WorldWideScience

Sample records for brasimone pec reactor

  1. Advances in shielding calculations for the PEC reactor

    International Nuclear Information System (INIS)

    In this paper calculations of neutron and gamma streaming through various penetrations in the plug and neutron shield of the sodium cooled fast reactor PEC, currently under construction, are described. The object of the calculations has been to verify the accessibility, 3 days after reactor shut-down, of the area directly above the reactor. (author)

  2. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  3. Recent results on PEC reactor HCDA containment investigations

    International Nuclear Information System (INIS)

    The response of PEC reactor containement structures and of tank supporting arms to HCDA has been investigated by an explosive test on a refined 1:6 scaled mock-up. Experimental strains and pressures are compared with Astarte code calculations. (orig.)

  4. In situ tests on the PEC fast reactor building

    International Nuclear Information System (INIS)

    This paper describes forced excitation tests carried out at the PEC reactor building, to determine seismic motion amplifications produced in the building itself. Experimental results are used to gauge numerical methodologies capable of assessing the margins existing in the design analysis. (orig./HP)

  5. Seismic response analysis of the PEC fast reactor building

    International Nuclear Information System (INIS)

    In order to compute the motion induced by the design earthquakes at the vessel supporting structure, a seismic response analysis was performed for the PEC fast reactor, taking into account the effects of soil-structure interaction by use of experimentally determined soil parameters. The main aim of he analysis was to evaluate the safety margins present in the design calculations. A detailed 3D finite element model was set up for fixed base analysis; from the results of the 3D model a simplified equivalent model of the structure was then derived for soil-structure interaction analysis. The mathematical model was validated and calibrated by using the results of the experimental dynamic tests performed on the reactor building. The results have shown the adequacy of the computation methodologies, and in particular of those on the use of the equivalent model. (author)

  6. On the design of the PEC reactor training simulator

    International Nuclear Information System (INIS)

    A summarized description of the PEC simulator, designed for operators' training and operational support, is given. The design choices as a result of the training and operational support requirements are discussed. (orig.)

  7. Research and development studies on the seismic behaviour of the PEC fast reactor

    International Nuclear Information System (INIS)

    As introduction to the meeting, this paper provides an overview on the extensive research and development studies performed by ENEA, in co-operation with ANSALDO and ISMES, in the framework of the seismic verification of the Italian PEC fast reactor. The purpose is also to stress the reasons why a wide-ranging experimental programme and detailed numerical analysis, validated on the test results, have been performed for the PEC reactor building and the main vessel. Thus, after some notes on the high levels of the design earthquakes adopted for PEC and the important features of fast reactors in general and PEC as a specific case (making it particularly sensitive to seismic excitations), the paper presents the studies performed for the reactor-block, the core and the shutdown system, summarizing their main features and showing some of the main results. Furthermore, the non-negligible feed-backs of the seismic studies on the reactor-block design are recalled, and the needs of checking seismic design analysis of the main vessel and the reactor building are explained. The on-site experimental programme and the related numerical analysis concerning the main vessel and the reactor building are also shortly described: however, specific papers will present more details on these studies, and will also stress the usefulness of the on-site tests performed on the reactor building for the optimization of the PEC seismic monitoring system. Finally, the Italian lecture invited to this meeting will provide an overview on the state-of-the-art on on-site testing and seismic monitoring in Italy, stressing the perspective of adopting methodologies similar to those used for PEC, for nuclear power plants in general. (author)

  8. Detectability limits of rapid inlet blockages in high powered subassemblies of the PEC reactor

    International Nuclear Information System (INIS)

    The capability of the subassembly coolant outlet temperature monitoring system to detect a rapid inlet blockage formation in single subassemblies of the PEC reactor core has been analyzed with the BLOW-3A code parametrically. After detection reactor shut down is initiated. In worst cases the subassembly concerned will be partially destroyed at the time of detection but safe reactor shut down would be achieved in due time. A thermally induced propagation to neighbouring subassemblies is not expected to occur. (author)

  9. Research and development studies carried out for the seismic verification of the Italian PEC Fast Reactor

    International Nuclear Information System (INIS)

    This paper presents the main features and results of the numerical and experimental studies that were carried out by ENEA, in co-operation with ANSALDO and ISMES for the seismic verification of the Italian PEC Fast Reactor. More precisely, the paper focuses on the wide-ranging research and development programme that was performed on the reactor building, the reactor-block, the main vessel, the core and the shutdown system. The needs of these detailed studies are stressed and the general validity of the analyses in the framework of research and development activities for nuclear reactors are pointed out. The adopted design criteria and methods are presented in a separate paper, together with the effects of seismic conditions on PEC design, and comparisons with the other fast reactors of the European Community countries. (author)

  10. The brasimone study (brastud) an investigation of atmospheric dispersion over complex terrain

    International Nuclear Information System (INIS)

    An investigation of atmospheric dispersion over complex terrain was carried out in September 1984 and in June 1985 at the Brasimone Energy Research Centre (B.E.R.C.). This place, where an experimental nuclear reactor is under construction, is located in the Tuscan-Emilian Appennine range approximately 50 km south of Bologna. The measuring campaigns, based on survey of wind and temperature parameters, tracer (SF6) experiments and tracking of tetroons by radar, were performed with the purpose of assessing the atmospheric dispersion of pollutants under nocturnal drainage flow conditions. The three-dimensional MATHEW/ADPIC model was evaluated with the Brasimone data set and the results obtained are satisfactory

  11. Thermo-structural analysis and design verification of the PEC reactor vessel

    International Nuclear Information System (INIS)

    The paper presents the main results of the detailed finite element analysis and the relevant verifications against the ratchetting event for the higher part of the PEC reactor vessel stressed by the presence of the axial thermal gradient caused by a sodium level. A very refined finite element analysis with the Castem System, developed in CEA Saclay, was performed covering both the steady state and the transient thermal conditions. Great care was taken for the simulation of the sodium level fluctuation within the gaps between the various thermal baffles just necessary to reduce the high thermal stresses. A thermo-elastic structural analysis taking into account thermo-physical properties variable with temperature was then performed using the Inca computer code. The mechanical loads considered in the analysis are the vessel weight and the loads caused by seisma. At last a detailed inelastic analysis and the relevant structural design verification are performed with a conclusive comparison with the elastic results. (orig./GL)

  12. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process.

  13. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  14. Analysis of the Pecore experimental programme carried out on Masurca and neutronics calculations for the PEC reactor

    International Nuclear Information System (INIS)

    A number of critical configurations installed in the Masurca experimental reactor of the French Commissariat a l'energie atomique (CEA) in Cadarache were used to simulate, by means of certain approximations, the neutron properties of the core of the PEC reactor. As the amount of plutonium available was insufficient, the Pecore experiment was carried out by using two different fuel zones: one with mixed U and Pu oxide, the other with enriched U oxide. However, an effort was made to keep the two zones similar as far as the neutron energy spectrum was concerned. The first interpretation of Pecore was carried out by the CEA with the assistance of staff of the Italian National Nuclear Energy Committee (CNEN), on the basis of French nuclear data and calculation methods. The paper describes the interpretation made in Italy on the basis of the codes and cross-sections used for the PEC neutron calculations, so that use could be made in this project of the discrepancies between calculation and experiment evaluated for Pecore. The characteristics compared were: critical mass, negative reactivity introduced by the control rods, ratios of reaction rates, efficiency of the nickel-base reflector and the axial and radial power curves. By way of a general conclusion, it can be stated that the interpretations of the CEA and the CNEN are in good agreement; the differences which they show are nearly always within the margin of experimental error. In addition to the main results of the Pecore experiment, the paper deals with certain aspects of: the PEC neutron calculation, from the definition of fuel enrichment to the calculation of the power level reached in each element, and from the updating of reactivity coefficients to the formulation of refuelling strategy. For some sectors, the results of the Pecore experiment had to be taken into account. (author)

  15. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  16. Sensitivity study of the effective fraction of delayed neutrons *b*Leff to basic data uncertainties for the TAPIRO and PEC fast reactors

    International Nuclear Information System (INIS)

    An analysis is presened in this article of the sensitivity of the effective function of delayed neutrons βLeff to various basic parameters uncertainties for the TAPIRO and PEC fast reactors. For each of them the assessment is at first made of the basic data for the reference calculations; then the uncertainties propagation to βLeff and its effects on the inhour equation are analysed. The analysis was directly related to different choices of basic data; when actual data were lacking, estimated uncertainties were introduced

  17. The PEC headworks project

    International Nuclear Information System (INIS)

    The PEC Headworks Project is a single-unit hydroelectric facility located at the headworks of the Potholes East Canal at O'Sullivan Dam on the Potholes reservoir near Moses Lake, Washington. The project was developed through exceptional coordination and cooperation between the local utility district, irrigation districts, and federal and state agencies. The plant was put into commercial operation in 1990. This paper describes the cooperative effort which developed the project and the distinctive technical features of the project

  18. ACTIVE PEC APPLICATIONS, THE PEC WEBSITE, AND SLUDGE STABILITY RESEARCH

    Science.gov (United States)

    Since it's creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing novel sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether these novel technolog...

  19. Carabid communities in forests of ENEA centre of Brasimone, Bologna (Italy); I coleotteri carabidi nei boschi del centro ENEA del Brasimone, Bologna: effetti della gestione forestale sulla carabidocenosi di alcune formazioni boschive dell`Appennino tosco-emiliano

    Energy Technology Data Exchange (ETDEWEB)

    De Mei, M.; Collina, M. [ENEA, Casaccia (Italy). Dipt. Ambiente; De Felici, S.; Vigna Taglianti, A. [Rome Univ. (Italy). Dipt. Biologia Animale dell`uomo

    1995-08-01

    The ENEA (Italian Agency for New Technologies, Energy and the Environment) forest property may be regarded as an open laboratory; interdisciplinary studies on ecology of aquatic and terrestrial mountain ecosystems are feasible. Six sites in tosco-emiliano Apennine (Brasimone area, Italy) were sampled by pitfall traps to assess the forest dwellers ground beetle coenoses. In spite of different wood species, vegetation cover and physionomy, Carabid communities are quite similar in species assemblages, ecological characterization and chronological spectra.

  20. Flora and vegetation of Rio Torto area in Brasimone ENEA Centre, Bologna; Flora e vegetazione dell'area Rio Torto nel centro ENEA del Brasimone, Bologna

    Energy Technology Data Exchange (ETDEWEB)

    De Mei, M.; Varriale, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    The Rio Torto area, on the northern slope of the Tosco-Emiliano Apennine, in the C.R. Enea Brasimone property, has been the object of a research study on flora and vegetation to delineate the vegetal coverage and to evaluate the vegetal population changes. The study on vegetation has been carried out using the Braun-Blanquet method, a flora-statistical approach based on an accurate analysis of the flora and on statistical sampling of the studied object. Data has been analysed using the SYN-TAX-Multivariate Data Analysis software package, in order to get out a classification and, therefore, some syn-taxonomic levels in vegetation. Result is a dendogram with clusters connected by transverse lines and organised in a Hierarchical Clustering system. The dominant species in the Rio Torto area is beech; elements of the Arrhenatheretalia association are well-represented at the lower edge of the wood, while a broad glade characterised by Pteridium aquilinum (L.) Kuhn, by Prunus spinosa L. and by Crataegus monogyna Jacq is at the upper edge. Grassy undergrowth is dominated by Eurasian and boreal elements and, from a physiognomic-structural point of view, is quite rich. The biological spectrum analysis points up the particularly high value of the hemicryptophytes: this result couldn't be justified by the mountainous nature of the zone but it could be considered a sign of stress. From the vegetation and phytosociological study, a classification of the beech population on the basis of the complex of characteristics is gained; in this classification, the beech population is fitted in the order Fagetalia Pawl, 1928 (Ubaldi and Speranza, 1985) and in the alliance Fagion Sylvaticae medioeuropeo (Luquet 1926) Tx and Diemont 1936. No particular association has been identified within the alliance, because is not possible to detect a species well-defined contingent. Ecologically more demanding species absence and non-characteristic entities intrusion is linked to the general state

  1. Flora and vegetation of Rio Torto area in Brasimone ENEA Centre, Bologna; Flora e vegetazione dell'area Rio Torto nel centro ENEA del Brasimone, Bologna

    Energy Technology Data Exchange (ETDEWEB)

    De Mei, M.; Varriale, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    The Rio Torto area, on the northern slope of the Tosco-Emiliano Apennine, in the C.R. Enea Brasimone property, has been the object of a research study on flora and vegetation to delineate the vegetal coverage and to evaluate the vegetal population changes. The study on vegetation has been carried out using the Braun-Blanquet method, a flora-statistical approach based on an accurate analysis of the flora and on statistical sampling of the studied object. Data has been analysed using the SYN-TAX-Multivariate Data Analysis software package, in order to get out a classification and, therefore, some syn-taxonomic levels in vegetation. Result is a dendogram with clusters connected by transverse lines and organised in a Hierarchical Clustering system. The dominant species in the Rio Torto area is beech; elements of the Arrhenatheretalia association are well-represented at the lower edge of the wood, while a broad glade characterised by Pteridium aquilinum (L.) Kuhn, by Prunus spinosa L. and by Crataegus monogyna Jacq is at the upper edge. Grassy undergrowth is dominated by Eurasian and boreal elements and, from a physiognomic-structural point of view, is quite rich. The biological spectrum analysis points up the particularly high value of the hemicryptophytes: this result couldn't be justified by the mountainous nature of the zone but it could be considered a sign of stress. From the vegetation and phytosociological study, a classification of the beech population on the basis of the complex of characteristics is gained; in this classification, the beech population is fitted in the order Fagetalia Pawl, 1928 (Ubaldi and Speranza, 1985) and in the alliance Fagion Sylvaticae medioeuropeo (Luquet 1926) Tx and Diemont 1936. No particular association has been identified within the alliance, because is not possible to detect a species well-defined contingent. Ecologically more demanding species absence and non-characteristic entities intrusion is linked to the general state

  2. Customized PEC modules. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Martin B. (DTI, Taastrup (Denmark))

    2012-07-01

    The purpose of the project ''Customized PEC modules'' was to move from the production hand-made individual DSCs (dye-sensitized solar cells) in the laboratory to the production of DSC modules in a semi-automated process. At the same time allowing sufficient variation in the product's specification for real tailoring of the product to the application. The tailoring can be related to the module's electrical output and size, but also to the possibility of designing patterns for decoration or communication purposes by playing around with the shape, size and layout of the individual cells forming the module. This was to be accomplished mainly by screen printing of DSC components on glass substrates at Mekoprint. For reaching this goal the work was divided into a number of steps. The central part of the work done was in the initial conception activity and the following manufacturing activity. An activity regarding optimization included several tasks of optimization and adaptation of the existing laboratory process for manufacturing of the DSCs. Finally, work focused on international activities was done. All the steps needed for the production of customized DSC modules have been demonstrated in this project. In combination with the development of a high performing printable sealant and sealing method all the prerequisites for producing customized DSC modules have been demonstrated. (LN)

  3. Chemical analysis of acid rains collected in 1993 at ENEA Research Center of Brasimone, Bologna; Caratterizzazione chimiche delle deposizioni raccolte nel 1993 presso il Centro Ricerche ENEA del Brasimone, Bologna

    Energy Technology Data Exchange (ETDEWEB)

    Barilli, L.; Olivieri, P. [ENEA, Centro Ricerche ``E. Clementel`` Bologna (Italy). Dip. di Ambiente; Salvi, S. [ENEA, Centro Ricerche Brasimone, Bologna (Italy). Dip. di Ambiente

    1995-06-01

    In this paper the measurements of the water quality in acid rains, collected in 1993 at the ENEA (Italian Agency for New Technologies, Energy and the Environment) research centre of Brasimone station, are reported. Chemical analysis was performed on pH, the electric conductivity, the alkalinity and Ca, Mg, Na, K, NH{sub 4}, NO{sub 3}, SO{sub 4}, Cl concentrations in weekly samples.The wet depositions are weakly acid, the median value of pH being 5.94; this reflects that the most of samples have been of `bulk` type. Therefore the amount of the calcium ion has been very high and higly correlated with the alkalinity. The loads of nitrogen and sulfur are maximum in the first months of the year, after a period of lack of precipitations.

  4. Electromagnetic Boundaries with PEC/PMC Equivalence

    CERN Document Server

    Lindell, Ismo V

    2016-01-01

    The most general electromagnetic boundary, defined by linear and local boundary conditions, is defined in terms of conditions which can be called generalized impedance boundary conditions. Requiring that the boundary be equivalent to PEC and PMC boundaries for its two eigen-plane waves, which property is known to exist for many of its special cases, it is shown that the recently introduced Generalized Soft-and-Hard/DB (GSHDB) boundary is the most general boundary satisfying this property.

  5. CREEP in tubes: theoretical notes and application to PEC primary coolant circuit

    International Nuclear Information System (INIS)

    Creep and stress relaxation in the hot leg of PEC reactor are analitically examined, considering also the effects of varying loads and thermal transients. The expression, used to describe creep phenomena, are of the ''time-hardening'' type, so that the strain rate is a function only of the actual stress and the current time. A qualitative approach is attempted to describe the history of a part, when subjected to real cycles of loads/temperatures. Although in cases of rapidly varying or abrupt cyclic stresses the use of a time-hardening expression may lead to nearly absurd results, discussion on the better agreement with experiments of time or stress hardening laws is not presented. A brief illustration of physical phenomena bases and a conclusive chapter with a certain number of analytical appendices to analyse creep on simple structures due to many loads are also included

  6. Chemical characteristics of atmospheric deposition collected at two ENEA stations near Bologna; Caratteristiche chimiche delle deposizioni atmosferiche raccolte presso le stazioni ENEA del Brasimone e di Bologna nel 1994/95

    Energy Technology Data Exchange (ETDEWEB)

    Barilli, L.; Olivieri, P. [ENEA, Centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente; Salvi, S. [ENEA, Centro Ricerche Brasimone, Bologna (Italy). Dipt. Ambiente; Morselli, L.; Grandi, E.; Ianuccilli, A. [Bologna, Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali

    1997-06-01

    This article presents the results of the measurements of the water quality in acid rains, collected by a Wet and Dry Sampler in 1994 and in 1995 at two ENEA stations, Brasimone and Bologna town, belonging to the RIDEP network and characterized by different geography and different anthropogenic sources. In the Bologna station from April 95 an innovative sampler DAS (Dry Deposition on Aquatic Surface) has been activated. The monitoring has allowed determining the wet deposition fluxes in both the stations and pointing out the differences between two areas characterized by different topology. Besides the DAS sampler has allowed evaluating the total deposition fluxes (wet and dry deposition) in the Bologna station and comparing them with the ``critical loads`` pertaining to the examined territory.

  7. R and D of 2, generation PEC solar cells; F/U af 2. generations PEC solceller

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report summarizes results from the project 'R and D of 2nd generation PEC solar cells'. The project has focused strongly on development and implementation of improved counter- and photo-electrodes for PEC solar cells. This has resulted in an alternative counter-electrode which is stable in production and potentially cheaper to produce than the platinum counter-electrode which currently is the most popular. Furthermore, the project has focused on developing a rational method to produce a photo-electrode from commercially available raw materials. The idea is to reduce the number of process steps as compared to processes described in literature. The newly developed electrodes have been designed with a view to enter into a coupled system in which they are built together in a monolithic structure. For this purpose a coupled electrode system has been designed and tested. The electrodes have also been designed to subsequent micro structuring, which contributes to an increase in the solar cells yield and durability. Finally, a flexible production platform has been developed on which the number of processes have been significantly reduced. (BA)

  8. Sodium components cleaning status in the Italian fast reactor program

    International Nuclear Information System (INIS)

    As a consequence of the Italian Fast Reactor Development, mainly aimed to the PEC project and to the participation in the French Superphenix project, it is of increasing importance to set up a reliable method for specific reactor components and related test loops. The first problem was the cleaning of the PEC fuelling machine. In order to perform the routine maintenance of the machine an alcohol cleaning method based on the use of 2-butoxyethanol-NN dimethylformamide mixture has been proposed

  9. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  10. Chasing the long tail of environmental data: PEcAn is nuts about Brown Dog

    Science.gov (United States)

    Dietze, M.; Cowdery, E.; Desai, A. R.; Gardella, A.; Kelly, R.; Kooper, R.; LeBauer, D.; Mantooth, J.; McHenry, K.; Serbin, S.; Shiklomanov, A. N.; Simkins, J.; Viskari, T.; Raiho, A.

    2015-12-01

    The Predictive Ecosystem Analyzer (PEcAn) is a ecological modeling informatics system that manages the flows of information in and out of terrestrial biosphere models, provenance tracking, visualization, analysis, and model-data fusion. We are in the process of scaling the PEcAn system from one that currently supports a handful of models and system nodes to one that aims to provide bottom-up connectivity across much of the model-data integration done by the terrestrial biogeochemistry community. This talk reports on the current state of PEcAn, it's data processing workflows, and the near- and long-term challenges faced. Particular emphasis will be given to the tools being developed by the Brown Dog project to make unstructured, un-curated data more accessible: the Data Access Proxy (DAP) and the Data Tilling Service (DTS). The use of the DAP to process meteorological data and the DTS to read vegetation data will be demonstrated and other Brown Dog environmental case studies will be briefly touched on. Beyond data processing, facilitating data discovery and import into PEcAn and distributing analyses across the PEcAn network (i.e. bringing models to data) are key challenges moving forward.

  11. Intercomparison of liquid metal fast reactor seismic analysis codes. V.1: Validation of seismic analysis codes using reactor core experiments. Proceedings of a research co-ordination meeting held in Vienna, 16-17 November 1993

    International Nuclear Information System (INIS)

    The Research Co-ordination Meeting held in Vienna, 16-17 November 1993, was attended by participants from France, India, Italy, Japan and the Russian Federation. The meeting was held to discuss and compare the results obtained by various organizations for the analysis of Italian tests on PEC mock-up. The background paper by A. Martelli, et al., Italy, entitled Fluid-Structure Interaction Experiments of PEC Core Mock-ups and Numerical Analysis Performed by ENEA presented details on the Italian PEC (Prova Elementi di Combustibile, i.e. Fuel Element Test Facility) test data for the benchmark. Several papers were presented on the analytical investigations of the PEC reactor core experiments. The paper by M. Morishita, Japan, entitled Seismic Response Analysis of PEC Reactor Core Mock-up, gives a brief review of the Japanese data on the Monju mock-up core experiment which had been distributed to the participating countries through the IAEA. Refs, figs and tabs

  12. Electric Dipole Antennas With Magnetic-Coated PEC Cores: Reaching the Chu Lower Bound on Q

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2012-01-01

    The radiation properties of spherical electric dipole antennas with electric current excitation and material-coated perfectly electrically conducting (PEC) cores are investigated analytically using vector spherical wave functions. Closed-form expressions for electric and magnetic stored energy as...... as well as the radiation quality factor $Q$ are derived. Using these, it is shown that properly selected magnetic coating and radius of the PEC core vastly reduce the internal stored energy, and thus make the $Q$ of an electric dipole antenna approach the Chu lower bound.......The radiation properties of spherical electric dipole antennas with electric current excitation and material-coated perfectly electrically conducting (PEC) cores are investigated analytically using vector spherical wave functions. Closed-form expressions for electric and magnetic stored energy...

