hamoy, Moisés; Santana-Coelho, Danielle; Arrifano, Gabriela P F; Paraense, Ricardo S O; Costa-Malaquias, Allan; Mendonça, Jackson R; da Silva, Rafael F; Monteiro, Wallena S C; Rogez, Hervé; de Oliveira, Diogo L; do Nascimento, José Luiz M; Crespo-López, Maria Elena

    2015-11-01

    Açai (Euterpe oleracea Mart.), a highly consumed fruit in Amazon, is from a common palm with remarkable antioxidant properties. Because oxidative stress and seizures are intimately linked, this study investigated the potential neuroprotective and anticonvulsant effects of commercial clarified açai juice (EO). EO did not alter spontaneous locomotor activity. Four doses of EO were sufficient to increase latencies to both first myoclonic jerk and first generalized tonic-clonic seizure and significantly decrease the total duration of tonic-clonic seizures caused by pentylenetetrazol administration. Also, electrocortical alterations provoked by pentylenetetrazol were prevented, significantly decreasing amplitude of discharges and frequencies above 50 Hz. EO was also able to completely prevent lipid peroxidation in the cerebral cortex, showing a potent direct scavenging property. These results demonstrate for the first time that E. oleracea significantly protects against seizures and seizure-related oxidative stress, indicating an additional protection for humans who consume this fruit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.

    Science.gov (United States)

    Raman, Harsh; Dalton-Morgan, Jessica; Diffey, Simon; Raman, Rosy; Alamery, Salman; Edwards, David; Batley, Jacqueline

    2014-09-01

    An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin in Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    Katsunori Hatakeyama

    Full Text Available Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1a(G004, cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1a(G004 alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1a(A9709 encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection.Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024.

  16. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage.

    Science.gov (United States)

    Feigl, Gábor; Kumar, Devanand; Lehotai, Nóra; Pető, Andrea; Molnár, Árpád; Rácz, Éva; Ördög, Attila; Erdei, László; Kolbert, Zsuzsanna; Laskay, Gábor

    2015-06-01

    Hydroponic experiments were conducted to compare the effects of excess copper (Cu) on growth and photosynthesis in young Indian mustard (Brassica juncea) and oilseed rape (Brassica napus). We compared the effects of excess Cu on the two Brassica species at different physiological levels from antioxidant levels to photosynthetic activity. Nine-day-old plants were treated with Cu (10, 25 and 50 μM CuSO4) for 7 and 14 days. Both species took up Cu from the external solution to a similar degree but showed slight root-to-shoot translocation. Furthermore, after seven days of treatment, excess Cu significantly decreased other microelement content, such as iron (Fe) and manganese (Mn), especially in the shoots of B. napus. As a consequence, the leaves of young Brassica napus plants showed decreased concentrations of photosynthetic pigments and more intense growth inhibition; however, accumulation of highly reactive oxygen species (hROS) were not detected. After 14 days of Cu exposure the reduction of Fe and Mn contents and shoot growth proved to be comparable in the two species. Moreover, a significant Cu-induced hROS accumulation was observed in both Brassica species. The diminution in pigment contents and photosynthetic efficiency were more pronounced in B. napus during prolonged Cu exposure. Based on all the parameters, B. juncea appears to be more resistant to excess Cu than B. napus, rendering it a species with higher potential for phytoremediation.

  17. Growth and Blood Parameters of Weaned Crossbred Beef Calves Fed Forage Kale (Brassica oleracea spp. acephala

    Directory of Open Access Journals (Sweden)

    Y. Chorfi

    2015-01-01

    Full Text Available Forty lightweight calves (206.4±3.2 kg were randomly distributed to four treatments: (Control low nutritive value pasture and hay plus 1 kg d−1 of rolled barley; (Pasture management intensive pasture; (Haylage timothy haylage; and (Kale 50% timothy haylage −50% kale pasture. Blood samples were analysed for thyroid hormones, liver enzymes, glucose, cholesterol, total proteins (TP, albumin, globulins, and urea-N. At the end of the trial, the Pasture group was the heaviest with 323.6±4.2 kg BW and 1.54 kg ADG. Final BW and ADG were similar for the Kale and Haylage groups. Blood T3 was higher for Kale than for the other groups. The T3/T4 ratio was greater for Control at the end of the experiment. There were no treatment differences for T4, aspartate aminotransferase (AST, gamma glutamyl transferase (GGT, glutamate dehydrogenase (GLDH, cholesterol, and glucose. Blood urea-N was lower for Kale and higher for Pasture; however albumin concentrations were greater for Pasture and similar for other treatments. Except for the Control group, calves had a lower concentration of circulating globulins at the end than at the beginning of the experiment. This study showed that Kale could be fed to backgrounding calves without detrimental effects on performance.

  18. Brassica oleracea como fuente de compuestos biosaludables: aproximación genética

    OpenAIRE

    Sotelo Pérez, Tamara

    2015-01-01

    Fecha de lectura de tesis 2015-03-04.-- 253 páginas.-- Dña. Mª Elena Cartea González, Investigadora Científica del Consejo Superior de Investigaciones Científicas y Dña. Pilar Soengas Fernández, Científica titular del Consejo Superior de Investigaciones Científicas, ambas investigadoras de la Misión Biológica de Galicia, en Pontevedra.-- Memoria presentada por Tamara Sotelo Pérez para la obtención del grado de Doctor con Mención Internacional por la Universidad de Vigo

  19. Impact of thermal processing on sulforaphane yield from broccoli (Brassica oleracea L. var. italica)

    Science.gov (United States)

    In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more hea...

  20. The utilization of Vallisneria aethiopica, Brassica oleracea and Pennisetum clandestinum by Tilapia rendalli

    Science.gov (United States)

    Hlophe, S. N.; Moyo, N. A. G.

    A common lawn grass; kikuyu grass, an abundant vegetable; cabbage and vallisneria a common macrophyte were tested for utilisation by two size classes of a herbivorous fish, Tilapia rendalli held in glass aquarium tanks. The test feeds were given to sub-adult T. rendalli for 133 days at 8% body weight and juvenile fish for 84 days at 15% body weight. Sub-adult and juvenile fish fed kikuyu grass attained a higher specific growth rate, higher protein efficiency ratio and better food conversion ratio than those fed cabbage and vallisneria. This is explained by the differences in the protein content, higher levels of lysine and the sulphur-containing amino acid, methionine in kikuyu grass. Palatability studies of the juveniles also showed that kikuyu was most preferred. However, sub-adults preferred vallisneria, kikuyu and cabbage respectively. The possible reasons for the selection are discussed.

  1. Wasted cabbage (Brassica oleracea silages treated with different levels of ground corn andsilage inoculant

    Directory of Open Access Journals (Sweden)

    Adauton Vilela de Rezende

    2015-08-01

    Full Text Available Our objective was to evaluate the chemical composition, fermentation profile, and aerobic stability of cabbage silages treated with ground corn and inoculant. The evaluated treatments were: addition of 200, 300, 400, 500, and 600 g of ground corn per kilogram of cabbage (fresh matter basis, with or without a bacterial inoculant composed of Lactobacillus plantarumand Pediococcus pentosaceus. As expected, ground corn additions increased the dry matter (DM content of cabbage silage, and high values were observed for the highest level of addition (540 g kg−1. Conversely, the crude protein, neutral detergent fiber, acid detergent fiber, and lignin contents decreased with ground corn additions. The in vitro dry matter digestibility coefficients increased slightly with ground corn additions, but all cabbage silages had digestibility higher than 740 g kg−1 of DM. In the fermentation process, the pH values of cabbage silages increased linearly because of the high levels of ground corn addition. Cabbage ensiled with 200 and 300 g kg−1 of ground corn had high ammonia N production and fermentative losses (effluent and gas. Cabbage silage treated with 600 g kg−1 of ground corn had lower maximum pH values during aerobic exposure, but all silages had constant temperature during aerobic exposure. The ensiling of wasted cabbage is possible and we recommend the application of 400 g kg−1ground corn to improve the silage quality, whereas the use of the inoculant is unnecessary.