  13. A review of the Italian fast reactor programme

    International Nuclear Information System (INIS)

    In the frame of Italian nuclear program, this report deals with the current activities related to PEC reactor delay in construction and start-up, activities within the joint venture between Novatome, France and NIRA, Italy related to components for Super Phenix reactor, participation of NIRA in the Super Phenix studies covering technology of reactor components, reactor core, fuel, safety, fuel cycle technical and economical aspects, codes and standards

  14. The Application of PECS in a Deaf Child with Autism: A Case Study

    Science.gov (United States)

    Malandraki, Georgia A.; Okalidou, Areti

    2007-01-01

    A 10-year-old nonverbal Greek boy, C.Z., who had been diagnosed with both bilateral sensorineural profound hearing loss and autism, was taught to use the Picture Exchange Communication System (PECS), with some modifications and extensions, over a 4-month intensive intervention period. C.Z.'s original communication and behavioral status as well as…

  15. HLA-G inhibits xenogenetic cytotoxicity mediated by human NK cells and T lymphocytes against PECs

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate whether the non-classi-cal HLA-G classⅠmolecule protects the porcine endothelial cells (PECs) from the lysis mediated by human immune cells in pig to human discordant xenotransplantation, we have cloned HLA-G cDNA from a human placenta by RT-PCR. Mammalian expression vector, pEFG-neo, was constructed by insertion of HLA-G cDNA in pEF-neo. We obtained efficiently expressed PECs by stable transfection. Cytotoxicity assay showed that overexpression of HLA-G on PECs was sufficient to inhibit human NK-92 cell lysis. The level of lysis was equal to or less than that of the lysis of human umbilical vein endothelial cells mediated by human NK-92 cells. It also indicated that HLA-G inhibited the lysis of PECs mediated by xeno-antigen specific T lymphocytes. The reduction of lysis ranged between 59.1% and 88.9%. These findings suggest that the transgenic approach to overexpress HLA-G is believed to be a new immunotherapy in overcoming the immune rejections in xenotransplantion, including delayed xenograft rejection and cell-mediated rejection.

  16. Efficient CFIE-MOM Analysis of 3-D PEC Scatterers in Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, E.; Meincke, Peter;

    2002-01-01

    This paper presents an efficient technique for analysis of arbitrary closed perfectly conducting (PEC) scatterers in layered media. The technique is based on a method of moments (MoM) solution of the combined field integral equation (CFIE). The high efficiency is obtained by employing an accurate...

  17. Six International Conferences of PEC (The Peace Education Commission). Peace Education Miniprints No. 87.

    Science.gov (United States)

    Bjerstedt, Ake

    This pamphlet offers an overview of five larger reports in order to facilitate the process of locating contributions originating from five peace conferences between 1990-1994. The Peace Education Commission (PEC) arranged five conferences in Groningen (The Netherlands), Firenze (Italy), Kyoto (Japan), Budapest (Hungary) and Valletta (Malta). A…

  18. The PEcAn Project: Model-Data Ecoinformatics for the Observatory Era

    Science.gov (United States)

    Dietze, M. C.; LeBauer, D. S.; Davidson, C. D.; Desai, A. R.; Kooper, R.; McHenry, K.; Mulrooney, P.

    2011-12-01

    The fundamental questions about how terrestrial ecosystems will respond to climate change are straightforward and well known, yet a small number of important gaps separate the information we have gathered from the understanding required to inform policy and management. A critical gap is that no one data source provides a complete picture of the terrestrial biosphere, and therefore multiple data sources must be integrated in a sensible manner. Process-based models represent an ideal framework for this synthesis, but to date model-data synthesize has only made use of a subset of the available data types, and remains inaccessible to much of the scientific community, largely due to the daunting ecoinformatics challenges. The Predictive Ecosystem Analyzer (PEcAn) is an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates formal data assimilation, and enables more effective feedbacks between models and field research. PEcAn makes complex analyses transparent, repeatable, and accessible to a diverse array of researchers. PEcAn is not model specific, but rather encapsulates any ecosystem model within a set of standardized input and output modules. Herein we demonstrate PEcAn's ability to automate many of the tasks involved in modeling by gathering and processing a diverse arrays of data sets, initiating ensembles of model runs, visualizing output, and comparing models to observations. PEcAn employs a fully Bayesian approach to model parameterization and the estimation of ecosystem pools and fluxes that allows a straightforward propagation of uncertainties into analyses and forecasts. This approach also makes possible the synthesis of a diverse array of data types operating at different spatial and temporal scales and to easily update predictions as new information becomes available. We also demonstrate PEcAn's ability to iteratively synthesize

  19. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.

    Science.gov (United States)

    Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane

    2016-01-01

    The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.

  20. Reconstruction of surface impedance of an object located over a planar PEC surface

    Energy Technology Data Exchange (ETDEWEB)

    Uenal, Guel Seda; Cayoeren, Mehmet; Tetik, Evrim [Istanbul Technical University Electrical and Electronics Engineering Faculty Maslak 34469 Istanbul (Turkey)], E-mail: unalgu@itu.edu.tr, E-mail: mehmet@cayoren.com, E-mail: tetike@itu.edu.tr

    2008-11-01

    A method for the determination of inhomogeneous surface impedance of an arbitrary shaped cylindrical object located over a perfectly conducting (PEC) plane is presented. The problem is reduced to the solution of an ill-posed integral equation by the use of single layer representation which is handled by Truncated Singular Value Decomposition (TSVD). The total field and its normal derivative on the boundary of the object which are required for the evaluation of the surface impedance are obtained through Nystroem method. The method can also be used in shape reconstruction by using the relation between the shape of a PEC object and its equivalent one in terms of the surface impedance. The numerical implementations yield quite satisfactory results.

  1. Photoelectrodes Using Low Cost and Earth Abundant Materials for Practical Photoelectrochemical (PEC) Water Splitting

    OpenAIRE

    Noh, Sun Young

    2015-01-01

    It is believed that the solar energy is the ultimate clean energy source to meet global human energy consumption demand. However, The harvesting of solar energy in a clean and sustainable fashion and the storage and transport of the electricity could be challenges precluding practical scaling up of solar energy applications. Photoelectrochemical (PEC) water splitting using semiconducting materials is the most attractive approach of the solar energy applications because it efficiently converts...

  2. Electromagnetic scattering from two-layered rough interfaces with a PEC object: vertical polarization

    International Nuclear Information System (INIS)

    Electromagnetic (EM) scattering from a stack of two rough interfaces separating a homogeneous medium with a perfectly electric conducting (PEC) object has been calculated through the method of moments for vertical polarization. Theoretical formulations of EM scattering from multi-layered rough interfaces with a PEC object have been derived in detail and the total fields and their normal derivatives on the rough interfaces are solved. The two-layered model is a special case. In this work, a Gaussian rough surface was applied to simulate the rough interface. A cylinder was located above, between or below the two-layered rough interfaces. Through numerical simulations, the validity of this work is demonstrated by comparing it with existing scattering models, which are special cases that include a PEC object located above/below a single-layered rough interface and two-layered rough interfaces without an object. Subsequently, the influences of characteristic parameters, such as the relative permittivity of the medium, as well as the average height between the two rough surfaces, on the bistatic scattering coefficient are discussed. (general)

  3. dbPEC: a comprehensive literature-based database for preeclampsia related genes and phenotypes.

    Science.gov (United States)

    Uzun, Alper; Triche, Elizabeth W; Schuster, Jessica; Dewan, Andrew T; Padbury, James F

    2016-01-01

    Preeclampsia is one of the most common causes of fetal and maternal morbidity and mortality in the world. We built a Database for Preeclampsia (dbPEC) consisting of the clinical features, concurrent conditions, published literature and genes associated with Preeclampsia. We included gene sets associated with severity, concurrent conditions, tissue sources and networks. The published scientific literature is the primary repository for all information documenting human disease. We used semantic data mining to retrieve and extract the articles pertaining to preeclampsia-associated genes and performed manual curation. We deposited the articles, genes, preeclampsia phenotypes and other supporting information into the dbPEC. It is publicly available and freely accessible. Previously, we developed a database for preterm birth (dbPTB) using a similar approach. Using the gene sets in dbPTB, we were able to successfully analyze a genome-wide study of preterm birth including 4000 women and children. We identified important genes and pathways associated with preterm birth that were not otherwise demonstrable using genome-wide approaches. dbPEC serves not only as a resources for genes and articles associated with preeclampsia, it is a robust source of gene sets to analyze a wide range of high-throughput data for gene set enrichment analysis. Database URL: http://ptbdb.cs.brown.edu/dbpec/. PMID:26946289

  4. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC.

    Science.gov (United States)

    Nicholson, Bryon A; West, Aaron C; Mangiamele, Paul; Barbieri, Nicolle; Wannemuehler, Yvonne; Nolan, Lisa K; Logue, Catherine M; Li, Ganwu

    2016-01-01

    Neonatal Meningitis Escherichia coli (NMEC) is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome. PMID:26800268

  5. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC.

    Directory of Open Access Journals (Sweden)

    Bryon A Nicholson

    Full Text Available Neonatal Meningitis Escherichia coli (NMEC is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.

  6. The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi.

    Science.gov (United States)

    Condemine, G; Castillo, A; Passeri, F; Enard, C

    1999-01-01

    Erwinia chrysanthemi 3937 synthesizes an exopolysaccharide (EPS) composed of rhamnose, galactose, and galacturonic acid. Fourteen transcriptional fusions in genes required for EPS synthesis, named eps, were obtained by Tn5-B21 mutagenesis. Eleven of them are clustered on the chromosome and are repressed by PecT, a regulator of pectate lyase synthesis. In addition, expression of these fusions is repressed by the catabolite regulatory protein, CRP, and induced in low osmolarity medium. The three other mutations are located in genes that are not regulated by pecT. A 13-kb DNA fragment containing pecT-regulated eps genes has been cloned. All the genes identified on this fragment are transcribed in the same orientation and could form a large operon. The promoter region of this operon has been sequenced. It contains a JUMP-start sequence, a sequence required for the expression of polysaccharide-associated operons. E. chrysanthemi 3937 produces a systemic soft rot on its host Saintpaulia ionantha. An eps mutant was less efficient than the wild-type strain in initiating a maceration symptom, suggesting that production of EPS is required for the full expression of the E. chrysanthemi virulence. PMID:9885192

  7. The PEcAn Project: Accessible Tools for On-demand Ecosystem Modeling

    Science.gov (United States)

    Cowdery, E.; Kooper, R.; LeBauer, D.; Desai, A. R.; Mantooth, J.; Dietze, M.

    2014-12-01

    Ecosystem models play a critical role in understanding the terrestrial biosphere and forecasting changes in the carbon cycle, however current forecasts have considerable uncertainty. The amount of data being collected and produced is increasing on daily basis as we enter the "big data" era, but only a fraction of this data is being used to constrain models. Until we can improve the problems of model accessibility and model-data communication, none of these resources can be used to their full potential. The Predictive Ecosystem Analyzer (PEcAn) is an ecoinformatics toolbox and a set of workflows that wrap around an ecosystem model and manage the flow of information in and out of regional-scale TBMs. Here we present new modules developed in PEcAn to manage the processing of meteorological data, one of the primary driver dependencies for ecosystem models. The module downloads, reads, extracts, and converts meteorological observations to Unidata Climate Forecast (CF) NetCDF community standard, a convention used for most climate forecast and weather models. The module also automates the conversion from NetCDF to model specific formats, including basic merging, gap-filling, and downscaling procedures. PEcAn currently supports tower-based micrometeorological observations at Ameriflux and FluxNET sites, site-level CSV-formatted data, and regional and global reanalysis products such as the North American Regional Reanalysis and CRU-NCEP. The workflow is easily extensible to additional products and processing algorithms.These meteorological workflows have been coupled with the PEcAn web interface and now allow anyone to run multiple ecosystem models for any location on the Earth by simply clicking on an intuitive Google-map based interface. This will allow users to more readily compare models to observations at those sites, leading to better calibration and validation. Current work is extending these workflows to also process field, remotely-sensed, and historical

  8. Perivascular epithelioid cell tumor (PEC-ome of the prostate: Ultrasound feature in case report

    Directory of Open Access Journals (Sweden)

    Giulia Sbrollini

    2014-12-01

    Full Text Available Introduction: We describe a rare tumor arising from the prostate gland: Perivascular Epithelioid Cells tumor (PEC-ome. A 54-years old was treated for acute urinary retention with alpha-blockers at presentation due to benign prostate enlargement (65 cc with asymmetric middle lobe and regular PSA (0.92 ng/ml. After 5 months, patient developed a second acute urinary retention episode and nodules in the left lung; he was treated with transurethral resection of the prostate and left lobectomy. Results: Histological examination of prostate and lung tissue gave the same diagnosis: leiomyosarcoma with atypical morphological features and patient was observed for 4 months. Considering the uncommon diagnosis, pathological review by the uro-pathologist at our Hospital was done. Additional immunohistochemistry was done and both tumors showed similar and typical features of metastatic PEC-ome (T1b N0 M1. Therefore a new staging showed local and distant progression with prostatic mass and small lung metastasis. Three cycles of Gemcitabine and Pazopanib were administered, but 2 months later a new urinary retention occurred, despite chemotherapy. Patient referred to our Hospital for salvage pelvic surgery with lymph node dissection. Final pathological diagnosis was PECome of the prostate stage pT4 pN0 R0 M1. Conclusions: PEC-ome is a rare but rapidly invasive mesothelial tumor with early metastatic potential. When this tumors originates from the fibromuscular stroma of the prostate it mimics benign prostatic enlargement and causes LUTS. Expert pathology aided by immunoisthochemistry is the cornerstone of diagnosis. There are no pathognomonic imaging on ultrasound or symptoms suggesting the presence of PECome in early stage. A multidisciplinary approach is necessary and radical surgery should be done to treat this aggressive cancer.

  9. FUS-PEC 2 code and some theoretical remarks on fuel-sodium interaction

    International Nuclear Information System (INIS)

    FUS-PEC 2 code describes the fuel-sodium interaction according to a two phase model. In phase A heat conduction from the fuel to the liquid sodium is considered leading to pressure increase in the interaction zone. In phase B vaporization is the dominant heat transfer effect. The model takes into account heat flux from fuel to sodium by solving the energy equation in both regions, the influence of heat of solidification, the presence of non condensable gas and vapor blanketing phenomena. The main theoretical assumptions underlying the model are outlined in brief with special attention to the solution of energy equation by the Von Karman-Pohlhausen method

  10. Some photoelectrochemical (PEC) measurements on WS/sub x/Se/sub 2-x/ single crystals

    International Nuclear Information System (INIS)

    Tungsten sulfo-selenide single crystals have been employed in the present study for the fabrication of photoelectrochemical (PEC) solar cells. These WS/sub x/Se/sub 2-x/(O≤chi≤2) single crystals were grown by direct vapour transport technique. In the solar cells, as grown crystals are used as photocathodes with another electrode of platinum grid. While studying the spectral response, variation in the band gap (E/sub g/) with composition is noticed. Flat band potential measurements have also been carried out to characterize the cell. Usual results are observed in the present investigation

  11. Evaluation of fluid effects on the dynamic response of a fast reactor core

    International Nuclear Information System (INIS)

    The results of dynamic experiments on shaking tables, carried out in water (simulating sodium) on both single and coupled core element prototypes and core simplified mock-up configurations of the Italian PEC fast reactor test facility, with excitation gradually increasing up to above Safe Shutdown Earthquake, have been analysed by use of the one-dimensional computer program CORALIE and the two-dimensional program CLASH. The study confirmed the conservative nature of the PEC core design calculations, provided the natural frequency and damping values to be used in the calculations for the Final Safety Report, and allowed the fluid-structure interaction model to be assessed for the PEC core seismic analysis. It also contributed to the validation of the above-mentioned computer codes for their general use for the fast reactor core analysis as well as to a better understanding of fluid-structure interaction problems concerning the fast reactor core

  12. Physical properties of spray deposited CdTe thin films: PEC performance

    Institute of Scientific and Technical Information of China (English)

    V. M. Nikale; S. S. Shinde; C. H. Bhosale; K.Y. Rajpure

    2011-01-01

    p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical (PEC),X-ray diffraction (XRD),scanning electron microscopy,energy-dispersive analysis by X-ray (EDAX),and optical transmission studies.The different preparative parameters viz solution pH,solution quantity,substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material.XRD analysis shows the polycrystalline nature of the film,having cubic structure with strong (111) orientation.Micrographs reveal that grains are uniformly distributed over the surface of the substrate indicating the well-defined growth ofpolycrystalline CdTe thin film.The EDAX study for the sample deposited at optimized preparative parameters shows the nearly stoichiometric Cd:Te ratio.Optical absorption shows the presence of direct transition with band gap energy of 1.5 eV.Deposited films exhibit the highest photocurrent of 2.3 mA,a photovoltage of 462 mV,a 0.48 fill factor and 3.4% efficiency for the optimized preparative parameters.

  13. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  14. Energy transfer kinetics of phycoerythrocyanins (PECs) from the cyanobacterium Anabaena variabilis(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    张景民; 张建平; 杨紫萱; 赵井泉; 蒋丽金; 陈建新; 叶彤; 张启元

    1997-01-01

    The excitation energy transfer processes in nionomeric phycoerythrocyanins ( PEC)have been studied in detail using steady-state and time-resolved fluorescence spectra techniques as well as the deconvolution fech nique of spectra.The results indicate that the energy transfer processes should take place between α84 PVB md β8 or β155-PCB chromophores,the time constants of energy transfer are 34.7 and 130 ps individually;the component with lifetime of 1.57 ns originates from the fluorescence lifetime of the terminal emitter of β84 and /or β155 PCB chre-mophores; and the component with lifetime of 515 ps might be assigned to the energy transfer between two PCB chro mophores of β subunit.

  15. FT-IR, XPS and PEC characterization of spray deposited hematite thin films

    International Nuclear Information System (INIS)

    Hematite thin films were prepared by spraying ethanolic solution of ferric trichloride and have been characterized by using Fourier transform infra-red (FT-IR) and X-ray photoelectron spectroscopic (XPS) techniques. The film prepared by spray consists of a single phase of α-Fe2O3. The XPS studies confirm that chemical states of Fe3+ and O2- in the film; thereby confirming the formation of the hematite thin films. The photoelectrochemical (PEC) studies have been carried out by forming a three-electrode system using 1 M NaOH electrolyte. The junction is illuminated with white light to obtain I-V characteristics in chopped light. The studies indicate the films exhibit n-type conductivity

  16. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    Science.gov (United States)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  17. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance.

    Science.gov (United States)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current-voltage (I-V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I-V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research. PMID:27455067

  18. Oxygen modulation of flexible PbS/Pb Schottky junction PEC cells with improved photoelectric performance

    Science.gov (United States)

    Wang, Peng; Fan, Libo; Guo, Qiuquan; Shi, Hongcai; Wang, Liwen; Liu, Yujian; Li, Ming; Zhang, Chunli; Yang, Jun; Zheng, Zhi

    2016-09-01

    Flexible photoelectric devices are emerging as a new class of photovoltaic cells. In this study, lead (Pb) foil was used as a flexible substrate to grow in situ lead sulfide (PbS) film with good uniformity and adhesion by a solvothermal elemental direct reaction, resulting in a PbS/Pb Schottky junction formed naturally between the PbS film and underlying Pb foil. We found that the photocurrent response of the photoelectrochemical (PEC) cell was greatly improved through a facile oxygen (O2)-modulation-based post-processing technique. O2 could decompose the organic residue and oxidize the Pb at the interface between the PbS film and Pb foils. Different characterization techniques, including thermogravimetric analysis, differential scanning calorimetry, x-ray diffraction, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, the change in transient photocurrent density (J p) with time (t), dark current–voltage (I–V) and absorption spectra were applied to get a full understanding of the O2 modulation effect. The oxidization treatment of the PbS film could regulate the flow of charge carriers to reduce their recombination, leading to photoresponse enhancement for the PEC cells. In particular, the process could modulate the tunneling current and interface states to optimize dark I–V characteristics. In addition, the magnitude of the barrier height can be tuned by O2 modulation, which was explained by theoretical analysis and calculation. We also demonstrated that the in situ formed PbS film has outstanding adhesion on the flexible Pb substrate. Our film synthesis method and post O2-modulation design as well as the corresponding device assembly may provide a novel perspective to the flexible PCE-cell-related research.

  19. Long-Term Effects of PECS on Social-Communicative Skills of Children with Autism Spectrum Disorders: A Follow-Up Study

    Science.gov (United States)

    Lerna, Anna; Esposito, Dalila; Conson, Massimiliano; Massagli, Angelo

    2014-01-01

    Background: The Picture Exchange Communication System (PECS) is a popular augmentative communication system frequently used with "nonverbal" children with autism. Several studies suggested that PECS could represent an effective tool for promoting improvement of several social-communicative skills. Only sparse evidence is instead…

  20. Analgesic and Sensory Effects of the Pecs Local Anesthetic Block in Patients with Persistent Pain after Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2016-01-01

    BACKGROUND: Persistent pain after breast cancer surgery (PPBCS) develops in 15% to 25% of patients, sometimes years after surgery. Approximately 50% of PPBCS patients have neuropathic pain in the breast, which may be due to dysfunction of the pectoral nerves. The Pecs local anesthetic block...

  1. E(A+M)PEC - An OpenCL Atomic & Molecular Plasma Emission Code For Interstellar Medium Simulations

    CERN Document Server

    de Avillez, Miguel A; Breitschwerdt, Dieter

    2011-01-01

    E(A+M)PEC traces the ionization structure, cooling and emission spectra of plasmas. It is written in OpenCL, runs in NVIDIA Graphics Processor Units and can be coupled to any HD or MHD code to follow the dynamical and thermal evolution of any plasma in, e.g., the interstellar medium (ISM).

  2. Comparative Efficacy of the Picture Exchange Communication System (PECS) versus a Speech-Generating Device: Effects on Requesting Skills

    Science.gov (United States)

    Boesch, Miriam C.; Wendt, Oliver; Subramanian, Anu; Hsu, Ning

    2013-01-01

    An experimental, single-subject research study investigated the comparative efficacy of the Picture Exchange Communication System (PECS) versus a speech-generating device (SGD) in developing requesting skills for three elementary-age children with severe autism and little to no functional speech. Results demonstrated increases in requesting…

  3. Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action.