  2. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea

    DEFF Research Database (Denmark)

    Louarn, S; Torp, A M; Holme, Inger

    2007-01-01

    the remaining eight cultivars were differentiated from the rest in four inseparable pairs. All SSR markers, except one, produced a polymorphic information content (PIC value) of 0.5 or above. The average diversity for all markers within the tested material was 0.64. There was no major difference...

  3. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene

    National Research Council Canada - National Science Library

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-01-01

    .... We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102...

  4. Energy efficient drying strategies to retain nutritional components in broccoli broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the combined optimization of the retention of bioactive components and energy efficiency during drying of broccoli. Kinetics for the degradation of glucosinolates, vitamin C and drying of broccoli are used to calculate optimal drying trajectories for the control variables air flow

  5. Safety assessment and detection method of genetically modified Chinese Kale (Brassica oleracea cv. alboglabra ).

    Science.gov (United States)

    Lin, Chih-Hui; Lu, Chien-Te; Lin, Hsin-Tang; Pan, Tzu-Ming

    2009-03-11

    Sporamins are tuberous storage proteins and account for 80% of soluble protein in sweet potato tubers with trypsin-inhibitory activity. The expression of sporamin protein in transgenic Chinese kale (line BoA 3-1) conferred insecticidal activity toward corn earworm [ Helicoverpa armigera (Hubner)] in a previous report. In this study, we present a preliminary safety assessment of transgenic Chinese kale BoA 3-1. Bioinformatic and simulated gastric fluid (SGF) analyses were performed to evaluate the allergenicity of sporamin protein. The substantial equivalence between transgenic Chinese kale and its wild-type host has been demonstrated by the comparison of important constituents. A reliable real-time polymerase chain reaction (PCR) detection method was also developed to control sample quality. Despite the results of most evaluations in this study being negative, the safety of sporamin in transgenic Chinese kale BoA 3-1 was uncluded because of the allergenic risk revealed by bioinformatic analysis.

  6. Composition of lactic acid bacteria during spontaneous curly kale (Brassica oleracea var. sabellica) fermentation.

    Science.gov (United States)

    Michalak, Magdalena; Gustaw, Klaudia; Waśko, Adam; Polak-Berecka, Magdalena

    2018-01-01

    The present work is the first report on spontaneous fermentation of curly kale and characteristics of autochthonous lactic acid bacteria (LAB). Our results indicate that curly kale fermentation is the new possibility of the technological use of this vegetable. Bacteria representing ten different species were isolated from three phases of curly kale fermentation and identified by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Among them, four species were identified as Lactobacillus spp. (Lb. plantarum 332, Lb. paraplantarum G2114, Lb. brevis R413, Lb. curvatus 154), two as Weissella spp. (W. hellenica 152, W. cibaria G44), two as Pediococcus spp. (P. pentosaceus 45AN, P. acidilactici 2211), one as Leuconostoc mesenteroides 153, and one as Lactococcus lactis 37BN. The functional properties of isolates, i.e. acid, NaCl and bile salt tolerance, enzyme activities, adhesion to hydrocarbons, and antibiotic resistance, were examined. Among the tested strains, Lb. plantarum 332, Lb. paraplantarum G2114, P. pentosaceus 2211, and Lb. brevis R413 exhibited the best hydrophobicity value and high tolerance to bile salts, NaCl, and low pH. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Genotypic and climatic influence on the antioxidant activity of flavonoids in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Zietz, Michaela; Weckmüller, Annika; Schmidt, Susanne; Rohn, Sascha; Schreiner, Monika; Krumbein, Angelika; Kroh, Lothar W

    2010-02-24

    The influence of genotype and climatic factors, e.g. mean temperature and mean global radiation level, on the antioxidant activity of kale was investigated. Therefore, eight kale cultivars, hybrid and traditional, old cultivars, were grown in a field experiment and harvested at four different times. In addition to the investigation of the total phenolic content, the overall antioxidant activity was determined by TEAC assay and electron spin resonance spectrometry. A special aim was to characterize the contribution of single flavonoids to the overall antioxidant activity using an HPLC-online TEAC approach. The antioxidant activity and the total phenolic content were influenced by the genotype and the eco-physiological factors. The HPLC-online TEAC results showed that not all flavonol glycosides contribute to the overall antioxidant activity in the same manner. Taking the results of the structural analysis obtained by HPLC-ESI-MS(n) into account, distinct structure-antioxidant relationships have been observed.

  8. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  9. CARACTERIZAÇÃO FÍSICO-QUÍMICA DO REPOLHO ROXO (Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Gilcenir dos Santos

    2014-07-01

    Full Text Available O repolho roxo é uma planta herbácea, originária do mediterrâneo, encontrada em todos os períodos do ano, contemplador de poucas calorias e rico em antocianina, um pigmento natural, de fácil extração, solúvel em água que confere a coloração vermelha a alimentos, podendo ser utilizado na indústria alimentícia em substituição aos corantes sintéticos. O presente trabalho teve como objetivo realizar a caracterização físico-química do repolho roxo e do seu extrato obtido por maceração em etanol 70% acidificado com HCl 1N e concentrado em evaporador rotatório com intuito de ser utilizado para a obtenção de um corante natural, possuidor de substância promissora na prevenção de doenças degenerativas como o câncer e doenças cardiovasculares. Foram determinados pH, acidez total titulável (ATT, sólidos solúveis(°Brix, atividade de água, umidade e cor . Tanto repolho roxo in natura quanto o seu extrato concentrado apresentou um elevado teor de água e baixa acidez, condições favorável ao desenvolvimento de microorganismo, houve perda na coloração vermelha na produção do extrato concentrado.

  10. Neuroprotective Effect of Brassica oleracea Sprouts Crude Juice in a Cellular Model of Alzheimer's Disease

    National Research Council Canada - National Science Library

    Masci, Alessandra; Mattioli, Roberto; Costantino, Paolo; Baima, Simona; Morelli, Giorgio; Punzi, Pasqualina; Giordano, Cesare; Pinto, Alessandro; Donini, Lorenzo Maria; d'Erme, Maria; Mosca, Luciana

    2015-01-01

    ...), causing neuronal death via oxidative stress. Several studies have highlighted the importance of polyphenolic antioxidant compounds in the treatment of AD, but complex food matrices, characterized by a different relative content...

  11. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    Science.gov (United States)

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Safety evaluations on ethanolic extract of red cabbage (Brassica oleracea L.) in mice.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Sankhari, Jayanta M; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    The present study has carried out safety evaluations on an ethanolic extract of red cabbage (RC) leaves in terms of acute and subchronic oral toxicity tests as per Organisation for Economic Cooperation and Development (OECD) guidelines in Swiss albino mice. Single-dose administration of RC extract (1000, 2000, 3000, 4000, or 5000 mg/kg body weight) to Swiss albino mice did not manifest toxicity or any significant adverse behavioral alterations. Chronic administration of RC extract (1000, 2000, and 3000 mg/kg body weight) for 28 d also did not register any significant alterations in fluid intake, organ weights, plasma lipid profile, plasma creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, alanine transaminase, creatinine, electrolytes, and calcium levels, and the total blood count showed a nonsignificant change. However, significant reduction in body-weight gain, food intake, red blood cell count, and hemoglobin content along with higher alkaline phosphatase, bilirubin, and urea levels was observed in mice treated with 3000 mg/kg body weight for 28 d. Since there was no mortality up to a dose of 5000 mg/kg body weight, 50% lethal dose (LD(50)) could not be determined, and hence, it can be assumed that, LD(50) of RC extract is >5000 mg/kg. No observable adverse effect level dose of the RC extract was found to be 2000 mg/kg body weight. Hence, consumption of RC extract for various medicinal purposes is safe. Practical Application: RC is a popularly consumed foodstuff that has been ubiquitously reported to exert medicinal properties. It is mandatory to understand the highest permissible consumption limit of any food supplement to avoid toxicity. This study establishes the safe dose of RC. These results can be of relevance for the scientific fraternity as well as laymen who consume this vegetable or its phytochemical preparation.