    Science.gov (United States)

    Bakola, Sophia; Gamberini, Michela; Passarelli, Lauretta; Fattori, Patrizia; Galletti, Claudio

    2010-11-01

    The cortical projections to the caudal part of the superior parietal lobule (area PEc) were studied in 6 cynomolgus monkeys using fluorescence tracers. Significant numbers of labeled cells were found in a restricted network of parietal, mesial, and frontal areas. Quantitative analysis demonstrated that approximately 30% of the total projection neurons originated in the adjacent areas of the dorsocaudal part of the superior parietal lobule (areas PE and V6A). The medial bank of the intraparietal sulcus, inferior parietal lobule, and frontal lobe (mainly the dorsocaudal part of premotor area F2) each contributed approximately 15% of the projection neurons. About 15% of the labeled neurons were located in the posterior cingulate area (PEci) and another 10% in other areas of the mesial surface of the hemisphere. Based on these data, we suggest that PEc processes information about the position of the limbs. The specific anatomical links between PEc and motor and premotor areas that host a representation of the lower limbs, together with the link with vestibular cortex and with areas involved in the analysis of optic flow and spatial navigation, imply a role for PEc in locomotion and coordinated limb movement in the environment. PMID:20176687

  4. Novel Pathways Revealed in Bursa of Fabricius Transcriptome in Response to Extraintestinal Pathogenic Escherichia coli (ExPEC Infection.

    Directory of Open Access Journals (Sweden)

    Hongyan Sun

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC has major negative impacts on human and animal health. Recent research suggests food-borne links between human and animal ExPEC diseases with particular concern for poultry contaminated with avian pathogenic E. coli (APEC, the avian ExPEC. APEC is also a very important animal pathogen, causing colibacillosis, one of the world's most widespread bacterial diseases of poultry. Previous studies showed marked atrophy and lymphocytes depletion in the bursa during APEC infection. Thus, a more comprehensive understanding of the avian bursa response to APEC infection will facilitate genetic selection for disease resistance. Four-week-old commercial male broiler chickens were infected with APEC O1 or given saline as a control. Bursas were collected at 1 and 5 days post-infection (dpi. Based on lesion scores of liver, pericardium and air sacs, infected birds were classified as having mild or severe pathology, representing resistant and susceptible phenotypes, respectively. Twenty-two individual bursa RNA libraries were sequenced, each yielding an average of 27 million single-end, 100-bp reads. There were 2469 novel genes in the total of 16,603 detected. Large numbers of significantly differentially expressed (DE genes were detected when comparing susceptible and resistant birds at 5 dpi, susceptible and non-infected birds at 5 dpi, and susceptible birds at 5 dpi and 1 dpi. The DE genes were associated with signal transduction, the immune response, cell growth and cell death pathways. These data provide considerable insight into potential mechanisms of resistance to ExPEC infection, thus paving the way to develop strategies for ExPEC prevention and treatment, as well as enhancing innate resistance by genetic selection in animals.

  5. A review of the Italian fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Year 1978 in Italy was marked by a standstill in the nuclear energy field. The decisions previously made for the installation of eight 1000 MWe LWR-type reactors could not be acted upon because of the opposition of local authorities and lack of Government power. The construction site at Montalto di Castro (two BWR reactors) was ope ned with difficulty, whereas the decision to install a plant in Mo use equipped with two PWR reactor was postponed. The new presidents of ENEL and CNEN were appointed in January this year and the appointments of the new Boards of Directors are underway. With regard to CNEN, many political bodies are in agreement on an institutional change which would widen field of activity to include new energy sources, solar energy in particular. This will open a big problem: if CNEN will be no more a 'nuclear body, it could be necessary to transfer all the activities connected to the Regulatory Commission to another separate body to be instituted. In this context, the fast reactor programme has continued to develop under the directives of CIPE, and has concentrated its effort on the following three objectives: the PEC-Reactor, the Creys-Malville Power Plant and research and development, and industrial promotion. These objectives are being pursued with the participation of CNEN, ENEL and Italian industry. CNEN has the role of committing and operating the PEC reactor; it is also charged to perform part of the R and D Italian-French programme and to promote industrial development. ENEL participates in the NERSA Company, owner of the Creys-Malville Plant. Italian industry, with its activities of architect-engineering, designing and manufacturing will participate in the construction of the PEC and of the Italian part (33%) of the Creys-Malville Plant. During the last months of 1978 a consortium (COREY) was set up by CNEN and NIRA which has the purpose of integrating and ensuring the smooth running of Italian efforts in the field of long-term research and

  6. Intercomparison of liquid metal fast reactor seismic analysis codes. V. 2: Verification and improvement of reactor core seismic analysis codes using core mock-up experiments. Proceedings of a research co-ordination meeting held in Vienna, 26-28 September 1994

    International Nuclear Information System (INIS)

    This report (Volume II) contains the papers summarizing the verification of and improvement to the codes on the basis of the French and Japanese data. Volume I: ''Validation of the Seismic Analysis Codes Using the Reactor Code Experiments'' (IAEA-TECDOC-798) included the Italian PEC reactor data. Refs, figs and tabs

  7. Survey of a fusion technology for wireless PEC with energy harvesting in nuclear industry

    International Nuclear Information System (INIS)

    The wireless sensor network has a power-supply problem by constitution. Large amount of sensors are used in wireless networks and each sensor needs energy source for its operation. The life of a battery used in a sensor is finite. When a battery went out, we must exchange it with new one. But the number of sensors used in the wireless network is too numerous, so it is somewhat terrible job to exchange the exhausted batteries with new ones. Various researches have been executed to solve this problem. The mainstreams of them are energy efficiency and energy harvesting. The protocols such as flat-based routing, hierarchical-based routing, location-based routing and MAC protocol have been developed and applied to sensor networks for energy efficiency. But energy harvesting methods can be a ultimate solution. Energy harvesting is the process for capturing and storing of energies. A variety of different sources exist for harvesting energy, such as solar power, thermal energy, wind energy, salinity gradients and kinetic energy. We described an energy harvesting technology and a wireless pulsed eddy currents(PEC) inspection based on it

  8. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  9. RETRACTION: Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction Surface impedance determination of an object located over a planar PEC surface and its use in shape reconstruction

    Science.gov (United States)

    Seda Ünal, Gül; Yapar, Ali; Akduman, Ibrahim

    2009-06-01

    This paper has substantial overlap with the paper 'Reconstruction of surface impedance of an object located over a planar PEC surface' by Gül Seda Ünal, Mehmet Çayören and Evrim Tetik (2008 Journal of Physics: Conference Series 135 012099). Therefore this article has been retracted by IOP Publishing and by the authors, Gül Seda Ünal, Ali Yapar and Ibrahim Akduman.

  10. Photoelectrochemical (PEC) studies on CdSe thin films electrodeposited from non-aqueous bath on different substrates

    Indian Academy of Sciences (India)

    Y G Gudage; N G Deshpande; A A Sagade; R P Sharma; S M Pawar; C H Bhosale

    2007-08-01

    Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin–oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction (XRD), optical absorption and photoelectrochemical (PEC) techniques. XRD study revealed that the films were polycrystalline in nature with hexagonal phase. Optical absorption study showed that CdSe films were of direct band gap type semiconductor with a band gap energy of 1.8 eV. PEC study revealed that CdSe film deposited on FTO coated glass exhibited maximum values of fill factor (FF) and efficiency () as compared to the films deposited on stainless steel and titanium substrate.

  11. Surface Impedance Characterization for UTD Based Solution with IBC for Surface Fields on a Dielectric-Coated PEC Circular Cylinder

    OpenAIRE

    García Aguilar, Andrés; Sipus, Zvonimir; Sierra Pérez, Manuel

    2012-01-01

    A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize t...

  12. [Machinery and mechanical eroticism. A study on the phenomenology of schizophrenia in two painters' artworks in the Reuter Collection (Pecs)].

    Science.gov (United States)

    Simon, Mária

    2010-01-01

    In this essay, I introduce two schizophrenic artists from the Reuter's Psychopathological Art Collection (Pecs, Hungary), who had been treated in the 1920es.One artist drew a number of sketches of machines; the other created a serial of mechanically erotic pictures. Pictures are analyzed from an intersubjective-phenomenological perspective. Schizophrenic patients' subjective experiences i.e. the experience of reification as well as the intrusivity and uncontrollability of sexuality are particularly emphasized.

  13. PEC HOUSE - A competence center devoted to the photoelectrochemical splitting of water and production of hydrogen - Midyear report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Sivula, K.; Warren, S. C.; Capezzali, M.; Formal, F. le; Paracchino, A.; Puettgen, H. B.; Graetzel, M.

    2008-07-15

    PEC House, the photoelectrochemistry centre of competence at the Swiss Federal Institute of Technology of Lausanne (EPFL), has been established to advance the technology of semiconductor-based photoelectrochemical (PEC) water splitting to produce H{sub 2} and O{sub 2} using sunlight as the energy input. The overall objective of the research is to design and develop novel semiconductor-based materials capable of harvesting and converting solar energy into chemical energy by oxidation of water into oxygen and hydrogen. Since its inception nine months ago, PEC House research activities have centered on assembling tools and techniques for the development of the next generation of photoelectrochemical technology, alongside furthering the development of the state-of-the-art {alpha}-Fe{sub 2}O{sub 3} photoanodes conceived by EPFL. Here, we present the midterm 2008 results on the centre's development as well as describe current research efforts with iron oxide photoanodes. Three specific project deliverables are also satisfied by presenting results with our new deposition equipment, identifying the most promising underlayer materials for iron oxide photoanodes, and reporting on the progress of new materials and techniques under development for the second phase of the research activities. (author)

  14. The salmochelin receptor IroN itself, but not salmochelin-mediated iron uptake promotes biofilm formation in extraintestinal pathogenic Escherichia coli (ExPEC).

    Science.gov (United States)

    Magistro, Giuseppe; Hoffmann, Christiane; Schubert, Sören

    2015-01-01

    The key to success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. Intense research revealed not only an arsenal of unique virulence determinants with specific action, but also the multi-functionality of single elements. Especially iron uptake systems of ExPEC proved to be of prime importance. Apart from iron acquisition they optimize certain virulence properties. Here we analyzed the contribution of the salmochelin siderophore system to the ability of ExPEC to form biofilms. In the same iron limited environment, ExPEC displayed a distinct transcriptional profile of siderophore systems. During biofilm formation the iroN gene coding for the specific receptors of the siderophore salmochelin was highly upregulated. Almost no induction was observed during planctonic growth. Disruption of iroN resulted in a reduction of almost 50% in biofilm production. Efficient biofilm formation was not affected in a salmochelin synthesis mutant. Thus, the contribution of IroN is independent from the ability to produce salmochelin. Enhanced expression of IroN did not increase significantly the capacity to form biofilms in ExPEC. Interestingly, the additional expression of IroN or even the acquisition of the entire salmochelin system was not able to improve biofilm formation in a poor biofilm producer like a laboratory E. coli K12 strain. However, complementation with only IroN in an ExPEC iroA deletion mutant was able to restore biofilm formation. The contribution of IroN to biofilm formation appears to require a certain background found in ExPEC, but not in E. coli K12. This study identified the contribution of IroN to biofilm formation and highlights the multi-functional role of iron uptake systems in ExPEC.

  15. The salmochelin receptor IroN itself, but not salmochelin-mediated iron uptake promotes biofilm formation in extraintestinal pathogenic Escherichia coli (ExPEC).

    Science.gov (United States)

    Magistro, Giuseppe; Hoffmann, Christiane; Schubert, Sören

    2015-01-01

    The key to success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. Intense research revealed not only an arsenal of unique virulence determinants with specific action, but also the multi-functionality of single elements. Especially iron uptake systems of ExPEC proved to be of prime importance. Apart from iron acquisition they optimize certain virulence properties. Here we analyzed the contribution of the salmochelin siderophore system to the ability of ExPEC to form biofilms. In the same iron limited environment, ExPEC displayed a distinct transcriptional profile of siderophore systems. During biofilm formation the iroN gene coding for the specific receptors of the siderophore salmochelin was highly upregulated. Almost no induction was observed during planctonic growth. Disruption of iroN resulted in a reduction of almost 50% in biofilm production. Efficient biofilm formation was not affected in a salmochelin synthesis mutant. Thus, the contribution of IroN is independent from the ability to produce salmochelin. Enhanced expression of IroN did not increase significantly the capacity to form biofilms in ExPEC. Interestingly, the additional expression of IroN or even the acquisition of the entire salmochelin system was not able to improve biofilm formation in a poor biofilm producer like a laboratory E. coli K12 strain. However, complementation with only IroN in an ExPEC iroA deletion mutant was able to restore biofilm formation. The contribution of IroN to biofilm formation appears to require a certain background found in ExPEC, but not in E. coli K12. This study identified the contribution of IroN to biofilm formation and highlights the multi-functional role of iron uptake systems in ExPEC. PMID:25921426

  16. Resistência ao impacto da madeira de nogueira-pecã em diferentes condições de umidade Impact strength of nogueira-pecã wood on different moisture conditions

    Directory of Open Access Journals (Sweden)

    Rafael Beltrame

    2012-09-01

    Full Text Available Os estudos de resistência da madeira ao impacto referem-se à eficiência com que este material absorve energia de um impacto e dissipa-a sem danos a sua estrutura. Dessa forma, o objetivo deste estudo foi avaliar a influência do teor de umidade na resistência ao impacto da madeira de nogueira-pecã (Carya illinoinensis. Para tanto, foram utilizadas árvores procedentes de duas regiões fisiográficas do estado do Rio Grande do Sul. Os corpos de prova, em condições de equilíbrio a 12% de umidade e saturados, foram submetidos ao impacto utilizando-se pêndulo de CHARPY, e avaliados quanto à resistência oferecida com a aplicação da carga nos planos tangencial e radial e posições de retirada (medula - casca nas toras, para as duas regiões fisiográficas em cada condição de umidade. Para auxiliar na interpretação dos dados, determinou-se a massa específica aparente a 12% e saturada, trabalho absorvido, coeficiente de resiliência e a cota dinâmica. Pôde-se verificar, por meio dos resultados, que a madeira de nogueira-pecã é mais resistente ao impacto na condição saturada.The studies of wood impact strength refers to the efficiency of this material in absorb impact energy and dissipate it without structural damages. The present study aimed to evaluate the influence of moisture content on the impact strength of nogueira-pecã (Carya illinoinensis wood. For this, trees from two physiographic regions of state of Rio Grande do Sul were used. The samples, stabilized at 12% of moisture content and in green conditions (saturated, were submitted to impact tests through a CHARPY pendulum, and were evaluated for the resistance to the application of loads in the tangential and radial sections, and in the positions of the log (pith-bark for the two physiographic regions at each moisture condition. Moreover, the apparent specific gravity at 12% and in green conditions (saturated, the absorbed work, the resilience coefficient and the

  17. Criteria for structural verification of fast reactor core elements

    International Nuclear Information System (INIS)

    Structural and functional criteria and relative verifications of PEC reactor fuel element are presented and discussed. Particular attention has been given to differentiate the structural verifications of low neutronic damage zones from those high neutronic damage ones. The structural verification criteria, which had already been presented at the 8th SMIRT Seminar Conference in Paris, have had some modifications during the Safety Report preparation. Finally some necessary activities are indicated for structural criteria validation, in particular for irradiated components, and for converging towards a European fast reactor code. (author). 3 refs, 6 tabs

  18. Phase evolution and PEC performance of ZnxCd(1-x)S nanocrystalline thin films deposited by CBD

    International Nuclear Information System (INIS)

    Thin films of ZnxCd(1-x)S with varying Zn concentration, 0.1 ≤ x ≤0.9, were successfully deposited on stainless steel (SS) and amorphous glass substrate by simple and convenient chemical bath deposition (CBD) technique. Prepared films were annealed at 523 K for 1 h and used for structural, optical and morphological characterization. XRD studies confirm the nanocrystalline nature with cubic and hexagonal phases of CdS and ZnS, and diffraction peak intensity decreased with increase in x. The blue shift in the optical transmission spectra was found with increase in x. An interesting change in morphology, from flake to spherical particle structure, was observed with increase in Zn concentration. Electrochemical Impedance Spectroscopy (EIS) was carried out for all the films. These films were successfully utilized for photoelectrochemical (PEC) cell application. The charge transfer resistance (Rct) determined from nyquist plots were found to be decreased initially with increase in x, minimum for x = 0.5 and increased thereafter. The performance of PEC cell was found to be dependent on the concentration of Zn and efficiency was found to be increased with increasing x, maximum for x = 0.5 and decreased thereafter. The maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 457 μA/cm2 and 389 mV were respectively found for x = 0.5 under 10 mW/cm2 of illumination.

  19. Inovace pracoviště pro výrobu laboratorních pecí

    OpenAIRE

    Nevřivý, Lukáš

    2014-01-01

    Bakalářská práce se zabývá návrhem optimálního řešení výroby laboratorních pecí firmy LAC s.r.o. na základě SWOT analýzy. Po provedení podrobného rozboru současného stavu pracoviště je vytvořena standardizace konstrukce pecí a následně nový návrh obsahující dvě varianty uspořádání pracoviště. Pro vybranou vhodnější variantu je vytvořena optimalizace 5S a následné technicko-ekonomické hodnocení, které obsahuje porovnání současného a navrhovaného stavu výroby. The Bachelor thesis deals with ...

  20. Comparative efficacy of the picture exchange communication system (PECS) versus a speech-generating device: effects on social-communicative skills and speech development.

    Science.gov (United States)

    Boesch, Miriam C; Wendt, Oliver; Subramanian, Anu; Hsu, Ning

    2013-09-01

    The Picture Exchange Communication System (PECS) and a speech-generating device (SGD) were compared in a study with a multiple baseline, alternating treatment design. The effectiveness of these methods in increasing social-communicative behavior and natural speech production were assessed with three elementary school-aged children with severe autism who demonstrated extremely limited functional communication skills. Results for social-communicative behavior were mixed for all participants in both treatment conditions. Relatively little difference was observed between PECS and SGD conditions. Although findings were inconclusive, data patterns suggest that Phase II of the PECS training protocol is conducive to encouraging social-communicative behavior. Data for speech outcomes did not reveal any increases across participants, and no differences between treatment conditions were observed.

  1. Převedení výroby litiny z kuplovny na indukční pec

    OpenAIRE

    SEDLÁKOVÁ, Jitka

    2010-01-01

    Předmětem této práce je ověřit možnost řízení pevnosti litiny pomoci obsahu zbytkového hořčíku a metodicky zjistit, zda je možné tuto technologii použít v provozu slévárny. Dále je předmětem zjistit ekonomickou stránku výměny kuplové pece za elektrickou indukční pec a metodicky vyhodnotit možnosti vedení tavby na elektrické indukční peci. The subject of this work is to validate the possibility of managing the cast iron strength through residual Mg content and to determine methodically whet...

  2. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  3. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients

    DEFF Research Database (Denmark)

    Jakobsen, L; Spangholm, D. J.; Pedersen, Karl;

    2010-01-01

    medical impact. The cluster analysis of virulence gene and antimicrobial resistance profiles showed strong similarities between UTI patient, community-dwelling human isolates, meat, and production animal isolates. Thus, these strains from meat and production animals may pose a zoonotic risk.......Urinary tract infection (UTI) is one of the most common bacterial infections. UTI is primarily caused by extraintestinal pathogenic Escherichia coli (ExPEC) from the patients' own fecal flora. The ExPEC often belong to phylogroups B2 and D, the groups which include potent human ExPEC isolates...... causing UTI, bacteremia, and meningitis. The external sources of these ExPEC in the human intestine are unknown. The food supply may transmit ExPEC to humans. However, evidence of this hypothesis is limited. To assess this hypothesis, the objective of our study was to investigate the presence of Ex...

  4. A parallel wavelet-enhanced PWTD algorithm for analyzing transient scattering from electrically very large PEC targets

    KAUST Repository

    Liu, Yang

    2014-07-01

    The computational complexity and memory requirements of classically formulated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(Nt Ns 2) and O(Ns 2), respectively; here Nt and Ns denote the number of temporal and spatial degrees of freedom of the current density. The multilevel plane wave time domain (PWTD) algorithm, viz., the time domain counterpart of the multilevel fast multipole method, reduces these costs to O(Nt Nslog2 Ns) and O(Ns 1.5) (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). Previously, PWTD-accelerated MOT-SIE solvers have been used to analyze transient scattering from perfect electrically conducting (PEC) and homogeneous dielectric objects discretized in terms of a million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). More recently, an efficient parallelized solver that employs an advanced hierarchical and provably scalable spatial, angular, and temporal load partitioning strategy has been developed to analyze transient scattering problems that involve ten million spatial unknowns (Liu et. al., in URSI Digest, 2013).

  5. Reforma tributária: os efeitos macroeconômicos e setoriais da PEC 233/2008

    Directory of Open Access Journals (Sweden)

    Nelson Leitão Paes

    2011-06-01

    Full Text Available A despeito de um histórico desalentador, o atual governo enviou nova proposta de reforma tributária ao Congresso Nacional, a PEC 233/2008. A proposta unifica alguns tributos federais do consumo no IVA-F, simplifica e diminui drasticamente a legislação do ICMS, alivia a tributação sobre a folha de pagamento e bens essenciais e desonera investimentos. Para a análise do impacto destas mudanças, foi construído um modelo de equilíbrio geral, que contempla 55 firmas no lado produtivo da economia. Os resultados sugerem que do lado agregado haverá modesta expansão do produto, consumo, emprego e investimento, com pequena perda de arrecadação e aumento de bem-estar. Houve substanciais alterações no produto setorial, com uma tendência de aumento dos setores industrial e agropecuário em detrimento dos serviços.

  6. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  7. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  8. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  9. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Guo Li-Xin; Wang An-Qi

    2009-01-01

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimeusionai Gaussian rough surface.Using the electric field integral equation (EFIE),it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Ganssian rough surface on personal computer (PC) clusters.The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters.It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem.The influences of the root-mean-square height,the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed.

  10. On the spectral domain approach to long-range propagation of high-frequency waves along a strip conductor above a PEC surface

    CERN Document Server

    Norgren, Martin

    2012-01-01

    A generic problem of high frequency wave propagation along a metallic strip in parallel above a PEC ground plane is considered. The wave is excited by an elemental electric dipole at an arbitrary location above the PEC plane. The full wave problem, for arbitrary widths of the strip, is solved by means of a mode matching approach and expansion of the strip surface current into Chebyshev polynomials. For narrow strips, an approximate method using only longitudinal currents is derived, and compared numerically with the full wave method. Utilizing the concept of equivalent radius, the approximate method for narrow strips is evaluated numerically against results for thin circular wires. It is concluded that the approximate method is suitable for handling multiple wires in layered structures, wherefore the method has potential usefulness for estimating long range propagation of high frequency waves in wire structures like power lines and railway feeding systems, containing over-head wires and wires submerged into g...