  13. Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea.

    Science.gov (United States)

    Eason, J R; Ryan, D J; Watson, L M; Hedderley, D; Christey, M C; Braun, R H; Coupe, S A

    2005-03-01

    An aleurain-like protein, BoCP5, is up-regulated during harvest-induced senescence in broccoli floret and leaf tissue. BoCP5 is most closely related to an Arabidopsis protein (91%, AAF43041) and has 71% identity to barley aleurain (P05167). The mRNA for this gene accumulates within 6 h after harvest in broccoli florets, and its expression is reduced in tissue that has been held in senescence-delaying treatments (e.g. water, sucrose feeding, controlled atmosphere). The gene is also expressed in leaves during aging-related and harvest-induced senescence. Analysis of protein bands that cross-react with antibodies raised to the bacterial BoCP5 fusion protein, revealed prominent immunoreactive bands at ca. 26, 28, 31, and 38 kD in floret tissue. The 31 kD band was absent in protein extracts from leaf tissue. Agrobacterium-mediated transformation was used to produce transgenic broccoli plants with down-regulated BoCP5. A reduction in the postharvest expression of BoCP5 in floret tissue was achieved for four transgenic lines in the current study. In three of these lines postharvest floret senescence (yellowing) was delayed, and florets contained significantly greater chlorophyll levels during postharvest storage at 20 degrees C than wild-type plants. Line 4 showed the greatest down-regulation of BoCP5, and in this line postharvest protease activity remained at pre-harvest levels, and the yield of soluble proteins extracted from florets after harvest was significantly greater than that of wild-type tissue.

  14. QTLs controlling antioxidant capacity in leaves and flower buds of Brassica oleracea

    OpenAIRE

    Sotelo Pérez, Tamara; Francisco Candeira, Marta; Cartea González, María Elena; Rodríguez Graña, Víctor Manuel; Soengas Fernández, María del Pilar

    2014-01-01

    Póster presentado en la 19th Crucifer Genetics Workshop “Genetic Improvement of Brassicaceae Crops in the Era of Genomics”, celebrado en Wuhan (China) entre los días 30 de marzo y 2 de abril de 2014.

  15. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops

    Directory of Open Access Journals (Sweden)

    Sandra E. Pelc

    2015-11-01

    Full Text Available Landraces have the potential to provide a reservoir of genetic diversity for crop improvement to combat the genetic erosion of the food supply. A landrace collection of the vitamin-rich specialty crop collard ( L. var. was genetically characterized to assess its potential for improving the diverse crop varieties of . We used the Illumina 60K SNP BeadChip array with 52,157 single nucleotide polymorphisms (SNPs to (i clarify the relationship of collard to the most economically important crop types, (ii evaluate genetic diversity and population structure of 75 collard landraces, and (iii assess the potential of the collection for genome-wide association studies (GWAS through characterization of genomic patterns of linkage disequilibrium. Confirming the collection as a valuable genetic resource, the collard landraces had twice the polymorphic markers (11,322 SNPs and 10 times the variety-specific alleles (521 alleles of the remaining crop types examined in this study. On average, linkage disequilibrium decayed to background levels within 600 kilobase (kb, allowing for sufficient coverage of the genome for GWAS using the physical positions of the 8273 SNPs polymorphic among the landraces. Although other relationships varied, the previous placement of collard with the cabbage family was confirmed through phylogenetic analysis and principal coordinates analysis (PCoA.

  16. Effect of AgNO 3 on androgenesis of Brassica oleracea L. anthers ...

    African Journals Online (AJOL)

    The present article is a synthesis study accomplished at Vegetable Research and Development Station Bacau regarding the implication of silver nitrate (AgNO3) in modulating the morphogenetic reaction of white cabbage anthers cultivated in vitro. According to literature, silver nitrate is a strong inhibitor of ethylene action.

  17. Impact of thermal processing on sulforaphane yield from broccoli ( Brassica oleracea L. ssp. italica).

    Science.gov (United States)

    Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H

    2012-07-11

    In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.

  18. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium.

    Science.gov (United States)

    Bachiega, Patricia; Salgado, Jocelem Mastrodi; de Carvalho, João Ernesto; Ruiz, Ana Lúcia T G; Schwarz, Kélin; Tezotto, Tiago; Morzelle, Maressa Caldeira

    2016-01-01

    In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Selenium-induced toxicity is counteracted by sulfur in broccoli (Brassica oleracea L. var. italic)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se ...

  20. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination.

    Science.gov (United States)

    Pérez-Balibrea, Santiago; Moreno, Diego A; García-Viguera, Cristina

    2010-10-01

    Sulphur (S) fertilization is essential for primary and secondary metabolism in cruciferous foods. Deficient, suboptimal, or excessive S affects the growth and biosynthesis of secondary metabolites in adult plants. Nevertheless, there is little information regarding the influence of S fertilization on sprouts and seedlings. An experiment was set up to evaluate the effect of S fertilization, supplied as K(2)SO(4) at 0, 15, 30, and 60 mg/L, on the glucosinolate content of broccoli sprouts during the germination course of 3, 6, 9, and 12 d after sowing. Glucosinolate concentration was strongly influenced by germination, causing a rapid increase during the first 3 d after sowing, and decreasing afterwards. The S supply increased aliphatic and total glucosinolate content at the end of the monitored sprouting period. S-treated sprouts, with S(15), S(30), and S(60) at 9 and 12 d after sowing presented enhanced glucosinolate content. Overall, both germination time and S fertilization were key factors in maximizing the bioactive health-promoting phytochemicals of broccoli. Practical Application: Germination with sulphate is a simple and inexpensive way to obtain sprouts that contain much higher levels of glucosinolates (health promoting compounds), than the corresponding florets from the same seeds.

  1. Differential expression of ribosome-inactivating protein genes during somatic embryogenesis in spinach (Spinacia oleracea).

    Science.gov (United States)

    Kawade, Kensuke; Ishizaki, Takuma; Masuda, Kiyoshi

    2008-10-01

    Root segments from spinach (Spinacia oleracea L. cv. Jiromaru) seedlings form embryogenic callus (EC) that responded to exogenous GA(3) by accumulating a 31-kDa glycoprotein [BP31 or S. oleracea ribosome-inactivating protein (EC 3.2.2.22) (SoRIP1)] in association with the expression of embryogenic potential. Microsequencing of this protein revealed significant similarity with type 1 RIPs. We identified cDNAs for SoRIP1 and S. oleracea RIP2 (SoRIP2), a novel RIP having a consensus shiga/ricin toxic domain and performed a comparative analysis of the expression of SoRIPs during somatic embryogenesis. Western blotting and quantitative polymerase chain reaction analyses revealed that the expression of SoRIP1 in calli increased remarkably in association with the acquisition of embryogenic potential, although the expression in somatic embryos decreased moderately with their development. However, the expression of SoRIP2 in calli remained low and constant but increased markedly with the development of somatic embryos. Treatment of callus with GA(3) and/or ABA for 24 h, or with ABA for a longer period, failed to stimulate the expression of either gene. Immunohistochemistry showed that SoRIP1 preferentially accumulated in the proembryos and peripheral meristem of somatic embryos early in development. Appreciable expression of SoRIP2 was not detected in the callus, but intense expression was found in the epidermis of somatic embryos. These results suggest that the expression of spinach RIP genes is differentially regulated in a development-dependent fashion during somatic embryogenesis in spinach.