  11. Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces

    International Nuclear Information System (INIS)

    This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integral equation (EFIE), it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Gaussian rough surface on personal computer (PC) clusters. The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters. It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem. The influences of the root-mean-square height, the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed. (classical areas of phenomenology)

  12. Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light

    International Nuclear Information System (INIS)

    Ag particles were doped on BiVO4 film by photoreduction technique. XRD analysis indicated that the chemical state of the Ag particles was metallic Ag. TEM observation confirmed that the sizes of the Ag particles were 10-20 nm. The investigation of the phenol degradation demonstrated that the photocatalytic (PC) degradation rate of the phenol on the Ag doped BiVO4 film was enhanced by 1.61 times in PC process and by 42.7 times in photoelectrocatalytic (PEC) process compared with that of the BiVO4 film. The transportation of the electrons from the BiVO4 to Ag driven by the schottky barrier formed between Ag and BiVO4 can increase the charge carrier separation, and consequently enhance the PC performance. The enhancement of the PC ability in PEC process could be attributed to the simultaneous movements of the photogenerated electrons to external circuit and the photogenerated holes to the Ag particles deposited on the BiVO4 film. In 4 h, the elimination efficiency and the TOC removal efficiency of phenol on the Ag doped BiVO4 film in PEC process were 94.1% and 61.0%, respectively.

  13. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    Science.gov (United States)

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  14. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  15. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  16. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  17. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  18. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  20. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  1. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  2. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  3. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  4. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  5. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  6. Evaluación de la calidad durante el almacenamiento de nueces Pecán [Carya illinoinensis (Wangenh. C. Koch] acondicionadas en diferentes envases

    Directory of Open Access Journals (Sweden)

    Block, Jana Mara

    2008-06-01

    Full Text Available In the present work, the quality changes of pecan nuts stored in nylon-polyethylene plastic film under vacuum and in polypropylene plastic recipients at ambient temperature for 150 days were evaluated. The nutritional composition, fatty acid composition and tocopherol content of the pecan nuts reveal interesting nutritional characteristics and an oil with high contents of mono-unsaturated fatty acids and γ-tocopherol. During storage, moisture content did not suffer significant changes, but a gradual and significant darkening of the surface of the nuts occurred. The changes in acid value, peroxide value and specific extinction of the extracted oil were significant. The microbiological quality was excellent and the presence of Salmonella sp. was not detected. Through sensory analysis, the shelf-life of the product was determined as 120 days, without significant differences between the two types of packaging used.En el presente trabajo, fueron evaluadas las alteraciones en la calidad de nueces Pecán almacenadas en película plástica de nilón-polietileno al vacío y en recipientes plásticos de polipropileno, en temperatura ambiente, durante 150 días. La composición nutricional, en ácidos grasos (62,5 % de ácido oleico y el contenido de tocoferoles (30 mg/kg de γ-tocoferol de las nueces Pecán, indican características nutricionales interesantes. Durante el almacenamiento de las nueces, el contenido de humedad no sufrió cambios significativos, mas ocurrió un oscurecimiento gradual y significativo de la superficie de las nueces. Las alteraciones en los índices de acidez (0,17 - 0,37 y 0,19 - 0,57 inicial y final para los envases de película plástica y polipropileno, respectivamente, peróxido (1,0 - 2,7 y 1,1 - 4,7 y extinción específica a 232 nm (0,98 - 1,99 y 0,96 - 2,16 y 270 nm (0,11 - 0,33 y 0,04 - 0,15 en el aceite extraído fueron significativas. La calidad microbiológica fue excelente y no fue detectada la presencia de

  7. Controlled growth of catalyst assisted and catalyst free CdSe micro cactuses with sharply pointed nanorods, their Photoluminescence (PL) and Photo electrochemical (PEC) properties

    International Nuclear Information System (INIS)

    Highlights: ► Catalyst assisted (CA) and catalyst free (CF) growth of CdSe microcactuses with sharply pointed nanorods. ► VLS growth mechanism is proposed for CA and solid state chemical reaction for CF growth of CdSe Microcactus. ► Fabrication of PEC solar cell with 0.47% efficiency and 0.35 fill factor. ► PL studies exhibit peaks at 672 nm for CA and 596 nm for CF growth of CdSe cactuses respectively. ► CF growth is concluded to be better option as compared to CA growth for nanostructured materials. - Abstract: We report here a thermochemical approach for controlling the catalyst assisted and catalyst free growth of CdSe cactus like structures with sharply pointed nanorods (SPNR). The cactuses were simultaneously obtained on the silicon substrate and in semicircular alumina boat using cadmium and selenium powders as precursors under ammonia gas flow. The aqueous ammonia helps to control the growth of 1D structure and the formation of CdSe. Vapor–liquid–solid (VLS) growth mechanism is proposed for the catalyst assisted while solid state chemical reaction is suggested for the catalyst free growth of microcactuses. The microcactuses obtained in the boat as powder form are hollow whereas solid on the silicon substrate. Room temperature photoluminescence (PL) studies exhibit sharp peak at 672 nm for catalyst assisted CdSe microcactuses. A broad peak at 596 nm was observed for catalyst free growth of CdSe SPNR. In this work we have demonstrated that PL emission from the catalyst free growth of nanostructured CdSe is broad and intense. These two peaks are blue shifted from the bulk. Nanorods emerging from exterior surface of cactus like structures are observed to have decreasing diameter along vertical-axis and end up in SPNR. Average diameter in the middle of nanorods is estimated in the range of 250–450 nm. Photo electrochemical (PEC) solar cell is fabricated on ITO coated glass substrate with the help of PVDF in NMP solution. The efficiency and fill

  8. Anatomía foliar y del pecíolo de cuatro especies de Lupinus (Fabaceae Foliar and petiole anatomy of four species of Lupinus (Fabaceae

    Directory of Open Access Journals (Sweden)

    Juan Francisco Zamora-Natera

    2012-09-01

    Full Text Available Se describe y compara la anatomía foliar y del pecíolo de 4 especies del género Lupinus (L. aschenbornii S.Schauer, L. exaltatus Zucc., L. montanus Kunth y L. reflexus Rose que se distribuyen en un gradiente altitudinal en el Parque Nacional Nevado de Colima. Las hojas se fijaron en campo y se procesaron mediante la técnica de inclusión en parafina. Parte de las láminas se deshidrataron para caracterizar la superficie foliar por medio del microscopio electrónico de barrido. Las especies comparten la epidermis papilosa de paredes anticlinales con diferentes grados de ondulación, estomas anomocíticos, tricomas simples lineares y mesofilo bifacial. Los folíolos de L. montanus son glabros en la superficie abaxial, las estrías cuticulares sobre las células localizadas en la base de los tricomas es un rasgo característico de L. montanus y de L. reflexus. Las diferencias encontradas en espesor de la lámina y del mesofilo así como la abundancia de ceras epicuticulares pueden estar influenciadas por el ambiente. Distintivamente, el número y distribución de haces vasculares en los pecíolos difieren entre las 4 especies y podrían ser de utilidad para diferenciarlas si estos resultados se confirman al estudiar un mayor número de especies de Lupinus.The aims of this study were to describe and compare the foliar and petiole anatomy of 4 species of Lupinus (L. aschenbornii S.Schauer, L. exaltatus Zucc., L. montanus Kunth, and L. reflexus Rose distributed in an elevation gradient at Parque Nacional Nevado de Colima. Leaves were fixed in the field and prepared using the paraffin embedding technique. In addition, part of the blades was dehydrated to describe leaf surface through the scanning electron microscope. The 4 species shared a papillose epidermis with undulated anticlinal walls in different degrees, stomata anomocytic, simple unicellular trichomes, and bifacial mesophyll. Leaflets of L. montanus are glabrous on the abaxial surface

  9. Treating and conditioning the radioactive wastes produced in TRIGA Reactor

    International Nuclear Information System (INIS)

    The technologies employed in treating the radioactive waste, applied at INR Pitesti are: - treating by evaporation of the liquid radioactive wastes from the TRIGA reactor and conditioning by concrete casting of the compact radioactive product. The liquid evaporation is achieved with an evaporator of 1.2 m3/h capacity supplied by PEC Engineering, France. The radioactive compact cast in concrete is finally disposed in steel barrels of 220 l capacity; - for treating and conditioning the solid wastes produced by TRIGA reactor and the Laboratory for Post-Irradiation Examination, the technology of concrete casting is used. There are two categories of solid wastes, namely, compressible, which can be compacted to a volume of upmost 5 l, and non-compressible, in which case the material is cut into pieces of 700 x 400 x 400 mm3. In the last case the compacted or broken wastes are introduced in a metallic container which is then conditioned by casting in concrete in view of final disposal in 220 l barrels; - for treating and conditioning waste ion exchangers, produced in TRIGA reactor operation, the technology of casting in bitumen in 80 l barrels which are then conditioned in 220 l barrels for final disposal

  10. Presence of pathogenicity islands and virulence genes of extraintestinal pathogenic Escherichia coli (ExPEC) in isolates from avian organic fertilizer.

    Science.gov (United States)

    Gazal, Luís Eduardo S; Puño-Sarmiento, Juan J; Medeiros, Leonardo P; Cyoia, Paula S; da Silveira, Wanderlei D; Kobayashi, Renata K T; Nakazato, Gerson

    2015-12-01

    Poultry litter is commonly used as fertilizer in agriculture. However, this poultry litter must be processed prior to use, since poultry have a large number of pathogenic microorganisms. The aims of this study were to isolate and genotypically and phenotypically characterize Escherichia coli from avian organic fertilizer. Sixty-four E. coli isolates were identified from avian organic fertilizer and characterized for ExPEC virulence factors, pathogenicity islands, phylogenetic groups, antimicrobial resistance, biofilm formation, and adhesion to HEp-2 cells. Sixty-three isolates (98.4%) showed at least one virulence gene (fimH, ecpA, sitA, traT, iutA, iroN, hlyF, ompT and iss). The predominant phylogenetic groups were groups A (59.3%) and B1 (34.3%). The pathogenicity island CFT073II (51.5%) was the most prevalent among the isolates tested. Thirty-two isolates (50%) were resistant to at least one antimicrobial agent. Approximately 90% of isolates adhered to HEp-2 cells, and the predominant pattern was aggregative adherence (74.1%). In the biofilm assay, it was observed that 75% of isolates did not produce biofilm. These results lead us to conclude that some E. coli isolates from avian organic fertilizer could be pathogenic for humans.

  11. The main factors of repetition: review of some results of the Pecs Center in the WHO/EURO Multicentre Study on Suicidal Behaviour.

    Science.gov (United States)

    Osváth, Peter; Kelemen, Gábor; Erdös, Márta B; Vörös, Viktor; Fekete, Sándor

    2003-01-01

    The authors obtained more information about the characteristics of suicide attempters in order to examine the most important differences between those who attempted suicide for the first time (first-evers) and those who had a previous attempt (repeaters). Within the framework of the WHO/EURO Multicentre Study on Suicidal Behaviour in Pecs Center, 1158 cases of parasuicide were collected over 4 years (July 1, 1997-June 30, 2001). In the monitoring sample, 728 (62.9%) parasuicide acts were committed by women and 430 (37.1%) by men, and more than half of the attempters had made a previous attempt In the logistic regression model a higher risk of repetition was found to be related to being divorced (OR 1.84), unemployed or economically inactive (OR 1.45), and without higher education (OR 2.54). In the sample, mental disorders were the most significant risk factor for repeated attempts. The odds ratio was highest (OR 5) for personality disorders. The results may reflect (besides some factors of social destabilization) a higher importance of major mental health problems among repeaters. For this reason, more effective recognition and treatment of the underlying psychiatric and social conditions of suicide attempters has special importance to prevent future suicidal behaviour. PMID:15509139

  12. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  14. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  15. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  18. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  19. Economic and environmental assessment modeling of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    In order to search for economically and environmentally optimized fusion reactors, physics properties, engineering designs and the cost of electricity (COE) are evaluated by the PEC (Physics-Engineering-Cost) system code for several magnetic confinement fusion reactors including tokamak (TR), helical (HR) and spherical tokamak (ST) reactors. The life-cycle CO2 emission amounts are also evaluated for various blanket designs using input-output table. This code has recently been upgraded to apply to inertial fusion reactor (IR) designs. The advantage of high-beta TR designs in COE and the advantage of compact ST designs in life-cycle CO2 emission reduction are clarified in the present economical and environmental assessments. The probable merits of IR design in both values are also clarified in the present model. The increase in net electric fusion power from 1GW to 3GW leads to 38% reduction in COE and 23% reduction in CO2 emission amounts. The scaling formulas of COE and CO2 emissions are derived as a function of plasma beta and net electric power. When the carbon tax of around 3,000 yen/t-CO2 is introduced, the COE of fusion reactor might be same level on that of coal-fired electric power plant and 1.5 times lower than that of oil-fired electric power plant. (author)

  20. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  1. Reactor Physics Training

    International Nuclear Information System (INIS)

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  2. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  3. Constatação de Xylella fastidiosa em pecíolos e hipocotilos de cafeeiro com sintomas de mancha manteigosa Report of Xylella fastidiosa in petioles and hypocotyls of coffee plants with symptoms of Buttery spot

    OpenAIRE

    Severina Rodrigues de Oliveira Lins; Mário Sobral de Abreu; Eduardo Alves; Juliana Franco Barbosa; Ricardo Magela de Souza

    2008-01-01

    A mancha manteigosa tem afetado um grande número de plantas de cafeeiro em condições de campo. Sua causa tem sido atribuída a Colletotrichum gloeosporioides, entretanto a sintomatologia da doença na folha não tem sido reproduzida. Neste estudo, relata-se pela primeira vez a associação de Xylella fastidiosa, agente da atrofia dos ramos de cafeeiro, com pecíolo de folhas e hipocótilos obtidos a partir de sementes de plantas com sintomas da mancha manteigosa, através de estudos ultra-estruturais...

  4. Fire resistance limit and its influence factors of axial restrained PEC columns subjected to standard fire%标准升温下轴向约束PEC柱耐火极限及影响因素分析

    Institute of Scientific and Technical Information of China (English)

    满建政; 毛小勇

    2012-01-01

    为考察高温下相邻构件作用对PEC柱耐火极限的影响,应用有限元软件ABAQUS建立了标准升温条件下约束PEC柱数值分析模型,得到了试验数据的验证。应用验证后的模型,分析了火灾荷载比、轴向约束刚度比、长细比、偏心率对约束PEC柱耐火极限的影响规律。结果表明,随着火灾荷载比的增大,约束PEC柱的耐火极限呈线性降低的趋势;轴向约束刚度比对PEC柱耐火极限几乎没有影响;长细比和偏心率对PEC柱耐火极限影响不大;在荷载比相同的情况下,随着长细比的增加PEC柱耐火极限略有降低,随着偏心率的增加PEC柱耐火极限略有上升。%In order to investigate the influence of adjoining members on the fire resistance of PEC (Partially En- cased Concrete) columns under the high temperature, the ABAQUS software of the finite element model was used to develop the model for numerical analysis of restrained PEC columns under the standard fire, and the model was verified by the test data. The verified model was then used to analyze the influence rules of the load ratio, axial restraint ratio, slenderness ration and eccentricity on the fire resistance limit of restrained PEC columns. The result shows that the limit tends to be low when the load ratio increases; the axial restraint ratio has little in- fluence on the load ratio; the slenderness and load eccentricity have slight influence; under the same load ratio, the increase of slenderness leads to a slight decrease of the fire resistance of the PEC columns, and the increase of the load eccentricity leads to slight increase of the fire resistance of the columns.

  5. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  6. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  7. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  8. Reactor System Design

    International Nuclear Information System (INIS)

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  9. Irradiations in swimming-pool type reactors from room temperature up to 2000 deg C

    International Nuclear Information System (INIS)

    The irradiations which have been, and are being carried out in the Melusine and Siloe reactors in connection with pure or applied research projects, are effected in widely varying conditions; amongst these, for example, the temperature may vary from -250 deg C to +2000 deg C The eight devices presented are designed for irradiations effected at temperatures of from room temperature up to 2000 deg C. 1. Irradiation device for irradiation at normal temperatures 2. The 'PEF' device 3. The 'CHOUCA' device, 150 to 900 deg C 4. The 'CYRANO' device for EL 4 conditions 5. 'HT' capsules, 800-1000 deg C 6. The 'HEBE' furnace 1400 deg C 7. The 'PEC' device, 1400 deg C 8. The 'HF' furnace 2000 deg C. (authors)

  10. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  11. Fossil nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.

    1976-01-01

    The discussion of fossil nuclear reactors (the Oklo phenomenon) covers the earth science background, neutron-induced isotopes and reactor operating conditions, radiation-damage studies, and reactor modeling. In conclusion possible future studies are suggested and the significance of the data obtained in past studies is summarized. (JSR)

  12. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  13. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  14. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  15. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  17. Constatação de Xylella fastidiosa em pecíolos e hipocotilos de cafeeiro com sintomas de mancha manteigosa Report of Xylella fastidiosa in petioles and hypocotyls of coffee plants with symptoms of Buttery spot

    Directory of Open Access Journals (Sweden)

    Severina Rodrigues de Oliveira Lins

    2008-02-01

    Full Text Available A mancha manteigosa tem afetado um grande número de plantas de cafeeiro em condições de campo. Sua causa tem sido atribuída a Colletotrichum gloeosporioides, entretanto a sintomatologia da doença na folha não tem sido reproduzida. Neste estudo, relata-se pela primeira vez a associação de Xylella fastidiosa, agente da atrofia dos ramos de cafeeiro, com pecíolo de folhas e hipocótilos obtidos a partir de sementes de plantas com sintomas da mancha manteigosa, através de estudos ultra-estruturais em Microscópio Eletrônico de Varredura (MEV, bem como por PCR (Polymerase Chain Reaction. Para o estudo foram realizados três ensaios. No primeiro, coletaram-se folhas com sintomas de mancha manteigosa e assintomáticas em duas localidades as quais foram preparadas para MEV. No segundo, pecíolos de 40 plantas sintomáticas e 40 assintomáticas foram coletados no campo experimental de café da UFLA. Os Pecíolos das folhas foram cortados e macerados para extração do DNA e analisados por PCR. Quatro pecíolos de cada uma destas amostras (plantas com e sem sintomas também foram preparados para MEV. Em um terceiro ensaio, sementes obtidas de plantas com sintomas de mancha manteigosa, foram semeadas em bandejas de isopor contendo substrato Plantmax®. As bandejas permaneceram em câmara de crescimento e aos 30, 60 e 90 dias, após a semeadura, foram coletados hipocótilos para preparação e observação em MEV. Inicialmente uma bactéria semelhante à Xylella foi encontrada nos vasos do xilema de plantas sintomáticas das duas localidades estudadas. Pela análise por PCR constatou-se X. fastidiosa em 34% das plantas com sintoma da doença e 9,3% nas sem o sintoma da mancha manteigosa. Pecíolos de plantas Xylella positivas por PCR apresentaram obstrução dos vasos do xilema pelas bactérias. Das quatro plantas negativas por PCR, apenas uma teve o pecíolo com vasos obstruídos pela bactéria quando analisados em MEV. Em hipoc

  18. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  19. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  1. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  2. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  3. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  4. Anatomia comparada do pulvino, pecíolo e raque de Pterodon pubescens Benth. (Fabaceae - Faboideae Comparative anatomy of pulvinus, petiole and rachis of Pterodon pubescens Benth. (Fabaceae - Faboideae

    Directory of Open Access Journals (Sweden)

    Tatiane Maria Rodrigues

    2004-06-01

    Full Text Available Em Pterodon pubescens, os pulvinos primário e secundário, órgãos responsáveis pelos movimentos foliares, apresentam peculiaridades estruturais em relação ao pecíolo e raque. Estas peculiaridades incluem cutícula mais espessa, córtex mais desenvolvido formado por células parenquimáticas de formas variáveis, sistema vascular em posição central, floema circundado por fibras septadas não lignificadas e medula parenquimática reduzida ou ausente. Pecíolo e raque apresentam córtex reduzido constituído por células parenquimáticas isodiamétricas, sistema vascular periférico, floema envolvido por calota de fibras gelatinosas e medula ampla. Compostos fenólicos foram detectados no vacúolo das células corticais dos pulvinos, enquanto que no córtex e medula do pecíolo e da raque foram observados amiloplastos em abundância e ausência de compostos fenólicos. Em geral, as características estruturais do pulvino de P. pubescens são comuns aos pulvinos das demais espécies de Fabaceae e têm sido relacionadas com a intensificação de trocas laterais de íons e água entre células do córtex e sistema vascular, além de proporcionar maior flexibilidade e capacidade de movimento desta região. Já as características do pecíolo e da raque conferem maior rigidez a estas estruturas foliares.In Pterodon pubescens the primary and secondary pulvini show structural peculiarities in relations of petiole and rachis. These peculiarities include thicker cuticule, more developed cortex with only parenchyma cells with irregular shape, central vascular tissues, presence of septate fibers around the phloem, and absent or reduced pith. Petiole and rachis show reduced cortex constituted by parenchyma isodiameters cells, peripheric vascular tissues surrounded by gelatinous fibers and pith. Phenolic compounds were detected inside vacuole of parenchyma cells of the pulvinus. Starch grains were observed in the parenchyma cells of petiole and rachis

  5. One piece reactor removal

    International Nuclear Information System (INIS)

    Japan Research Reactor No.3 (JRR-3) was the first reactor consisting of 'Japanese-made' components alone except for fuel and heavy water. After reaching its initial critical state in September 1962, JRR-3 had been in operation for 21 years until March 1983. It was decided that the reactor be removed en-bloc in view of the work schedule, cost and management of the reactor following the removal. In the special method developed jointly by the Japanese Atomic Energy Research Institute and Shimizu Construction Co., Ltd., the reactor main unit was cut off from the building by continuous core boring, with its major components bound in the block with biological shield material (heavy concrete), and then conveyed and stored in a large waste store building constructed near the reactor building. Major work processes described in this report include the cutting off, lifting, horizontal conveyance and lowering of the reactor main unit. The removal of the JRR-3 reactor main unit was successfully carried out safely and quickly by the en-block removal method with radiation exposure dose of the workers being kept at a minimum. Thus the high performance of the en-bloc removal method was demonstrated and, in addition, valuable knowhow and other data were obtained from the work. (Nogami, K.)

  6. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  7. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  8. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  9. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  10. Mirror reactor surface study

    International Nuclear Information System (INIS)

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  11. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  12. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  13. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  14. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  15. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  16. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  18. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  19. Safety of research reactors

    International Nuclear Information System (INIS)

    The number of research reactors that have been constructed worldwide for civilian applications is about 651. Of the reactors constructed, 284 are currently in operation, 258 are shut down and 109 have been decommissioned. More than half of all operating research reactors worldwide are over thirty years old. During this long period of time national priorities have changed. Facility ageing, if not properly managed, has a natural degrading effect. Many research reactors face concerns with the obsolescence of equipment, lack of experimental programmes, lack of funding for operation and maintenance and loss of expertise through ageing and retirement of the staff. Other reactors of the same vintage maintain effective ageing management programmes, conduct active research programmes, develop and retain high calibre personnel and make important contributions to society. Many countries that operate research reactors neither operate nor plan to operate power reactors. In most of these countries there is a tendency not to create a formal regulatory body. A safety committee, not always independent of the operating organization, may be responsible for regulatory oversight. Even in countries with nuclear power plants, a regulatory regime differing from the one used for the power plants may exist. Concern is therefore focused on one tail of a continuous spectrum of operational performance. The IAEA has been sending missions to review the safety of research reactors in Member States since 1972. Some of the reviews have been conducted pursuant to the IAEA' functions and responsibilities regarding research reactors that are operated within the framework of Project and Supply Agreements between Member States and the IAEA. Other reviews have been conducted upon request. All these reviews are conducted following procedures for Integrated Safety Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety

  20. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  1. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  2. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  3. Test reactor technology

    International Nuclear Information System (INIS)

    The Reactor Development Program created a need for engineering testing of fuels and materials. The Engineering Test Reactors were developed around the world in response to this demand. The design of the test reactors proved to be different from that of power reactors, carrying the fuel elements closer to the threshold of failure, requiring more responsive instrumentation, more rapid control element action, and inherent self-limiting behavior under accident conditions. The design of the experimental facilities to exploit these reactors evolved a new, specialized, branch of engineering, requiring a very high-lvel scientific and engineering team, established a meticulous concern with reliability, the provision for recovery from their own failures, and detailed attention to possible interactions with the test reactors. This paper presents this technology commencing with the Materials Testing Reactor (MTR) through the Fast Flux Test Facility, some of the unique experimental facilities developed to exploit them, but discusses only cursorily the experiments performed, since sample preparation and sample analyses were, and to some extent still are, either classified or proprietary. The Nuclear Engineering literature is filled with this information

  4. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  5. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  7. nuclear reactor design calculations

    International Nuclear Information System (INIS)

    In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations

  8. Course on reactor physics

    International Nuclear Information System (INIS)

    In Germany only few students graduate in nuclear technology, therefore the NPP operating companies are forced to develop their own education and training concepts. AREVA NP has started together with the Technical University of Dresden a one-week course ''reactor physics'' that includes the know-how of the nuclear power plant construction company. The Technical University of Dresden has the training reactor AKR-2 that is retrofitted by modern digital instrumentation and control technology that allows the practical training of reactor control.

  9. PWR type reactor

    International Nuclear Information System (INIS)

    From a PWR with a primary circuit, consisting of a reactor pressure vessel, a steam generator and a reactor coolant pump, hot coolant is removed by means of an auxiliary system containing h.p. pumps for feeding water into the primary circuit and being connected with a pipe, originating at the upper part, which has got at least one isolating value. This is done by opening an outlet in a part of the auxiliary system that has got a lower pressure than the reactor vessel. Preferably a water jet pump is used for mixing with the water of the auxiliary system. (orig.)

  10. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  11. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  12. NEUTRONIC REACTOR FUEL COMPOSITION

    Science.gov (United States)

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  13. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  14. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  15. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  16. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  17. Experience with Kamini reactor

    International Nuclear Information System (INIS)

    Kamini is a 233U fuelled, 30 kW(th) research reactor. It is one of the best neutron source facility with a core average flux of 1012 n/cm2/s in IGCAR used for neutron radiography of active and nonradioactive objects, activation analysis and radiation physics research. The core consists of nine plate type fuel elements with a total fuel inventory of 590 g of 233U. Two safety control plates made of cadmium are used for start up and shutdown of the reactor. Three beam tubes, two-thimble irradiation site outside reflector and one irradiation site nearer to the core constitute the testing facilities of Kamini. Kamini attained first criticality on 29th October 96 and nominal power of 30 kW in September 1997. This paper covers the design features of the reactor, irradiation facilities and their utilities and operating experience of the reactor. (author)

  18. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  19. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  20. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  1. Special lecture on nuclear reactor

    International Nuclear Information System (INIS)

    This book gives a special lecture on nuclear reactor, which is divided into two parts. The first part has explanation on nuclear design of nuclear reactor and analysis of core with theories of integral transports, diffusion Nodal, transports Nodal and Monte Carlo skill parallel computer and nuclear calculation and speciality of transmutation reactor. The second part deals with speciality of nuclear reactor and control with nonlinear stabilization of nuclear reactor, nonlinear control of nuclear reactor, neural network and control of nuclear reactor, control theory of observer and analysis method of Adomian.

  2. Jet-Stirred Reactors

    OpenAIRE

    Herbinet, Olivier; Guillaume, Dayma

    2013-01-01

    The jet-stirred reactor is a type of ideal continuously stirred-tank reactor which is well suited for gas phase kinetic studies. It is mainly used to study the oxidation and the pyrolysis of hydrocarbon and oxygenated fuels. These studies consist in recording the evolution of the conversion of the reactants and of the mole fractions of reaction products as a function of different parameters such as reaction temperature, residence time, pressure and composition of the inlet gas. Gas chromatogr...

  3. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  4. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This report summarizes the activities of the OECD Halden Reactor Project for the year 1976. The main items reported on are: a) the process supervision and control which have focused on core monitoring and control, and operator-process communication; b) the fuel performance and safety behavior which have provided data and analytical descriptions of the thermal, mechanical and chemical behavior of fuel under various operating conditions; c) the reactor operations and d) the administration and finance

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  6. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  7. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  8. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  9. OECD Halden reactor project

    International Nuclear Information System (INIS)

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  10. The first identification and molecular epidemiology of PEC in China%首次从国内鉴定到猪肠道杯状病毒及其分子流行病学调查

    Institute of Scientific and Technical Information of China (English)

    黄泽彬; 汪镇南; 黎满香; 余兴龙; 李润成; 谢小雨; 尹德明; 颜运秋; 白霞; 刘忠华; 丁建

    2009-01-01

    目的 了解国内猪札如病毒(猪肠道杯状病毒成员)的存在和流行情况.方法 从多个腹泻猪场共采集腹泻猪粪便189份,采用RT-PCR方法进行分子流行病学调查.结果 检出猪札如病毒阳性病料24份,阳性率为12.70%(24/189).测序后与国外已发表的毒株比较,表明了所测定流行毒株的序列与猪札如病毒代表株Cowden相近(同源性介于75.6%~88.3%之间),证实了其均为猪札如病毒.结论 首次发现我国猪群中存在猪札如病毒.%A total of 189 stool samples from swine with diarrhea, collected in various porcine farms in the central region of China were tested for porcine enteric caliciviruses (PEC) member porcine sapoviruses (SaV) by reverse transcription polymerase chain reaction (RT-PCR) amplification using primers designed to detect porcine SaV. Selected amplicons were sequenced to establish phylogenetic relationships with reference strains. Porcine SaV were detected in 12.70% (24/189) of the samples. Phylogenetic studies based on partial RNA polymerase gene sequences indicated that the field strains of viruses isolated in China were closely related (75.6 88.3% identity) to the porcine SaV Cowden reference strain. These results provide evidence that caliciviruses of the genus sapovirus circulate in piglets in China, but further studies are needed to clarify their importance as cause of diarrhea. This is the first report of PEC in China.

  11. 矩形脉冲涡流传感器的缺陷定量检测仿真研究%Simulation research on quantitative detection on cracks based on rectangular PEC sensor

    Institute of Scientific and Technical Information of China (English)

    康志斌; 朱荣新; 杨宾峰; 荆毅飞; 张辉

    2012-01-01

    Due to the structure characteristic of traditional pulsed eddy current ( PEC) sensor, there is self-excitation disturbance in practical detection which causes low sensitivity. A rectangular sensor is proposed to improve the detectability. On the basis of analysis of detecting principle of this sensor, detecting model of rectangular PEC sensor is set up using ANSYS software. The distribution of eddy current and the disturbance of 3D magnitic field caused by crack is analyzed by simulation. The result shows that the rectangular sensor can induce uniform eddy current on the aluminium plate, and a crack' s size can be quantified dectected by analyzing the 3 signals.%传统的脉冲涡流传感器由于其结构特点,在实际检测中存在自身激励干扰,使得其对缺陷的检测灵敏度不高.为了提高传感器对缺陷的检测能力,采用矩形传感器对铝板上缺陷进行检测.在分析矩形脉冲涡流传感器检测原理的基础上,采用ANSYS仿真软件建立了矩形脉冲涡流传感器检测模型,对矩形激励下方铝板表面涡流分布进行了仿真计算,研究了缺陷对空间三维磁场的扰动规律.仿真结果表明:矩形传感器能够在铝板表面激励出均匀的感应涡流;当有缺陷存在时,提取三维响应信号的幅值为特征量,分析传感器在扫描路径上不同位置检测幅值的变化特征发现,通过3个信号幅值变化的位置和幅值变化的程度可以实现对缺陷长度,宽度和深度进行定量检测.

  12. Reactor physics and economic aspects of the CANDU reactor system

    International Nuclear Information System (INIS)

    A history of the development of the CANDU system is given along with a fairly detailed description of the 600 MW(e) CANDU reactor. Reactor physics calculation methods are described, as well as comparisons between calculated reactor physics parameters and those measured in research and power reactors. An examination of the economics of CANDU in the Ontario Hydro system and a comparison between fossil fuelled and light water reactors is presented. Some physics, economics and resources aspects are given for both low enriched uranium and thorium-fuelled CANDU reactors. Finally the RβD program in Advanced Fuel Cycles is briefly described

  13. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  14. Fast breeder reactor research

    International Nuclear Information System (INIS)

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  15. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  16. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  17. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  18. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  19. EBT reactor analysis

    International Nuclear Information System (INIS)

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m2, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density

  20. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  1. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  2. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  3. Methanation assembly using multiple reactors

    Science.gov (United States)

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  4. MINT research reactor safety program

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad Idris bin Taib [Division of Special Project, Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2000-11-01

    Malaysian Institute for Nuclear Technology Research (MINT) Research Reactor Safety Program has been done along with Reactor Power Upgrading Project, Reactor Safety Upgrading Project and Development of Expert System for On-Line Nuclear Process Control Project. From 1993 up to date, Neutronic and Thermal-hydraulics analysis, Probabilistic Safety Assessment as well as installation of New 2 MW Secondary Cooling System were done. Installations of New Reactor Building Ventilation System, Reactor Monitoring System, Updating of Safety Analysis Report and Upgrading Primary Cooling System are in progress. For future activities, Reactor Modeling will be included to add present activities. (author)

  5. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  6. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Licensed operating reactors

    International Nuclear Information System (INIS)

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  9. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  10. Reactor safety equipments

    International Nuclear Information System (INIS)

    Purpose: To positively recover radioactive substances discharged in a dry well at the time of failure of a reactor. Constitution: In addition to the emergency gas treating system fitted to a reactor building, a purification system connected through a pipeline to the dry well is arranged in the reactor building. This purification system is connected through pipes fitted to the dry well to forced circulation device, heat exchanger, and purification device. The atmosphere of high pressure steam gases in the dry well is derived to the heat exchanger for cooling, and then radioactive substances which are contained in the gases are removed by filter sets charged with the HEPA filters and the HECA filters. At last, there gases are returned to dry well by circulation pump, repeat this process. (Kamimura, M.)

  11. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  12. Welding and reactor safety

    International Nuclear Information System (INIS)

    The high safety requirements which must be demanded of the quality of the welded joints in reactor technique have so far not been fulfilled in all cases. The errors occuring have caused considerable loss of availability and high material costs. They were not, however, so serious that one need have feared any immediate danger to the personnel or to the environment. The safety devices of reactor plants were only called upon in a few cases and to these they responded perfectly. The intensive efforts to complete and improve the specifications are to contribute to that in future, the reactor plants can be counted even more so as one of the safest technical plants ever. (orig./LH)

  13. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  14. Reactor operation experience

    International Nuclear Information System (INIS)

    Since the TRIGA Users Conference in Helsinki 1970 the TRIGA reactor Vienna was in operation without any larger undesired shutdown. The integrated thermal power production by August 15 1972 accumulated to 110 MWd. The TRIGA reactor is manly used for training of students, for scientific courses and research work. Cooperation with industry increased in the last two years either in form of research or in performing training courses. Close cooperation is also maintained with the IAEA, samples are irradiated and courses on various fields are arranged. Maintenance work was performed on the heat exchanger and to replace the shim rod magnet. With the view on the future power upgrading nine fuel elements type 110 have been ordered recently. Experiments, performed currently on the reactor are presented in details

  15. The MNSR reactor

    International Nuclear Information System (INIS)

    This tank-in-pool reactor is based on the same design concept as the Canadian Slowpoke. The core is a right circular cylinder, 24 cm diameter by 25 cm long, containing 411 fuel pin positions. The pins are HEU-Aluminium alloy, 0.5 cm in diameter. Critical mass is about 900 g. The reactor has a single cadmium control rod. The back-up shutdown system is the insertion of a cadmium capsule in a core position. Excess reactivity is limited to 3.5mk. In both the MNSR and Slowpoke, the insertion of the maximum excess reactivity results in a power transient limited by the coolant/moderator temperature to safe values, independent of any operator action. This reactor is used primarily in training and neutron activation analysis. Up to 64 elements have been analyzed in a great variety of different disciplines. (author)

  16. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  17. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  18. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  19. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  20. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  1. International ENEA/ISMES/ENS specialist meeting on 'On-site experimental verification of the seismic behaviour of nuclear reactor structures and components'. Proceedings

    International Nuclear Information System (INIS)

    The seismic verification of nuclear plants is a subject of increasing interest in all the industrial countries, with respect to both the safety aspects and the impact of the seismic event on the design and the costs of a nuclear reactor. This topic is especially of great interest for a country like Italy, whose territory is unfortunately characterized by non - negligible seismicity: we remember, not too many years ago, the catastrophic earthquakes of Frioul and Irpinia, that caused thousands of dead people. The meeting aimed at establishing the state-of-the-art on on-site testing of nuclear reactors structures and components, with particular attention to experiences and research programmes concerning: methodologies of on-site tests and interpretation of the experimental data; seismic monitoring systems, recorded data, their use and interpretation; calibration and validation of numerical analyses. Six technical sessions were held, during which 23 high papers were presented and discussed, and six panel discussions were held (the importance of discussion was emphasized in the meeting). The technical contributions consisted of: an introduction paper, summarizing the seismic studies performed in Italy for PEC reactor and explaining the reasons why on-site tests had been performed on this reactor; 6 invited lectures, one for each of the countries that are more deeply involved in seismic analysis, providing the state-of-the-art on the topics of interest for the meeting; 16 contributed papers dealing with more specific technical items, related to the various countries and international organizations

  2. Reactor Materials Research

    International Nuclear Information System (INIS)

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  3. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  4. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  5. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  6. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  7. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  8. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  9. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  10. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  11. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  12. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  13. Risk prevention during reactor shutdown

    International Nuclear Information System (INIS)

    During reactor shutdown potential risks are issued of a number of maintenance operations. In this text we analyse these operations and give the modifications of technical specifications to ameliorate the reactor safety. 4 figs

  14. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  16. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  17. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  18. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  19. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  20. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  1. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  2. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  3. NEUTRONIC REACTOR FUEL ELEMENT

    Science.gov (United States)

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  4. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  5. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  6. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  8. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  9. Nuclear reactor building

    Science.gov (United States)

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  10. Studies on reactor physics

    International Nuclear Information System (INIS)

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  11. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  12. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  13. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  14. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP)

  15. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  16. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  17. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  18. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1980 are described. The work is presented in three chapters: General Information on the Department, Summary of the Department's Development during 1980, and Activities of the Department. Lists of staff, publications, computer programs, and test facilities are included. (author)

  19. The AP1000 reactor

    International Nuclear Information System (INIS)

    The design of the AP1000 reactor began 20 years ago when Westinghouse launched the AP600 reactor project. In fact by re-assessing AP600's safety margins Westinghouse realized that the its power output could be raised without putting at risk its safety standard. The AP1000 was born, it yields 1100 MWe. The main AP1000's design features is its passive safety (particularly after the Fukushima accident) and its modularity. The passive safety of the AP1000 implies: -) no humane intervention needed for 72 hours at least after the incident; -) no necessity for redundant complex safety systems. The modularity means that the plant, the reactor and other buildings are constructed from a choice of 300 modular units. These units can be built off-site and fit together on site. The modularity allows more construction activities to be led simultaneously and more chances to cope with the construction schedule. The NRC has approved the operation license for 30 years of the first AP1000 being built in the Usa (Vogtle plant in Georgia). 4 AP1000 are being built in China (Sanmen and Haiyang sites) and 6 others are planned in the Usa. Westinghouse is convinced that the AP1000's passive safety makes it more attractive. Let us not forget that Westinghouse was at the origin of the concept of pressurized water reactors, an idea adopted for half the nuclear power stations in the world and for all the plants now active in France. (A.C.)

  20. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarises the fast reactor research carried out at the Netherlands Energy Research Centre during the year 1981. The neutron and fission product cross sections of various isotopes have been evaluated. In the fuel performance programme, some preliminary results are given and irradiation facilities described. Creep experiments on various stainless steel components are reported

  1. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  2. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  3. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  4. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  5. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  6. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  7. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  8. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  9. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  10. Reactor physics activities in Japan

    International Nuclear Information System (INIS)

    This report reviews the research activity in reactor physics field in Japan during July, 1992 - July, 1993. The review was performed in the following fields : nuclear data evaluation, calculational method development, fast reactor physics, thermal reactor physics, advanced core design, fusion reactor neutronics, nuclear criticality safety, shielding, incineration of radioactive nuclear wastes, noise analysis and control and national programs. The main references were taken from journals and reports published during this period. The research committee of reactor physics is responsible for the review work. (author)

  11. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140 shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains.

    Directory of Open Access Journals (Sweden)

    Xiangkai Zhu Ge

    Full Text Available Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140 with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89. Furthermore, the unique PAI I5155 (GI-12 was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18 strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.

  12. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  13. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIMtm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  14. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  15. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    In 1998, the NNSA organized to complete the nuclear safety review on the test loop in-reactor operation of the High-flux Engineering Experimental Reactor (HFEER) and the re-operation of the China Pulsed Reactor and the Uranium-water Criticality Facility. The NNSA conducted the nuclear safety review on the CP application of the China Experimental Fast Reactor (CEFR) and the siting of China Advanced Research Reactor (CARR), and carried out the construction supervision on HTR-10, and dealt with the event about the technological tube breakage of HWRR and other events

  16. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  17. Elk River Reactor dismantling

    International Nuclear Information System (INIS)

    The dismantling program was carried out in three overlapping phases: the planning phase which included the preliminary planning and selection of the dismantling approach, the dismantling phase which included all work performed to remove the reactor facility and restore the site to its pre-reactor condition, and the closeout phase which included the final site survey and efforts necessary to terminate the AEC license and contract. Of particular interest was the use of a remotely operated plasma cutting torch to section the pressure vessel internals, the pressure vessel and the outer thermal shield, the use of explosives in removal of the biological shield and the method of establishment of the criteria for material disposal

  18. Moving towards a "COAL-PEC"?

    OpenAIRE

    Clemens Haftendorn; Christian von Hirschhausen; Franziska Holz

    2008-01-01

    Coal has for many years been considered as a resource of the past and as a result its importance has been underestimated. Yet coal still is the main pillar for generating electricity in most countries: A quarter of the worldwide primary energy consumption is provided by coal. While the world's largest coal producers, China, the USA and India, are at the same time the largest consumers of coal. Smaller producers and consumers of coal engage extensively in international trade. In particular the...

  19. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  20. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  1. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  2. Nuclear reactor container

    International Nuclear Information System (INIS)

    Upon reactor accident, hydrogen and oxygen are generated by water-zirconium reaction and radiolysis of water, which are accumulated in the reactor. If the concentration of hydrogen and oxygen exceeds a burning limit, there is a possibility of hydrogen burning to cause a danger of deteriorating the integrity of the reactor container and the equipments therein. The limit for the occurrence of the detonation is determined by a relationship between the scale of a detonation cell and the size of the container, and if the scale is greater than the container, the detonation does not occur. The scale of the cell is determined by a gas combustion rate and, if the combustion reaction is suppressed, detonation does not occur even in a large container. Then, an appropriate diluent is added to increase heat capacity of a gas mixture to thereby suppress the temperature elevation of the gas. Incombustible gases having a great heat capacity are preferred for the diluent, and CO2 is used. As the concentration of the CO2 gas to be added is increased, the detonation cell is made greater. Thus, occurrence of detonation due to combustion of the accumulated hydrogen can be prevented. (N.H.)

  3. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    In the middle of 21st century, the population on the earth is expected to double, and the energy that mankind consumes to triple. The nuclear fusion which is said the ultimate energy source for mankind is expected to solve this energy problem. As for fusion reactors, fuel materials exist inexhaustibly, distributing evenly, they have high safety in principle, the product of burning is harmless nonradioactive substance that does not require the treatment and disposal, and the attenuation of induced radioactivity due to neutrons is quick and the effect to global environment is little. The basic plan of second stage nuclear fusion research and development was decided in 1975, aiming at attaining the critical plasma condition. JT-60 has attained it in 1987. The project of international thermonuclear fusion experimental reactor (ITER) was started, and the conceptual design was carried out. Under such background, the third stage basic plan was decided in 1992, and its objective is self ignition condition, long time burning and the basis of the reactor engineering technology. The engineering design of the ITER is investigated. (K.I.)

  4. High temperature gas reactor

    International Nuclear Information System (INIS)

    The present invention provides a reflector block structure of a high temperature gas reactor in which graphite blocks are not failed even a containing cylinder loaded to a fuel exchanger collides against to secured reflectors upon loading and withdrawing fuel constitutional elements. Namely, a protection plate made of a metal material such as stainless steel is covered on the secured reflector blocks disposed to the upper most step among secured graphite reflector blocks constituting the reactor core. In addition, positioning guide grooves are formed on the protection plate for guiding the containing cylinder loaded to the fuel exchanger to the column of the reactor core constitutional elements. With such a constitution, even if the containing cylinder of fuel exchanger is hoisted down and collided against the inner circumferential edge of the secured reflector blocks due to deviation of the position and the direction upon exchange of fuels, the reflector blocks are not failed since the above-mentioned portion is covered with the metal protection plate. In addition, the positioning guide grooves lead the fuel exchanger to a predetermined column correctly. (I.S.)

  5. BWR type reactor

    International Nuclear Information System (INIS)

    In a coolant circulation in BWR type reactors, since the mixed stream of steam fluid undergoes a great resistance, the pressure loss due to the flow rate distribution when the coolants flow from the upper plenum into the stand pipe is increased upon passing stand pipe. Also in the spontaneous recycling reactor, pressure loss is still left upon passing the swirling blade of a gas-liquid separator. In view of the above, a plurality of vertical members each having a lower end opened to a gas-liquid two phase boundary and an upper end directly suspended from a steam dryer to the gas-liquid separator. The liquid droplets from the 2-phase boundary heated in the reactor core and formed into a mixed gas-liquid 2-phase stream is directed in the vertical direction accompanied with the steam. The liquid droplets spontaneously fallen by gravity from greater ones successively and the droplets in the steam abutted against the vertical member are fallen as a liquid membrane. Thus, the gas-liquid separation is conducted, the dry steam is directly flown into the steam dryer, thereby capable of providing a gas-liquid separator having gas-liquid separation performance with lower loss than usual. (N.H.)

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  7. Fusion reactor safety

    International Nuclear Information System (INIS)

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  8. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  9. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    The OECD Halden Reactor project is an agreement between OECD member countries. It was first signed in 1958 and since then regularly renewed every third year. The activities at the Project is centred around the Halden heavy water rector, the HBWR. The reseach programme comprizes studies of fuel performance under various operating conditions, and the application of computers for process control. The HBWR is equipped for exposing fuel rods to temperatures and pressures, and at heat ratings met in modern BWR's and PWR's. A range of in-core instruments are available, permitting detailed measurements of the reactions of the fuel, including mechanical deformations, thermal behaviour, fission gas release, and corrosion. In the area of computer application, the studies of the communication between operator and process, and the surveillance and control of the reactor core, are of particular interst for reactor operation. 1988 represents the 30th year since the Project was started, and this publication is produced to mark this event. It gives and account of the activities and achievements of the Project through the years 1958-1988

  10. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  11. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  12. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The purpose of this technical paper is to provide status of the United State domestic Research Reactor Infrastructure (RRI) Program at the Idaho National Laboratory. This paper states the purpose of the program, lists the universities operating TRIGA reactors that are supported by the program, identifies anticipated fresh fuel needs for the reactor facilities, discusses spent fuel activities associated with the program, and addresses successes and planned activities for the program. (author)

  13. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  14. Applications of Research Reactors

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  15. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  16. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices

  17. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Paper dwells upon the design and the operation of one of the German test reactors, namely, the TRIGA Mainz one (TRIGA: Training Research Isotope Production General Atomic). The TRIGA reactor is a pool test reactor the core of which contains a graphite reflector and is placed into 2 m diameter and 6.25 m height aluminum vessel. There are 75 fuel elements in the reactor core, and any of them contains about 36 g of 235U. The TRIGA reactors under the stable operation enjoy wide application to ensure tests and irradiation, namely: neutron activation analysis, radioisotope production, application of a neutron beam to ensure the physical, the chemical and the medical research efforts. Paper presents the reactor basic experimental program lines

  18. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  19. Industrializing the liquid metal reactor

    International Nuclear Information System (INIS)

    Commercial acceptance of the liquid metal reactor had its beginning with the Fermi reactor, over two decades ago. The pattern of industrialization since that time is discussed, contrasting domestic and foreign experience. The recent termination of the Clinch River reactor project marks a watershed in the U.S. approach towards commercialization. The increased emphasis on achieving cost competitive designs reflects an awareness that barriers to industrialization are institutional and financial, and not technological

  20. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  1. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  2. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  3. Turning points in reactor design

    International Nuclear Information System (INIS)

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  4. Optimal control of nuclear reactors

    International Nuclear Information System (INIS)

    The modern control theory is applied to the design of control systems for experimental nuclear reactors that do not belong to power reactors, the component forms of optimal control systems for nuclear reactors are demonstrated. The adoption of output quadratic integral criterion and incomplete state feedback technique can make these systems both efficient and economical. Moreover, approximate handling methods are given so as to simplify the calculations in design. In addition, the adoptable reference values of parameters are given in the illustration

  5. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  6. Acceptability of reactors in space

    International Nuclear Information System (INIS)

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it does not appear that reactors add measurably to the risk associated with the Space Transportation System

  7. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  8. Reactor safety - an international task

    International Nuclear Information System (INIS)

    The dimensions and the significance of the task of ensuring reactor safety can be defined on the basis of experiences gained from Harrisburg and Chernobyl. The countries that use nuclear energy are tied together to a community by virtue of the risk they share. Therefore the GRS is working in close cooperation with the EC, OECD, IAEO and COMECON. This results in safety examinations of the Greifswald reactor, safety analyses of nuclear reactors in Germany, France and the USA and also considerations on the safety demands to be placed on new reactor concepts. (DG)

  9. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  10. Integrated modular water reactor: IMR

    International Nuclear Information System (INIS)

    The Mitsubishi Heavy Industries, Ltd. Has investigated on a concept on small scale reactor with economical efficiency comparable with large scale one. Aims of development on the integrated modular water reactor (IMR) of a small scale reactor plant concept consist in large construction cost reduction through adoption of technique specific to the small scale reactor and integrated production of plural units and in establishment of high safety target without reality in a large scale reactor to realize reduction of operation and maintenance costs by this reduction to simplification of operation and maintenance. Its concrete developmental targets are to make an integrated reactor with vessel size actually producible and the largest output, to remove feasibility of coolant loss accident (LOCA), to remove an accident with feasibility related to fuel fracture, to remove feasibility of nuclear reactor coolant to leak out from a storage vessel, to secure safety of plant without necessity of human and physical assistances from other plants at all on an accident, to make numbers of operators per unit output equal to those of large scale reactor, and to make working amounts at maintenance per unit output equal to large scale reactor by simplification of apparatus practice of rotation on main apparatus such as SG, and so on. Here were described on design concept and plan to realization. (G.K.)

  11. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  12. Helias reactor studies

    International Nuclear Information System (INIS)

    The Helias reactor is an upgraded version of the Wendelstein 7-X experiment. The magnetic field has 5 field periods and the main optimization principle is the reduction of the Pfirsch-Schlueter currents and the Shafranov shift, which has been verified by computations with the NEMEC and MFBE-codes. The modular coil system comprises 50 coils, which are constructed using NbTi-superconducting cables. The basic dimensions are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 5 T, maximum field on the coils 10 T. Forces and stresses in the coil system have been investigated with the aid of the ANSYS code, which found maximum stress values of about 650 MPa in the coil casing. Helias configurations with 4 and 3 field periods have been constructed by starting from the 5-period case and by eliminating one or two periods while the shape of the coils is kept nearly invariant. In a first survey blanket concepts, developed for the DEMO tokamak, have been adapted to the Helias geometry, in particular, the solid breeder concept developed by FZK (Karlsruhe) has been extrapolated to the Helias geometry identifying the drawbacks and advantages of this concept. Furthermore, the liquid breeder concept using Li7-Pb83 and water-cooling is an interesting alternative for the Helias reactor. Maintenance of blanket and plasma facing components is possible through the portholes between modular coils. Numerical simulations of the start-up phase of the Helias reactor using the TOTAL-P code have confirmed the zero-dimensional modeling of the fusion plasma with the aid of empirical scaling laws. (author)

  13. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  14. Licensed operating reactors

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  15. FUEL ASSAY REACTOR

    Science.gov (United States)

    Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

    1962-12-25

    A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)

  16. Shutting down two reactors

    International Nuclear Information System (INIS)

    Nuclear power will be phased out of the swedish energy system during the first decades of the next century. Commissioned by the swedish government, the National Energy Administration reports a study on the possibilities for, and consequences of, an earlier shut down (1994-1996) of two of the twelve swedish power reactors. Some of the questions studied are: How much will the electricity price raise ?; How will the electricity consumption be affected ?; What are the alternatives to nuclear power ?; What will the cost be ? and What will the environmental effects be ?. (L.E.)

  17. Measurement in nuclear reactors

    International Nuclear Information System (INIS)

    A nuclear reactor construction has a flux detector comprising a bundle of fibre optics each having a bead incorporating a substance which scintillates on being struck by neutrons or gamma radiations. The other ends of the fibre optics terminate at an image intensifier. The optical fibres may be of glass made from a mixture of silica, alkaline earth metal oxide, cerous oxide and alkali metal oxide. The beads may be incorporated in a disc forming a detector head, which is in a protective guide tube, through which an inert gas may be passed. (author)

  18. TRIGA reactor operating experience

    International Nuclear Information System (INIS)

    The Oregon State TRIGA Reactor (OSTR) has been in operation 3 years. Last August it was upgraded from 250 kW to 1000 kW. This was accomplished with little difficulty. During the 3 years of operation no major problems have been experienced. Most of the problems have been minor in nature and easily corrected. They came from lazy susan (dry bearing), Westronics Recorder (dead spots in the range), The Reg Rod Magnet Lead-in Circuit (a new type lead-in wire that does not require the lead-in cord to coil during rod withdrawal hss been delivered, much better than the original) and other small corrections

  19. Reactor system safety assurance

    International Nuclear Information System (INIS)

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  20. The Oklo reactors

    International Nuclear Information System (INIS)

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  1. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  2. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  3. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  4. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  5. Reactor system on barge

    International Nuclear Information System (INIS)

    Floating electrical power plants or power plant barges add new dimensions to utility planners and agencies in the world. Intrinsically safe and economical reactors (ISER) employ steel reactor pressure vessels, which significantly reduce the weight as compared with PIUS, and provide siting versatility including barge-mounted plants. In this paper, the outline of power plant barges and barge-mounted ISERs is described. Besides their mobility, power plant barges have the salient advantages such as short delivery time and better quality control due to the outfitting in shipyards. These power plant barges may be temporarily moored or permanently grounded in shallow water at the centers of industrial complexes or the suitable areas adjacent to them, and satisfy the increasing needs for electric power. A cost-effective and technically perfect barge positioning system should be designed to meet the specific requirement for the location and its condition. Offshore siting away from coast may be applicable only to large plants of 1,000 MWe or more, and inshore siting and coastal or river siting are considered for an ISER-200 barge-mounted plant. The system of a barge-mounted ISER plant is discussed in the case of a floating type and the type on a seismic base isolator. (Kako, I.)

  6. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  7. The EPR reactor NDE

    International Nuclear Information System (INIS)

    In May 2006, Electricite de France decided to launch the building of the first EPRR Reactor on the Flamanville site in Normandy. The 'Flamanville 3' EPR unit is the first one to be subjected to the French Ministerial Orders of the 10 November 1999 and of the 13 December 2005 from the design phase. According to these orders, the non destructive examination (NDE) planned for the in service inspection (ISI) and for the pre service inspection (PSI) must be operational with a compulsory formal qualification. The PSI is a complete inspection of the main primary and secondary systems. The PSI's objective is to perform before the first core loading all the NDE planned for the future ISI in the same conditions, in order to have a reliable reference for the detection or for the evaluation of the possible damages during the ISI. The 'Flamanville 3' PSI is planned to start end 2010. The program consists of the development and the qualification of the NDE compatible with this new generation reactor's challenges. The paper is about: - the main EPR's objectives and the technological evolutions, - the main component modifications (which have an impact on the NDE), - the place of ISI in the general safety demonstration, - the main inspection objectives, - the NDE qualification process, - the approach to set up the ISI program, - the ISI program. (authors)

  8. Status of Japanese university reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yoshiaki [Research Reactor Institute, Kyoto Univ., Kumatori, Osaka (Japan)

    1999-08-01

    Status of Japanese university reactors, their role and value in research and education, and the spent fuel problem are presented. Some of the reactors are now faced by severe difficulties in continuing their operation services. The point of measures to solve the difficulties is suggested. (author)

  9. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  10. Reactor Neutrino Physics -- An Update

    OpenAIRE

    Boehm, Felix

    1999-01-01

    We review the status and the results of reactor neutrino experiments. Long baseline oscillation experiments at Palo Verde and Chooz have provided limits for the oscillation parameters while the recently proposed Kamland experiment at a baseline of more than 100km is now in the planning stage. We also describe the status of neutrino magnetic moment experiments at reactors.

  11. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  12. Cooling system for reactor container

    International Nuclear Information System (INIS)

    Purpose: To effectively cool a reactor container upon reactor shutdown with no intrusion of metal corrosion products in coolants into the main steam pipe in a BWR type reactor. Constitution: A clean up system comprising a pipeway, a recycling pump, a non-regenerative heat exchanger and a primary coolant purifier and a regenerative heat exchanger is provided branched from a residual heat removing system and the clean up system is connected by way of a valve to a feedwater pipeway, as well as connected by way of the pipeway to the main steam pipeway at the midway of two main steam separation valves outside of the reactor container. This enables to prevent metal corrosion products floating on the surface of reactor water from introducing into the main steam pipe when the pressure vessel is filled with water. Then, since the pressure vessel is filled with primary coolants, the pressure vessel can be cooled uniformly in a short time. (Ikeda, J.)

  13. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  14. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  15. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  16. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  17. Fast reactors and nuclear nonproliferation

    International Nuclear Information System (INIS)

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (author)

  18. Automated reactor records evaluation framework

    International Nuclear Information System (INIS)

    The only truly reliable method for core physics code validation is comparison against experimental data – and for power nuclear reactors, the only reasonably acquirable kind of experimental data are the reactor records. However, the amount of the data coming from the reactor operation is often so vast that it can be discouraging for the code developers to use it properly. Thus, the validation package is further reduced because the data is hard to use. This paper presents an elaborate, fully automated framework, which was designed and implemented in our institute, for reactor records processing and its use for core physics code validation. The workflow, implemented as a Web 2.0 application, provides a practical and painless solution for use of reactor records data for code development and validation. (author)

  19. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  20. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  1. Licensed operating reactors

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission's annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar 1990) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  2. Reactor safety systems

    International Nuclear Information System (INIS)

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.)

  3. Reactor control rod

    International Nuclear Information System (INIS)

    Object: To enable quick descent of a control rod body even when some relative phase deviation between upper drive means and wrapper tube is produced, while permitting a coolant to effectively flow into a protective tube irrespective of the position of the control rod body. Structure: In a control rod used for a nuclear reactor such as a fast breeder, an orifice which dispenses with a cylindrical guide tube and has a greater inner diameter than the outer diameter of the protective tube of the control rod body is provided on the inner side of a wrapper tube, thus permitting smooth operation of the control rod body and also permitting the coolant to effectively flow into the protective tube irrespective of the control rod body. (Horiuchi, T.)

  4. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  5. Nuclear reactor measurement system

    International Nuclear Information System (INIS)

    An instrument to detect the temperature and flow-rate of the liquid metal current of a coolant fluid sample from adjacent sub-assemblies of a liquid metal-cooled nuclear reactor is described. It includes three thermocouple hot junctions mounted in series, each intended for exposure to a sample-current from a single sub-assembly, electromagnetic coils being mounted around an induction core which detects variations in the liquid metal flow-rate by deformation of the lines of flux. The instrument may also include a thermocouple to detect the mean temperature of the sample-current of coolant fluid from several sources, the result being that the temperature of the coolant fluid current in a sub-assembly may be inferred from the three temperature readings associated with this sub-assembly

  6. OECD: Halden reactor project

    International Nuclear Information System (INIS)

    The work at the Project has continued in the two main fields: test fuel irradiation and fuel research, and computer based process supervision and control. Organizations participating in the Project continue to have their fuel irradiated in the Halden Reactor in instrumented test assemblies designed and manufactured by the Project. The Project's fuel studies continue to focus on specific subjects such as fuel pellet/cladding interaction and heat transfer, fission product release and fuel behavior under loss of coolant conditions. The work on process control and supervision continues in the highly relevant fields of core control and operator-process communication. A system for predictive core control is being developed while special mathematical methods for core power distribution control are being studied. Operator-process communication studies comprise use of computer simulation on colour display as important ingredients, while the work on developing a system for interactive plant disturbance analysis continues

  7. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  8. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    The NNSA organized mainly in 1999 to complete the verification loop in core of the high flux experimental reactor with the 2000 kW fuel elements, the re-starting of China Pulsed Reactor, review and assessment on nuclear safety for the restarting of the Uranium-water critical Facility and treat the fracture event with the fuel tubes in the HWRR

  9. Power Reactors. Appendix VIII

    International Nuclear Information System (INIS)

    Decommissioning of nuclear facilities in many countries has evolved into a mature industry that has benefited from experience gained from previous projects and decommissioning costs can now be estimated to a good degree of accuracy. As a result of lessons learned, future decommissioning projects can be performed with higher levels of efficiency. Decommissioning of old power reactors is in progress in several countries. In some cases, decommissioning has been completed (i.e. plant sites have been released from regulatory control), while in other countries decommissioning is still in progress. Several large power reactors have been successfully decommissioned since 1995. The key areas of particular importance for decommissioning are decontamination, radiation protection, dismantling and demolition. The technologies which can be used for these tasks are commonly available on the market, but effective decommissioning still depends on an optimal choice of technologies, including site specific developments. It is not possible to recommend the use of a single specific technology for dismantling, demolition, segmentation or decontamination; rather, it is good practice to take into account as much information as possible from other decommissioning projects and to draw comparisons between various techniques in order to choose the one with the best performance in a particular situation. The exchange of information on all types of decommissioning experience, including decommissioning techniques and their applicability as well as disadvantages for specific tasks, is taking place on various levels, such as: — Collaborative working groups established by international organizations such as the IAEA, the OECD Nuclear Energy Agency and the European Commission and the publication of technical reports by such organizations; — National and international conferences; — Bilateral or multilateral cooperation and information exchange between organizations with responsibilities for

  10. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  11. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Following the accident at Chernobyl nuclear reactor, WHO organized on 6 May 1986 in Copenhagen a one day consultation of experts with knowledge in the fields of meteorology, radiation protection, biological effects, reactor technology, emergency procedures, public health and psychology in order to analyse the development of events and their consequences and to provide guidance as to the needs for immediate public health action. The present report provides detailed information on the transportation and dispersion of the radioactive material in the atmosphere, especially volatile elements, during the release period 26 April - 5 May. Presented are the calculated directions and locations of the radioactive plume over Europe in the first 5 days after the accident, submitted by the Swedish Meteorological and Hydrological Institute. The calculations have been made for two heights, 1500m and 750m and the plume directions are grouped into five periods, covering five European areas. The consequences of the accident inside the USSR and the radiological consequences outside the USSR are presented including the exposure routes and the biological effects, paying particular attention to iodine-131 effects. Summarized are the first reported measured exposure rates above background, iodine-131 deposition and concentrations in milk and the remedial actions taken in various European countries. Concerning the cesium-137 problem, based on the UNSCEAR assessment of the consequences of the nuclear fallout, one concludes that the cesium contamination outside the USSR is not likely to cause any serious problems. Finally, the conclusions and the recommendations of the meeting, taking into account both the short-term and longer term considerations are presented

  12. Nuclear reactor fuelling machine

    International Nuclear Information System (INIS)

    The refuelling machine described comprises a rotatable support structure having a guide tube attached to it by a parellel linkage mechanism, whereby the guide tube can be displaced sideways from the support structure. A gripper unit is housed within the guide tube for gripping the end of a fuel assembly or other reactor component and has means for maintenance in the engaging condition during travel of the unit along the guide tube, except for a small portion of the travel at one end of the guide tube, where the inner surface of the guide tube is shaped so as to maintain the gripper unit in a disengaging condition. The gripper unit has a rotatable head, means for moving it linearly within the guide tube so that a component carried by the unit can be housed in the guide tube, and means for rotating the head of the unit through 1800 relative to its body, to effect rotation of a component carried by the unit. The means for rotating the head of the gripper unit comprises ring and pinion gearing, operable through a series of rotatable shafts interconnected by universal couplings. The reason for provision for 1800 rotation is that due to the variation in the neutron flux across the reactor core the side of a fuel assembly towards the outside of the core will be subjected to a lower neutron flux and therefore will grow less than the side of the fuel assembly towards the inside of the core. This can lead to bowing and possible jamming of the fuel assemblies. Full constructional details are given. See also BP 1112384. (U.K.)

  13. Reliability of reactor materials

    International Nuclear Information System (INIS)

    This report is the final technical report of the fracture mechanics part of the Reliability of Reactor Materials Programme, which was carried out at the Technical Research Centre of Finland (VTT) through the years 1981 to 1983. Research and development work was carried out in five major areas, viz. statistical treatment and modelling of cleavage fracture, crack arrest, ductile fracture, instrumented impact testing as well as comparison of numerical and experimental elastic-plastic fracture mechanics. In the area of cleavage fracture the critical variables affecting the fracture of steels are considered in the frames of a statistical model, so called WST-model. Comparison of fracture toughness values predicted by the model and corresponding experimental values shows excellent agreement for a variety of microstructures. different posibilities for using the model are discussed. The development work in the area of crack arrest testing was concentrated in the crack starter properties, test arrangement and computer control. A computerized elastic-plastic fracture testing method with a variety of test specimen geometries in a large temperature range was developed for a routine stage. Ductile fracture characteristics of reactor pressure vessel steel A533B and comparable weld material are given. The features of a new, patented instrumented impact tester are described. Experimental and theoretical comparisons between the new and conventional testers indicated clearly the improvements achieved with the new tester. A comparison of numerical and experimental elastic-plastic fracture mechanics capabilities at VTT was carried out. The comparison consisted of two-dimensional linear elastic as well as elastic-plastic finite element analysis of four specimen geometries and equivalent experimental tests. (author)

  14. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  15. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  16. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  17. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  18. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain.

    Science.gov (United States)

    Pan, Yu-Shan; Zong, Zhi-Yong; Yuan, Li; Du, Xiang-Dang; Huang, Hui; Zhong, Xing-Hao; Hu, Gong-Zheng

    2016-01-01

    A 139,622-bp IncI1 ST71 conjugative plasmid pEC012 from an avian Escherichia coli D-ST117 strain was sequenced, which carried five IS26-bracketed resistance modules: IS26-fosA3-orf1-orf2-Δorf3-IS26, IS26-fip-ΔISEcp1-bla CTX-M-65-IS903D-iroN-IS26, IS26-ΔtnpR-bla TEM-1-rmtB-IS26, IS26-oqxAB-IS26, and IS26-floR-aac(3)-IV-IS26. The backbone of pEC012 was similar to that of several other IncI1 ST71 plasmids: pV408, pM105, and pC271, but these plasmids had different arrangements of multidrug resistance region. In addition, the novel ISEc57 element was identified, which is in the IS21 family. The stepwise emergence of multi-resistance regions demonstrated the accumulation of different resistance determinants through homologous recombination. To the best of our knowledge, this is the first study to identify a multidrug-resistant IncI1 ST71 plasmid carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian E. coli ST117 strain. PMID:27486449

  19. Ageing management for research reactors

    International Nuclear Information System (INIS)

    During the past several years, ageing of research reactor facilities continues to be an important safety issue. Despite the efforts exerted by operating organizations and regulatory authorities worldwide to address this issue, the need for an improved strategy as well as the need for establishing and implementing a systematic approach to ageing management at research reactors was identified. This paper discusses, on the basis of the IAEA Safety Standards, the effect of ageing on the safety of research reactors and presents a proactive strategy for ageing management. A systematic approach for ageing management is developed and presented together with its key elements, along with practical examples for their application. (author)

  20. Fueling of tandem mirror reactors

    International Nuclear Information System (INIS)

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design

  1. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  2. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  3. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  4. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  5. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  6. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  7. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  8. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  9. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  10. Conceptual design study of JSFR reactor building

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Katoh, A.; Chikazawa, Y. [Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ohya, T.; Iwasaki, M.; Hara, H.; Akiyama, Y. [Mitsubishi FBR Systems, Inc. MFBR, 34-17, Jingumae 2-chome, Shibuya, Tokyo 150-0001 (Japan)

    2012-07-01

    Japan Sodium-cooled Fast Reactor (JSFR) is planning to adopt the new concepts of reactor building. One is that the steel plate reinforced concrete is adopted for containment vessel and reactor building. The other is the advanced seismic isolation system. This paper describes the detail of new concepts for JSFR reactor building and engineering evaluation of the new concepts. (authors)

  11. FASTER test reactor preconceptual design report summary

    International Nuclear Information System (INIS)

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  12. Light water reactor safety research

    International Nuclear Information System (INIS)

    As the technology of light water reactors (LWR) was being commercialized, the German Federal Government funded the reactor safety research program, which was conducted by national research centers, universities, and industry, and which led to the establishment, in early 1972, of the Nuclear Safety Project in Karlsruhe. In the seventies, the PNS project mainly studied the loss-of-coolant accident. Numerous experiments were run and computer codes developed for this purpose. In the eighties, the Karlsruhe Nuclear Research Center contributed to the German Risk Study, investigating especially core meltdown accidents under the impact of the events at Three Mile Island-2 and Chernobyl-4. Safety research in the nineties is concentrated on the requirements of future reactor generations, such as the European Pressurized Water Reactor (EPR) or potential approaches which, at the present time, are discernible only as tentative theoretical designs. (orig.)

  13. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  14. Fuel for advanced CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor system has proven itself to be a world leader in terms of station availability and low total unit energy cost. In 1985 for example, four of the top ten reactor units in the world were CANDU reactors operating in South Korea and Canada. This excellent operating record requires an equivalent performance record of the low-cost, natural uranium fuel. Future CANDU reactors will be an evolution of the present design. Engineering work is under way to refine the existing CANDU 600 and to incorporate state-of-the-art technology, reducing the capital cost and construction schedule. In addition, a smaller CANDU 300 plant has been designed using proven CANDU 600 technology and components but with an innovative new plant layout that makes it cost competitive with coal fired plants. For the long term, work on advanced fuel cycles and major system improvements is underway ensuring that CANDU plants will stay competitive well into the next century

  15. Conceptual design of RFC reactor

    International Nuclear Information System (INIS)

    A parametic analysis and a preliminary conceptual design for RFC reactor (including cusp field) with and without alpha particle heating are described. Steady state operations can be obtained for various RF ponderomotive potential in cases of alpha particle heating. (author)

  16. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...... microorganism into methane. In thermophilic biogas reactors,, acetate oxidizing cultures occupied the niche of Methanothrix species, aceticlastic methanogens which dominate at low acetate concentrations in mesophilic systems. Normally, thermophilic biogas reactors are operated at temperatures from 52 to 560 C....... Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 550 C could be obtained at 610 C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature....

  17. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  18. RA reactor operation and maintenance

    International Nuclear Information System (INIS)

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air

  19. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author)

  20. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  1. Unique features of space reactors

    Science.gov (United States)

    Buden, David

    Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K.

  2. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  3. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  4. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  5. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  6. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  7. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  8. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  9. Natural convection type reactor

    International Nuclear Information System (INIS)

    In a natural convection type nuclear reactor, recycling flow rate of coolants is increased and the amount of entrained bubbles are increased as the driving force is increased, so that bubbles are not separated completely even if a stagnation region is disposed. Then, a space opened only at the upper portion is disposed at the outer circumference of the upper end of a riser for storing overflown coolants temporarily. The flow of coolants incorporating steam bubbles uprising in the riser turns into the horizontal direction at the upper end of the riser wall and flows into the coolant reservoir. In the coolant reservoir, since the momentum of the coolants is lost and the flow is stagnated, the bubbles are easily released to the upper space. Coolants, after releasing the bubbles, further overflow and descend in the downcomer. Then, the bubbles can be separated undergoing no influence of the driving force caused as the sum of the uprising force in the riser and the water head pressure in the downcomer, to prevent increase of carry under due to increase of the driving force. (N.H.)

  10. Reactor Simulator Testing Overview

    Science.gov (United States)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  11. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    The OECD Halden Reactor Project is both the oldest and the only one still in operation of the three major joint undertakings established at the inception of the OECD Nuclear Energy Agency. This publication has been printed in connection with its twenty-fifth anniversary as an international project. After presentation of the history and organization of the project, a thorough description of the past and present activities in the field of fuel performance and process control and surveillance is given. The projects's fuel testing programme is now focuessed on an investigation to define safety margins under normal operations as well as under various kinds of accident situations. Fuel research is also concerned with the characterisation of long term effects with regard to efficiency, operational safety and mapping of reliability and durability in the case of accidents with loss of coolant. In the field of process control and surveillance, research work is directly linked to the use of computers and colour graphics as tools in the control room. A fullscale simulator-based model and experimental control room has been constructed. The first experiments to be carried out in this laboratory will investigate the advantage of analysing alarms before they are presented to the operator. (RF)

  14. Nuclear reactor container

    International Nuclear Information System (INIS)

    A gas containing vessel has a water pool which is in communication with a dry well containing a reactor pressure vessel by way of a communication pipe is disposed. A capacity of a gas phase portion of the gas containing chamber, a capacity of the dry well, a water depth of a bent tube communicating the dry well with a pressure suppression pool of a pressure suppression chamber and a water depth of the communication pipe are determined so as to satisfy specific conditions. Since the water depth of the communication pipe is less than the water depth of the bent tube, incondensible gases and steams in the dry well flow into the water pool of the gas containing chamber at the initial stage of loss of coolant accident. Subsequently, steams in the dry well flow into the pressure suppression pool of the pressure suppression chamber by way of the bent tube. Accordingly, since the incondensible gases in the dry well do not flow into the pressure suppression chamber, pool swelling phenomenon in the pressure suppression chamber is not caused even if the water depth of the bent tube which leads to the pressure suppression chamber is great. Further, pressure increase due to transfer of the incondensible gases is decreased. (I.N.)

  15. OECD Halden reactor project

    International Nuclear Information System (INIS)

    A major part of the current research programme is devoted to irradiation experiments with a wide variety of heavily instrumented test fuel assemblies, in order to study the thermal and mechanical behavior of fuel rods through in-core measurements, in particular various forms of deformation of cladding and fuel as related to operational conditions and fuel rod design parameters. From these measurements mathematical models are being developed to explain quantitatively the deformation behavior, as well as the thermal properties of the fuel. During 1974, fifty-six instrumented fuel assemblies were irradiated in these experiments. Another major part of the Halden programme is aimed at the development and demonstration of advanced computer-based methods for plant and reactor core control, for safety and protection, and for overall supervision of nuclear power stations. Both the control methods themselves and the associated measurement and control apparatus are being elaborated, and during the year particular progress was made with the ''OPCOM'' process operator communication system

  16. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    Science.gov (United States)

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  17. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.)

  18. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  19. Stability and sealing of PEC solar cells; Stabilitet og forsegling af PEC solceller

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.

    2009-06-15

    A requirement for success of the DSC technology on the market for building-integrated PV is visually attractive DSC panels holding a lifetime comparable to alternative facade materials and delivering electricity at reasonable prices. This project concerns the stability and durability of the DSC panel as these are decisive factors for the lifetime of the panels and the price of the produced electricity. The largest challenge of the DSC sealing is the high-performing well-documented - but also aggressive and volatile - iodine/triiodide electrolyte. The heat-sensitive Ru-dyes represent another challenge, as the dye should not be exposed to temperatures above approx. 100 deg. C during the sealing process. Despite the fact that less aggressive electrolytes and more stable dyes are highly focused R and D tasks, the work in the actual project has been carried out according to a 'worst case' strategy, i.e. the search has been for a sealing which is compatible with the iodine/triiodide electrolyte and the Ru-dyes. The rationale behind this strategy is the demanding lifetime requirement s for building-integrated products, which requires the ultimate sealing. In addition to the focus on the DSC sealing, work has been dedicated to the development of a more encapsulation-friendly electrolyte, in which the electrolyte's volatile component has been replaced by an ionic liquid. The ultimate result of the project is an improved polymer edge sealing for DSC cells. The sealant is - contrary to Surlyn and Bynel - stable in contact with the aggressive iodine/ triiodide electrolyte. The sealing is formed by lamination at elevated temperature and under controlled conditions. The robustness and capacity of the sealing process need to be further improved in order to fulfill the laboratories ambitions with regard to volume production of DSC cells and modules. Furthermore should the new sealing be compared both stability-wise and cost-wise with the lead-free solder glass solution, if such an edge sealing can be formed. (LN)

  20. Stellarator fusion reactors - an overview

    International Nuclear Information System (INIS)

    The stellarator system offers a distinct alternative to the mainline approaches to magnetic fusion power and has several potentially major advantages. Since the first proposal of the stellarator concept many reactor studies have been published and these studies reflect the large variety of stellarator configurations. The main representatives are the continuous-coil configurations and the modular-coil configurations. As a continuation of the LHD experiment two reactor configurations, FFHR1 and FFHR2, have been investigated, which use continuous helical windings for providing the magnetic field. The modular coil concept has been realized in the MHH-reactor study (USA 1997) and in the Helias reactor. The Helias reactor combines the principle of plasma optimisation with a modular coil system. The paper also discusses the issues associated with the blanket and the maintenance process. Stellarator configurations with continuous coils such as LHD possess a natural helical divertor, which can be used favourably for impurity control. In advanced stellarators with modular coils the same goal can be achieved by the island divertor. Plasma parameters in the various stellarator reactors are computed on the basis of presently known scaling laws showing that confinement is sufficiently good to provide ignition and self-sustained burn. (author)

  1. Materials requirements for fusion reactors

    International Nuclear Information System (INIS)

    Once the physics of fusion devices is understood, one or more experimental power reactors (EPR) are planned which will produce net electrical power. The structural material for the device will probably be a modification of an austenitic stainless steel. Unlike fission reactors, whose pressure boundaries are subjected to no or only light irradiation, the pressure boundary of a fusion reactor is subjected to high atomic displacement-damage and high production rates of transmutation products, e.g., helium and hydrogen. The design data base must include irradiated materials. Since in situ testing to obtain tensile, fatigue, creep, crack-growth, stress-rupture, and swelling data is currently impossible for fusion reactor conditions, a program of service-temperature irradiations in fission reactors followed by postirradiation testing, simulation of fusion conditions, and low-fluence 14 MeV neutron-irradiation tests are planned. For the Demonstration Reactor (DEMO) expected to be built within ten years after theEPR, higher heat fluxes may require the use of refractory metals, at least for the first 20 cm. A partial data base may be provided by high-flux 14 MeV neutron sources being planned. Many materials other than those for structural components will be required in the EPR and DEMO. These include superconducting magnets, insulators, neutron reflectors and shields, and breeding materials. The rest of the device should utilize conventional materials except that portion involved in tritium confinement and recovery

  2. The safety of light water reactors

    International Nuclear Information System (INIS)

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  3. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  4. ICONE-4: Proceedings. Volume 2: Advanced reactors

    International Nuclear Information System (INIS)

    The proceedings for this conference are contained in 5 volumes. This volume is divided into the following areas: advanced reactor requirements; advanced reactor design and analysis; arrangement and construction; specific reactor designs; demonstration testing; safety systems and analysis; component demonstration testing; advanced reactor containment design; licensing topics and updates; accelerator applications and spallation sources; and advanced reactor development. Separate abstracts were prepared for most papers in this volume

  5. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  6. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  7. Analysis of higher power research reactors' parameters

    International Nuclear Information System (INIS)

    The objective of this monograph was to analyze and compare parameters of different types of research reactors having higher power. This analysis could be used for decision making and choice of a reactor which could possibly replace the existing ageing RA reactor in Vinca. Present experimental and irradiation needs are taken into account together with the existing reactors operated in our country, RB and TRIGA reactor

  8. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  9. Prometheus Project Reactor Module Final Report, For Naval Reactors Information

    International Nuclear Information System (INIS)

    The Naval Reactors Prime Contractor Team (NRPCT) led the development of a power plant for a civilian nuclear electric propulsion (NEP) system concept as part of the Prometheus Project. This report provides a summary of the facts, technical insights, and programmatic perspectives gained from this two-year program. The Prometheus Project experience has been extensively documented to better position the US for future space reactor development. Major Technological and engineering challenges exist to develop a system that provides useful electric power from a nuclear fission heat source operating in deep space. General issues include meeting mission requirements in a system that has a mass low enough to launch from earth while assuring public safety and remaining safely shutdown during credible launch accidents. These challenges may be overcome in the future if there is a space mission with a compelling need for nuclear power to drive development. Past experience and notional mission requirements indicate that any useful space reactor system will be unlike past space reactors and existing terrestrial reactors

  10. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  11. Operating experiences of the research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are devices of wide importance, being used for different scientific research tasks, for testing and improving reactor systems and components, for the production of radioisotopes, for the purposes of defence, for staff training and for other purposes. There are three research reactors in Yugoslavia: RA, RB and TRIGA. Reactors RA and RB at the 'Boris Kidric' Institute of Nuclear Sciences are of heavy water type power being 6500 and 10 kW, and maximum thermal neutron flux of 1014 and 1011(n/cm2s), respectively. TRIGA reactor at the 'Jozef Stefan' Institute in Ljubljana is of 250 kW power and maximum thermal neutron flux of 1013(n/cm2s). Reactors RA and RB use soviet fuel in the form of uranium dioxide (80% enriched) and metallic uranium (2%). Besides, RB reactor operates with natural uranium too. TRIGA reactor uses american uranium fuel 70% and 20% enriched, uranium being mixed homogeneously with moderator (ZrH). Experiences in handling and controlling the fuel before irradiation in the reactor, in reactor and after it are numerous and valuable, involving either the commercial arrangements with foreign producers, or optimal burn up in reactor or fuel treatment after the reactor irradiation. Twenty years of operating experience of these reactors have great importance especially having in mind the number of trained staff. Maintenance of reactors systems and fluids in continuous operation is valuable experience from the point of view of water reactor utilization. The case of the RA reactor primary cycle cobalt decontamination and other events connected with nuclear and radiation security for all three reactors are also specially emphasized. Owing to our research reactors, numerous theoretical, numerical and experimental methods are developed for nuclear and other analyses and design of research and power reactors,as well as methods for control and protection of radiation. (author)

  12. Establishment of licensing process for development reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik (and others)

    2006-02-15

    A study on licensing processes for development reactors has been performed to prepare the licensing of development reactors developed in Korea. The contents and results of the study are summarized as follows. The licensing processes for nuclear reactors in Korea, U.S.A., Japan, France, U.K., Canada, and IAEA were surveyed and analyzed to obtain technical bases necessary for establishing licensing processes applicable to development reactors in Korea. Based on the technical bases obtained the above analysis, the purpose, power output, and design characteristics of development reactors were analyzed in detail. The analysis results suggested that development reactors should be classified as a new reactor category (called as 'development reactor') separated from the current reactor categories such as the research reactor and the power reactor. Therefore, it is proposed to establish a new reactor category classified as 'development reactor' for the development reactors. And licensing processes, including licensing technical requirements, licensing document requirements, and other regulatory requirements, were also proposed for the development reactors. In order to institutionalize the licensing processes developed in this study, it is necessary to revise the current laws. Therefore, draft provisions of Atomic Energy Act, Enforcement Decree of the Atomic Energy Act, and Enforcement Regulation of the Atomic Energy Act have been developed for the preparation of the future legalization of the licensing processes proposed for the development reactors. Conclusively, a proposal of licensing processes and draft provisions of laws have been developed for the development reactors. The results proposed in this study can be applied directly to the licensing of the future development reactors. Furthermore, they will also contribute to establishing successfully the licensing processes of the development reactors.

  13. Nordic study on reactor waste

    International Nuclear Information System (INIS)

    In 1981, 14 nuclear power reactors are in operation and 2 under construction in the Nordic countries. So far, the reactor waste originating from day-to-day operation of these plants has been stored in solidified form at the reactor sites. Within a few years a satisfactory disposal procedure needs to be established. While the main R and D effects in the waste field have earlier been devoted to the question of irradiated fuel and waste from reprocessing, there is therefore now an increased interest in reactor waste with its much lower radioactivity but somewhat larger volumes. Since 1977, efforts have been made in a joint Nordic study to examine which facts need to be known in order to perform a comprehensive safety assessment of a reactor waste management system. In the present study a Reference system related to the waste generated over 30 years from six 500 MW-reactors is examined. The dominating radionuclides during storage and transportation accident scenarios are Cs-134, Cs-137 and Co-60. For most of the release scenarios from repositories Cs-137 and Sr-90 are dominating. Some scenarios are, however, dominated by the very longlived nuclides I-129 and C-14. A closer examination of the concentration in the waste of these nuclides and of their leaching properties indicates that their small - but significant - influence, as calculated, is probably grossly overestimated. The mechanical stability obtained in routine solidification processes of reactor waste products in conjunction with the outer container (steel drum, transport container, etc.) turns out to be sufficient. Difficulties were encountered in applying ICRP methodology and available dose calculation methods to calculation of population doses due to small activity releases, and effects extending into the far future. (EG)

  14. When reactors reach old age

    International Nuclear Information System (INIS)

    While the battle over whether to build new nuclear plants has quieted in recent times, a second struggle is shaping up in the United States as reactors approach a new stage of life: retirement. Four decades into the nuclear power age, questions of how best to dismantle and dispose of a nuclear power plant remain largely unanswered. The debates have been mainly academic until now - although reactors have operated for 25 years, decommissioning retired reactors has simply not been fully planned in this country. But the Shippingport Atomic Power Station in Pennsylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debates in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. Virtually all groups involved in decommissioning a reactor in the United States - the utility, the Nuclear Regulatory Commission, the U.S. Department of Energy, the U.S. Environmental Protection Agency, state public service commissions, and citizen organizations - agree that for the most part the technology to dismantle and dispose of a reactor safely is available. They disagree, however, on which technical option is the safest or cheapest and on who should pay for dismantlement. And there are further complications: Which regulations must be complied with. How much radiation exposure for workers and the public is acceptable. Even with answers to these questions, uncertainty about where to dispose of the radioactive waste and about how much residual radiation can be left at a former reactor site plagues the architects of decommissioning. This article discusses these questions

  15. Market introduction of innovative reactors

    International Nuclear Information System (INIS)

    Besides the development of evolutionary and passive LWR, also that of innovative reactors is attractive, because other applications (new markets) besides base load electricity generation can be thought of, and interesting new features on the area of safety or waste incineration can be shown. For market introduction however, a (partial) new infrastructure and a demonstration plant are required. Taking the abundance of fossil fuels and the accompanying low fuel prices today and in the near future into account, the funds to finance this will only become available when 1)the projected energy generating costs will be substantially lower than those of today, and 2)the costs of market introduction (i.e. the demonstration plant and the required infrastructure) will be limited. Generally speaking, there are two ways to seek competitiveness of a reactor type: 1)application of economy of scale, and 2)simplification. In this paper, an example of the second possibility is pursued for an innovative reactor type. The HR1 is a 40 MWth high temperature gas cooled reactor for heat and power cogeneration, a simplified version of the German HTR Module. The power level is chosen so small that additional safety features become apparent. For example, after a total loss of coolant the fuel remains fully intact, even if the reactor shutdown system fails and the reactor goes critical again after a number of hours. These safety features are used to omit certain components, like the emergency core cooling system, or to select a cheaper version of components, e.g. replacing the containment building by a confinement. Moreover, degradation of the safety class of certain components comes within the realm of possibilities. The cost reduction offered by these two measures are used to more than offset the economy-of-scale disadvantage of this small reactor system. (author)

  16. University of Florida training reactor. Annual progress report, September 1, 1984-August 31, 1985

    International Nuclear Information System (INIS)

    This annual progress report of the University of Florida Training Reactor discusses: reactor operation; personnel; modifications made to the reactors; reactor maintenance; and testing of reactor systems

  17. Reactivity determination in accelerator driven reactors using reactor noise analysis

    Directory of Open Access Journals (Sweden)

    Kostić Ljiljana 1

    2002-01-01

    Full Text Available Feynman-alpha and Rossi-alpha methods are used in traditional nuclear reactors to determine the subcritical reactivity of a system. The methods are based on the measurement of the mean value, variance and the covariance of detector counts for different measurement times. Such methods attracted renewed attention recently with the advent of the so-called accelerator driven reactors (ADS proposed some time ago. The ADS systems, intended to be used either in energy generation or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those traditionally used by radioactive sources. In such reactors the monitoring of the subcritical reactivity is very important, and a statistical method, such as the Feynman-alpha method, is capable of resolving this problem.

  18. Fast Reactor Development Strategy in China

    International Nuclear Information System (INIS)

    As one of the largest developing countries, China needs a reliable energy supplement. At the same time, China should improve the energy structure to decrease CO2 emissions. Nuclear and renewable energies are the main solutions to these issues. According to the research results, the nuclear capacity should increase to 400 GW(e) up to 2050. Fast reactors must be developed considering the limitation of uranium resources. In order to deploy fast reactor technology, the ‘experimental reactor, demonstration reactor and commercial reactor’ strategy has been suggested. China has finished the construction of the China Experimental Fast Reactor (CEFR) and gained necessary experience about fast reactors. The China Institute of Atomic Energy (CIAE) has begun to design the CFR-600, a 600 MW(e) demonstration fast reactor. This reactor will be put into operation before 2025. After that, a larger commercial reactor will be constructed. Besides fast reactors, all of other key sectors of fuel cycle will be developed at the same time such as reprocessing, fast reactor fuel, etc. There are two main tasks of fast reactors, one of which is to raise the utility ratio of uranium, and the other one is to transmute the long life waste of light water reactors. The fast reactor will be designed as a breeder and burner, respectively. (author)

  19. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  20. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  1. Thermonuclear Reflect AB-Reactor

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

  2. Heterogeneous Transmutation Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  3. Water shielding nuclear reactor container

    International Nuclear Information System (INIS)

    The reactor container of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevated inner pressure and keeping airtightness, and shielding water is filled inside from a water injection port. It is endurable to a great inner pressure satisfactorily and keep airtightness by the two spaced relatively thin steel plates. It exhibits radiation shielding effect by filling water substantially the same as that of a conventional reactor container made of iron reinforced concretes. Then, it is no more necessary to use concretes for the construction of the reactor container, which shortens the term of the construction, and saves the construction cost. In addition, a cooling effect for the reactor container is provided. Syphons are disposed contiguously to a water injection port and the top end of the syphon is immersed in an equipment temporarily storage pool, and further, pipelines are connected to the double steel plate walls or the syphons for supplying shielding water to enhance the cooling effect. (N.H.)

  4. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  5. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U3O8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  6. Simplifying Microbial Electrosynthesis Reactor Design

    Directory of Open Access Journals (Sweden)

    Cloelle G.S. Giddings

    2015-05-01

    Full Text Available Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  7. Spherical tokamak research for fusion reactor

    International Nuclear Information System (INIS)

    Between ITER and the commercial fusion reactor, there are many technological problems to be solved such as cost, neutron and steady-state operation. In the conceptual design of VECTOR and Slim CS reactors it was shown that the key is 'low aspect ratio'. The spherical tokamak (ST) has been expected as the base for fusion reactors. In US, ST is considered as a non-superconducting reactor for use in the neutron irradiation facility. Conceptual design of the superconducting ST reactor is conducted in Japan and Korea independently. In the present article, the prospect of the ST reactor design is discussed. (author)

  8. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  9. Utilisation of thorium in reactors

    Science.gov (United States)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  10. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  11. Reactor vessel stud thread protector

    International Nuclear Information System (INIS)

    This patent describes a stud thread protector for a nuclear reactor pressure vessel. The vessel has a removable closure head, the closure head being sealingly engaged with the pressure vessel by a plurality of stud bolts, an upper end thereof having a threaded section for threadingly engaging a nut and a vertical bore being disposed within the stud bolt. The stud thread protector encloses the exposed upper portion of the bolt and associated nut projecting above the closure head. The reactor vessel stud thread protector is comprised of: a tubular wall portion being opened at its lower end and substantially closed at its upper end; a drip pan associated with the outer surface of the protector, the drip pan being disposed radially inwardly with respect to the outer periphery of the vessel head, whereby the drip pan collects any fluid being emitted from the reactor vessel; and means for fastening the stud thread protector to an associated stud

  12. Coolant recirculation device for reactors

    International Nuclear Information System (INIS)

    Purpose: To surely remove gases in coolants by the provision of a gas separator having a coolant stay chamber in the midway of coolant flow circuit. Constitution: In an LMFBR type reactor, a gas separator for taking out incompressible gases contained in coolants is provided in the midway of coolant flow circuit comprising a coolant flowing pipeway connected to a reactor, a heat exchange and a coolant recycling pump. The gas separator comprises a vessel-shaped coolant stay chamber, inlet and exit ports of coolants opened to the stay chamber, and a take out port for taking out gases separated from the coolants in the stay chamber. Since the incompressible gases in the coolants have lower density than the coolants, they are collected in the upper cover gas plenum and can surely be eliminated to thereby prevent the gases from flowing into the reactor. (Kawakami, Y.)

  13. The Extrap fusion reactor concept

    International Nuclear Information System (INIS)

    ABSTRACT A study has recently been initiated to assess the fusion reactor potential of the Extrap high-beta toroidal z-pinch concept. A reactor model is defined that fullfills certain economic and operational criteria that are characteristic of compact toroidal systems, including moderately large electric power output, high power density, high first wall loading, and simple construction. This model is applied to Extrap, and a 1000 MWe reference reactor having a first wall neutron loading of 10 MW/m2 is outlined. The minor plasma radius is 1.5 m, the major radius 4.5 m and the pinch current 10 MA. A 0.7 m thick blanket/refletor/shield is chosen to achieve sufficient breeding of tritium, good energy multiplication, and shielding of normal copper coils. (author). 12 refs.; 3 figs.; 1 tab

  14. On fast reactor kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, E. F.; Belov, A. A. [Nuclear Safety Inst. of the Russian Academy of Sciences IBRAE (Russian Federation); Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F. [Inst. for Physics and Power Engineering IPPE (Russian Federation)

    2012-07-01

    The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

  15. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  16. Research reactor education and training

    International Nuclear Information System (INIS)

    CORYS T.E.S.S. and TECHNICATOME present in this document some of the questions that can be rightfully raised concerning education and training of nuclear facilities' staffs. At first, some answers illustrate the tackled generic topics: importance of training, building of a training program, usable tools for training purposes. Afterwards, this paper deals more specifically with research reactors as an actual training tool. The pedagogical advantages they can bring are illustrated through an example consisting in the description of the AZUR facility training capabilities followed by the detailed experiences CORYS T.E.S.S. and TECHNICATOME have both gathered and keeps on gaining using research reactors for training means. The experience shows that this incomparable training material is not necessarily reserved to huge companies or organisations' numerous personnel. It offers enough flexibility to be adapted to the specific needs of a thinner audience. Thus research reactor staffs can also take advantages of this training method. (author)

  17. Prospects for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  18. A tubular focused sonochemistry reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangPing; LIANG ZhaoFeng; LI ZhengZhong; ZHANG YiHui

    2007-01-01

    This paper presents a new sonochemistry reactor, which consists of a cylindrical tube with a certain length and piezoelectric transducers at tube's end with the longitudinal vibration. The tube can effectively transform the longitudinal vibration into the radial vibration and thereby generates ultrasound. Furthermore, ultrasound can be focused to form high-intensity ultrasonic field inside tube. The reactor boasts of simple structure and its whole vessel wall can radiate ultrasound so that the electroacoustic transfer efficiency is high. The focused ultrasonic field provides good condition for sonochemical reaction. The length of the reactor can be up to 2 meters, and liquids can pass through it continuously, so it can be widely applied in liquid processing such as sonochemistry.

  19. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  20. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    The Center for Nuclear Engineering has shown expertise in the field of nuclear and energy systems ad correlated areas. Due to the experience obtained over decades in research and technological development at Brazilian Nuclear Program personnel has been trained and started to actively participate in the design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in the production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. The Nuclear Fuel Center is responsible for the production of the nuclear fuel necessary for the continuous operation of the IEA-R1 research reactor. Development of new fuel technologies is also a permanent concern

  1. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  2. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  3. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235U or 239Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  4. Spatial Kinetics in Fast Reactors

    International Nuclear Information System (INIS)

    Reactor neutronic calculations designed for calculating of unsteady processes in a real 3D geometry require processing of a large amount of information. They cannot consist of simple models, as they should reflect the processes of variations of all local reactor characteristics. The model complexity and the significant time needed for numerical solution of neutron-transport equations limit the choice of methods that can achieve the required accuracy. Thus there is an urgent need for the development of various methods enabling the solution of unsteady neutron-transport equations and estimates of their errors, spent time and consistency with the experimental data. (author)

  5. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  6. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  7. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  8. Reactor production of Thorium-229.

    Science.gov (United States)

    Hogle, Susan; Boll, Rose Ann; Murphy, Karen; Denton, David; Owens, Allison; Haverlock, Tamara J; Garland, Marc; Mirzadeh, Saed

    2016-08-01

    Limited availability of (229)Th for clinical applications of (213)Bi necessitates investigation of alternative production routes. In reactor production, (229)Th is produced from neutron transmutation of (226)Ra, (228)Ra, (227)Ac and (228)Th. Irradiations of (226)Ra, (228)Ra, and (227)Ac targets at the Oak Ridge National Laboratory High Flux Isotope Reactor result in yields of (229)Th at 26 days of 74.0±7.4MBq/g, 260±10MBq/g, and 1200±50MBq/g, respectively. Intermediate radionuclide yields and cross sections are also studied. PMID:27163437

  9. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  10. Reactor shutdown delays medical procedures

    Science.gov (United States)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  11. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  12. Small intrinsically safe reactor implications

    International Nuclear Information System (INIS)

    Reviewing the history of nuclear power, it is found that peaceful uses of nuclear power are children of the war-like atom. Importance of special growth in a shielded environment is emphasized to exploit fully the advantages of nuclear power. Nuclear power reactors must be safe for their assimilation into society from the points of view of both technology and social psychology. ISR/ISER is identified as a missing link in the development of nuclear power reactors from this perspective and advocated for international development and utilization, being unleashed from the concerns of politicization, safety, and proliferation

  13. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  14. Liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hydrogen can be added to nuclear reactors with a liquid hydrogen-containing coolant on the suction side of a high pressure pump in the purification system. According to the invention this is performed by means of a liquid jet condenser which uses the coolant as liquid and which is preferably charged from the pressure side of the high pressure pump and conveys the liquid to a mixer connected in series with the high pressure pump. The invention is to be used especially in pressurized water reactors. (orig.)

  15. Safety of thermal water reactors

    International Nuclear Information System (INIS)

    This book reports on the latest European research into the safety of thermal water reactors, based on the presentation and evaluation of results obtained from research projects undertaken in different national laboratories of the European Community. Information is included under the following areas of research: 1.) The loss of coolant accident (LOCA) and the functioning and performance of the emergency core cooling system; 2.) The protection of nuclear power plants against external gas cloud explosions; and 3.) The release and distribution of radioactive fission products in the atmosphere following a reactor accident

  16. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  17. Advanced fuels for fast reactors

    International Nuclear Information System (INIS)

    Full text: In addition to traditional fast reactor fuels that contain Uranium and Plutonium, the advanced fast reactor fuels are likely to include the minor actinides [Neptunium (Np), Americium (Am) and Curium (Cm)]. Such fuels are also referred to as transmutation fuels. The goal of transmutation fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a traditional fast spectrum nuclear fuel while destroying recycled actinides. Oxide, metal, nitride, and carbide fuels are candidates under consideration for this application, based on historical knowledge of fast reactor fuel development and specific fuel tests currently being conducted in international transmutation fuel development programs. Early fast reactor developers originally favored metal alloy fuel due to its high density and potential for breeder operation. The focus of pressurized water reactor development on oxide fuel and the subsequent adoption by the commercial nuclear power industry, however, along with early issues with low burnup potential of metal fuel (now resolved), led later fast reactor development programs to favor oxide fuels. Carbide and nitride fuels have also been investigated but are at a much lower state of development than metal and oxide fuels, with limited large scale reactor irradiation experience. Experience with both metal and oxide fuels has established that either fuel type will meet performance and reliability goals for a plutonium fueled fast spectrum test reactor, both demonstrating burnup capability of up to 20 at.% under normal operating conditions, when clad with modified austenitic or ferritic martensitic stainless steel alloys. Both metal and oxide fuels have been shown to exhibit sufficient margin to failure under transient conditions for successful reactor operation. Summary of selected fuel material properties taken are provided in the paper. The main challenge for the development of transmutation fast reactor

  18. Imperial College Reactor Centre annual report 1983

    International Nuclear Information System (INIS)

    The report covers the following matters: research topics (reactor engineering; neutron and gamma dosimetry; nuclear physics; stable and radiotracer studies; neutron activation analysis (medicine; the environment; archaeology; geology)); personnel; publications; overseas visits; research contracts; teaching; reactor operations. (U.K.)

  19. Safety issues at the defense production reactors

    International Nuclear Information System (INIS)

    The United States produces plutonium and tritium for use in nuclear weapons at the defense production reactors - the N Reactor in Washington and the Savannah River reactors in South Carolina. This report reaches general conclusions about the management of those reactors and highlights a number of safety and technical issues that should be resolved. The report provides an assessment of the safety management, safety review, and safety methodology employed by the Department of Energy and the private contractors who operate the reactors for the federal government. This report examines the safety objective established by the Department of Energy for the production reactors and the process the Department of its contractors use to implement the objective; focuses on a variety of uncertainties concerning the production reactors, particularly those related to potential vulnerabilities to severe accidents; and identifies ways in which the DOE approach to management of the safety of the production reactors can be improved

  20. Research nuclear reactor RA - Annual Report 2000

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 2000 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  1. Research nuclear reactor RA - Annual Report 1998

    International Nuclear Information System (INIS)

    Activities related to revitalisation of the RA reactor started in 1986 were fulfilled except the exchange of the complete reactor instrumentation. Since 1992, due to economic and political reasons, RA reactor is in a difficult situation. The old RA reactor instrumentation was dismantled. Decision about the future status of the reactor should be made because the aging of all the components is becoming dramatic. Control and maintenance of the reactor components was done regularly and efficiently. The most important activity and investment in 1998 was improvement of conditions for spent fuel storage in the existing pools at the RA reactor. Russian company ENTEK and IAEA are involved in this activity which was initiated 1997. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. Research reactor RA Annual report for year 1998 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection

  2. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.)

  3. Annual report 1986 Interfacultary Reactor Institute

    International Nuclear Information System (INIS)

    In this annual report of the Dutch Interfacultary Reactor Institute, summary- and detailed reports are presented of Current research during 198? of the departments radiochemistry, radiation chemistry, radiation physics, and reactor physics. (H.W.). refs.; figs.; tabs

  4. Oregon State University TRIGA Reactor annual report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  5. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  6. Oregon State University TRIGA Reactor annual report

    International Nuclear Information System (INIS)

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included

  7. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  8. Monolithic reactor: higher yield, less energy

    OpenAIRE

    Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no guarantee that a large commercial reactor will work. Scalability is less than perfect, one might say. Researchers at the Reactor & Catalysis Engineering epartment of the Chemical Technology facult...

  9. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  10. European simplified boiling water reactor (ESBWR) plant

    International Nuclear Information System (INIS)

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility

  11. Overview on New Research Reactors in China

    International Nuclear Information System (INIS)

    In China, 2 research reactors are now under construction. Correspondingly, this paper consists of 2 parts. Part 1 will focus on China Advanced Research Reactor (CARR), the reactor characteristics, utilization, safety related systems and other main systems will be described in this part. Part 2 will focus on China Experiment Fast Reactor(CEFR), the general design and the safety features in particular will be illustrated in this part. (author)

  12. Optimal control of reactor temperatures using reactivity

    International Nuclear Information System (INIS)

    Modern control theory provides for better system performance through feedback of the internal system states, state feedback. The classical reactor power control loop normally adjusts control rod reactivity to change power through feedback of the output variable only, output feedback. Improved plant performance could be achieved with tight control of reactor temperatures as well. A new technique to improve performance of reactor temperatures is presented in this paper, which modifies reactor power demand signal to the classical control with optimal state feedback

  13. Fission energy: The integral fast reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  14. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP)

  15. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  16. Dynamic calculations of pressurized water reactor internals

    International Nuclear Information System (INIS)

    A mathematical model is briefly described for the calculation of oscillations in the WWER-440 reactor internals. The model was developed for improved safety of the type of reactors. It allows calculating vibrations resistance of reactor components, mainly during accidents, such as loss of coolant accidents. Some results are given of the calculation of forces acting in the rupture of the reactor inlet and outlet pipes. (Z.M.)

  17. Thermal hydraulic R and D of Chinese advanced reactors

    International Nuclear Information System (INIS)

    The Chinese government sponsors a program of research, development, and demonstration related to advanced reactors, both small modular reactors and larger systems. These advanced reactors encompass innovative reactor concepts, such as CAP1400 - Chinese large advanced passive pressurized water reactor, Hualong one - Chinese large advanced active and passive pressurized water reactor, ACP100 - Chinese small modular reactor, SCWR- R and D of super critical water-cooled reactor in China, CLEAR - Chinese lead-cooled fast reactor, TMSR - Chinese Thorium molten-salt reactor. The thermal hydraulic R and D of those reactors are summarised. (J.P.N.)

  18. Safety review, assessment and inspection on research reactors, experimental reactors and nuclear heating reactors

    International Nuclear Information System (INIS)

    The NNSA and its regional office step further strengthened the regulation on the safety of in-service research reactors in 1996. A lot of work has been done on the supervision of safe in rectifying the review and assessment of modified items, the review of operational documents, the treatment of accidents, the establishment of the system for operational experience feedback, daily and routine inspection on nuclear safety. The internal management of the operating organization on nuclear safety was further strengthened, nuclear safety culture was further enhanced, the promotion in nuclear safety and the safety situation for in-service research reactors were improved

  19. Alternate fusion concepts as reactors

    International Nuclear Information System (INIS)

    The recent successes of the tokamak concept of controlled fusion have not quenched interest in possible alternatives. This report summarizes a recent study sponsored by the Electric Power Research Institute, which tried to quantify which hoped-for advantages persist when a serious attempt is made to design reactor plants around eight specific alternative concepts (Electron Beam-Heated Solenoid, Elmo Bumpy Torus, Fast Liner, Laser-Heated Solenoid, Linear Theta-Pinch, LINUS, Reversed-Field-Pinch, and Shock-Heated Annulus) addressing key technological issues and economic issues for each concept. The study aimed to isolate the cost drivers for the reactor plant and to compare their capital cost per kilowatt of electricity as well as address the impact of technological difficulty. Results of the study indicated that reactor block costs for the eight plants studied represent a substantially larger fraction of total plant costs than the corresponding fraction for light water reactors; bottom line costs of $ /kWe range over a factor of about two with cost drivers being the physical size of the power producing plasma and the relative magnitudes of the circulating power fraction and the nature of the power circulation. Other cost considerations are also enumerated and the author concludes by noting that one value of the engineering study and cost estimate has been to quantify the relation between physics uncertainty and cost uncertainty

  20. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.)

  1. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  2. Reactor water level control system

    International Nuclear Information System (INIS)

    A BWR type reactor comprises a control valve disposed in a reactor water draining pipelines and undergoing an instruction to control the opening degree, an operation board having a setting device for generating the instruction and a control board for giving the instruction generated by the setting device to the control valve. The instruction is supplied from the setting device to the control valve by way of a control circuit to adjust the opening degree of the control valve thereby controlling the water level in the reactor. In addition, a controller generating an instruction independent of the setting device and a signal transmission channel for signal-transmitting the instruction independent of the control circuit are disposed, to connect the controller electrically to the signal transmission. The signal transmission channel and the control circuit are electrically connected to the control valve switchably with each other. Since instruction can be given to the control valve even at a periodical inspection or modification when the setting device and the control circuit can not be used, the reactor water level can be controlled automatically. Then, operator's working efficiency upon inspection can be improved remarkably. (N.H.)

  3. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author)

  4. Instrumentation for nuclear reactor control

    International Nuclear Information System (INIS)

    This lecture is concerned with engineers and technicians not specialized in nuclear reactor control. The different methods of measurement used are briefly reviewed: current or pulse measurement, and Campbell system; the electronic networks are described and a part is devoted to the cables connecting detectors and electronic assemblies

  5. The reactor 'Am guten Mann'

    International Nuclear Information System (INIS)

    The 'Schwarzbuch' (citizens action report) against the mentioned reactor is reporting on site selection, the Harrisburg-accident, a chronological summary of: administrative authorization, licensing procedures, proceedings, inquiries to the Federal Parliament and to the Land Parliament, as well as newspaper articles. (HP)

  6. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  7. Methods in nuclear reactors calculations

    International Nuclear Information System (INIS)

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and Pl; Bl; Ml; Sn and discrete ordinates approximations. (Author)

  8. TRIGA reactor health physics considerations

    International Nuclear Information System (INIS)

    The factors influencing the complexity of a TRIGA health physics program are discussed in details in order to serve as a basis for later consideration of various specific aspects of a typical TRIGA health physics program. The health physics program must be able to provide adequate assistance, control, and safety for individuals ranging from the inexperienced student to the experienced postgraduate researcher. Some of the major aspects discussed are: effluent release and control; reactor area air monitoring; area monitoring; adjacent facilities monitoring; portable instrumentation, personnel monitoring. TRIGA reactors have not been associated with many significant occurrences in the area of health physics, although some operational occurrences have had health physics implications. One specific occurrence at OSU is described involving the detection of non-fission-product radioactive particulates by the continuous air monitor on the reactor top. The studies of this particular situation indicate that most of the particulate activity is coming from the rotating rack and exhausting to the reactor top through the rotating rack loading tube

  9. Some new viewpoints in reactor noise analysis

    Institute of Scientific and Technical Information of China (English)

    罗征培; 李富; 等

    1996-01-01

    It is propsed that the linearity criterion and order criterion via frequency spectrum features without any limitation of the model's phase can be used in reactor noise analysis.The time constant,natural frequency as well as the recovered transfer function of reactors can bhe obtained via the analyzable model based on reactor noise.

  10. Status of the reactor TRIP in HANARO

    International Nuclear Information System (INIS)

    Unexpected reactor trip in HANARO since the first criticality in February, 1995 was investigated. The total numbers of the reactor trip events were 136 and it was 10.4 cases on average each year. During the early stage of the HANARO operation from 1995 to 1997, unexpected reactor trips were occurred frequently. 67% of the total unexpected reactor trips were occurred in that period, which were 91 cases. That duration was for a power ascension test as one of the reactor performance tests. The unexpected reactor trips were mainly caused by system problems and operators' error. Some cases were caused by electric power failure. The most frequent system problem was originated from fluctuation of the signal of the neutron power measuring system. To prevent the reactor trips by this phenomenon, the circuit of the reactor protection system was changed. Operators' error were occurred by mismatching of the neutron and thermal power, which was caused when the deviation of the neutron and thermal power is larger than 3 MW while the reactor power increases. To reduce reactor operators' error, operational procedure was revised and the operators have been trained with the revised one. That has on effect on reducing unexpected reactor trips dramatically. Reactor trips have been occurred by the class-IV power failure or a few problems of system error but never by operators' error since 2000. (author)

  11. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in dire...

  12. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  13. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva

    2012-05-01

    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  14. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  15. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U3O8 were replaced by U3Si2-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is to

  16. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  17. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  18. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  19. Fast reactors and advanced light water reactors for sustainable development

    International Nuclear Information System (INIS)

    Complete text of publication follows: The importance of nuclear energy, as a realistic option to solve the issues of the depletion of energy resources and the global environment, has been re-acknowledged worldwide. In response to this international movement, the papers compiling the most recent findings in the fields of fast reactors (FR) and advanced light water reactors (LWR) were gathered and published in this special issue. This special issue compiles six articles, most of which are very meticulously performed studies of the multi year development of design and assessment methods for large sodium-cooled FRs (SFRs), and two are related to the fuel cycle options that are leading to a greater understanding on the efficient utilization of energy resources. The Japanese sodium-cooled fast reactor (JSFR) is addressed in two manuscripts. H. Yamano et al. reviewed the current design which adopts a number of innovative technologies in order to achieve economic competitiveness, enhanced reliability, and safety. Their safety assessments of both design basis accidents and severe accidents indicate that the devised JSFR satisfies well their risk target. T. Takeda et al. discussed the improvement of the modeling accuracy for the detailed calculation of JSFR's features in three areas: neutronics, fuel materials, and thermal hydraulics. The verification studies which partly use the measured data from the prototype FBR Monju are also described. Two of these manuscripts deal with those aspects of advanced design of SFR that have hitherto not been explored in great depth. The paper by G. Palmiotti et al. explored the possibility of using the sensitivity methodologies in the reactor physics field. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described. F. Baque et al. reviewed the evolution of the in

  20. The need to address the larger universe of HEU-fueled reactors, including critical assemblies, pulsed reactors and propulsion reactors

    International Nuclear Information System (INIS)

    Full text: The RERTR program has focused thus far primarily on ending shipments of HEU fuel to research reactors. This has resulted in giving highest priority to reactors with steady thermal powers of 1 megawatt or more, because they require regular refuelling. Critical facilities and pulsed reactors can also of serious concern, because some of them contain very large amounts of barely-irradiated HEU and plutonium. They could be costly to convert - and conversion to LEU may be impractical for fast-neutron critical assemblies. An assessment should be carried out first, therefore, as to which are still needed. Critical assemblies are required today primarily to benchmark Monte Carlo neutron-transport codes. Perhaps the world nuclear community could share a few instead of each reactor-design institute having its own. There is also a whole universe of HEU-fuelled pressurized-water reactors used to power submarines and other types of nuclear-powered ships. These reactors collectively require much more HEU fuel each year than research reactors. The risk of HEU diversion from their fuel cycles is not zero but it is difficult for outsiders to discuss conversion because of the fuel designs are classified. This makes the conversion of Russia's civilian icebreaker reactors of particular interest because issues of classified fuel design are less problematic and these reactors load annually fuel containing about 400 kg of U-235. Another reason for interest in developing LEU fuel for these reactors is that the KLT-40 icebreaker reactor is being adapted for a floating nuclear power plant. Finally, the research-reactor community is, in any case, faced with developing fuels that can operate at power-reactor-fuel temperatures because there are a few high-powered research reactors that operate in this temperature range. (author)