  2. Biochar impact on physiological and biochemical attributes of Spinach (Spinacia oleracea L. in nickel contaminated soil

    Directory of Open Access Journals (Sweden)

    U. Younis

    2015-07-01

    Full Text Available Disastrous effect of nickel on spinach was discussed by number of authors but the effect of amendments like biochar with nickel on Spinacea oleraceaL. is not still discussed by any author of the world because biochar was used as soil amendments which play a vital role in reducing mobilization and uptake of nickel by spinach plants.  As nickel contaminated plants are very harmful for the consumption by living organisms. Nickel can be gathered in agronomic soils by anthropogenic actions such as Ni-Cd batteries. In this study, the growth, physiological, photosynthetic and biochemical responses of Spinacia oleracea grown in Ni-spiked soil (0, 25, 50 and 100 mg Ni/Kg soil at three levels of cotton-sticks-derived biochar “CSB” (0, 3 and 5 % were evaluated.  The results exposed significant decrease in growth, photosynthetic, physiological, and biochemical traits of S. oleracea when grown in Ni-polluted soil. However, this decrease was less pronounced in CSB amended soil.  A steady rise in the MDA (0.66 µg/g to 2.08 µg g-1, ascorbic acid (1.24 mg/g to 1.57 mg/gand sugar concentrations (1.73 mg/g to 2.16 mg/gwas observed with increased concentration of Ni.  The increasing percentages of CSB from 3 % to 5 % decreased Ni concentrations in root and shoot of experimental plant.  Higher production of chlorophyll, amino acids and protein with CSB amendment looked like alleviation in Ni toxicity.  Therefore, it is concluded that, Ni toxicity and availability to the plants can be reduced by CSB amendments.

  3. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  4. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  5. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea Grown in a Controlled Environment

    Directory of Open Access Journals (Sweden)

    Naz Alia

    2015-06-01

    Full Text Available The impact of heavy metal toxicity on the shoot and root lengths, total protein, fiber characteristics, moisture content and nutrient composition of spinach (Spinacia oleracea was evaluated. Plants were grown in pots containing soil and treated with different concentrations (mg/kg of lead (Pb; 300, 400 and 500, cadmium (Cd; 0.5, 1 and 1.5 and zinc (Zn; 250, 500, and 700 as well as mixtures of Cd and Pb (0.5/300, 1/400, 1.5/500, Cd and Zn (0.5/250, 1/500, 1.5/700, and Pb and Zn (300/250, 400/500, 500/700. Soil contaminated by long-term irrigation with wastewater containing heavy metals was simulated. An increase in concentrations of heavy metals both individually and as mixtures significantly (p < 0.05 reduced the growth parameters and nutrient contents of S. oleracea. The uptake patterns of heavy metals in mixtures showed antagonistic impacts on each other. The toxicities of the mixtures Cd and Pb, Cd and Zn as well as Pb and Zn were higher than those observed in separate heavy metal applications but less than their additive sums. The toxicity caused by individual heavy metals was the highest for Cd followed by Pb and Zn. The highest toxicity was observed in plants grown in soil contaminated by Cd and Pb.

  6. A Brassica exon array for whole-transcript gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Christopher G Love

    Full Text Available Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5, with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18, and categorisation by Gene Ontologies (GO based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  7. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  8. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa

    National Research Council Canada - National Science Library

    Feng Cheng; Terezie Mandáková; Jian Wu; Qi Xie; Martin A. Lysak; Xiaowu Wang

    2013-01-01

    .... The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors...

  9. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species.

    Science.gov (United States)

    Zhang, Bao; Liu, Chao; Wang, Yaqin; Yao, Xuan; Wang, Fang; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-06-01

    In Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B. napus lines. Insertion of a CACTA-like transposable element 1 (TE1) into the coding region of BnaC3.CCD4 had disrupted its expression in yellow-flowered rapeseed lines. α-Ionone was identified as the major volatile apocarotenoid released from white petals but not from yellow petals. We speculate that BnaC3.CCD4 may use δ- and/or α-carotene as substrates. Four variations, including two CACTA-like TEs (alleles M1 and M4) and two insertion/deletions (INDELs, alleles M2 and M3), were identified in yellow-flowered Brassica oleracea lines. The two CACTA-like TEs were also identified in the coding region of BcaC3.CCD4 in Brassica carinata. However, the two INDELs were not detected in B. napus and B. carinata. We demonstrate that the insertions of TEs in BolC3.CCD4 predated the formation of the two allotetraploids. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  10. Hypolipidemic Activity of Spinacia Oleracea L. in Atherogenic Diet Induced Hyperlipidemic Rats.

    OpenAIRE

    Ranjan Kumar Giri

    2012-01-01

    Spinacia oleracea (spinach) of family Amaranthaceae is an important plant used traditionally for medicinal purposes. Hyperlipidemia was induced by treated orally with atherogenic diet. In atherogenic diet induced hyperlipidemic model, the rats receiving Spinacia oleracea powder showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Spinacia oleracea was found to possess significant hypolipidemic activity. The resu...

  11. Development of Convenient Screening Method for Resistant Radish to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Su-Jung Jo

    2011-08-01

    Full Text Available To establish simple and reliable screening method for resistant radish to Plasmodiophora brassicae Woron. using soil-drenching inoculation, the development of clubroot on radish seedlings inoculated with P. brassicae GN-1 isolate according to several conditions such as inoculum concentration, plant growth stage and incubation period after inoculation was studied. To select resistant radish against clubroot, 10-day-old seedlings were inoculated with P. brassicae by drenching the roots with the spore suspension of the pathogen to give 1×10(9 spores/pot. The inoculated seedlings were incubated in a growth chamber at 20℃ for 3 days then cultivated in a greenhouse (20±5℃ for 6 weeks. Under the optimum conditions, 46 commercial cultivars of radish were tested for resistance to YC-1 (infecting 15 clubroot-resistant cultivars of Chinese cabbage and GN-1 (wild type isolates of P. brassicae. Among them, thirty-five cultivars showed resistance to both isolates and one cultivar represented susceptible response to the pathogens. On the other hand, the other cultivars showed different responses against the tested P. brassicae pathogens. The results suggest that this method is an efficient system for screening radish with resistance to clubroot.

  12. Identification of expressed genes during infection of chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Sundelin, Thomas; Jensen, Dan Funck; Lübeck, Mette

    2011-01-01

    and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed...

  13. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, (Hong Kong); Wong, Jonathan Woon-Chung, E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong (Hong Kong)

    2009-08-15

    Cadmium uptake potential of Brassica napus cocropped with B. parachinensis or Zea mays plants in split pot (allow the solutes to pass but prevent the interaction of roots between compartments) experiments was evaluated. Plants were grown in split pots filled with soil spiked at 0, 3, 6, 12, 25 and 50 mg Cd/kg soil. Biomass and Cd uptake were detemined after 6 weeks, and rhizospheric soil solutions, extracted using soil probes, were analyzed for pH and water soluble Cd at weekly intervals. Cadmium treatments affected the biomass. Cadmium concentration in the shoots of B. napus was higher when cocropped with B. parachinensis and significantly higher with Z. mays; however, the biomass was negatively affected implying the higher nutrient apportionment to the crop plants than B. napus. Concentration of Cd in B. napus was higher in shoots than in roots as revealed by shoot/root Cd quotient and was always >1; the quotient for B. parachinensis was {approx}1 and that of Z. mays was <1, indicating the potential of Brassicaceae members to translocate the Cd to aboveground tissue. Results indicate the feasibility of cocropping method to clean the Cd contaminated soils.

  14. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and –susceptible alleles in response to Plasmodiophora brassicae during early infection

    Directory of Open Access Journals (Sweden)

    Jingjing eChen

    2016-01-01

    Full Text Available Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs of clubroot-resistant (CR BJN3-2 and clubroot-susceptible (BJN3-2 Chinese cabbage (Brassica rapa was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1,875 and 2,103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 hours after inoculation (hai. Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins, PR genes involved in salicylic acid (SA signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection.

  15. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah St