WorldWideScience

Sample records for branching enzyme isoform

  1. Temperature Stress at Grain Filling Stage Mediates Expression of Three Isoform Genes Encoding Starch Branching Enzymes in Rice Endosperm

    Directory of Open Access Journals (Sweden)

    Ke-su WEI

    2009-09-01

    Full Text Available An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32°C for high temperature and 22°C for optimum temperature at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBEIV encoding starch branching enzyme (SBE in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR method. Effects of high temperature on the SBE expression in developing rice endosperms were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.

  2. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains.

    NARCIS (Netherlands)

    Palomo, M.; Kralj, S.; van der Maarel, M. J. E. C.; Dijkhuizen, L.

    2009-01-01

    Glycogen branching enzymes (GBE) or 1,4-alpha-glucan branching enzymes (EC 2.4.1.18) introduce alpha-1,6 branching points in alpha-glucans, e.g., glycogen. To identify structural features in GBEs that determine their branching pattern specificity, the Deinococcus geothermalis and Deinococcus

  3. Synthesis of branched polyglucans by the tandem action of potato phosphorylase and Deinococcus geothermalis glycogen branching enzyme

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Reixach, Marta Palomo; van der Maarel, Marc; Dijkhuizen, Lubbert; Schouten, Arend Jan; Loos, Katja

    2008-01-01

    An enzymatic tandem reaction is described in which the enzymes phosphorylase and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) catalyze the synthesis of branched polyglucans from glucose-1-phosphate (G-1-P). Phosphorylase consumes G-1-P and polymerizes linear amylose while DR GBE

  4. Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme : Crystal Structure, Mechanism of Action, and Products Formed

    NARCIS (Netherlands)

    Palomo, Marta; Pijning, Tjaard; Booiman, Thijs; Dobruchowska, Justyna M.; Vlist, Jeroen van der; Kralj, Slavko; Planas, Antoni; Loos, Katja; Kamerling, Johannis P.; Dijkstra, Bauke W.; Maarel, Marc J.E.C. van der; Dijkhuizen, Lubbert; Leemhuis, Hans

    2011-01-01

    Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of alpha 1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus

  5. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes.

    Science.gov (United States)

    Parida, Asish Kumar; Das, Anath Bandhu; Mohanty, Prasanna

    2004-05-01

    In order to assess the role of the antioxidative defense system against salt treatment, the activities of some antioxidative enzymes and levels of antioxidants were monitored in a true mangrove, Bruguiera parviflora, subjected to varying levels of NaCl under hydroponic culture. In the leaves of B. parviflora, salt treatment preferentially enhanced the content of H2O2 as well as the activity of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of total ascorbate and glutathione (GSH+GSSG) content as well as catalase (CAT) activity. Analysis of isoforms of antioxidative enzymes by native PAGE and activity staining revealed that leaves of B. parviflora had one isoform each of Mn-SOD and Cu/Zn-SOD and three isoforms of Fe-SOD. Expression of Mn-SOD and Fe-SOD-2 was preferentially elevated by NaCl. Similarly, out of the six isoforms of GPX, the GPX-1, 2, 3 and 6 were enhanced by salt treatment but the levels of GPX-4 and -5 changed minimally as compared to those of a control. Activity staining gel revealed only one prominent isoform of APX and two isoforms of GR (GR-1 and GR-2), all of these isoforms increased upon salt exposure. Four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced, suggesting differential down regulation of CAT isoforms by NaCl. The concentrations of malondialdehyde (MDA), a product of lipid peroxidation, remained unchanged in leaves of the plant treated with different concentrations of NaCl. This suggests that plants are protected against activated oxygen species by the elevated levels of certain antioxidative enzymes, thus avoiding lipid peroxidation during salt exposure. The differential changes in the levels of the isoforms due to NaCl treatment may be useful as markers for recognizing salt tolerance in mangroves.

  6. LOCALIZATION OF BRANCHING ENZYME IN POTATO-TUBER CELLS WITH THE USE OF IMMUNOELECTRON MICROSCOPY

    NARCIS (Netherlands)

    KRAM, AM; OOSTERGETEL, GT; VANBRUGGEN, EFJ

    Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma

  7. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro......-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper...... high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences...

  8. Repression of both isoforms of disproportionating enzyme leads to higher malto-oligosaccharide content and reduced growth in potato

    DEFF Research Database (Denmark)

    Mogensen, Henrik Lütken; Lloyd, James Richard; Glaring, Mikkel A.

    2010-01-01

    Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined...... repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2....... In addition, they contained a range of malto-oligosaccharides from maltose to maltoheptaose. Plants repressed in both isoforms had chlorotic leaves and did not grow as well as either the controls or lines where only one of the isoforms was repressed. Examination of photosynthetic parameters suggested...

  9. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  10. Enzymes involved in branched-chain amino acid metabolism in humans.

    Science.gov (United States)

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  11. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    Science.gov (United States)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  12. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S; Malde, Alpeshkumar K; Mark, Alan E; Gilbert, Robert G

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  13. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  14. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Directory of Open Access Journals (Sweden)

    Cheng Li

    Full Text Available Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE. Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  15. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  16. PdCuPt Nanocrystals With Multi-branches for Enzyme-free Glucose Detection

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-08-05

    By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals exhibit high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In details, a sensitivity of 378 μA/mM/cm2 and a detection limit of 1.29 μM can be achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as well as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose.

  17. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...

  18. Circadian oscillation of starch branching enzyme gene expression in the sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Mutisya, J.; Sun, C.; Jansson, C.

    2009-08-31

    Expression of the three SBE genes, encoding starch branching enzymes, in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle. Remarkably, the oscillation in SBE expression was maintained in cultured spikes after a 48-h dark treatment, also when fed a continuous solution of sucrose or abscisic acid. Our findings suggest that the rhythmicity in SBE expression in the endosperm is independent of cues from the photosynthetic source and that the oscillator resides within the endosperm itself.

  19. Action of amylolytic and pullulytic enzymes from various anaerobic thermophiles on linear and branched glucose polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R. (Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie); Antranikian, G. (Technische Univ. Hamburg-Harburg, Hamburg (Germany, F.R.). Arbeitsbereich Biotechnologie 1)

    1990-10-01

    A detailed study has been conducted on the action of starch hydrolyzing enzymes from thermophilic anaerobic bacteria belonging to the genera Clostridium, Thermoanaerobacter and Thermobacteroides. The appearance of multiple bands on polyacrylamide gels with amylolytic as well as pullulytic activities was shown to be a general feature of bacteria investigated. Analysis of the hydrolysis products of each protein band clearly demonstrated the capability of these organisms to hydrolyze {alpha}-1,4-glycosidic bonds in linear oligosaccharides and {alpha}-1,6-glycosidic linkages in pullulan. Furthermore, the enzyme system of thermophilic bacteria investigated was also capable of attacking in the {alpha}-1,6-linkages in branched oligosaccharides. Due to the action of these thermoactive enzymes with multiple specificity an almost complete hydrolysis of raw starch and maltodextrin could be achieved under the same conditions and in one step. (orig.).

  20. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Antoni, E-mail: antoni.kowalski@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Zylinska, Ludmila, E-mail: ludmila.zylinska@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Boczek, Tomasz, E-mail: tomasz.boczek@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Rebas, Elzbieta, E-mail: elzbieta.rebas@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland)

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  1. Biochemical characterization of Arabidopsis thaliana starch branching enzyme 2.2 reveals an enzymatic positive cooperativity.

    Science.gov (United States)

    Wychowski, A; Bompard, C; Grimaud, F; Potocki-Véronèse, G; D'Hulst, C; Wattebled, F; Roussel, X

    2017-09-01

    Starch Branching Enzymes (SBE) catalyze the formation of α(1 → 6) branching points on starch polymers: amylopectin and amylose. SBEs are classified in two groups named type 1 and 2. Both types are present in the entire plant kingdom except in some species such as Arabidopsis thaliana that expresses two type 2 SBEs: BE2.1 and BE2.2. The present work describes in vitro enzymatic characterization of the recombinant BE2.2. The function of recombinant BE2.2 was characterized in vitro using spectrophotometry assay, native PAGE and HPAEC-PAD analysis. Size Exclusion Chromatography separation and SAXS experiments were used to identify the oligomeric state and for structural analysis of this enzyme. Optimal pH and temperature for BE2.2 activity were determined to be pH 7 and 25 °C. A glucosyl donor of at least 12 residues is required for BE2.2 activity. The reaction results in the transfer in an α(1 → 6) position of a glucan preferentially composed of 6 glucosyl units. In addition, BE2.2, which has been shown to be monomeric in absence of substrate, is able to adopt different active forms in presence of branched substrates, which affect the kinetic parameters. BE2.2 has substrate specificity similar to those of the other type-2 BEs. We propose that the different conformations of the enzyme displaying more or less affinity toward its substrates would explain the adjustment of the kinetic data to the Hill equation. This work describes the enzymatic parameters of Arabidopsis BE2.2. It reveals for the first time conformational changes for a branching enzyme, leading to a positive cooperative binding process of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Single-enzyme kinetics with branched pathways: exact theory and series expansion

    CERN Document Server

    Garai, Ashok

    2014-01-01

    The progress of the successive rounds of catalytic conversion of substrates into product(s) by a single enzyme is characterized by the distribution of turnover times. Establishing the most general form of dependence of this distribution on the substrate concentration [S] is one of the fundamental challenges in single molecule enzymology. The distribution of the times of dwell of a molecular motor at the successive positions on its track is an analogous quantity. We derive approximate series expansions for the [ATP]-dependence of the first two moments of the dwell time distributions of motors that catalyze hydrolysis of ATP to draw input energy. Comparison between our results for motors with branched pathways and the corresponding expressions reported earlier for linear enzymatic pathways provides deep insight into the effects of the branches. Such insight is likely to help in discovering the most general form of [S]-dependence of these fundamental distributions.

  3. Distribution of the intracellular Ca(2+)-ATPase isoform 2b in pig brain subcellular fractions and cross-reaction with a monoclonal antibody raised against the enzyme isoform.

    Science.gov (United States)

    Salvador, J M; Berengena, M; Sepúlveda, M R; Mata, A M

    2001-04-01

    The presence and distribution of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) isoform 2b in microsomes and other subcellular fractions isolated from pig brain has been demonstrated by the combined use of a specific antibody raised against the SERCA2b isoform and ATP phosphorylation experiments. All subcellular fractions show an approximately 110 kDa phosphorylated protein, the band intensity being stronger in microsomes. Preliminary treatment of the samples with trypsin generates two phosphorylated fragments of about 57 and 33 kDa in the presence of Ca(2+). The observed fragments are typical trypsinized products of the SERCA2b isoform. The monoclonal antibody Y/1F4 raised against the sarcoplasmic reticulum Ca(2+)-ATPase (isoform 1) binds to the 110 kDa band in membranes isolated from brain. The binding was stronger in microsomes than in other fractions. Furthermore, this antibody also recognizes a clear band at around 115 kDa. This band is always stronger in plasma membrane than in synaptosomes or microsomes and is unaffected by trypsin. Phosphorylation studies in the absence of Ca(2+) suggest that the 115 kDa protein is not a Ca(2+)-ATPase.

  4. Metal dependence and branched RNA cocrystal structures of the RNA lariat debranching enzyme Dbr1

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nathaniel E.; Katolik, Adam; Roberts, Kenneth M.; Taylor, Alexander B.; Holloway, Stephen P.; Schuermann, Jonathan P.; Montemayor, Eric J.; Stevens, Scott W.; Fitzpatrick, Paul F.; Damha, Masad J.; Hart, P. John (UW); (Texas); (McGill); (UTSMC); (Cornell); (SC)

    2016-12-06

    Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ~3 s-1. Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ~4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the β-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.

  5. Replacement of immobilised cell bioreactors by smaller immobilised enzyme bioreactors: unique-outcome predictability for cytochromes P450 isoforms?

    Science.gov (United States)

    Wiseman, Alan

    2003-10-01

    Both immobilized enzymes (IME) and immobilized cells (IMC) are acceptable as the biocatalysts essential for the attainment of rapid rates of bioconversion in bioreactors. IMC can display higher than expected cellular permeability whilst IME can exhibit high catalytic constant (kcat/Km) despite limitations on substrate utilisation due to an unstired diffusion layer of solvent. Scale-down switching from IMC to IME involves the replacement of high-volume biotechnology by low-volume biotechnology, sometimes using IME mimics in partially non-aqueous solvent systems. Highly purified IME systems covalently immobilised to particles of, for instance, microcrystalline cellulose or porous glass, can retain both the hydrophilic and hydrophobic intermediate products in situ of the chosen sequence of enzyme reactions. These bioconversions, therefore, are as efficient as those with IMC where enzymes are often particle- or membrane-bound so that even hydrophilic intermediates are not released rapidly into solution. This mimicry of in vivo biosynthetic pathways that are compartmentalised in vivo (e.g. of lysosomes, mitochondria and endoplasmic reticulum) can replace larger IMC by IME especially in application of up to 2700 cytochromes P450 isoforms in bioprocessing. In silico investigation of appropriate model IME systems, in comparison with IMC systems, will be needed to define the optimal bioreactor configuration and parameters of operation, such as pH, T and oxygen mass transfer rate (OTR). The application solely of hazop (applied hazard and operability concepts) may, nevertheless, not be recommended to replace fully the in silico and real-lab pilot-scale and scale studies. Here, food-safe bioprocessing has to be achieved without incorporation of recognised biohazards; especially in the form of unacceptable levels of toxic metals that promote a risk-analysis uncertainty.

  6. Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT through the erythrocytic cycle of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Mitchell Sarah L

    2010-12-01

    Full Text Available Abstract Background The folate pathway enzyme serine hydroxymethyltransferase (SHMT converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In Plasmodium falciparum an enzymatically functional SHMT (PfSHMTc and a related, apparently inactive isoform (PfSHMTm are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated. Methods Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites. Results As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards

  7. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    Directory of Open Access Journals (Sweden)

    Carciofi Massimiliano

    2012-11-01

    Full Text Available Abstract Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs. However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb in barley (Hordeum vulgare L., resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 % was observed, which is 2.2-fold higher than control (29%. The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch

  8. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    Directory of Open Access Journals (Sweden)

    Yandeau-Nelson Marna

    2011-05-01

    Full Text Available Abstract Background Two distinct starch branching enzyme (SBE isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.

  9. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    Science.gov (United States)

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  10. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology

    Science.gov (United States)

    Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H.; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H.; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W.; Bassett, David J. P.; Grossman, Lawrence I.

    2012-01-01

    Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (−50 and −29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (−12%), reduced total oxygen consumption rate (−8%), improved glucose tolerance, and reduced grip force (−14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction

  11. A spinach O-acetylserine(thiollyase homologue, SoCSaseLP, suppresses cysteine biosynthesis catalysed by other enzyme isoforms

    Directory of Open Access Journals (Sweden)

    Miki Noda

    2016-06-01

    Full Text Available An enzyme, O-acetylserine(thiollyase (OASTL, also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase, catalyses the incorporation of sulfide into O-acetylserine and produces cysteine. We previously identified a cDNA encoding an OASTL-like protein from Spinacia oleracea, (SoCSaseLP, but a recombinant SoCSaseLP produced in Escherichia coli did not show OASTL activity. The exon-intron structure of the SoCSaseLP gene shared conserved structures with other spinach OASTL genes. The SoCSaseLP and a Beta vulgaris homologue protein, KMT13462, comprise a unique clade in the phylogenetic tree of the OASTL family. Interestingly, when the SoCSaseLP gene was expressed in tobacco plants, total OASTL activity in tobacco leaves was reduced. This reduction in total OASTL activity was most likely caused by interference by SoCSaseLP with cytosolic OASTL. To investigate the possible interaction of SoCSaseLP with a spinach cytosolic OASTL isoform SoCSaseA, a pull-down assay was carried out. The recombinant glutathione S-transferase (GST-SoCSaseLP fusion protein was expressed in E. coli together with the histidine-tagged SoCSaseA protein, and the protein extract was subjected to glutathione affinity chromatography. The histidine-tagged SoCSaseA was co-purified with the GST-SoCSaseLP fusion protein, indicating the binding of SoCSaseLP to SoCSaseA. Consistent with this interaction, the OASTL activity of the co-purified SoCSaseA was reduced compared with the activity of SoCSaseA that was purified on its own. These results strongly suggest that SoCSaseLP negatively regulates the activity of other cytosolic OASTL family members by direct interaction.

  12. The isoform-specific region of the Na,K-ATPase catalytic subunit: role in enzyme kinetics and regulation by protein kinase C.

    Science.gov (United States)

    Duran, Marie-Josée; Pierre, Sandrine V; Carr, Deborah L; Pressley, Thomas A

    2004-12-28

    Comparisons of the primary structures of the Na,K-ATPase alpha-isoforms reveal the existence of regions of structural divergence, suggesting that they are involved in unique functions. One of these regions is the isoform-specific region (ISR), located near the ATP binding site in the major cytoplasmic loop. To evaluate its importance, we constructed mutants of the rodent wild-type alpha1 and alpha3 isoforms in which the ISR was replaced with irrelevant sequences, i.e., the analogous region from the rat gastric H,K-ATPase catalytic subunit or a region from the human c-myc oncogene. Opossum kidney (OK) cells were transfected with wild-type rat alpha1, alpha3, or their corresponding chimeras and selected in ouabain. Introduction of either mutant produced ouabain-resistant colonies, consistent with functional expression of the chimeric protein and indicating that the ISR is not essential for overall Na,K-ATPase function. The introduced chimeras were then characterized enzymatically by measuring the relative rate of K(+) and Li(+) deocclusions. Results showed that exchanges of both alpha1 and alpha3 ISRs significantly modified the sensitivity for the enzyme to either K(+) or Li(+). Subsequent treatment of the cells with phorbol esters revealed an altered Na,K-ATPase transport in response to protein kinase C activation for the alpha1 chimeras. No changes were observed for the alpha3 isoform, suggesting that it is not sensitive to PKC regulation. These results demonstrated that the ISR plays an important role in ion deocclusion and in the response to PKC (only for the alpha1 isoform).

  13. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology.

    Science.gov (United States)

    Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W; Bassett, David J P; Grossman, Lawrence I

    2012-09-01

    Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (-50 and -29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced P(enh) and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (-12%), reduced total oxygen consumption rate (-8%), improved glucose tolerance, and reduced grip force (-14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and

  14. Sugary Endosperm is Modulated by Starch Branching Enzyme IIa in Rice (Oryza sativa L.).

    Science.gov (United States)

    Lee, Yunjoo; Choi, Min-Seon; Lee, Gileung; Jang, Su; Yoon, Mi-Ra; Kim, Backki; Piao, Rihua; Woo, Mi-Ok; Chin, Joong Hyoun; Koh, Hee-Jong

    2017-12-01

    Starch biosynthesis is one of the most important pathways that determine both grain quality and yield in rice (Oryza sativa L.). Sugary endosperm, sugary-1 (sug-1), is a mutant trait for starch biosynthesis. Rice plants carrying sug-1 produce grains that accumulate water-soluble carbohydrates instead of starch, even after maturity. Although this trait enhances the diversity of grain quality, sugary endosperm rice has hardly been commercialized due to the severely wrinkled grains and subsequent problems in milling. This study was conducted to identify the genes responsible for the sug-h phenotype through a map-based cloning technology. We induced a mild sugary mutant, sugary-h (sug-h) through the chemical mutagenesis on the Korean japonica cultivar Hwacheong. Grains of the sug-h mutant were translucent and amber-colored, and the endosperm appeared less wrinkled than sug-1, whereas the soluble sugar content was fairly high. These characteristics confer greater marketability to the sug-h mutant. Genetic analyses indicated that the sug-h mutant phenotype was controlled by a complementary interaction of two recessive genes, Isoamylase1 (OsISA1), which was reported previously, and Starch branching enzyme IIa (OsBEIIa), which was newly identified in this study. Complementation tests indicated that OsBEIIa regulated the properties of sugary endosperm. Complementary interactions between the starch biosynthesis genes OsISA1 and OsBEIIa determine the mild sugary endosperm mutant, sugary-h, in rice. Our finding may facilitate the breeding of sugaryendosperm rice for commercial benefit.

  15. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points

    Science.gov (United States)

    Barenholz, Uri; Davidi, Dan; Reznik, Ed; Bar-On, Yinon; Antonovsky, Niv; Noor, Elad; Milo, Ron

    2017-01-01

    A set of chemical reactions that require a metabolite to synthesize more of that metabolite is an autocatalytic cycle. Here, we show that most of the reactions in the core of central carbon metabolism are part of compact autocatalytic cycles. Such metabolic designs must meet specific conditions to support stable fluxes, hence avoiding depletion of intermediate metabolites. As such, they are subjected to constraints that may seem counter-intuitive: the enzymes of branch reactions out of the cycle must be overexpressed and the affinity of these enzymes to their substrates must be relatively weak. We use recent quantitative proteomics and fluxomics measurements to show that the above conditions hold for functioning cycles in central carbon metabolism of E. coli. This work demonstrates that the topology of a metabolic network can shape kinetic parameters of enzymes and lead to seemingly wasteful enzyme usage. DOI: http://dx.doi.org/10.7554/eLife.20667.001 PMID:28169831

  16. A practical strategy to design and develop an isoform-specific fluorescent probe for a target enzyme: CYP1A1 as a case study.

    Science.gov (United States)

    Dai, Zi-Ru; Feng, Lei; Jin, Qiang; Cheng, Hailing; Li, Yan; Ning, Jing; Yu, Yang; Ge, Guang-Bo; Cui, Jing-Nan; Yang, Ling

    2017-04-01

    The development of isoform-specific probe(s) for a target enzyme with multiple homologs is always challenging. Herein, a practical strategy was used to design and develop an isoform-specific probe for CYP1A1, a key cytochrome P450 isoenzyme involved in xenobiotic metabolism and bioactivation. On the basis of the subtle differences in 3D structure and substrate preference between CYP1A1 and its homolog CYP1A2, we proposed that it was possible to design a CYP1A1-specific probe via local modification of the reaction site on known CYP1A substrates. To validate this hypothesis, 4-hydroxy-1,8-naphthalimide (HN) was selected as the basic fluorophore due to its excellent optical properties, while a series of O-alkylated HN derivatives were prepared to evaluate their specificity towards CYP1A1. Our results revealed that the introduction of a chloroethyl to HN could get the best isoform selectivity towards CYP1A1 over other CYPs including CYP1A2. The newly developed probe NBCeN exhibited excellent specificity, high sensitivity, and a ratiometric fluorescence response following CYP1A1-catalyzed O-dechloroethylation. NBCeN was successfully used to real-time monitor the activity of CYP1A1 in complex biological samples and to rapidly screen CYP1A1 modulators in living systems. NBCeN could also be used for two-photon imaging of intracellular CYP1A1 in living cells and tissues with high ratiometric imaging resolution and deep tissue penetration. All these findings demonstrated that local modification of non-specific substrates was a practical strategy to develop an isoform-specific probe for a target isoenzyme, while NBCeN could serve as a specific imaging tool to explore the biological functions of CYP1A1 in complex biological systems.

  17. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution...... and digestibility by using rat intestinal α-glucosidases. For each enzyme treatment series, increased AO content resulted in a higher rate of α-1,6 glucosidic linkage formation but as an effect of the very low initial branching of the AO, the final content of α-1,6 glucosidic linkages was slightly lower as compared...

  18. Starch-Branching Enzyme IIa Is Required for Proper Diurnal Cycling of Starch in Leaves of Maize1[OA

    Science.gov (United States)

    Yandeau-Nelson, Marna D.; Laurens, Lieve; Shi, Zi; Xia, Huan; Smith, Alison M.; Guiltinan, Mark J.

    2011-01-01

    Starch-branching enzyme (SBE), a glucosyl transferase, is required for the highly regular pattern of α-1,6 bonds in the amylopectin component of starch. In the absence of SBEIIa, as shown previously in the sbe2a mutant of maize (Zea mays), leaf starch has drastically reduced branching and the leaves exhibit a severe senescence-like phenotype. Detailed characterization of the maize sbe2a mutant revealed that SBEIIa is the primary active branching enzyme in the leaf and that in its absence plant growth is affected. Both seedling and mature sbe2a mutant leaves do not properly degrade starch during the night, resulting in hyperaccumulation. In mature sbe2a leaves, starch hyperaccumulation is greatest in visibly senescing regions but also observed in green tissue and is correlated to a drastic reduction in photosynthesis within the leaf. Starch granules from sbe2a leaves observed via scanning electron microscopy and transmission electron microscopy analyses are larger, irregular, and amorphous as compared with the highly regular, discoid starch granules observed in wild-type leaves. This appears to trigger premature senescence, as shown by an increased expression of genes encoding proteins known to be involved in senescence and programmed cell death processes. Together, these results indicate that SBEIIa is required for the proper diurnal cycling of transitory starch within the leaf and suggest that SBEIIa is necessary in producing an amylopectin structure amenable to degradation by starch metabolism enzymes. PMID:21508184

  19. Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme.

    Science.gov (United States)

    Ren, Junyan; Li, Yang; Li, Caiming; Gu, Zhengbiao; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2017-04-01

    Waxy corn starch was modified with the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. Incubating waxy corn starch with GBE increased the number of α-1,6 branch points and reduced the average chain length. Enzymatic modification also decreased the breakdown and setback values of Brabender viscosity curves, indicating that the modified starch had higher paste stability. Preheating the starch at 65°C for 30min before incubation with GBE could promote enzymatic modification of starch. Linear regression was used to describe the relationships between starch structure and its pasting and thermal properties. The setback value showed a negative linear correlation with the α-1,6 branch point content (R2=0.9824) and a positive linear correlation with the average chain length (R2=0.8954). Meanwhile, the gelatinization enthalpy was also linearly correlated to the α-1,6 branch point content (R2=0.9326) and the average chain length (R2=0.8567). These insights provide a useful reference for food processors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kizuka

    2016-04-01

    Full Text Available N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.

  1. Modification of potato starch composition by introduction and expression of bacterial branching enzyme genes

    NARCIS (Netherlands)

    Kortstee, A.

    1997-01-01

    Starch consists of two major components; amylose and amylopectin. Amylose is synthesized by the enzyme Granule-Bound Starch Syntase (GBSS) and consists of essentially linear chains of α-1,4 linked glucose residues. Amylopectin is synthesized by the combined activity of the enzymes Soluble

  2. Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration.

    Science.gov (United States)

    Li, Yuju; Peer, Justin; Zhao, Runze; Xu, Yinghua; Wu, Beiqing; Wang, Yi; Tian, Changhai; Huang, Yunlong; Zheng, Jialin

    2017-01-01

    Glutaminase 1 is a phosphate-activated metabolic enzyme that catalyzes the first step of glutaminolysis, which converts glutamine into glutamate. Glutamate is the major neurotransmitter of excitatory synapses, executing important physiological functions in the central nervous system. There are two isoforms of glutaminase 1, KGA and GAC, both of which are generated through alternative splicing from the same gene. KGA and GAC both transcribe 1-14 exons in the N-terminal, but each has its unique C-terminal in the coding sequence. We have previously identified that KGA and GAC are differentially regulated during inflammatory stimulation and HIV infection. Furthermore, glutaminase 1 has been linked to brain diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and hepatic encephalopathy. Core enzyme structure of KGA and GAC has been published recently. However, how other coding sequences affect their functional enzyme activity remains unclear. We cloned and performed serial deletions of human full-length KGA and GAC from the N-terminal and the C-terminal at an interval of approximately 100 amino acids (AAs). Prokaryotic expressions of the mutant glutaminase 1 protein and a glutaminase enzyme activity assay were used to determine if KGA and GAC have similar efficiency and efficacy to convert glutamine into glutamate. When 110 AAs or 218 AAs were deleted from the N-terminal or when the unique portions of KGA and GAC that are beyond the 550 AA were deleted from the C-terminal, KGA and GAC retained enzyme activity comparable to the full length proteins. In contrast, deletion of 310 AAs or more from N-terminal or deletion of 450 AAs or more from C-terminal resulted in complete loss of enzyme activity for KGA/GAC. Consistently, when both N- and C-terminal of the KGA and GAC were removed, creating a truncated protein that expressed the central 219 AA - 550 AA, the protein retained enzyme activity. Furthermore, expression of the core 219 AA - 550 AA coding

  3. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhu, Lijia; Zhou, Weidong; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-01-27

    A high-amylose transgenic rice line (TRS) modified by antisense RNA inhibition of starch branching enzymes revealed a resistant starch-rich quality. Compound starch granules in whole grains of the regular rice cultivar Teqing (TQ) were readily split during fracturing, whereas the starch granules in TRS were structurally intact and showed large voluminous, non-angular rounded bodies and elongated, filamentous structures tolerant of fracturing. In isolated preparation, TQ starch granules broke up into separate polygonal granules, whereas TRS starch granules kept their intactness. TRS starch granules consisted of packed smaller subgranules, some of which located at the periphery of starch granules were fused to each other with adjacent ones forming a thick band or wall encircling the entire circumference of the granules. TQ starch granules had a high concentration of amylose in the concentric hilum, whereas TRS starch granules showed a relatively even distribution of amylose with intense amylose in both hilum and band.

  4. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    Science.gov (United States)

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  5. Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature

    DEFF Research Database (Denmark)

    Lloyd, J.R.; Blennow, A.; Burhenne, K.

    2004-01-01

    A potato (Solanum tuberosum) cDNA encoding an isoform of disproportionating enzyme (stDPE2) was identified in a functional screen in Escherichia coli. The stDPE2 protein was demonstrated to be present in chloroplasts and to accumulate at times of active starch degradation in potato leaves...... tuber extracts and could be demonstrated to transfer glucose from maltose to oyster glycogen....

  6. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.

    Science.gov (United States)

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-04-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synthesis of branched polysaccharides with tunable degree of branching

    NARCIS (Netherlands)

    Ciric, Jelena; Loos, Katja

    2013-01-01

    An in vitro enzyme-catalyzed tandem reaction using the enzymes phosphorylase b from rabbit muscle and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) to obtain branched polyglucans with tunable degree of branching (2% divided by 13%) is presented. The tunable degree of branching is

  8. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids. The ...

  9. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  10. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo.

    Directory of Open Access Journals (Sweden)

    Byung-Hoo Lee

    Full Text Available For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS was modified using a known branching enzyme alone (BE and an in combination with β-amylase (BA to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%, decreased weight-average molecular weight (WCS: 1.73×10(8 Da, BE-WCS: 2.76×10(5 Da, and BEBA-WCS 1.62×10(5 Da, and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw. Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS to 56.8% (BEBA-WCS. The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.

  11. Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1 : residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme

    NARCIS (Netherlands)

    Price, NT; Jackson, VN; van der Leij, FR; Cameron, JM; Travers, MT; Bartelds, B; Huijkman, NC; Zammit, VA

    2003-01-01

    Fatty acid and ketone body metabolism differ considerably between monogastric and ruminant species. The regulation of the key enzymes involved may differ accordingly. Carnitine palmitoyltransferase 1 (CPT 1) is the key locus for the control of long-chain fatty acid P-oxidation and liver ketogenesis.

  12. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  13. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  14. Collagenase isoforms for pancreas digestion.

    Science.gov (United States)

    Bertuzzi, Federico; Cainarca, Silvia; Marzorati, Simona; Bachi, Angela; Antonioli, Barbara; Nano, Rita; Verzaro, Roberto; Ricordi, Camillo

    2009-01-01

    The available information concerning the characteristics and composition of collagenase batches, which are effective in the digestion of human pancreas for islet transplants, is scarce and incomplete. A large inter- and intrabatched variability in activity and efficiency of blend enzymes available for isolation has been observed. The aim of this study was to characterize enzyme blend components. Liberase batches were characterized by SDS-PAGE analyses, microelectrophoresis, and then by MALDI-TOF MS analysis. Three main bands were detected by SDS-PAGE analysis and submitted to MALDI-TOF MS analysis. Two bands were found to correspond to class I (isoform beta and another of 106 kDa) and one to class II (isoform delta) collagenase. These results represent an important step towards a complete characterization of enzymes, with the final aim of identifying key components for a standardized product.

  15. Changes in physicochemical properties and in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment.

    Science.gov (United States)

    Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel

    2017-08-01

    Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  17. Gonadectomy and Hormone Replacement Exert Region- and Enzyme Isoform-Specific Effects on Monoamine Oxidase and Catechol-O-Methyltransferase Activity in Prefrontal Cortex and Neostriatum of Adult Male Rats

    Science.gov (United States)

    Meyers, B.; D'Agostino, A.; Walker, J.; Kritzer, M. F.

    2010-01-01

    Sex differences and gonadal hormone influences are well known for diverse aspects of forebrain amine and indolamine neurotransmitter systems, the cognitive and affective functions they govern and their malfunction in mental illness. This study explored whether hormone regulation/dysregulation of these systems could be related to gonadal steroid effects on catechol-O-methyltransferase and monoamine oxidase which are principal enzymatic controllers of forebrain dopamine, serotonin and norepinephrine levels. Driven by male over female differences in cortical enzyme activities, by male-specific associations between monoamine oxidase and catechol-O-methyltransferase gene polymorphisms and cognitive and dysfunction in disease and by male-specific consequences of gene knockouts in mice, the question of hormone sensitivity was addressed here using a male rat model where prefrontal dopamine levels and related behaviors are also known to be affected. Specifically, quantitative O-methylation and oxidative deamination assays were used to compare the activities of catechol-O-methyltransferase's soluble and membrane-bound isoforms and of monoamine oxidase's A and B isoforms in the pregenual medial prefrontal cortex and dorsal striatum of male rats that were sham operated, gonadectomized or gonadectomized and supplemented with testosterone propionate or with estradiol for 28 days. These studies revealed significant effects of hormone replacement but not gonadectomy on the soluble but not the membrane-bound isorfom of catechol-O-methyltransferase in both striatum and cortex. A significant, cortex-specific testosterone—but not estradiol—attenuated effect (increase) of gonadectomy on monoamine oxidase's A but not B isoform was also observed. Although none of these actions suggest potential roles in the reguation/dysregulation of prefrontal dopamine, the suppressive effects of testosterone on cortical monoamine oxidase-A that were observed could have bearing on the increased

  18. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ruifang Yang

    Full Text Available Foods high in resistant starch (RS are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67% was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%. The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36 using 178 F(2 plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4 families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2 plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs.

  19. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Xu, Bin; Qin, Fengling; Yu, Huaguang; Chen, Chong; Meng, Xianglen; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-06-23

    High-amylose starch is a source of resistant starch (RS) which has a great benefit on human health. A transgenic rice line (TRS) enriched amylose and RS had been developed by antisense RNA inhibition of starch branching enzymes. In this study, the native starch granules were isolated from TRS grains as well as the wild type, and their crystalline type was carefully investigated before and after acid hydrolysis. In high-amylose TRS rice, the C-type starch, which might result from the combination of both A-type and B-type starch, was observed and subsequently confirmed by multiple physical techniques, including X-ray powder diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared. Moreover, the change of starch crystalline structure from C- to B-type during acid hydrolysis was also observed in this RS-rich rice. These data could add to our understanding of not only the polymorph structure of cereal starch but also why high-amylose starch is more resistant to digestion.

  20. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    Science.gov (United States)

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  1. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Yu, Huaguang; Xu, Bin; Chen, Chong; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-11-24

    C-type starch, which is a combination of both A-type and B-type crystal starch, is usually found in legumes and rhizomes. We have developed a high-amylose transgenic line of rice (TRS) by antisense RNA inhibition of starch branching enzymes. The starch in the endosperm of this TRS was identified as typical C-type crystalline starch, but its fine granular structure and allomorph distribution remained unclear. In this study, we conducted morphological and spectroscopic studies on this TRS starch during acid hydrolysis to determine the distribution of A- and B-type allomorphs. The morphology of starch granules after various durations of acid hydrolysis was compared by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that amorphous regions were located at the center part of TRS starch subgranules. During acid hydrolysis, starch was degraded from the interior of the subgranule to the outer surface, while the peripheral part of the subgranules and the surrounding band of the starch granule were highly resistant to acid hydrolysis. The spectroscopic changes detected by X-ray powder diffraction, 13C cross-polarization magic-angle spinning NMR, and attenuated total reflectance Fourier transform infrared showed that the A-type allomorph was hydrolyzed more rapidly than the B-type, and that the X-ray diffraction profile gradually changed from a native C-type to a CB-type with increasing hydrolysis time. Our results showed that, in TRS starch, the A-type allomorph was located around the amorphous region, and was surrounded by the B-type allomorph located in the peripheral region of the subgranules and the surrounding band of the starch granule. Thus, the positions of A- and B-type allomorphs in the TRS C-type starch granule differ markedly from those in C-type legume and rhizome starch.

  2. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway

    NARCIS (Netherlands)

    Ettema, T.J.G.; Ahmed, H.; Geerling, A.C.M.; Oost, van der J.; Siebers, B.

    2008-01-01

    Archaea utilize a branched modification of the classical Entner¿Doudoroff (ED) pathway for sugar degradation. The semi-phosphorylative branch merges at the level of glyceraldehyde 3-phosphate (GAP) with the lower common shunt of the Emden-Meyerhof-Parnas pathway. In Sulfolobus solfataricus two

  3. p53 Isoforms

    Science.gov (United States)

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2011-01-01

    Normal function of the p53 pathway is ubiquitously lost in cancers either through mutation or inactivating interaction with viral or cellular proteins. However, it is difficult in clinical studies to link p53 mutation status to cancer treatment and clinical outcome, suggesting that the p53 pathway is not fully understood. We have recently reported that the human p53 gene expresses not only 1 but 12 different p53 proteins (isoforms) due to alternative splicing, alternative initiation of translation, and alternative promoter usage. p53 isoform proteins thus contain distinct protein domains. They are expressed in normal human tissues but are abnormally expressed in a wide range of cancer types. We have recently reported that p53 isoform expression is associated with breast cancer prognosis, suggesting that they play a role in carcinogenesis. Indeed, the cellular response to damages can be switched from cell cycle arrest to apoptosis by only manipulating p53 isoform expression. This may provide an explanation to the hitherto inconsistent relationship between p53 mutation, treatment response, and outcome in breast cancer. However, the molecular mechanism is still unknown. Recent reports suggest that it involves modulation of gene expression in a p53-dependent and -independent manner. In this review, we summarize our current knowledge about the biological activities of p53 isoforms and propose a molecular mechanism conciliating our current knowledge on p53 and integrating p63 and p73 isoforms in the p53 pathway. PMID:21779513

  4. Lysyl oxidase isoforms in gastric cancer.

    Science.gov (United States)

    Añazco, Carolina; Delgado-López, Fernando; Araya, Paulina; González, Ileana; Morales, Erik; Pérez-Castro, Ramón; Romero, Jacqueline; Rojas, Armando

    2016-09-01

    Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention.

  5. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  6. Branched polymers on branched polymers

    OpenAIRE

    Durhuus, Bergfinnur; Jonsson, Thordur

    1996-01-01

    We study an ensemble of branched polymers which are embedded on other branched polymers. This is a toy model which allows us to study explicitly the reaction of a statistical system on an underlying geometrical structure, a problem of interest in the study of the interaction of matter and quantized gravity. We find a phase transition at which the embedded polymers begin to cover the basis polymers. At the phase transition point the susceptibility exponent $\\gamma$ takes the value 3/4 and the ...

  7. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer of relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α₋1,4 linkages and subsequent re-attachment via α₋1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  8. Replacement of the Endogenous Starch Debranching Enzymes ISA1 and ISA2 of Arabidopsis with the Rice Orthologs Reveals a Degree of Functional Conservation during Starch Synthesis

    Science.gov (United States)

    Streb, Sebastian; Zeeman, Samuel C.

    2014-01-01

    This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin - a branched glucose polymer - is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch properties, an important characteristic for cooking and nutrition, and for the industrial uses of starch. Amylopectin synthesis involves at least three enzyme classes: starch synthases, branching enzymes and debranching enzymes. For all three classes, several enzyme isoforms have been identified. However, it is not clear which enzyme(s) are responsible for the large diversity of amylopectin structures. Here, we tested whether the specificities of the debranching enzymes (ISA1 and ISA2) are major determinants of species-dependent differences in amylopectin structure by replacing the dicotyledonous Arabidopsis isoamylases (AtISA1 and AtISA2) with the monocotyledonous rice (Oryza sativa) isoforms. We demonstrate that the ISA1 and ISA2 are sufficiently well conserved between these species to form heteromultimeric chimeric Arabidopsis/rice isoamylase enzymes. Furthermore, we were able to reconstitute the endosperm-specific rice OsISA1 homomultimeric complex in Arabidopsis isa1isa2 mutants. This homomultimer was able to facilitate normal rates of starch synthesis. The resulting amylopectin structure had small but significant differences in comparison to wild-type Arabidopsis amylopectin. This suggests that ISA1 and ISA2 have a conserved function between plant species with a major role in facilitating the crystallization of pre-amylopectin synthesized by starch synthases and branching enzymes, but also influencing the final structure of amylopectin. PMID:24642810

  9. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity.

    Science.gov (United States)

    Mehmeti, Ilir; Lortz, Stephan; Avezov, Edward; Jörns, Anne; Lenzen, Sigurd

    2017-11-01

    Increased circulating levels of saturated fatty acids (FFAs) and glucose are considered to be major mediators of β-cell dysfunction and death in T2DM. Although it has been proposed that endoplasmic reticulum (ER) and oxidative stress play a crucial role in gluco/lipotoxicity, their interplay and relative contribution to β-cell dysfunction and apoptosis has not been fully elucidated. In addition it is still unclear how palmitate - the physiologically most abundant long-chain saturated FFA - elicits ER stress and which immediate signals commit β-cells to apoptosis. To study the underlying mechanisms of palmitate-mediated ER stress and β-cell toxicity, we exploited the observation that the recently described ER-resident GPx7 and GPx8 are not expressed in rat β-cells. Expression of GPx7 or GPx8 attenuated FFAs-mediated H2O2 generation, ER stress, and apoptosis induction. These results could be confirmed by a H2O2-specific inactivating ER catalase, indicating that accumulation of H2O2 in the ER lumen is critical in FFA-induced ER stress. Furthermore, neither the expression of GPx7 nor of GPx8 increased insulin content or facilitated disulfide bond formation in insulin-secreting INS-1E cells. Hence, reduction of H2O2 by ER-GPx isoforms is not rate-limiting in oxidative protein folding in rat β-cells. These data suggest that FFA-mediated ER stress is partially dependent on oxidative stress and selective expression of GPx7 or GPx8 improves the ER antioxidative capacity of rat β-cells without compromising insulin production and the oxidative protein folding machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional Specificity of Ras Isoforms

    Science.gov (United States)

    Castellano, Esther; Santos, Eugenio

    2011-01-01

    H-ras, N-ras, and K-ras are canonical ras gene family members frequently activated by point mutation in human cancers and coding for 4 different, highly related protein isoforms (H-Ras, N-Ras, K-Ras4A, and K-Ras4B). Their expression is nearly ubiquitous and broadly conserved across eukaryotic species, although there are quantitative and qualitative differences of expression depending on the tissue and/or developmental stage under consideration. Extensive functional studies have determined during the last quarter century that these Ras gene products are critical components of signaling pathways that control eukaryotic cell proliferation, survival, and differentiation. However, because of their homology and frequent coexpression in various cellular contexts, it remained unclear whether the different Ras proteins play specific or overlapping functional roles in physiological and pathological processes. Initially, their high degree of sequence homology and the observation that all Ras isoforms share common sets of downstream effectors and upstream activators suggested that they were mostly redundant functionally. In contrast, the notion of functional specificity for each of the different Ras isoforms is supported at present by an increasing body of experimental observations, including 1) the fact that different ras isoforms are preferentially mutated in specific types of tumors or developmental disorders; 2) the different transforming potential of transfected ras genes in different cell contexts; 3) the distinct sensitivities exhibited by the various Ras family members for modulation by different GAPs or GEFs; 4) the demonstration that different Ras isoforms follow distinct intracellular processing pathways and localize to different membrane microdomains or subcellular compartments; 5) the different phenotypes displayed by genetically modified animal strains for each of the 3 ras loci; and 6) the specific transcriptional networks controlled by each isoform in different

  11. Functional Roles of the Tetramer Organization of Malic Enzyme*

    OpenAIRE

    Hsieh, Ju-Yi; Chen, Shao-Hung; Hung, Hui-Chih

    2009-01-01

    Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) isoform is noncooperative and nonallosteric and exists...

  12. Isoforms of trehalase and invertase of Fusarium oxysporum.

    Science.gov (United States)

    Wolska-Mitaszko, Barbara; Jaroszuk-Sciseł, Jolanta; Pszeniczna, Katarzyna

    2007-04-01

    Enzymatic assays and native PAGE were used to study trehalase and invertase activities, depending on culture age and different sugar conditions, in cell-free extracts, culture filtrates and ribosomal wash of Fusarium oxysporum. The activity of invertase preceded that of trehalase; in the exponential phase of growth, mainly invertase activity was produced, whereas trehalase activity was high in the stationary phase. In this last phase of growth, the activity of intracellular trehalase was repressed by monosaccharides, whereas disaccharides, especially lactose and starch, enhanced the activity of intracellular and extracellular trehalase. However, invertase activity was not repressed under these conditions and had the maximal activity in the presence of saccharose. Intracellular trehalase appeared in a single, high-molecular weight (120 kDa) form, whereas the extracellular enzyme appeared in a single, low-molecular weight (60 kDa) form. The activity pattern of invertase isoforms indicated the occurrence of three forms of intracellular enzyme with the main activity band at 120 kDa and two isoforms of extracellular enzyme. In the ribosomal wash, high-molecular weight isoforms of both trehalase and invertase were identified. A possible role of trehalase and invertase in carbohydrate metabolism of fungal pathogens is also discussed.

  13. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  14. Lithium preferentially inhibits adenylyl cyclase V and VII isoforms.

    Science.gov (United States)

    Mann, Liad; Heldman, Eliahu; Shaltiel, Galit; Belmaker, R H; Agam, Galila

    2008-06-01

    Lithium ions' inhibition of adenylyl cyclase (AC) has not been previously studied for the newly discovered AC isoforms. COS7 cells were transfected with each of the nine membrane-bound AC isoforms cDNAs with or without D1- or D2-dopamine receptor cDNA. AC activity was measured as [3H]cAMP accumulation in cells pre-incubated with [3H]adenine followed by incubation with phosphodiesterase inhibitors together with either the D1 agonist SKF-82958 alone, or forskolin, in the presence or absence of the D2 agonist quinpirole. At 1 mm or 2 mm lithium inhibited only AC-V activity when the enzyme was stimulated by forskolin, a direct activator of AC. Lithium inhibited AC-V (by 50%), AC-VII (by 40%) and AC-II (by 25%) when stimulated via the D1 receptors, but did not affect the Ca2+-activated isoforms when stimulated by the Ca2+ ionophore A23187. Quinpirole inhibits AC via the Gi protein. Lithium did not affect quinpirole-inhibited FSK-activated AC-V activity nor did it affect superactivated AC-V or AC-I following the removal of quinpirole. The data suggest interference of lithium with transduction pathways mediated via AC-V or AC-VII; only the active conformation of these AC isoforms is inhibited by lithium; the inhibitory effect of lithium is abolished when the enzyme is superactivated. The marked inhibition of AC-V and AC-VII by lithium suggests that these two isoforms may be involved in mediating the mood-stabilizing effect of lithium.

  15. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  16. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids

    OpenAIRE

    Park, Woo Jung; Kothapalli, Kumar S. D.; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J. Thomas

    2012-01-01

    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate...

  17. Recovery of biological active catechol-O-methyltransferase isoforms from Q-sepharose.

    Science.gov (United States)

    Correia, F F; Santos, F M; Pedro, A Q; Bonifácio, M J; Queiroz, J A; Passarinha, L A

    2014-01-01

    The development of new catechol-O-methyltransferase inhibitors has led to an improvement in the treatment of Parkinson's disease. However, despite the fact that the soluble isoform has been extensively investigated, few studies have been published concerning membrane isoform chromatographic recovery and bioactivity levels. In this work, chromatographic profiles of both catechol-O-methyltransferase isoforms were compared using quaternary amine as a ligand to evaluate its activity levels and recovery rates. Results show that both proteins required different conditions for adsorption; the soluble isoform adsorption was performed at low ionic strength, while the membrane isoform required increasing linear salt gradient. However, the application of 0.5% Triton X-100 promoted membrane isoform adsorption even at low ionic strength. Indeed, chromatographic conditions of both isoforms became similar when detergents were applied. The developed methods also appear to be highly effective in bioactivity recovery, presenting rates of 107% for soluble protein and 67 and 91% for membrane isoform without and with detergents, respectively. The chromatographic strategies with and without detergents resulted in a 4.3- and sevenfold purification, respectively, corresponding to specific activity values of 331 and 496 nmol/h/mg. Thus, the use of Q-sepharose as anion exchanger was effective in the recovery of both enzymes, which is a requirement for further kinetic and pharmacological trials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms.

    Directory of Open Access Journals (Sweden)

    Sundarapandian Thangapandian

    Full Text Available Histone deacetylases (HDACs have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E in HDAC10 and leucine (L in HDAC 11 based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.

  19. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials.

    Science.gov (United States)

    Granchi, C; Bertini, S; Macchia, M; Minutolo, F

    2010-01-01

    In many different species, lactate dehydrogenase (LDH) constitutes a major checkpoint of anaerobic glycolysis, by catalyzing the reduction of pyruvate into lactate. This enzyme has recently received a great deal of attention since it may constitute a valid therapeutic target for diseases so different as malaria and cancer. In fact, the isoform expressed by Plasmodium falciparum (pfLDH) is a key enzyme for energy generation of malarial parasites. These species mostly depend on anaerobic glycolysis for energy production, since they lack a citric acid cycle for ATP formation. Therefore, inhibitors of pfLDH would potentially cause mortality of P. falciparum and, to this purpose, several small organic molecules have been recently designed and developed with the aim of blocking this new potential antimalarial chemotherapeutic target. Moreover, most invasive tumour phenotypes show a metabolic switch (Warburg effect) from oxidative phosphorylation to an increased anaerobic glycolysis, by promoting an upregulation of the human isoform-5 of lactate dehydrogenase (hLDH-5 or LDH-A), which is normally present in muscles and in the liver. Hence, inhibition of hLDH-5 may constitute an efficient way to interfere with tumour growth and invasiveness. This review provides an overview of the LDH inhibitors that have been developed up to now, an analysis of their possible isoform-selectivity, and their therapeutic potentials.

  20. Differential subcellular distribution of four phospholipase C isoforms and secretion of GPI-PLC activity.

    Science.gov (United States)

    Staudt, Emanuel; Ramasamy, Pathmanaban; Plattner, Helmut; Simon, Martin

    2016-12-01

    Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T

    2014-01-01

    sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable......Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...

  2. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters, evaluated by the JECFA (61st meeting) structurally related to branched- and straight-chain unsaturated carboxylic acids, esters of these and straight-chain aliphatic saturated alcohols evaluated by EFSA in FGE.05Rev2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...... evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 23 aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters, evaluated by the JECFA at their 61st meeting. This revision is made due...... threshold of concern, and available data on metabolism and toxicity. The Panel agrees with the application of the Procedure as performed by the JECFA for all 23 substances considered in this FGE and agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances...

  3. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  4. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  5. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....

  6. Glutamate dehydrogenase Isoforms with N-Terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization

    DEFF Research Database (Denmark)

    Pajecka, Kamilla; Nielsen, Camilla Wendel; Hauge, Anne

    2013-01-01

    Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme...

  7. Functions of Glutamine Synthetase Isoforms in the Nitrogen Metabolism of Plants

    DEFF Research Database (Denmark)

    Guan, Miao

    ;2 which encode different isoforms of the key N-assimilatory enzyme cytosolic glutamine synthetase (GS1). In the single knockout mutant gln1;2 and in the double knockout mutant gln1;1:gln1;2, seed germination and seedling establishment were distinctly impaired. The negative effect of Gln1;2 deficiency...

  8. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  9. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  10. Coherent branching feature bisimulation

    Directory of Open Access Journals (Sweden)

    Tessa Belder

    2015-04-01

    Full Text Available Progress in the behavioral analysis of software product lines at the family level benefits from further development of the underlying semantical theory. Here, we propose a behavioral equivalence for feature transition systems (FTS generalizing branching bisimulation for labeled transition systems (LTS. We prove that branching feature bisimulation for an FTS of a family of products coincides with branching bisimulation for the LTS projection of each the individual products. For a restricted notion of coherent branching feature bisimulation we furthermore present a minimization algorithm and show its correctness. Although the minimization problem for coherent branching feature bisimulation is shown to be intractable, application of the algorithm in the setting of a small case study results in a significant speed-up of model checking of behavioral properties.

  11. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  12. Specific human CYP 450 isoform metabolism of a pentachlorobiphenyl (PCB-IUPAC# 101).

    Science.gov (United States)

    McGraw, Joseph E; Waller, Donald P

    2006-05-26

    Polychlorinated biphenyl IUPAC# 101-PCB 101 (chlorination pattern-2,2',4',5,5') is a common, persistent non-coplanar PCB congener found in the ambient environment but information related to its metabolism in humans is lacking. Previous studies indicate PCB 101 is rapidly metabolized in mammals through CYP 2B and 3A family enzymes. Recently, PCB metabolism through a 2A family isoform in hamsters was also reported. To specifically identify the human CYP 450 isoforms responsible for PCB 101 metabolism, we compared human microsome metabolism to metabolism using several specific recombinant human CYP isoforms. These data characterized selective and extensive metabolism by human CYP 2A6. The product formed was the 4-hydroxy-PCB 101 metabolite (4-hydroxy-2,2',4',5,5') and was the only major metabolite observed in the recombinant and human microsome investigation. This is important information for predicting human specific toxicokinetics of PCBs.

  13. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 3, Revision 2 (FGE.03Rev2): Acetals of branched- and straight-chain aliphatic saturated primary alcohols and branched- and straight-chain saturated or unsaturated

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, acetaldehyde ethyl isopropyl acetal [FL-no: 06.137], structurally related to the 58 flavouring substances in the Flavouring Group...

  14. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  15. Renal Branch Artery Stenosis

    DEFF Research Database (Denmark)

    Andersson, Zarah; Thisted, Ebbe; Andersen, Ulrik Bjørn

    2017-01-01

    Renovascular hypertension is a common cause of pediatric hypertension. In the fraction of cases that are unrelated to syndromes such as neurofibromatosis, patients with a solitary stenosis on a branch of the renal artery are common and can be diagnostically challenging. Imaging techniques...... that perform well in the diagnosis of main renal artery stenosis may fall short when it comes to branch artery stenosis. We report 2 cases that illustrate these difficulties and show that a branch artery stenosis may be overlooked even by the gold standard method, renal angiography....

  16. Materials Test Branch

    Science.gov (United States)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  17. Bundle Branch Block

    Science.gov (United States)

    ... 2015. Bundle branch block Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  18. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  19. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  20. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  1. Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I (ubc9) and Ranbp2.

    Science.gov (United States)

    Patil, Hemangi; Yoon, Dosuk; Bhowmick, Reshma; Cai, Yunfei; Cho, Kyoung-In; Ferreira, Paulo A

    2017-09-06

    The Ran-binding protein 2 (Ranbp2/Nup358) is a cytoplasmic and peripheral nucleoporin comprised of 4 Ran-GTP-binding domains (RBDs) that are interspersed among diverse structural domains with multifunctional activities. Our prior studies found that the RBD2 and RBD3 of Ranbp2 control mitochondrial motility independently of Ran-GTP-binding in cultured cells, whereas loss of Ran-GTP-binding to RBD2 and RBD3 are essential to support cone photoreceptor development and the survival of mature retinal pigment epithelium (RPE) in mice. Here, we uncover that loss of Ran-GTP-binding to RBD3 alone promotes the robust age-dependent increase of ubiquitylated substrates and S1 subunit (Pmsd1) of the 19S cap of the proteasome in the retina and RPE and that such loss in RBD3 also compromises the structural integrity of the outer segment compartment of cone photoreceptors only and without affecting the viability of these neurons. We also found that the E2-ligase and partner of Ranbp2, ubc9, is localized prominently in the mitochondrial-rich ellipsoid compartment of photoreceptors, where Ranbp2 is also known to localize with and modulate the activity of mitochondrial proteins. However, the natures of Ranbp2 and ubc9 isoforms to the mitochondria are heretofore elusive. Subcellular fractionation, co-immunolocalization and immunoaffinity purification of Ranbp2 complexes show that novel isoforms of Ranbp2 and ubc9 with molecular masses distinct from the large Ranbp2 and unmodified ubc9 isoforms localize specifically to the mitochondrial fraction or associate with mitochondrial components, whereas unmodified and SUMOylated Ran GTPase are excluded from the mitochondrial fraction. Further, liposome-mediated intracellular delivery of an antibody against a domain shared by the mitochondrial and nuclear pore isoforms of Ranbp2 causes the profound fragmentation of mitochondria and their delocalization from Ranbp2 and without affecting Ranbp2 localization at the nuclear pores. Collectively, the

  2. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  3. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  4. The heteromultimeric debranching enzyme involved in starch synthesis in Arabidopsis requires both isoamylase1 and isoamylase2 subunits for complex stability and activity.

    Directory of Open Access Journals (Sweden)

    Maria Sundberg

    Full Text Available Isoamylase-type debranching enzymes (ISAs play an important role in determining starch structure. Amylopectin - a branched polymer of glucose - is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin synthesis. Consequently, starch levels are decreased and an aberrant soluble glucan (phytoglycogen with altered branch lengths and branching pattern accumulates. Here we use TAP (tandem affinity purification tagging to provide direct evidence in Arabidopsis that ISA1 interacts with its homolog ISA2. No evidence for interaction with other starch biosynthetic enzymes was found. Analysis of the single mutants shows that each protein is destabilised in the absence of the other. Co-expression of both ISA1 and ISA2 Escherichia coli allowed the formation of the active recombinant enzyme and we show using site-directed mutagenesis that ISA1 is the catalytic subunit. The presence of the active isoamylase alters glycogen biosynthesis in E. coli, resulting in colonies that stain more starch-like with iodine. However, analysis of the glucans reveals that rather than producing an amylopectin like substance, cells expressing the active isoamylase still accumulate small amounts of glycogen together with a population of linear oligosaccharides that stain strongly with iodine. We conclude that for isoamylase to promote amylopectin synthesis it needs to act on a specific precursor (pre-amylopectin generated by the combined actions of plant starch synthase and branching enzyme isoforms and when presented with an unsuitable substrate (i.e. E. coli glycogen it simply degrades it.

  5. Differential regulation of Drosophila tyrosine hydroxylase isoforms by dopamine binding and cAMP-dependent phosphorylation.

    Science.gov (United States)

    Vié, A; Cigna, M; Toci, R; Birman, S

    1999-06-11

    Tyrosine hydroxylase (TH) catalyzes the first step in dopamine biosynthesis in Drosophila as in vertebrates. We have previously reported that tissue-specific alternative splicing of the TH primary transcript generates two distinct TH isoforms in Drosophila, DTH I and DTH II (Birman, S., Morgan, B., Anzivino, M., and Hirsh, J. (1994) J. Biol. Chem. 269, 26559-26567). Expression of DTH I is restricted to the central nervous system, whereas DTH II is expressed in non-nervous tissues like the epidermis. The two enzymes present a single structural difference; DTH II specifically contains a very acidic segment of 71 amino acids inserted in the regulatory domain. We show here that the enzymatic and regulatory properties of vertebrate TH are generally conserved in insect TH and that the isoform DTH II presents unique characteristics. The two DTH isoforms were expressed as apoenzymes in Escherichia coli and purified by fast protein liquid chromatography. The recombinant DTH isoforms are enzymatically active in the presence of ferrous iron and a tetrahydropteridine co-substrate. However, the two enzymes differ in many of their properties. DTH II has a lower Km value for the co-substrate (6R)-tetrahydrobiopterin and requires a lower level of ferrous ion than DTH I to be activated. The two isoforms also have a different pH profile. As for mammalian TH, enzymatic activity of the Drosophila enzymes is decreased by dopamine binding, and this effect is dependent on ferrous iron levels. However, DTH II appears comparatively less sensitive than DTH I to dopamine inhibition. The central nervous system isoform DTH I is activated through phosphorylation by cAMP-dependent protein kinase (PKA) in the absence of dopamine. In contrast, activation of DTH II by PKA is only manifest in the presence of dopamine. Site-directed mutagenesis of Ser32, a serine residue occurring in a PKA site conserved in all known TH proteins, abolishes phosphorylation of both isoforms and activation by PKA. We

  6. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  7. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  8. New isoforms of rat Aquaporin-4

    DEFF Research Database (Denmark)

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke

    2008-01-01

    Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M...

  9. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...

  10. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.

    2014-01-01

    -heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation...

  11. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots.

    Science.gov (United States)

    Castiglia, Daniela; Cardi, Manuela; Landi, Simone; Cafasso, Donata; Esposito, Sergio

    2015-08-01

    In plant cells, glucose 6 phosphate dehydrogenase (G6PDH-EC 1.1.1.49) regulates the oxidative pentose phosphate pathway (OPPP), a metabolic route involved in the production of NADPH for various biosynthetic processes and stress response. In this study, we report the overexpression of a cytosolic G6PDH isoform from barley (Hordeum vulgare) roots in bacteria, and the biochemical characterization of the purified recombinant enzyme (HvCy-G6PDH). A full-length cDNA coding for a cytosolic isoform of G6PDH was isolated, and the sequence was cloned into pET3d vector; the protein was overexpressed in Escherichia coli BL21 (DE3) and purified by anion exchange and affinity chromatography. The kinetic properties were calculated: the recombinant HvCy-G6PDH showed KMs and KINADPH comparable to those observed for the enzyme purified from barley roots; moreover, the analysis of NADPH inhibition suggested a competitive mechanism. Therefore, this enzyme could be utilised for the structural and regulatory characterization of this isoform in higher plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Absolute quantitation of protein posttranslational modification isoform.

    Science.gov (United States)

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  13. Fragrance Release from the Surface of Branched Poly (Amide S

    Directory of Open Access Journals (Sweden)

    T. Youngs

    2005-01-01

    Full Text Available Enzymes are powerful tools in organic synthesis that are able to catalyse a wide variety of selective chemical transformations under mild and environmentally friendly conditions. Enzymes such as the lipases have also found applications in the synthesis and degradation of polymeric materials. However, the use of these natural catalysts in the synthesis and the post-synthetic modification of dendrimers and hyperbranched molecules is an application of chemistry yet to be explored extensively. In this study the use of two hydrolytic enzymes, a lipase from Candida cylindracea and a cutinase from Fusarium solani pisii, were investigated in the selective cleavage of ester groups situated on the peripheral layer of two families of branched polyamides. These branched polyamides were conjugated to simple fragrances citronellol and L-menthol via ester linkages. Hydrolysis of the ester linkage between the fragrances and the branched polyamide support was carried out in aqueous buffered systems at slightly basic pH values under the optimum operative conditions for the enzymes used. These preliminary qualitative investigations revealed that partial cleavage of the ester functionalities from the branched polyamide support had occurred. However, the ability of the enzymes to interact with the substrates decreased considerably as the branching density, the rigidity of the structure and the bulkiness of the polyamide-fragrance conjugates increased.

  14. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  15. State-set branching

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Veloso, Manuela M.; Bryant, Randal E.

    2008-01-01

    In this article, we present a framework called state-set branching that combines symbolic search based on reduced ordered Binary Decision Diagrams (BDDs) with best-first search, such as A* and greedy best-first search. The framework relies on an extension of these algorithms from expanding a sing...

  16. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  17. RT-PCR detection of Na,K-ATPase subunit isoforms in human umbilical vein endothelial cells (HUVEC): evidence for the presence of alpha1 and beta3.

    Science.gov (United States)

    Pierre, S; Compe, E; Grillasca, J P; Plannells, R; Sampol, J; Pressley, T A; Maixent, J M

    2001-03-01

    The endothelial Na,K-ATPase is an active component in maintaining a variety of normal vascular functions. The enzyme is characterized by a complex molecular heterogeneity that results from differential expression and association of multiple isoforms of both its alpha- and beta-subunits. The aim of the present study was to determine which isoforms of the Na,K-ATPase are expressed in human endothelial cells. HUVEC (human umbilical vein endothelial cells) were used as a model of well known human endothelial cells. The high sensitive method RT-PCR was used with primers specific for the various isoforms of the alpha- and beta-subunits of the Na,K-ATPase. The results show that HUVEC express alpha1-, but not alpha2-, alpha3- or alpha4-isoforms of the catalytic subunit and that beta3- but not beta2- or beta1-isoforms is present in these cells. These findings are in contradiction with our previous detection of Na,K-ATPase isoforms in HUVEC using antibodies (14). Such results raise the technical problem of the specificity of the available antibodies directed against the different isoforms as well as the question of the physiological relevance of the diversity of the Na,K-ATPase isoforms.

  18. Expression of various sarcomeric tropomyosin isoforms in equine ...

    African Journals Online (AJOL)

    Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively.

  19. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    Science.gov (United States)

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively.

  20. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B

    1998-01-01

    Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did...... of isoforms of human SAP required the presence of urea and higher SAP concentrations. TEF and immunofixation of SAP monomers showed five to eight isoforms, ranging from pI 4.7-5.7. IEF of SAP in human serum resulted in a less distinct pattern and more acidic isoforms. As with murine SAP, neuraminidase...

  1. Tau leptonic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.

  2. FSH isoform pattern in classic galactosemia.

    Science.gov (United States)

    Gubbels, Cynthia S; Thomas, Chris M G; Wodzig, Will K W H; Olthaar, André J; Jaeken, Jaak; Sweep, Fred C G J; Rubio-Gozalbo, M Estela

    2011-04-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns of five classic galactosemia patients with POI were compared to the pattern obtained in two patients with a primary glycosylation disorder (phosphomannomutase-2-deficient congenital disorders of glycosylation, PMM2-CDG) and POI, and in five postmenopausal women as controls. We used FPLC chromatofocussing with measurement of FSH concentration per fraction, and discovered that there were no significant differences between galactosemia patients, PMM2-CDG patients and postmenopausal controls. Our results do not support that FSH dysfunction due to a less acidic isoform pattern because of hypoglycosylation is a key mechanism of POI in this disease.

  3. Isolation of Candida rugosa lipase isoforms

    Directory of Open Access Journals (Sweden)

    Trbojević Jovana N.

    2013-01-01

    Full Text Available Convenient source of lipases for science and industry is yeast Candida rugosa. Crude preparation of Candida rugosa lipase (CRL consists of several extracellular lipases. Isoenzyme profile depends on the culture or fermentation conditions. All isoforms are coded by lip pseudogene family; they are monomers of 534 amino acids and molecular weight of about 60 kDa. They share the same catalytic mechanism and interfacial mode of activation. Isoenzymes differ in isoelectric points, post-translational modifications, substrate specificity and hydrophobicity. The presence of different lipase isoforms and other substances (i. e. inhibitors in crude preparation leads to lack of their productivity in biocatalytic reactions. Purification of specific isoform improves its overall performance and stability. This paper provides an overview of different methods for purification of CRL isoenzymes up to date, their advantages and disadvantages. [Projekat Ministarstva nauke Republike Srbije, br. 172049, br. 046010, br. 451-03-00605/2012-16/51 and FP7 Reg Pot FCUB ERA, GA No 256716.

  4. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A; Moeller, Hanne B; Zelenina, Marina

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  5. Species Specificity in the Biosynthesis of Branched Paraffins in Leaves

    Science.gov (United States)

    Kolattukudy, P. E.

    1968-01-01

    Isobutyrate-1-14C and l-isoleucine-U-14C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the 14C incorporated into the surface lipids was found in the C29 paraffin and derivatives, whereas more than two-thirds of the 14C from straight chain precursors are usually found in these compounds. The small amount of 14C incorporated into the paraffin fraction was found in the n-C29 paraffin rather than branched paraffins showing that the 14C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C16 acid which was formed from both branched precursors, isoleucine-U-14C gave rise to branched C15, C17, and C19 fatty acids, and isobutyrate-1-14C gave rise to branched C16 and C18 acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C19 could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not. PMID:16656932

  6. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications

    DEFF Research Database (Denmark)

    Risveden, Klas; Dick, Kimberly A; Bhand, Sunil

    2010-01-01

    A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiN(x)-covered w......A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on Si...

  7. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    Science.gov (United States)

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Characterization of protein kinase C and its isoforms in human T lymphocytes.

    Science.gov (United States)

    Beyers, A D; Hanekom, C; Rheeder, A; Strachan, A F; Wooten, M W; Nel, A E

    1988-11-15

    Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function.

  9. Enzyme assays

    OpenAIRE

    Bisswanger, Hans

    2014-01-01

    The essential requirements for enzyme assays are described and frequently occurring errors and pitfalls as well as their avoidance are discussed. The main factors, which must be considered for assaying enzymes, are temperature, pH, ionic strength and the proper concentrations of the essential components like substrates and enzymes. Standardization of these parameters would be desirable, but the diversity of the features of different enzymes prevents unification of assay conditions. Neverthele...

  10. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    OpenAIRE

    Elizabeth Henry; Nicholas Fung; Jun Liu; Georgia Drakakaki; Gitta Coaker

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knocko...

  11. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features.

    Science.gov (United States)

    Pannek, Martin; Simic, Zeljko; Fuszard, Matthew; Meleshin, Marat; Rotili, Dante; Mai, Antonello; Schutkowski, Mike; Steegborn, Clemens

    2017-11-15

    Sirtuins are evolutionary conserved NAD+-dependent protein lysine deacylases. The seven human isoforms, Sirt1-7, regulate metabolism and stress responses and are considered therapeutic targets for aging-related diseases. Sirt4 locates to mitochondria and regulates fatty acid metabolism and apoptosis. In contrast to the mitochondrial deacetylase Sirt3 and desuccinylase Sirt5, no prominent deacylase activity and structural information are available for Sirt4. Here we describe acyl substrates and crystal structures for Sirt4. The enzyme shows isoform-specific acyl selectivity, with significant activity against hydroxymethylglutarylation. Crystal structures of Sirt4 from Xenopus tropicalis reveal a particular acyl binding site with an additional access channel, rationalizing its activities. The structures further identify a conserved, isoform-specific Sirt4 loop that folds into the active site to potentially regulate catalysis. Using these results, we further establish efficient Sirt4 activity assays, an unusual Sirt4 regulation by NADH, and Sirt4 effects of pharmacological modulators.

  12. Thermal Energy Conversion Branch

    Science.gov (United States)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  13. The branch librarians' handbook

    CERN Document Server

    Rivers, Vickie

    2004-01-01

    ""Recommended""--Booklist; ""an excellent addition...highly recommended""--Public Libraries; ""clear...very sound advice...strongly recommend""--Catholic Library World; ""excellent resource...organized...well written""--Against the Grain; ""interesting...thoroughly practical...a very good book...well organized...clearly written""--ARBA. This handbook covers a wide variety of issues that the branch librarian must deal with every day. Chapters are devoted to mission statements (the Dallas Public Library and Dayton Metro Library mission statements are highlighted as examples), library systems,

  14. Flight Dynamics Analysis Branch

    Science.gov (United States)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  15. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  16. Functional differentiation in trematode hemoglobin isoforms.

    Science.gov (United States)

    Rashid, A K; Weber, R E

    1999-03-01

    The Hbs and the major electrophoretic Hb components (isoHbs) were isolated from three species of the trematodes, Explanatum explanatum (Ee), Gastrothylax crumenifer (Gc) and Paramphistomum epiclitum (Pe), that parasitise the common Indian water buffalo Bubalus bubalis. The Hbs are monomeric and resemble the so-called nonfunctional mutant hemoglobins that have Tyr at B10 or E7 positions (replacing Leu and the His residues, respectively). However, they are capable of binding with O2 and CO. O2 equilibrium studies of trematode Hb isoforms reveal extremely high O2 affinities, with half-saturation O2 tension (P50) values up to 800 times lower than those of human hemoglobins. This correlates with Tyr residues at B10 and at the distal position (E7) that decrease the O2 dissociation rate by contributing hydrogen bonds (H-bonds) to the bound O2. These substitutions also increase the O2 association rates either due to orientation of E7-Tyr towards the solvent and/or by sterically hindering the entry of water molecules into the heme pocket. The latter may account for the low rate of autoxidation of trematode Hbs. The Hbs and their isoforms from different species exhibited pronounced variation in O2 affinity, which may relate to subtle differences in the structure of the heme pocket. The O2 affinities of the composite (unfractionated) Hbs were intermediate to those of the individual Hb isoform. The P50 values of Hbs here obtained by direct O2 equilibrium measurements differed from those calculated from kinetic data already published [Kiger, L., Rashid, A. K., Griffon, N., Haque, M., Moens, L.,Gibson, Q. H., Poyart, C., & Marden, M. C. (1998). Biophys. J. 75, 990-998.] Intermediate state(s) due to slow reorientation of E7-Tyr may account for this difference. Some Hb isoforms showed slight (either normal or reverse) Bohr effects. The hyperbolic O2 equilibrium curve, Hill coefficient (n) values near unity accord with a monomeric nature of trematode Hbs. In marked contrast to

  17. Specific Profile of Tau Isoforms in Argyrophylic Grain Disease

    Directory of Open Access Journals (Sweden)

    Alberto Rábano

    2013-01-01

    Full Text Available Argyrophylic grain disease (AGD is a neurodegenerative condition that has been classified among the sporadic tauopathies. Entities in this group present intracellular aggregates of hyperphosphorylated tau, giving rise to characteristic neuronal and glial inclusions. In different tauopathies, the proportion of several tau isoforms present in the aggregates shows specific patterns. AGD has been tentatively classified in the 4R group (predominance of 4R tau isoforms together with progressive supranuclear palsy and corticobasal degeneration. Pick's disease is included in the 3R group (predominance of 3R isoforms, whereas tau pathology of Alzheimer's disease represents and intermediate group (3 or 4 repeats [3R plus 4R, respectively] isoforms. In this work, we have analyzed tau present in aggregates isolated from brain samples of patients with argyrophylic grain disease. Our results indicate that the main tau isoform present in aggregates obtained from patients with AGD is a hyperphosphorylated isoform containing exons 2 and 10 but lacking exon 3.

  18. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  19. The landscape of isoform switches in human cancers

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Sandelin, Albin Gustav

    2017-01-01

    Alternative usage of transcript isoforms from the same gene has been hypothesized as an important feature in cancers. However, differential usage of gene transcripts between conditions (isoform switching) has not been comprehensively characterized in and across cancer types. To this end, we...... developed methods for identification and visualization of isoform switches with predicted functional consequences. Using these methods, we characterized isoform switching in RNA-seq data from >5,500 cancer patients covering 12 solid cancer types. Isoform switches with potential functional consequences were...... highly predictive of patient survival independent of cancer types. Our data constitute an important resource for cancer researchers, available through interactive web tools. Moreover, our methods, available as an R package, enable systematic analysis of isoform switches from other RNA-seq datasets...

  20. Enzyme Informatics

    OpenAIRE

    Alderson, Rosanna G.; De Ferrari, Luna; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B O; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCa...

  1. Inhibition of COX isoforms by nutraceuticals.

    Science.gov (United States)

    Seaver, Ben; Smith, Jerry Robert

    2004-01-01

    Humans have two isoforms of Prostaglandin H Synthase or cyclooxygenase: COX-1 and COX-2. COX-1 is cytoprotective. COX-2 inhibitors reduce inflammation without the risk of ulceration and kidney damage. The ideal nutraceutical would inhibit COX-2 synthesis while preserving COX-1 synthesis. The hypothesis for this research was that COX inhibitors would fall primarily into three categories: COX-2 specific inhibition, non-specific inhibition (COX-1 and COX-2), and minimal inhibition. The human Cayman COX inhibitor screening assay was used to determine the inhibitory concentration 50 (IC50) of COX-1/ COX-2 activity of each nutraceutical. The assay was run, in duplicate, with three concentrations of a suspected inhibitor, a standard curve of eight concentrations, a non-specific binding sample, and a maximum binding sample. The inhibition and concentration of each sample was then put on a multiple regression best-fit line and the IC50 determined. For comparison, ibuprofen, rofecoxib, naproxen, and indomethacin were used. Positive results were seen for ipriflavone, resveratrol, MSV-60, amentoflavone, ruscus extract and notoginseng. Glucosamine, nexrutine, and berberine did not inhibit either isoform.

  2. Quiver Varieties and Branching

    Directory of Open Access Journals (Sweden)

    Hiraku Nakajima

    2009-01-01

    Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.

  3. Quantifying and predicting the promiscuity and isoform specificity of small-molecule cytochrome P450 inhibitors.

    Science.gov (United States)

    Nath, Abhinav; Zientek, Michael A; Burke, Benjamin J; Jiang, Ying; Atkins, William M

    2010-12-01

    Drug promiscuity (i.e., inhibition of multiple enzymes by a single compound) is increasingly recognized as an important pharmacological consideration in the drug development process. However, systematic studies of functional or physicochemical characteristics that correlate with drug promiscuity are handicapped by the lack of a good way of quantifying promiscuity. In this article, we present a new entropy-based index of drug promiscuity. We apply this index to two high-throughput data sets describing inhibition of cytochrome P450 isoforms by small-molecule drugs and drug candidates, and we demonstrate how drug promiscuity or specificity can be quantified. For these drug-metabolizing enzymes, we find that there is essentially no correlation between a drug's potency and specificity. We also present an index to quantify the susceptibilities of different enzymes to inhibition by diverse substrates. Finally, we use partial least-squares regression to successfully predict isoform specificity and promiscuity of small molecules, using a set of fingerprint-based descriptors.

  4. Durability of branches in branched and fenestrated endografts.

    Science.gov (United States)

    Mastracci, Tara M; Greenberg, Roy K; Eagleton, Matthew J; Hernandez, Adrian V

    2013-04-01

    Branched and fenestrated repair has been shown to be effective for treatment of complex aortic aneurysms. However, the long-term durability of branches is not well reported. Prospective data collected for all patients enrolled in a physician-sponsored investigational device exemption trial for branched and fenestrated endografts were analyzed. Retrospective review of imaging studies and electronic records was used to supplement the dataset. Incidences of branch stent secondary intervention, stent fracture, migration, branch-related rupture, and death were calculated. A time-to-event analysis was performed for secondary intervention for any branch. Univariable and multivariable analyses were performed to identify related variables. Branch instability, a composite outcome of any branch event, was reported as a function of exponential decay to capture the loss of freedom from complications over time. Between the years 2001 and 2010, 650 patients underwent endovascular aortic repair with branched or fenestrated devices. Over 9 years of follow-up (mean [standard deviation], 3 [2.3] years), secondary procedures were performed for 0.6% of celiac, 4% of superior mesenteric artery (SMA), 6% of right renal artery, and 5% of left renal artery stents. Mean time to reintervention was 237 (354) days. The 30-day, 1-year, and 5-year freedom from branch intervention was 98% (95% confidence interval [CI], 96%-99%), 94% (95% CI, 92%-96%), and 84% (95% CI, 78%-90%), respectively. Death from branch stent complications occurred in three patients, two related to SMA thrombosis and one due to an unstented SMA scallop. Multivariable analysis revealed no factors as independent predictors of need for branch reintervention. Branches, after branched or fenestrated aortic repair, appear to be durable and are rarely the cause of patient death. The absence of long-term data on branch patency in open repair precludes comparison, yet the lower morbidity and mortality risk coupled with longer

  5. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    Science.gov (United States)

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  6. The control of branching morphogenesis

    Science.gov (United States)

    Iber, Dagmar; Menshykau, Denis

    2013-01-01

    Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663

  7. Methods and Technologies Branch (MTB)

    Science.gov (United States)

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  8. Peroxiredoxin isoforms are associated with cardiovascular risk factors in type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    El Eter, E. [Physiology Department, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Cardiovascular Research Group, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Physiology Department, Faculty of Medicine, Alexandria University, Alexandria (Egypt); Al-Masri, A.A. [Physiology Department, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia); Cardiovascular Research Group, Faculty of Medicine, King Saud University, Riyadh (Saudi Arabia)

    2015-03-03

    The production of oxygen free radicals in type 2 diabetes mellitus contributes to the development of complications, especially the cardiovascular-related ones. Peroxiredoxins (PRDXs) are antioxidant enzymes that combat oxidative stress. The aim of this study was to investigate the associations between the levels of PRDX isoforms (1, 2, 4, and 6) and cardiovascular risk factors in type 2 diabetes mellitus. Fifty-three patients with type 2 diabetes mellitus (28F/25M) and 25 healthy control subjects (7F/18M) were enrolled. We measured the plasma levels of each PRDX isoform and analyzed their correlations with cardiovascular risk factors. The plasma PRDX1, -2, -4, and -6 levels were higher in the diabetic patients than in the healthy control subjects. PRDX2 and -6 levels were negatively correlated with diastolic blood pressure, fasting blood sugar, and hemoglobin A1c. In contrast, PRDX1 levels were positively correlated with low-density lipoprotein and C-reactive protein levels. PRDX4 levels were negatively correlated with triglycerides. In conclusion, PRDX1, -2, -4, and -6 showed differential correlations with a variety of traditional cardiovascular risk factors. These results should encourage further research into the crosstalk between PRDX isoforms and cardiovascular risk factors.

  9. Tocopherol isoforms in parenteral lipid emulsions and neutrophil activation.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Beunk, J.; Naber, A.H.J.; Swinkels, D.W.

    2002-01-01

    BACKGROUND AND AIMS: Tocopherol is a lipid-soluble anti-oxidant that exists in several isoforms. Patients on total parenteral nutrition depend on lipid emulsions for their tocopherol intake. In the present study, we analysed the content of tocopherol isoforms in various lipid emulsions. We also

  10. Roles of the troponin isoforms during indirect flight muscle ...

    Indian Academy of Sciences (India)

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to ...

  11. Isoforms of Melanopsin Mediate Different Behavioral Responses to Light.

    Science.gov (United States)

    Jagannath, Aarti; Hughes, Steven; Abdelgany, Amr; Pothecary, Carina A; Di Pretoro, Simona; Pires, Susana S; Vachtsevanos, Athanasios; Pilorz, Violetta; Brown, Laurence A; Hossbach, Markus; MacLaren, Robert E; Halford, Stephanie; Gatti, Silvia; Hankins, Mark W; Wood, Matthew J A; Foster, Russell G; Peirson, Stuart N

    2015-09-21

    Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails. Significantly, both isoforms form fully functional photopigments. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Tau hadronic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...

  13. Evidence for leptin receptor isoforms heteromerization at the cell surface.

    Science.gov (United States)

    Bacart, Johan; Leloire, Audrey; Levoye, Angélique; Froguel, Philippe; Jockers, Ralf; Couturier, Cyril

    2010-06-03

    Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin's effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Legislative Branch: FY2014 Appropriations

    Science.gov (United States)

    2013-11-25

    Authorizations Since 1999, by Matthew E. Glassman . Legislative Branch: FY2014 Appropriations Congressional Research Service 10 The FY2012 level of...Congresses, by Matthew E. Glassman . Legislative Branch: FY2014 Appropriations Congressional Research Service 11 Members’ Representational...vehicles; communications equipment; security equipment and its installation; dignitary protection; intelligence analysis; hazardous material response

  15. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII.

    Science.gov (United States)

    Angeli, Andrea; Vaiano, Fabio; Mari, Francesco; Bertol, Elisabetta; Supuran, Claudiu T

    2017-12-01

    Identifying possible new biological activities of psychoactive substances belonging to various chemical classes may lead to a better understanding of their mode of action and side effects. We report here that amines structurally related to amphetamine, a widely used psychoactive substance, such as amphetamine, methamphetamine, phentermine, mephentermine, and chlorphenteramine, potently activate several carbonic anhydrase (CA, EC 4.2.1.1) isoforms involved in important physiological functions. Of the 11 investigated human (h) isoforms, the widespread hCA I and II, the secreted hCA VI, as well as the cytosolic hCA XIII, and membrane-bound hCA IX and XIV were poorly activated by these amines, whereas the extracellular hCA IV, the mitochondrial enzymes hCA VA/VB, the cytosolic hCA VII, and the transmembrane isoform hCA XII were potently activated. Some of these enzymes are abundant in the brain, raising the possibility that some of the cognitive effects of such psychoactive substances might be related to their activation of these enzymes.

  16. Seawater acclimation and inositol monophosphatase isoform expression in the European eel (Anguilla anguilla) and Nile tilapia (Orechromis niloticus).

    Science.gov (United States)

    Kalujnaia, Svetlana; Gellatly, Steven A; Hazon, Neil; Villasenor, Alfredo; Yancey, Paul H; Cramb, Gordon

    2013-08-15

    Inositol monophosphatase (IMPA) is responsible for the synthesis of inositol, a polyol that can function as an intracellular osmolyte helping re-establish cell volume when exposed to hypertonic environments. Some epithelial tissues in euryhaline teleosts such as the eel and tilapia encounter considerable hyperosmotic challenge when fish move from freshwater (FW) to seawater (SW) environments; however, the roles played by organic osmolytes, such as inositol, have yet to be determined. Syntenic analysis has indicated that, as a result of whole genome- and tandem-duplication events, up to six IMPA isoforms can exist within teleost genomes. Four isoforms are homologs of the mammalian IMPA1 gene, and two isoforms are homologs of the mammalian IMPA2 gene. Although the tissue-dependent isoform expression profiles of the teleost isoforms appear to be species-specific, it was primarily mRNA for the IMPA1.1 isoform that was upregulated in epithelial tissues after fish were transferred to SW (up to 16-fold in eel and 90-fold in tilapia). Although up-regulation of IMPA1.1 expression was evident in many tissues in the eel, more substantial increases in IMPA1.1 expression were found in tilapia tissues, where SW acclimation resulted in up to 2,000-fold increases in protein expression, 16-fold increases in enzyme activity and 15-fold increases in tissue inositol contents. Immunohistochemical studies indicated that the tissue and cellular distribution of IMPA1.1 protein differed slightly between eels and tilapia; however, in both species the basal epithelial cell layers within the skin and fin, and the branchial epithelium and interstitial cells within the kidney, exhibited high levels of IMPA1.1 protein expression.

  17. A New Enzyme Immunoassay for the Quantitative Determination of Classical Autotaxins (ATX?, ATX?, and ATX?) and Novel Autotaxins (ATX? and ATX?)

    OpenAIRE

    Tokuhara, Yasunori; Kurano, Makoto; Shimamoto, Satoshi; Igarashi, Koji; Nojiri, Takahiro; Kobayashi, Tamaki; Masuda, Akiko; Ikeda, Hitoshi; Nagamatsu, Takeshi; Fujii, Tomoyuki; Aoki, Junken; Yatomi, Yutaka

    2015-01-01

    Background Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid, a potent bioactive lipid mediator, through its lysophospholipase D activity. Although five alternative splicing isoforms of ATX have been identified as ATX?, ATX?, ATX?, ATX?, and ATX? and the expression patterns of each isoform differ among several tissues, the clinical significance of each isoform remains to be elucidated. Methods Anti-ATX? and anti-ATX? monoclonal antibodies were...

  18. Engineering of insulin receptor isoform-selective insulin analogues.

    Directory of Open Access Journals (Sweden)

    Tine Glendorf

    Full Text Available BACKGROUND: The insulin receptor (IR exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. METHODOLOGY/PRINCIPAL FINDINGS: Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. CONCLUSIONS/SIGNIFICANCE: We have discovered a new class of IR isoform-selective insulin analogues with 2-4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.

  19. Engineering of Insulin Receptor Isoform-Selective Insulin Analogues

    Science.gov (United States)

    Glendorf, Tine; Stidsen, Carsten E.; Norrman, Mathias; Nishimura, Erica; Sørensen, Anders R.; Kjeldsen, Thomas

    2011-01-01

    Background The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. Methodology/Principal Findings Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. Conclusions/Significance We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits. PMID:21625452

  20. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach

    2009-01-01

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed......, purified and the kinetic properties have been studied and are compared. Substrate inhibition by tryptophan is observed for isoform 1 but not for isoform 2. Large differences are observed in the K m,tetrahydrobiopterin values for the two isoforms, being >10 times larger for isoform 1 compared to isoform 2....

  1. Lectin-binding assays for the isoforms of human erythropoietin: comparison of urinary and four recombinant erythropoietins.

    Science.gov (United States)

    Storring, P L; Tiplady, R J; Gaines Das, R E; Rafferty, B; Mistry, Y G

    1996-09-01

    Assays have been developed for the isoforms of erythropoietin (EPO) based on their binding to eight different lectins. These assays were used to compare the isoform compositions of two preparations of human urinary EPO (uEPO) and four preparations of recombinant DNA-derived human EPO (rEPO), which had been shown to differ in their biological and immunological properties and in their isoform composition as judged by isoelectric focusing and electrophoresis. Agarose-bound Ricinus communis agglutinin I (RCA), Erythrina cristagalli agglutinin (ECA), Maackia amurensis leukoagglutinin (MAL), Sambucus nigra agglutinin (SNA), Lycopersicon esculentum agglutinin (LEA), concanavalin A (Con A), Phaseolus vulgaris agglutinin-L4 (L-PHA) and Agaricus bisporus agglutinin (ABA) were used to bind EPO isoforms possessing: N-glycans containing non-sialylated outer Gal beta 1-4GlcNAc (RCA and ECA), NeuAc alpha 2-3Gal beta 1-4GlcNAc (MAL), NeuAc alpha 2-6Gal (SNA), or repeating Gal beta 1-4GlcNAc sequences (LEA); biantennary N-glycans (Con A); tetraantennary and 2,6-branched triantennary N-glycans (L-PHA); and O-glycans containing NeuAc alpha 2-6GalNAc (SNA) and Gal beta 1-3GalNAc (ABA). Free EPO was measured by mouse spleen cell bioassay or immunoassay. Estimates from most lectin-binding assays were reproducible between assays and batches of lectin-agarose, although batches of MAL- and ABA-agarose, and to a lesser extent LEA-agarose, differed in their EPO-binding. Lectin-binding assays showed differences between the isoform compositions of all EPOs, including the two Chinese hamster ovary cell-derived rEPOs, with RCA- and ECA-binding assays being the most discriminating. Lectin-binding estimates provided evidence that uEPO differs from these rEPOs in its lower content of isoforms with biantennary N-glycans and higher content of those with multiantennary N-glycans, and in its lower content of isoforms with N-glycans possessing repeating Gal beta 1-4GlcNAc sequences and of those with O

  2. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome.

    Science.gov (United States)

    Dugé de Bernonville, Thomas; Foureau, Emilien; Parage, Claire; Lanoue, Arnaud; Clastre, Marc; Londono, Monica Arias; Oudin, Audrey; Houillé, Benjamin; Papon, Nicolas; Besseau, Sébastien; Glévarec, Gaëlle; Atehortùa, Lucia; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2015-08-19

    Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise

  3. Coupling native page/activity-staining with SDS-PAGE/immunodetection for the analysis of glutamine synthetase isoforms in spinach

    Directory of Open Access Journals (Sweden)

    Dragićević M.

    2011-01-01

    Full Text Available Glutamine synthetase (GS is a key nitrogen-assimilating enzyme in plants and a target for the broad-spectrum herbicide glufosinate. Understanding its kinetic and structural properties is of major agricultural importance. Spinach (Spinacia oleracea is classified as a plant expressing only chloroplastic GS activity. We have analyzed soluble proteins in the spinach by coupling native polyacrylamide gel electrophoresis (PAGE-activity detection, based on phosphate precipitation, with SDS-PAGE/immunoblotting. One cytosolic (GS1 isoform from the roots and two chloroplastic (GS2 isoforms expressed in leaves were resolved by native PAGE. The identity of the obtained bands was established by the application of GS-specific inhibitors, L-methionine sulfoximine and glufosinate. Examination by sodium dodecyl sulfate (SDS-PAGE/ Western analysis with anti-GS antibodies, confirmed the identity of the active bands and revealed that both chloroplastic isoforms are composed of 44 kDa subunits, while the cytosolic isoform consists of 40 kDa subunits. The presence of more GS2 isozymes than encoded in the spinach genome is discussed in terms of posttranslational modifications.

  4. Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism.

    Science.gov (United States)

    Silvera, Katia; Winter, Klaus; Rodriguez, B Leticia; Albion, Rebecca L; Cushman, John C

    2014-07-01

    Phosphoenolpyruvate carboxylase (PEPC) catalyses the initial fixation of atmospheric CO2 into oxaloacetate and subsequently malate. Nocturnal accumulation of malic acid within the vacuole of photosynthetic cells is a typical feature of plants that perform crassulacean acid metabolism (CAM). PEPC is a ubiquitous plant enzyme encoded by a small gene family, and each member encodes an isoform with specialized function. CAM-specific PEPC isoforms probably evolved from ancestral non-photosynthetic isoforms by gene duplication events and subsequent acquisition of transcriptional control elements that mediate increased leaf-specific or photosynthetic-tissue-specific mRNA expression. To understand the patterns of functional diversification related to the expression of CAM, ppc gene families and photosynthetic patterns were characterized in 11 closely related orchid species from the subtribe Oncidiinae with a range of photosynthetic pathways from C3 photosynthesis (Oncidium cheirophorum, Oncidium maduroi, Rossioglossum krameri, and Oncidium sotoanum) to weak CAM (Oncidium panamense, Oncidium sphacelatum, Gomesa flexuosa and Rossioglossum insleayi) and strong CAM (Rossioglossum ampliatum, Trichocentrum nanum, and Trichocentrum carthagenense). Phylogenetic analysis revealed the existence of two main ppc lineages in flowering plants, two main ppc lineages within the eudicots, and three ppc lineages within the Orchidaceae. Our results indicate that ppc gene family expansion within the Orchidaceae is likely to be the result of gene duplication events followed by adaptive sequence divergence. CAM-associated PEPC isoforms in the Orchidaceae probably evolved from several independent origins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Models of lung branching morphogenesis.

    Science.gov (United States)

    Miura, Takashi

    2015-03-01

    Vertebrate airway has a tree-like-branched structure. This structure is generated by repeated tip splitting, which is called branching morphogenesis. Although this phenomenon is extensively studied in developmental biology, the mechanism of the pattern formation is not well understood. Conversely, there are many tree-like structures in purely physical or chemical systems, and their pattern formation mechanisms are well-understood using mathematical models. Recent studies correlate these biological observations and mathematical models to understand lung branching morphogenesis. These models use slightly different mechanisms. In this article, we will review recent progress in modelling lung branching morphogenesis, and future directions to experimentally verify the models. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  7. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    Full Text Available BACKGROUND: The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKalpha and ChoKbeta isoforms, the first one with two different variants of splicing. Recently ChoKalpha has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKbeta in carcinogenesis has been reported. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the in vitro and in vivo properties of ChoKalpha1 and ChoKbeta in lipid metabolism, and their potential role in carcinogenesis. Both ChoKalpha1 and ChoKbeta showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKbeta display an ethanolamine kinase role, ChoKalpha1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKalpha1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKbeta overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKalpha1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKbeta mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKalpha1 than ChoKbeta. CONCLUSION/SIGNIFICANCE: This study represents the first evidence of the distinct metabolic role of ChoKalpha and ChoKbeta isoforms, suggesting different physiological roles and implications in human

  8. IL-6 Receptor Isoforms and Ovarian Cancer

    Science.gov (United States)

    2013-01-01

    prepared by phenol/chloroform extraction and digested overnight with restriction enzymes. Samples were loaded onto a 0.8% agarose gel in tris-acetate EDTA...previously described [11]. The transfection of human IL6 and IL6Ra sequences (ATCC) cloned into pcDNA plasmid ( Invitro - gen) or empty vector (pcDNA

  9. Long chain branching of PLA

    Science.gov (United States)

    Gu, Liangliang; Xu, Yuewen; Fahnhorst, Grant; Macosko, Christopher W.

    2017-05-01

    A trifunctional aziridine linker, trimethylolpropane tris(2-methyl-1-aziridinepropionate) (TTMAP), was melt blended with linear polylactic acid (PLA) to make star branched PLA. Adding pyromellitic dianhydride (PMDA) led to long chain branched (LCB) PLA. Mixing torque evolution during melt processing revealed high reactivity of aziridine with the carboxyl end group on PLA and an incomplete reaction of PMDA with the hydroxyl end group. Star-shaped PLA exhibited higher viscosity but no strain hardening in extensional flow while LCB PLA showed significant extensional hardening. Excess TTMAP in the branching reaction resulted in gel formation, which led to failure at low strain in extension. PMDA conversion was estimated based on gelation theory. The strain rate dependence of extensional hardening indicated that the LCB PLA had a low concentration of long chain branched molecules with an H-shaped topology. Unlike current methods used to branch PLA, free radical chemistry or use of an epoxy functional oligomers, our branching strategy produced strain hardening with less increase in shear viscosity. This study provides guidelines for design of polymers with low shear viscosity, which reduces pressure drop in extrusion, combined with strong extensional hardening, which enhances performance in processes that involve melt stretching.

  10. Structural Mechanics and Dynamics Branch

    Science.gov (United States)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  11. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  12. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  13. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  14. Glucoamylase isoform (GAII) purified from a thermophilic fungus ...

    African Journals Online (AJOL)

    Glucoamylase isoform (GAII) purified from a thermophilic fungus Scytalidium thermophilum 15.8 with biotechnological potential. M Cereia, LHS Guimarães, SC Peixoto-Nogueira, JA Jorge, HF Terenzi, LJ Greene, M de Lourdes, TM Polizeli ...

  15. Engineering of insulin receptor isoform-selective insulin analogues

    National Research Council Canada - National Science Library

    Glendorf, Tine; Stidsen, Carsten E; Norrman, Mathias; Nishimura, Erica; Sørensen, Anders R; Kjeldsen, Thomas

    2011-01-01

    .... The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues...

  16. Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties.

    Science.gov (United States)

    Storring, P L; Tiplady, R J; Gaines Das, R E; Stenning, B E; Lamikanra, A; Rafferty, B; Lee, J

    1998-01-01

    Epoetin alfa and beta are the two forms of recombinant DNA-derived erythropoietin (rEPO), both synthesized in Chinese hamster ovary cells, which are used for the treatment of erythropoietin (EPO)-responsive anaemias. Several batches of each of these rEPOs were compared for differences in their EPO isoform compositions by isoelectric focusing (IEF) and in a range of lectin-binding assays, and for differences in their EPO activities by in-vivo and in-vitro mouse bioassays and by immunoassay. Epoetin beta was found to differ from epoetin alfa in containing: (a) a greater proportion of more basic isoforms, (b) a greater proportion of EPO binding to Erythrina cristagalli agglutinin (which binds N-glycans with nonsialylated outer Gal beta1-4GlcNAc moieties), and (c) isoforms with higher in-vivo:in-vitro bioactivity ratios. Epoetin beta also contained slightly more than epoetin alfa of EPO binding to Lycopersicon esculentum agglutinin (which binds N-glycans containing repeating Gal beta1-4GlcNAc sequences), to the leucoagglutinin of Phaseolus vulgaris (which binds tetraantennary and 2,6-branched triantennary N-glycans) and to Agaricus bisporus agglutinin (which binds Gal beta1-3GalNAc containing O-glycans). No differences were found between the two rEPOs in their binding to a further five lectins. The differences between the isoform composition of epoetin alfa and beta, and the smaller inter-batch differences appear to be due to differences in glycosylation. The higher murine in-vivo:in-vitro bioactivity ratio of epoetin beta compared to epoetin alfa could not be explained in terms of differences in their degrees of sialylation, but was consistent with differences in their pharmacokinetics and pharmacodynamics observed in human subjects. There have been no reports that epoetin alfa differs from epoetin beta in its clinical efficacy, but the differences between epoetin alfa and beta in some analytical systems suggest that there might be a need for separate international

  17. Fipronil induces CYP isoforms in rats.

    Science.gov (United States)

    Caballero, M V; Ares, I; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2015-09-01

    The goal of the present study was to evaluate fipronil effects on the activities of drug metabolizing enzymes in rat liver microsomes. Rats were orally treated with fipronil at doses of 1, 5, 10 and 15 mg/kg bw/day for 6 days. Determinations of cytochrome P450 (CYP) enzyme activities were carried out in hepatic microsomes isolated from treated rats. The activities of some members of CYP2E, CYP1A, CYP2A, CYP2B and CYP3A subfamilies significantly increased after fipronil treatment in a dose-dependent manner as compared to control. The major effects were observed in the O-deethylation of ethoxyresorufin and O-demethylation of methoxyresorufin (reflecting CYP1A1/2 activities), in the O-depenthylation of pentoxyresorufin and 16β-hydroxylation of testosterone (reflecting CYP2B1/2 activities), and in the N-demethylation of erythromycin and 6β-hydroxylation of testosterone (reflecting CYP3A1/2 activities). Immunoblot studies revealed that fipronil increased the apoprotein levels of CYP1A1. Our results suggest that fipronil is an inducer of hepatic phase I CYP enzymes, causing an increased potential to interact with a wide range of xenobiotics or endogenous chemicals that are substrates of the CYP1A, CYP2B and CYP3A subfamilies. Further investigations are required to in vivo evaluate the potential of the metabolite fipronil sulfone as an inducer of phase I CYP enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enzyme Nanorings

    OpenAIRE

    Chou, Tsui-Fen; So, Christopher; White, Brian R.; Carlson, Jonathan C.T.; Sarikaya, Mehmet; Wagner, Carston

    2008-01-01

    We have demonstrated that nanostructures, and in particular nanorings incorporating a homodimeric enzyme, can be prepared by chemically induced self-assembly of dihydrofolate reductase (DHFR)-histidine triad nucleotide binding 1(Hint1) fusion proteins. The dimensions of the nanorings were found by static light scattering and atomic force microscopy studies to be dependent on the length and composition of the peptide linking the fusion proteins, ranging in size from 10 to 70 nm in diameter and...

  19. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change?

    Science.gov (United States)

    Bollinger, Rebecca J; Madsen, Steffen S; Bossus, Maryline C; Tipsmark, Christian K

    2016-05-01

    Some euryhaline teleosts exhibit a switch in gill Na(+)/K(+)-ATPase (Nka) α isoform when moving between fresh water (FW) and seawater (SW). The present study tested the hypothesis that a similar mechanism is present in Japanese medaka and whether salinity affects ouabain, Mg(2+), Na(+) and K(+) affinity of the gill enzyme. Phylogenetic analysis classified six separate medaka Nka α isoforms (α1a, α1b, α1c, α2, α3a and α3b). Medaka acclimated long-term (>30 days) to either FW or SW had similar gill expression of α1c, α2, α3a and α3b, while both α1a and α1b were elevated in SW. Since a potential isoform shift may rely on early changes in transcript abundance, we conducted two short-term (1-3 days) salinity transfer experiments. FW to SW acclimation induced an elevation of α1b and α1a after 1 and 3 days. SW to FW acclimation reduced α1b after 3 days with no other α isoforms affected. To verify that the responses were typical, additional transport proteins were examined. Gill ncc and nhe3 expression were elevated in FW, while cftr and nkcc1a were up-regulated in SW. This is in accordance with putative roles in ion-uptake and secretion. SW-acclimated medaka had higher gill Nka V max and lower apparent K m for Na(+) compared to FW fish, while apparent affinities for K(+), Mg(2+) and ouabain were unchanged. The present study showed that the Japanese medaka does not exhibit a salinity-induced α isoform switch and therefore suggests that Na(+) affinity changes involve altered posttranslational modification or intermolecular interactions.

  20. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vakhrushev, Sergey Y; Kong, Yun

    2012-01-01

    to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein...... activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme...

  1. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  2. Branch prediction in the pentium family

    DEFF Research Database (Denmark)

    Fog, Agner

    1998-01-01

    How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions.......How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions....

  3. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  4. Differential Signature of the Centrosomal MARK4 Isoforms in Glioma

    Directory of Open Access Journals (Sweden)

    Ivana Magnani

    2011-01-01

    Full Text Available Background: MAP/microtubule affinity-regulating kinase 4 (MARK4 is a serine-threonine kinase expressed in two spliced isoforms, MARK4L and MARK4S, of which MARK4L is a candidate for a role in neoplastic transformation. Methods: We performed mutation analysis to identify sequence alterations possibly affecting MARK4 expression. We then investigated the MARK4L and MARK4S expression profile in 21 glioma cell lines and 36 tissues of different malignancy grades, glioblastoma-derived cancer stem cells (GBM CSCs and mouse neural stem cells (NSCs by real-time PCR, immunoblotting and immunohistochemistry. We also analyzed the sub-cellular localisation of MARK4 isoforms in glioma and normal cell lines by immunofluorescence. Results: Mutation analysis rules out sequence variations as the cause of the altered MARK4 expression in glioma. Expression profiling confirms that MARK4L is the predominant isoform, whereas MARK4S levels are significantly decreased in comparison and show an inverse correlation with tumour grade. A high MARK4L/MARK4S ratio also characterizes undifferentiated cells, such as GBM CSCs and NSCs. Accordingly, only MARK4L is expressed in brain neurogenic regions. Moreover, while both MARK4 isoforms are localised to the centrosome and midbody in glioma and normal cells, the L isoform exhibits an additional nucleolar localisation in tumour cells. Conclusions: The observed switch towards MARK4L suggests that the balance between the MARK4 isoforms is carefully guarded during neural differentiation but may be subverted in gliomagenesis. Moreover, the MARK4L nucleolar localisation in tumour cells features this MARK4 isoform as a nucleolus-associated tumour marker.

  5. Characterization of the Sucrose Phosphate Phosphatase (SPP Isoforms from Arabidopsis thaliana and Role of the S6PPc Domain in Dimerization.

    Directory of Open Access Journals (Sweden)

    Tomás Albi

    Full Text Available Sucrose-phosphate phosphatase (SPP catalyses the final step in the sucrose biosynthesis pathway. Arabidopsis thaliana genome codifies four SPP isoforms. In this study, the four Arabidopsis thaliana genes coding for SPP isoforms have been cloned, expressed in Escherichia coli and the kinetic and regulatory properties of the purified enzymes analysed. SPP2 is the isoform showing the highest activity, with SPP3b and SPP3a showing lower activity levels. No activity was detected for SPP1. We propose that this lack of activity is probably due to the absence of an essential amino acid participating in catalysis and/or in the binding of the substrate, sucrose-6-phosphate (Suc6P. The expression patterns of Arabidopsis SPP genes indicate that SPP2 and SPP3b are the main isoforms expressed in different tissues and organs, although the non-catalytic SPP1 is the main isoform expressed in roots. Thus, SPP1 could have acquired new unknown functions. We also show that the three catalytically active SPPs from Arabidopsis are dimers. By generating a chimeric SPP composed of the monomeric cyanobacterial SPP fused to the higher plant non-catalytic S6PPc domain (from SPP2, we show that the S6PPc domain is responsible for SPP dimerization. This is the first experimental study on the functionality and gene expression pattern of all the SPPs from a single plant species.

  6. Multigene family isoform profiling from blood cell lineages

    Directory of Open Access Journals (Sweden)

    Bradding Peter

    2002-08-01

    Full Text Available Abstract Background Analysis of cell-selective gene expression for families of proteins of therapeutic interest is crucial when deducing the influence of genes upon complex traits and disease susceptibility. Presently, there is no convenient tool for examining isoform-selective expression for large gene families. A multigene isoform profiling strategy was developed and used to investigate the inwardly rectifying K+ (Kir channel family in human leukocytes. Comprised of seven subfamilies, Kir channels have important roles in setting the resting membrane potential in excitable and non-excitable cells. Results Gene sequence alignment allowed determination of "islands" of amino acid homology, and sub-family "centred" priming permitted simultaneous co-amplification of each family member. Validation and cross-priming analysis was performed against a panel of cognate Kir channel clones. Radiolabelling and diagnostic restriction digestion of pooled PCR products enabled determination of distinct Kir gene expression profiles in pure populations of human neutrophils, eosinophils and lung mast cells, with conservation of Kir2.0 isoforms amongst the leukocyte subsets. We also identified a Kir2.0 channel product, which may potentially represent a novel family member. Conclusions We have developed a novel, rapid and flexible strategy for the determination of gene family isoform composition in any cell type with the additional capacity to detect hitherto unidentified family members and verified its application in a study of Kir channel isoform expression in human leukocytes.

  7. Selective expression of erg isoforms in human endothelial cells.

    Science.gov (United States)

    Hewett, P W; Nishi, K; Daft, E L; Clifford Murray, J

    2001-04-01

    Erg and Fli-1 are closely related members of the ets family of transcription factors. There are at least five human Erg isoforms (Erg-1, Erg-2, Erg-3/p55(Erg), p49(Erg) and p38(Erg)) produced through differential mRNA splicing and alternative use of translational start codons. However, relatively little is known about the expression or function of these isoforms in vitro or their distribution in vivo. We used RT-PCR to screen a panel of primary and established human cell lines for erg and fli-1 consensus sequences. Whilst fli-1 was expressed in several human cell types, erg was detected mainly in endothelial cells. To identify which erg isoforms are expressed in endothelial cells we used RT-PCR, Northern blotting and 5'-RACE. Erg-3/p55(Erg) and p38(Erg)/p38(Erg)-like transcripts were detected in both microvascular and large vessel endothelial cells affinity-purified from different vascular beds. Moreover, these erg isoforms were present in both freshly isolated, and confluent endothelial cells following several passages in culture, indicating that endothelial erg expression in vitro may be broadly representative of that in vivo. The selective expression of the Erg-3/p55(Erg) and p38(Erg)/p38(Erg)-like isoforms in endothelial cells indicates their involvement in the regulation of endothelial-restricted genes.

  8. National Zoological Park Branch Library.

    Science.gov (United States)

    Kenyon, Kay A.

    1988-01-01

    Describes the functions of the National Zoological Park Branch of the Smithsonian Institution Libraries, which is dedicated to supporting the special information needs of the zoo. Topics covered include the library's history, collection, programs, services, future plans, and relations with other zoo libraries. (two references) (Author/CLB)

  9. Branching diffusion with particle interactions

    OpenAIRE

    Engländer, János; Zhang, Liang

    2016-01-01

    A $d$-dimensional branching diffusion, $Z$, is investigated, where the linear attraction or repulsion between particles is competing with an Ornstein-Uhlenbeck drift, with parameter $b$ (we take $b>0$ for inward O-U and $b0$) or repulsion ($\\gamma 0$, while escapes to infinity exponentially fast (rate $|b|$) when $b

  10. Risk Factor Assessment Branch (RFAB)

    Science.gov (United States)

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  11. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    Energy Technology Data Exchange (ETDEWEB)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike (Vanderbilt)

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  12. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct...... receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known...... revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor...

  13. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  14. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking...... for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2......) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  15. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  16. Oxygenation properties and isoform diversity of snake hemoglobins.

    Science.gov (United States)

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.

  17. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  18. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice.

    Science.gov (United States)

    Cuffe, James S M; Saif, Zarqa; Perkins, Anthony V; Moritz, Karen M; Clifton, Vicki L

    2017-08-01

    Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1-3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11, particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring. © 2017 Society for Endocrinology.

  19. Distinct Roles of CSF-1 Isoforms in Lupus Nephritis

    Science.gov (United States)

    Menke, Julia; Iwata, Yasunori; Rabacal, Whitney A.; Basu, Ranu; Stanley, E. Richard

    2011-01-01

    Colony-stimulating factor-1 (CSF-1), the principal growth factor for macrophages, is increased in the kidney, serum, and urine of patients with lupus nephritis, and eliminating CSF-1 suppresses lupus in MRL-Faslpr mice. CSF-1 has three biologically active isoforms: a membrane-spanning cell surface glycoprotein (csCSF-1), a secreted proteoglycan (spCSF-1), and a secreted glycoprotein (sgCSF-1); the role of each isoform in the circulation and kidney in autoimmune disease is not well understood. Here, we constructed mutant MRL-Faslpr mice that only express csCSF-1 or precursors of the spCSF-1 and sgCSF-1 isoforms. Both csCSF-1 and spCSF-1 shifted monocytes toward proinflammatory, activated populations, enhancing their recruitment into the kidney during lupus nephritis. With advancing lupus nephritis, spCSF-1 was the predominant isoform responsible for increasing circulating CSF-1 and, along with the csCSF-1 isoform, for increasing intrarenal CSF-1. Thus, csCSF-1 appears to initiate and promote the local activation of macrophages within the kidney. Intrarenal expression of csCSF-1 and spCSF-1 increases with advancing nephritis, thereby promoting the intrarenal recruitment of monocytes and expansion of Ly6Chi macrophages, which induce apoptosis of the renal parenchyma. Taken together, these data suggest that the three CSF-1 isoforms have distinct biologic properties, suggesting that blocking both circulating and intrarenal CSF-1 may be necessary for therapeutic efficacy. PMID:21885670

  20. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.

    Science.gov (United States)

    Masuda, Tatsuru

    2008-05-01

    In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.

  1. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

    Science.gov (United States)

    Lim, Yong-beom; Mays, Charles E; Kim, Younghwan; Titlow, William B; Ryou, Chongsuk

    2010-03-01

    Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization.

    Science.gov (United States)

    Pajęcka, Kamilla; Nielsen, Camilla Wendel; Hauge, Anne; Zaganas, Ioannis; Bak, Lasse K; Schousboe, Arne; Plaitakis, Andreas; Waagepetersen, Helle S

    2014-01-01

    Glutamate dehydrogenase (GDH) is a crucial enzyme on the crossroads of amino acid and energy metabolism and it is operating in all domains of life. According to current knowledge GDH is present only in one functional isoform in most animals, including mice. In addition to this housekeeping enzyme (hGDH1 in humans), humans and apes have acquired a second isoform (hGDH2) with a distinct tissue expression profile. In the current study we have cloned both mouse and human GDH constructs containing FLAG and (His)6 small genetically-encoded tags, respectively. The hGDH1 and hGDH2 constructs containing N-terminal (His)6 tags were successfully expressed in Sf9 cells and the recombinant proteins were isolated to ≥95 % purity in a two-step procedure involving ammonium sulfate precipitation and Ni(2+)-based immobilized metal ion affinity chromatography. To explore whether the presence of the FLAG and (His)6 tags affects the cellular localization and functionality of the GDH isoforms, we studied the subcellular distribution of the expressed enzymes as well as their regulation by adenosine diphosphate monopotassium salt (ADP) and guanosine-5'-triphosphate sodium salt (GTP). Through immunoblot analysis of the mitochondrial and cytosolic fraction of the HEK cells expressing the recombinant proteins we found that neither FLAG nor (His)6 tag disturbs the mitochondrial localization of GDH. The addition of the small tags to the N-terminus of the mature mitochondrial mouse GDH1 or human hGDH1 and hGDH2 did not change the ADP activation or GTP inhibition pattern of the proteins as compared to their untagged counterparts. However, the addition of FLAG tag to the C-terminus of the mouse GDH left the recombinant protein fivefold less sensitive to ADP activation. This finding highlights the necessity of the functional characterization of recombinant proteins containing even the smallest available tags.

  3. Branching processes in disease epidemics

    Science.gov (United States)

    Singh, Sarabjeet

    Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a

  4. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer.

    Science.gov (United States)

    Trackman, Philip C

    2016-08-01

    The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.

  5. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross...... beta: 73.1 (17.8)% (p=0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal....

  6. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells

    KAUST Repository

    Moritz, Tom

    2016-02-05

    The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation. We established for long-term PC-1 overexpression an inducible expression system derived from the prostate carcinoma cell line LNCaP. We observed that PC-1 overexpression itself initiates characteristics of neuroendocrine cells, but the effect was much more pronounced in the presence of the cytokine interleukin-6 (IL-6). Moreover, to our knowledge, this is the first report that treatment with IL-6 leads to a significant upregulation of PC-1 in LNCaP cells. Other TPD52 isoforms were not affected. Proceeding from this result, we conclude that PC-1 overexpression enhances the IL-6-mediated differentiation of LNCaP cells into a NE-like phenotype, noticeable by morphological changes and increased expression of typical NE markers, like chromogranin A, synaptophysin or beta-3 tubulin. Immunofluorescent staining of IL-6-treated PC-1-overexpressing LNCaP cells indicates a considerable PC-1 accumulation at the end of the long-branched neuron-like cell processes, which are typically formed by NE cells. Additionally, the experimentally initiated NE transdifferentiation correlates with the androgen receptor status, which was upregulated additively. In summary, our data provide evidence for an involvement of PC-1 in NE transdifferentiation, frequently associated with castration resistance, which is a major therapeutic challenge in the treatment of advanced prostate cancer.

  7. Branched endografts for thoracoabdominal aneurysms.

    Science.gov (United States)

    Greenberg, Roy; Eagleton, Matthew; Mastracci, Tara

    2010-12-01

    Endovascular management of thoracoabdominal aneurysms has been studied since 2001, with marked advances allowing for the treatment of complex anatomic situations including chronic aortic dissections, tortuous anatomy, and extensive aneurysms that involve the visceral segment, aortic arch, and iliacs as well. However, the technology is not widely disseminated, and a thorough understanding of the engineering principles, imaging techniques, and devices available is required. Reinforced fenestrated branches coupled with balloon expandable stent grafts, and side-arm branch designs mated with self-expanding stent grafts have been used. Pure fenestrated designs were used for juxtarenal aneurysms, whereas thoracoabdominal aneurysms were treated with reinforced fenestrated branches or hybrid devices including side-arm branches and reinforced fenestrated branches. Intraoperative fusion techniques have been used since 2009, whereby preoperative computed tomographic data are fused with intraoperative fluoroscopy. Long-term survival in accordance with extent of disease was assessed with life table analysis techniques, and differences were analyzed using the log rank test. Intermediate-term data pertaining to patency related to both types of branches and paraplegia have been evaluated and previously published. A total of 406 patients with thoracoabdominal aneurysms and 227 patients with juxtarenal aneurysms have been enrolled in a prospective study. Perioperative and 2-year survival were most closely related to extent of initial disease and were estimated to be 1.8% and 82% for juxtarenal aneurysms, 2.3% and 82% for type IV, and 5.2% and 74% for type II and III thoracoabdominal aneurysms at 24 months, respectively. When patients undergoing endovascular repair (ER group) were matched with those having contemporary surgical repair (SR group) for anatomic disease extent, mortality was similar at 30 days (5.7% ER vs 8.3% SR; P = .2) and at 12 months (15.6% ER vs 15.9% SR; P = .9

  8. NADP-malate Dehydrogenase Isoforms of Wheat Leaves under Drought: Their Localization, and Some physicochemical and Kinetic Properties

    Directory of Open Access Journals (Sweden)

    H.G. Babayev

    2015-09-01

    Full Text Available Changes in sub-cellular localization, isoenzyme spectrum and kinetic characteristics of NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.82 in Triticum durum Desf. genotypes with contrasting drought tolerance have been studied. In chloroplast and cytosol fractions of mesophyll cells of wheat flag leaves 70-75% and 25-30% of the total NADP-MDH activity were found to be localized, respectively. Three isoforms of NADP-MDH with molecular weights of 66, 74 and 86 kDa were revealed in the chloroplast fraction, whereas in the cytosolic fraction molecular weights of the isoenzymes were found to be 42, 66 and 74 kDa. Drought caused the formation of a new 90 kDa isoform of the enzyme in the chloroplast fraction in anthesis phase of ontogenesis. In the drought-tolerant genotype the appearance of the new isoform in the chloroplast fraction was accompanied by a more rapid increase in Km and Vmax contrary to the chloroplast fraction of the drought-sensitive genotype manifesting a slight decrease in these parameters, suggesting one of the adaptive traits in forming drought tolerance in C3 plants.

  9. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  10. Branching processes and neutral evolution

    CERN Document Server

    Taïb, Ziad

    1992-01-01

    The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current sta...

  11. Electrostatically anchored branched brush layers.

    Science.gov (United States)

    Liu, Xiaoyan; Dedinaite, Andra; Rutland, Mark; Thormann, Esben; Visnevskij, Ceslav; Makuska, Ricardas; Claesson, Per M

    2012-11-06

    A novel type of block copolymer has been synthesized. It consists of a linear cationic block and an uncharged bottle-brush block. The nonionic bottle-brush block contains 45 units long poly(ethylene oxide) side chains. This polymer was synthesized with the intention of creating branched brush layers firmly physisorbed to negatively charged surfaces via the cationic block, mimicking the architecture (but not the chemistry) of bottle-brush molecules suggested to be present on the cartilage surface, and contributing to the efficient lubrication of synovial joints. The adsorption properties of the diblock copolymer as well as of the two blocks separately were studied on silica surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry. The adsorption kinetics data highlight that the diblock copolymers initially adsorb preferentially parallel to the surface with both the cationic block and the uncharged bottle-brush block in contact with the surface. However, as the adsorption proceeds, a structural change occurs within the layer, and the PEO bottle-brush block extends toward solution, forming a surface-anchored branched brush layer. As the adsorption plateau is reached, the diblock copolymer layer is 46-48 nm thick, and the water content in the layer is above 90 wt %. The combination of strong electrostatic anchoring and highly hydrated branched brush structures provide strong steric repulsion, low friction forces, and high load bearing capacity. The strong electrostatic anchoring also provides high stability of preadsorbed layers under different ionic strength conditions.

  12. The annealing helicase and branch migration activities of Drosophila HARP.

    Directory of Open Access Journals (Sweden)

    George A Kassavetis

    Full Text Available HARP (SMARCAL1, MARCAL1 is an annealing helicase that functions in the repair and restart of damaged DNA replication forks through its DNA branch migration and replication fork regression activities. HARP is conserved among metazoans. HARP from invertebrates differs by the absence of one of the two HARP-specific domain repeats found in vertebrates. The annealing helicase and branch migration activity of invertebrate HARP has not been documented. We found that HARP from Drosophila melanogaster retains the annealing helicase activity of human HARP, the ability to disrupt D-loops and to branch migrate Holliday junctions, but fails to regress model DNA replication fork structures. A comparison of human and Drosophila HARP on additional substrates revealed that both HARPs are competent in branch migrating a bidirectional replication bubble composed of either DNA:DNA or RNA:DNA hybrid. Human, but not Drosophila, HARP is also capable of regressing a replication fork structure containing a highly stable poly rG:dC hybrid. Persistent RNA:DNA hybrids in vivo can lead to replication fork arrest and genome instability. The ability of HARP to strand transfer hybrids may signify a hybrid removal function for this enzyme, in vivo.

  13. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy.

    Directory of Open Access Journals (Sweden)

    Mojgan Rastegar

    Full Text Available BACKGROUND: Rett Syndrome (RTT is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2 gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC and neurons suitable for gene therapy of Rett Syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We generated self-inactivating (SIN retroviral vectors with the ubiquitous EF1alpha promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2 vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2(tm1.1Bird+/- female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1alpha and MeP vectors rescued expression in 95-100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. CONCLUSIONS/SIGNIFICANCE: MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.

  14. Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data.

    Directory of Open Access Journals (Sweden)

    Ridvan Eksi

    Full Text Available Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires 'ground-truth' functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the 'responsible' isoform(s of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the 'responsible' isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions.

  15. Workshop on Branching Processes and Their Applications

    CERN Document Server

    Gonzalez Velasco, Miguel; Martinez, Rodrigo; Molina, Manuel

    2010-01-01

    Contains papers presented at the Workshop on Branching Processes and Their Applications (WBPA09), held in Badajoz, Spain, April 20-23, 2009, which deal with theoretical and practical aspects of branching process theory

  16. Coulomb branch localization in quiver quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kazutoshi; Sasai, Yuya [Institute of Physics, Meiji Gakuin University,1518 Kamikurata-cho, Yokohama, 244-8539 (Japan)

    2016-02-16

    We show how to exactly calculate the refined indices of N=4U(1)×U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  17. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    Directory of Open Access Journals (Sweden)

    Apiruck Watthanasurorot

    2011-06-01

    Full Text Available The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam, encodes 9(Ig-4(FNIII-(Ig-2(FNIII-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  18. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  19. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    Science.gov (United States)

    Watthanasurorot, Apiruck; Jiravanichpaisal, Pikul; Liu, Haipeng; Söderhäll, Irene; Söderhäll, Kenneth

    2011-06-01

    The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  20. Conformational Flexibility Differentiates Naturally Occurring Bet v 1 Isoforms.

    Science.gov (United States)

    Grutsch, Sarina; Fuchs, Julian E; Ahammer, Linda; Kamenik, Anna S; Liedl, Klaus R; Tollinger, Martin

    2017-06-03

    The protein Bet v 1 represents the main cause for allergic reactions to birch pollen in Europe and North America. Structurally homologous isoforms of Bet v 1 can have different properties regarding allergic sensitization and Th2 polarization, most likely due to differential susceptibility to proteolytic cleavage. Using NMR relaxation experiments and molecular dynamics simulations, we demonstrate that the initial proteolytic cleavage sites in two naturally occurring Bet v 1 isoforms, Bet v 1.0101 (Bet v 1a) and Bet v 1.0102 (Bet v 1d), are conformationally flexible. Inaccessible cleavage sites in helices and strands are highly flexible on the microsecond-millisecond time scale, whereas those located in loops display faster nanosecond-microsecond flexibility. The data consistently show that Bet v 1.0102 is more flexible and conformationally heterogeneous than Bet v 1.0101. Moreover, NMR hydrogen-deuterium exchange measurements reveal that the backbone amides in Bet v 1.0102 are significantly more solvent exposed, in agreement with this isoform's higher susceptibility to proteolytic cleavage. The differential conformational flexibility of Bet v 1 isoforms, along with the transient exposure of inaccessible sites to the protein surface, may be linked to proteolytic susceptibility, representing a potential structure-based rationale for the observed differences in Th2 polarization and allergic sensitization.

  1. The Effects of a Branch Campus

    Science.gov (United States)

    Lien, Donald; Wang, Yaqin

    2012-01-01

    We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…

  2. Introduction of Branching Degrees of Octane Isomers.

    Science.gov (United States)

    Perdih, Anton

    2016-01-01

    The concept of branching degrees is introduced. In the case of octane isomers it is derived from the values of a set of their physicochemical properties, calculating for each isomer the average of the normalized values and these averages are defined as branching degrees of octane isomers. The sequence of these branching degrees of octane isomers does not differ much from the »regular« one defined earlier. 2,2-Dimethylhexane appears to be less branched than 3,4-dimethylhexane and 3-ethyl, 2-methylpentane, whereas 2,3,4-trimethylpentane appears to be less branched than 3-ethyl, 3-methylpentane. While the increasing number of branches gives rise to increasing branching degrees, the peripheral position of branches and the separation between branches decreases the value of the branching degree. The central position of branches increases it. A bigger branch increases it more than a smaller one. The quantification of these structural features and their correlations with few indices is given as well.

  3. Structural dynamics branch research and accomplishments

    Science.gov (United States)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  4. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  5. Identification of human UDP-glucuronosyltransferase isoform(s) responsible for the C-glucuronidation of phenylbutazone.

    Science.gov (United States)

    Nishiyama, Takahito; Kobori, Tomihiro; Arai, Kouji; Ogura, Kenichiro; Ohnuma, Tomokazu; Ishii, Kazuo; Hayashi, Kenichiro; Hiratsuka, Akira

    2006-10-01

    Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics and endogeneous compounds. There have been many studies on the formation of O-, N- or S-glucuronides and identification of the UDP-glucuronosyltransferase (UGT) isoforms responsible for the formation of these glucuronides. However, there is no information available on which UGT isoform(s) catalyzes C-glucuronidation. In the present study, 16 human UGTs (UGTs 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28) were cloned and expressed in baculovirus-infected insect cells and investigated to determine their C-glucuronidating activity toward phenylbutazone (PB). Among the UGT isoforms investigated, only UGT1A9 catalyzed PB C-glucuronidation. Human liver and kidney microsomes, which are well known to express UGT1A9, had C-glucuronidating activity toward PB. However, the jejunum, which did not express UGT1A9, had no C-glucuronidating activity. These results demonstrate for the first time that PB C-glucuronidation is catalyzed by only UGT1A9.

  6. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    Science.gov (United States)

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  7. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.

    2008-01-01

    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that enzyme......Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  9. Targeted Expression of Stromelysin-1 in Mammary Gland Provides Evidence for a Role of Proteinases in Branching Morphogenesis and the Requirement for an Intact Basement Membrane for Tissue-specific Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Talhouk, Rabih S; Alexander, Caroline M; Chin, Jennie R; Cliff, Shirley M; Bissell, Mina J; Werb, Zena

    1994-05-01

    The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in mammary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed beta-casein at levels similar to that of an early- to mid-pregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little beta-casein. During pregnancy, expression of endogenous whey acidic protein and beta-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription of ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene

  10. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  11. Chiral methyl-branched pheromones.

    Science.gov (United States)

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  12. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  13. Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes

    DEFF Research Database (Denmark)

    Juel, C; Thomsen, J J; Rentsch, R L

    2007-01-01

    performance by approximately 54%. Membrane transport systems and carbonic anhydrases involved in pH regulation remained unchanged. Of the Na(+), K(+)-pump isoforms only the density of the alpha2 subunit was decreased (by 22%) after treatment. The marker enzymes cytochrom c and hexokinase remained unchanged...

  14. Subcellular Localization and Biochemical Comparison of Cytosolic and Secreted Cytokinin Dehydrogenase Enzymes from Maize

    Science.gov (United States)

    Cytokinin dehydrogenase (CKX, EC 1.5.99.12) degrades cytokinin hormones in plants. There are several differently targeted isoforms of CKX in cells of each plant. While most CKX enzymes appear to be localized in the apoplast or vacuoles, there is generally only one CKX per plant genome that lacks a t...

  15. Lipolytic enzymes involving lipolysis in Teleost: Synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Sun, Jian; Ji, Hong; Li, Xue-Xian; Shi, Xiao-Chen; Du, Zhen-Yu; Chen, Li-Qiao

    2016-08-01

    Lipolysis is the biochemical pathway responsible for the sequential hydrolysis of triacylglycerols (TAGs) stored in cellular lipid droplets. Three enzymes are known to participate in TAGs hydrolysis, including adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase (MGL), and each is present in mammals as only one isoform. Here we show that the genome of grass carp (Ctenopharyngodon idella) and other teleosts codes for one ATGL, two HSLs, and one MGL isoforms. Two isoforms of HSL gene, HSLa and HSLb, derived from paralogous genes that could be originated from teleost-specific genome duplication (TSGD) event. The genes encoding for fish ATGL and MGL were conserved and contained nine and seven coding exons, respectively. However, two isoforms of HSL gene had a remarkable variation in gene structure, such as HSLa gene contained ten and HSLb contained thirteen exons. All three enzymes, including two isoforms of HSL, were expressed in a wide range of tissues, but the abundance of each gene mRNA showed the tissue-dependent expression patterns. During fasting, only ATGL and HSLa showed a significant increase in adipose tissue and adipocyte, indicating that ATGL and HSLa may be the main rate-limiting enzymes controlling the hydrolysis of TAGs in fasting-induced lipolysis. Different expression of HSLa and HSLb suggests that they might serve different roles in fasting-induced lipolysis. These results provide evidence about the conservation and divergence of genes of fish lipolytic enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Role of specific cytochrome P450 isoforms in the conversion of phenoxypropoxybiguanide analogs in human liver microsomes to potent antimalarial dihydrotriazines.

    Science.gov (United States)

    Diaz, Damaris S; Kozar, Michael P; Smith, Kirsten S; Asher, Constance O; Sousa, Jason C; Schiehser, Guy A; Jacobus, David P; Milhous, Wilbur K; Skillman, Donald R; Shearer, Todd W

    2008-02-01

    Phenoxypropoxybiguanides, such as PS-15, are antimalarial prodrugs analogous to the relationship of proguanil and its active metabolite cycloguanil. Unlike cycloguanil, however, WR99210, the active metabolite of PS-15, has retained in vitro potency against newly emerging antifolate-resistant malaria parasites. Recently, in vitro metabolism of a new series of phenoxypropoxybiguanide analogs has examined the production of the active triazine metabolites by human liver microsomes. The purpose of this investigation was to elucidate the primary cytochrome P450 isoforms involved in the production of active metabolites in the current lead candidate. By using expressed human recombinant isoform preparations, specific chemical inhibitors, and isoform-specific inhibitory antibodies, the primary cytochrome P450 isoforms involved in the in vitro metabolic activation of JPC-2056 were elucidated. Unlike proguanil, which is metabolized primarily by CYP2C19, the results indicate that CYP3A4 plays a more important role in the metabolism of both PS-15 and JPC-2056. Whereas CYP2D6 appears to play a major role in the metabolism of PS-15 to WR99210, it appears less important in the conversion of JPC-2056 to JPC-2067. These results are encouraging, considering the prominence of CYP2C19 and CYP2D6 polymorphisms in certain populations at risk for contracting malaria, because the current clinical prodrug candidate from this series may be less dependent on these enzymes for metabolic activation.

  17. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    2010-05-01

    Full Text Available Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown.Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably.Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  18. Secretory pathway Ca2+/Mn2+-ATPase isoform 2 and lactation: specific localization of plasmalemmal and secretory pathway Ca2+ pump isoforms in the mammary gland

    Energy Technology Data Exchange (ETDEWEB)

    Faddy, Helen M.; Smart, Chanel E.; Xu, Ren; Lee, Genee Y.; Kenny, Paraic A.; Feng, Mingye; Rao, Rajini; Brown, Melissa A.; Bissell, Mina J.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2008-04-09

    The supply of calcium to the developing neonate via milk is an important physiological process. Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely mediated via the secretory pathway. However, recent studies suggest that a specific isoform of the plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during different stages of development. SPCA2 levels increased over 35 fold during lactation, while SPCA1 increased only a modest two fold. The potential importance of SPCA2 in lactation was also highlighted by its localization to luminal secretory cells of the mammary gland during lactation, while SPCA1 was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1 during lactation. Using the SCp2 mouse mammary epithelial cell 3D culture model, differences in the sub-cellular distribution of PMCA2 and PMCA1 were clear. These studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation, and link the recently characterized SPCA2 calcium pump to the supply of calcium into milk and the regulation of Golgi resident enzymes important in lactation. They also indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.

  19. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  20. Functional roles of the tetramer organization of malic enzyme.

    Science.gov (United States)

    Hsieh, Ju-Yi; Chen, Shao-Hung; Hung, Hui-Chih

    2009-07-03

    Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) isoform is noncooperative and nonallosteric and exists as a stable tetramer. In this study, we analyze the essential factors governing the quaternary structure stability for human c-NADP-ME and m-NAD(P)-ME. Site-directed mutagenesis at the dimer and tetramer interfaces was employed to generate a series of dimers of c-NADP-ME and m-NAD(P)-ME. Size distribution analysis demonstrated that human c-NADP-ME exists mainly as a tetramer, whereas human m-NAD(P)-ME exists as a mixture of dimers and tetramers. Kinetic data indicated that the enzyme activity of c-NADP-ME is not affected by disruption of the interface. There are no significant differences in the kinetic properties between AB and AD dimers, and the dimeric form of c-NADP-ME is as active as tetramers. In contrast, disrupting the interface of m-NAD(P)-ME causes the enzyme to be less active than wild type and to become less cooperative for malate binding; the k(cat) values of mutants decreased with increasing K(d,24) values, indicating that the dissociation of subunits at the dimer or tetramer interfaces significantly affects the enzyme activity. The above results suggest that the tetramer is required for a fully functional m-NAD(P)-ME. Taken together, the analytical ultracentrifugation data and the kinetic analysis of these interface mutants demonstrate the differential role of tetramer organization for the c-NADP-ME and m-NAD(P)-ME isoforms. The regulatory mechanism of m-NAD(P)-ME is closely related to the tetramer formation of this isoform.

  1. Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2010-04-01

    Full Text Available Abstract Background Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (nonhomologous relationships between proteins. Results We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. Conclusions These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity. Reviewers This article was reviewed by Andrei

  2. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  3. Structural differences between C-terminal regions of tropomyosin isoforms

    Directory of Open Access Journals (Sweden)

    Małgorzata Śliwińska

    2013-10-01

    Full Text Available Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS attached to tropomyosin and an acceptor (DABMI bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions.

  4. Gene isoform specificity through enhancer-associated antisense transcription.

    Directory of Open Access Journals (Sweden)

    Courtney S Onodera

    Full Text Available Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs, yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs and their derived neural precursor cells (NPs, we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates.

  5. Apolipoprotein (A) Isoform Distribution and Plasma Lipoprotein (a ...

    African Journals Online (AJOL)

    Plasma lipoprotein (a) Concentrations and apo(a) isoforms were determined in 101 healthy Nigerian subjects (M=63), F=38; age range 17-68 years), and coronary heart disease (CHD) patients (M=19, F=17, age range 30-79 years). Median Lp(a) level was 24.4 mg/di in the CHD patients and 22.1 mg/di in the controls.

  6. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase.

    Science.gov (United States)

    Tidemand, Kasper D; Peters, Günther H; Harris, Pernille; Stensgaard, Eva; Christensen, Hans E M

    2017-11-21

    Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism in which the reaction can either occur through a Ping Pong or a sequential mechanism depending on the concentration of tryptophan. The catalytic domain of TPH1 shares a sequence identity of 81% with TPH2. Despite the high sequence identity, differences in the kinetic parameters of the isoforms have been identified; i.e., only TPH1 displays substrate tryptophan inhibition. This study demonstrates that the difference can be traced to an active site loop which displays different properties in the TPH isoforms. Steady-state kinetic results of the isoforms, and variants with point mutations in a loop lining the active site, show that the kinetic parameters of only TPH1 are significantly changed upon mutations. Mutations in the active site loop of TPH1 result in an increase in the substrate inhibition constant, Ki, and therefore turnover rate. Molecular dynamics simulations reveal that this substrate inhibition mechanism occurs through a closure of the cosubstrate, BH4, binding pocket, which is induced by Trp binding.

  7. Two isoforms of Clp peptidase in Pseudomonas aeruginosa control distinct aspects of cellular physiology.

    Science.gov (United States)

    Hall, Branwen M; Breidenstein, Elena B M; de la Fuente-Núñez, César; Reffuveille, Fany; Mawla, Gina D; Hancock, Robert E W; Baker, Tania A

    2016-11-14

    Caseinolytic peptidases (ClpPs) regulate diverse aspects of cellular physiology in bacteria. Some species have multiple ClpPs including opportunistic pathogen Pseudomonas aeruginosa in which there is an archetypical isoform, ClpP1, and a second isoform, ClpP2, about which little is known. Here we use phenotypic assays to investigate biological roles of ClpP1 and ClpP2 and biochemical assays to characterize purified ClpP1, ClpP2, ClpX and ClpA. Interestingly ClpP1 and ClpP2 have distinct intracellular roles for motility, pigment production, iron scavenging and biofilm formation. Of particular interest ClpP2, but not ClpP1, is required for microcolony organization, where multicellular, organized structures first form on the pathway to biofilm production. We found that purified ClpP1, with ClpX or ClpA was enzymatically active, yet to our surprise ClpP2 was inactive and not fully assembled in vitro; attempts to assist ClpP2 assembly and activation by mixing with the other Clp components failed to turn on ClpP2, as did solution conditions that have helped activate other ClpPs in vitro We postulate that the active form of ClpP2 has yet to be discovered and present several potential models to explain its activation as well as the unique role ClpP2 plays in development of the clinically important biofilms in P. aeruginosa IMPORTANCE: Pseudomonas aeruginosa is responsible for severe infections of immunocompromised patients. Our work demonstrates that two different isoforms of Clp peptidase, ClpP1 and ClpP2, control distinct aspects of cellular physiology for this organism. In particular, we identify ClpP2 as necessary for microcolony organization. Pure, active forms of ClpP1 and either ClpX, or ClpA were characterized as assembled and active, ClpP2 was incompletely assembled and inactive. By establishing both the unique biological roles of ClpP1 and ClpP2 and their initial biochemical assemblies, we set the stage for important future work on the structure, function and

  8. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  9. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus.

    Science.gov (United States)

    Poutrain, P; Guirimand, G; Mahroug, S; Burlat, V; Melin, C; Ginis, O; Oudin, A; Giglioli-Guivarc'h, N; Pichon, O; Courdavault, V

    2011-01-01

    Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  11. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  12. Branching process models of cancer

    CERN Document Server

    Durrett, Richard

    2015-01-01

    This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

  13. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition.

    Science.gov (United States)

    Dvorák, Jan; Delcroix, Melaine; Rossi, Andrea; Vopálenský, Václav; Pospísek, Martin; Sedinová, Miroslava; Mikes, Libor; Sajid, Mohammed; Sali, Andrej; McKerrow, James H; Horák, Petr; Caffrey, Conor R

    2005-07-01

    Among schistosomatids, Trichobilharzia regenti, displays an unusual migration through the peripheral and central nervous system prior to residence in the nasal cavity of the definitive avian host. Migration causes tissue degradation and neuromotor dysfunction both in birds and experimentally infected mice. Although schistosomula have a well-developed gut, the peptidases elaborated that might facilitate nutrition and migration are unknown. This is, in large part, due to the difficulty in isolating large numbers of migrating larvae. We have identified and characterised the major 33 kDa cathepsin B-like cysteine endopeptidase in extracts of migrating schistosomula using fluorogenic peptidyl substrates with high extinction coefficients and irreversible affinity-labels. From first strand schistosomula cDNA, degenerate PCR and Rapid Amplification of cDNA End protocols were used to identify peptidase isoforms termed TrCB1.1-TrCB1.6. Highest sequence homology is to the described Schistosoma mansoni and Schistosoma japonicum cathepsins B1. Two isoforms (TrCB1.5 and 1.6) encode putatively inactive enzymes as the catalytic cysteine is substituted by glycine. Two other isoforms, TrCB1.1 and 1.4, were functionally expressed as zymogens in Pichia pastoris. Specific polyclonal antibodies localised the peptidases exclusively in the gut of schistosomula and reacted with a 33kDa protein in worm extracts. TrCB1.1 zymogen was unable to catalyse its own activation, but was trans-processed and activated by S. mansoni asparaginyl endopeptidase (SmAE aka. S. mansoni legumain). In contrast, TrCB1.4 zymogen auto-activated, but was resistant to the action of SmAE. Both activated isoforms displayed different pH-dependent specificity profiles with peptidyl substrates. Also, both isoforms degraded myelin basic protein, the major protein component of nervous tissue, but were inefficient against hemoglobin, thus supporting the adaptation of T. regenti gut peptidases to parasitism of host nervous

  14. ISOexpresso: a web-based platform for isoform-level expression analysis in human cancer.

    Science.gov (United States)

    Yang, In Seok; Son, Hyeonju; Kim, Sora; Kim, Sangwoo

    2016-08-12

    Alternative splicing events that result in the production of multiple gene isoforms reveals important molecular mechanisms. Gene isoforms are often differentially expressed across organs and tissues, developmental stages, and disease conditions. Specifically, recent studies show that aberrant regulation of alternative splicing frequently occurs in cancer to affect tumor cell transformation and growth. While analysis of isoform expression is important for discovering tumor-specific isoform signatures and interpreting relevant genomic mutations, there is currently no web-based, easy-to-use, and publicly available platform for this purpose. We developed ISOexpresso to provide information regarding isoform existence and expression, which can be grouped by cancer vs. normal conditions, cancer types, and tissue types. ISOexpresso implements two main functions: First, the Isoform Expression View function creates visualizations for condition-specific RNA/isoform expression patterns upon query of a gene of interest. With this function, users can easily determine the major isoform (the most expressed isoform in a sample) of a gene with respect to the condition and check whether it matches the known canonical isoform. ISOexpresso outputs expression levels of all known transcripts to check alterations of expression landscape and to find potential tumor-specific isoforms. Second, the User Data Annotation function supports annotation of genomic variants to determine the most plausible consequence of a variation (e.g., an amino acid change) among many possible interpretations. As most coding sequence mutations are effective through the subsequent transcription and translation, ISOexpresso automatically prioritizes transcripts that act as backbones for mutation effect prediction by their relative expression. By employing ISOexpresso, we could investigate the consistency between the most expressed and known canonical/principal isoforms, as well as infer candidate tumor

  15. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  16. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  17. Actions of ethnobotanically selected Cree anti-diabetic plants on human cytochrome P450 isoforms and flavin-containing monooxygenase 3.

    Science.gov (United States)

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2009-10-29

    Cree traditional medicine is commonly used concomitantly with prescribed drugs to treat health problems related to type II diabetes (T2D) that is endemic in the Cree population. However, the safety of traditional Cree medicines with respect to drug metabolism is unknown. Seventeen anti-diabetic plant extracts were screened for their potential inhibition of 11 isoforms of the drug-metabolizing cytochrome P450s (CYPs), and flavin-containing monooxygenase 3 (FMO3) in fluorometric plate reader assays. Comparative analyses were conducted to determine if particular extracts were more inhibitory, or if particular enzymes were more inhibited. Many anti-diabetic plant extracts inhibited the CYPs, with CYP2C and 3A isoforms being most prone to inhibition. The order of inhibition for the enzymes by the Cree plant extracts was: 2C19>3A7>3A5>3A4>2C9>2C8>FMO3>1A2>2E1>19>2D6>2B6. Extracts from Rhododendron groenlandicum, Sorbus decora, and Kalmia angustifolia were identified as having strong inhibition towards many CYP isoforms. These findings demonstrate that extracts from most plant species examined have the potential to affect CYP2C- and 3A4-mediated metabolism, and have the potential to affect the bioavailability and pharmacokinetics of conventional and traditional medicines during concomitant use.

  18. The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms

    Directory of Open Access Journals (Sweden)

    Hughes Simon M

    2007-01-01

    Full Text Available Abstract Background Dystrophins and dystrobrevins are distantly related proteins with important but poorly understood roles in the function of metazoan muscular and neuronal tissues. Defects in them and their associated proteins cause a range of neuromuscular disorders. Members of this superfamily have been discovered in a relatively serendipitous way; we set out to compile a comprehensive description of dystrophin- and dystrobrevin-related sequences from available metazoan genome sequences, validated in representative organisms by RT-PCR, or acquired de novo from key species. Results Features of the superfamily revealed by our survey include: a Dystrotelin, an entirely novel branch of the superfamily, present in most vertebrates examined. Dystrotelin is expressed in the central nervous system, and is a possible orthologue of Drosophila DAH. We describe the preliminary characterisation of its function, evolution and expression. b A novel vertebrate member of the dystrobrevin family, γ-dystrobrevin, an ancient branch now extant only in fish, but probably present in our own ancestors. Like dystrophin, zebrafish γ-dystrobrevin mRNA is localised to myosepta. c The extent of conservation of alternative splicing and alternative promoter use in the dystrophin and dystrobrevin genes; alternative splicing of dystrophin exons 73 and 78 and α-dystrobrevin exon 13 are conserved across vertebrates, as are the use of the Dp116, Dp71 and G-utrophin promoters; the Dp260 and Dp140 promoters are tetrapod innovations. d The evolution of the unique N-terminus of DRP2 and its relationship to Dp116 and G-utrophin. e A C-terminally truncated common ancestor of dystrophin and utrophin in cyclostomes. f A severely restricted repertoire of dystrophin complex components in ascidians. Conclusion We have refined our understanding of the evolutionary history and isoform diversity of the five previously reported vertebrate superfamily members and describe two novel members

  19. Molecular Analysis of Salivary Gland Branching Morphogenesis

    National Research Council Canada - National Science Library

    Sakai, Takayoshi; Larsen, Melinda; Kogo, Mikihiko; Yamada, Kenneth M

    2004-01-01

    .... This mini-review describes a recently developed and tested set of approaches for identifying and characterizing molecules essential for branching morphogenesis and other developmental processes...

  20. Axis deviation without left bundle branch block.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo; Mancuso, Antonia

    2010-04-15

    It has been rarely reported changing axis deviation in the presence of left bundle branch block also during atrial fibrillation and with acute myocardial infarction too. It has also been rarely reported changing axis deviation with changing bundle branch block with onset of atrial fibrillation during acute myocardial infarction. We present a case of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction in a 65-year-old Italian man. To our knowledge, this is the first report of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  1. Clinical and Translational Epidemiology Branch (CTEB)

    Science.gov (United States)

    The Clinical and Translational Epidemiology Branch focuses on factors that influence cancer progression, recurrence, survival, and other treatment outcomes, and factors associated with cancer development.

  2. Toward improved branch prediction through data mining.

    Energy Technology Data Exchange (ETDEWEB)

    Hemmert, K. Scott; Johnson, D. Eric (University of Texas at Austin)

    2009-09-01

    Data mining and machine learning techniques can be applied to computer system design to aid in optimizing design decisions, improving system runtime performance. Data mining techniques have been investigated in the context of branch prediction. Specifically, a comparison of traditional branch predictor performance has been made to data mining algorithms. Additionally, the possiblity of whether additional features available within the architectural state might serve to further improve branch prediction has been evaluated. Results show that data mining techniques indicate potential for improved branch prediction, especially when register file contents are included as a feature set.

  3. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of these flavouring substances, the specifications for the materials of commerce have also been considered. For one substance [FL-no: 09.938] an identity test is missing and for two substances [FL-no: 05.226 and 09.950] the range of the specific gravity is too wide. Additional, the stereoisomeric mixture has not been...

  5. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 06, Revision 4 (FGE.06Rev4 ): Straight - and branched - chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids and esters from chemical groups

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 56 flavouring substances in the Flavouring Group Evaluation 6, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision......, estimated on the basis of the MSDI approach. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided...... for all 56 candidate substances. © European Food Safety Authority, 2013...

  6. Identification cloning and characterization of a branched-chain alpha-keto acid decarboxylase from Lactococcus lactis, involved in flavour formation

    NARCIS (Netherlands)

    Smit, B.A.; Meijer, L.; Engels, W.J.M.; Wouters, J.T.M.; Smit, G.

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain ¿-keto acid decarboxylase (KdcA). The activity of the latter enzyme has

  7. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  8. Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms.

    Science.gov (United States)

    Thielen, Beth K; McNevin, John P; McElrath, M Juliana; Hunt, Brook Vander Stoep; Klein, Kevin C; Lingappa, Jaisri R

    2010-09-03

    In HIV-1-infected individuals, G-to-A hypermutation is found in HIV-1 DNA isolated from peripheral blood mononuclear cells (PBMCs). These mutations are thought to result from editing by one or more host enzymes in the APOBEC3 (A3) family of cytidine deaminases, which act on CC (APOBEC3G) and TC (other A3 proteins) dinucleotide motifs in DNA (edited cytidine underlined). Although many A3 proteins display high levels of deaminase activity in model systems, only low levels of A3 deaminase activity have been found in primary cells examined to date. In contrast, here we report high levels of deaminase activity at TC motifs when whole PBMCs or isolated primary monocyte-derived cells were treated with interferon-alpha (IFNalpha) or IFNalpha-inducing toll-like receptor ligands. Induction of TC-specific deaminase activity required new transcription and translation and correlated with the appearance of two APOBEC3A (A3A) isoforms. Knockdown of A3A in monocytes with siRNA abolished TC-specific deaminase activity, confirming that A3A isoforms are responsible for all TC-specific deaminase activity observed. Both A3A isoforms appear to be enzymatically active; moreover, our mutational studies raise the possibility that the smaller isoform results from internal translational initiation. In contrast to the high levels of TC-specific activity observed in IFNalpha-treated monocytes, CC-specific activity remained low in PBMCs, suggesting that A3G deaminase activity is relatively inhibited, unlike that of A3A. Together, these findings suggest that deaminase activity of A3A isoforms in monocytes and macrophages may play an important role in host defense against viruses.

  9. Quantification of Structural Topology in Branched Polymers

    Science.gov (United States)

    Ramachandran, Ramnath

    Complex molecular structures occur in various natural and synthetic materials. From common plastics like polyethylene to proteins like hemoglobin, the significant effect of the molecular structure of these materials on their properties cannot be understated. Hence, it is fundamental to comprehensively characterize these complex structures. In the case of polyethylene, branching plays a significant role in determining its structure-property relationships. Various characterization techniques are available to measure the branch content in polyethylene. Qualitative techniques based on gel permeation chromatography and rheology; and absolute measurements from nuclear magnetic resonance spectroscopy are commonly used to estimate branch content. Drawbacks posed by these common techniques have been well documented in literature. Further, these techniques are unable to provide a comprehensive picture of the structural topology of polyethylene which is crucial to understanding the structure-property relationships of these systems. In this dissertation, a novel scaling approach is described to quantify branching in polyethylene. The approach is useful in quantifying both short-chain and long-chain branch contents in polyethylene. Additionally, unique measurements such as average long-chain branch length and hyperbranch (branch-on-branch) content are available through this approach. Such enhanced topological information can help us better understand the effect of catalyst systems on the structure of polyethylene as well as the effect of branching on the polymer's physical properties. The scaling approach was successful in quantifying the structure of variety of model and commercial branched polyethylene systems. Specific examples of high-density and linear low-density polyethylene as well as hydrogenated polybutadienes are discussed here. The dissertation is intended to standardize and corroborate the scaling approach in quantifying the structure of branched polymers. The

  10. Lysyl oxidase-like-2 (LOXL2) is a major isoform in chondrocytes and is critically required for differentiation.

    Science.gov (United States)

    Iftikhar, Mussadiq; Hurtado, Paola; Bais, Manish V; Wigner, Nate; Stephens, Danielle N; Gerstenfeld, Louis C; Trackman, Philip C

    2011-01-14

    The lysyl oxidase family is made up of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1-4 (LOXL1-LOXL4). All members share conserved C-terminal catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation of normal biosynthetic collagen and elastin cross-links. The importance of lysyl oxidase enzyme activity to normal bone development has long been appreciated, but regulation and roles for specific LOX isoforms in bone formation in vivo is largely unexplored. Fracture healing recapitulates aspects of endochondral bone development. The present study first investigated the expression of all LOX isoforms in fracture healing. A remarkable coincidence of LOXL2 expression with the chondrogenic phase of fracture healing was found, prompting more detailed analyses of LOXL2 expression in normal growth plates, and LOXL2 expression and function in developing ATDC5 chondrogenic cells. Data show that LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation. Moreover, LOXL2 knockdown studies in vitro show that LOXL2 expression is required for ATDC5 chondrocyte cell line differentiation through regulation of SNAIL and SOX9, important transcription factors that control chondrocyte differentiation. Taken together, data provide evidence that LOXL2, like LOX, is a multifunctional protein. LOXL2 promotes chondrocyte differentiation by mechanisms that are likely to include roles as both a regulator and an effector of chondrocyte differentiation.

  11. Fundamentals of enzyme kinetics.

    Science.gov (United States)

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.

  12. Industrial enzyme applications.

    Science.gov (United States)

    Kirk, Ole; Borchert, Torben Vedel; Fuglsang, Claus Crone

    2002-08-01

    The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.

  13. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    Science.gov (United States)

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-03-16

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  14. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  15. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  16. 3D modelling of branching in plants

    NARCIS (Netherlands)

    Evers, J.B.

    2011-01-01

    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants.

  17. A Unifying Theory of Branching Morphogenesis

    NARCIS (Netherlands)

    Hannezo, Edouard; Scheele, Colinda L G J; Moad, Mohammad; Drogo, Nicholas; Heer, Rakesh; Sampogna, Rosemary V; van Rheenen, Jacco; Simons, Benjamin D

    2017-01-01

    The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that,

  18. Variants of the left aortic arch branches

    African Journals Online (AJOL)

    ORIGINAL ARTICLE. Variants of the left aortic arch branches. N Z Makhanya. MB ChB. R T Mamogale. MB 0113. N Khan. FCRaD (0). Department of Diagnostic Radiology. Medical University of Southern Africa. Abstract. The normal aorta has three branches from its arch, but variations in this pattern are not uncommon. Our.

  19. Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.

    Science.gov (United States)

    Wojtczak, Beata; Pula, Bartosz; Gomulkiewicz, Agnieszka; Olbromski, Mateusz; Podhorska-Okolow, Marzena; Domoslawski, Paweł; Bolanowski, Marek; Daroszewski, Jacek; Dziegiel, Piotr

    2017-09-01

    Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid. mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC). One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (p<0.05), MT1E (p<0.005), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.005) in the analyzed samples. Post hoc analysis confirmed a significantly lower expression of MT1A mRNA in PTC compared to NG (p<0.05). Significant down-regulation was also noted for other MT isoforms in PTC in comparison to NG: MT1E (p<0.05), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.05). In addition, significant down-regulation of MT1F and MT1G in FA compared to NG was observed (p<0.005 and p<0.05, respectively). Expression of functional MT isoforms may contribute to thyroid carcinogenesis and potentially serve as a diagnostic marker in distinguishing benign and malignant lesions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Functional sorting of actin isoforms in microvascular pericytes

    Science.gov (United States)

    1989-01-01

    We characterized the form and distribution of muscle and nonmuscle actin within retinal pericytes. Antibodies with demonstrable specificities for the actin isoforms were used in localization and immunoprecipitation experiments to identify those cellular domains that were enriched or deficient in one or several actin isoforms. Living pericyte behavior was monitored with phase-contract video microscopy before fixation to identify those cellular areas that might preferentially be stained with either of the fluorescent antiactins or phallotoxins. Antibody and phallotoxin staining of pericytes revealed that nonmuscle actin is present within membrane ruffles, pseudopods, and stress fibers. In contrast, muscle actin could be convincingly localized in stress fibers, but not within specific motile areas of pericyte cytoplasm. To confirm and quantitatively extend the results obtained by fluorescence microscopy, nonionic and ionic detergents were used to selectively extract the motile or immobilized (stress fiber- containing) regions of biosynthetically labeled pericyte cytoplasm. Immunoprecipitated actins that were present within these discrete cellular domains were subjected to isoelectric focusing in urea- polyacrylamide gels before fluorographic analysis. Scanning laser densitometry of the focused actins could not reveal any detectable alpha-actin within those beta- and gamma-actin-enriched motile regions extracted with nonionic detergents. Moreover, when pericyte stress fibers are completely dissolved by ionic detergent lysis, three actin isoforms can be quantified to be present in a ratio of 1:2.75:3 (alpha:beta:gamma). These biochemical findings on biosynthetically labeled and immunoprecipitated pericyte actins confirm the fluorescent localization studies. While the regulatory events governing this actin sorting are unknown, it seems possible that such events may play important roles in controlling cell shape, adhesion, or the promotion of localized cell spreading

  1. SERCA pump isoforms: their role in calcium transport and disease.

    Science.gov (United States)

    Periasamy, Muthu; Kalyanasundaram, Anuradha

    2007-04-01

    The sarcoendoplasmic reticulum (SR) calcium transport ATPase (SERCA) is a pump that transports calcium ions from the cytoplasm into the SR. It is present in both animal and plant cells, although knowledge of SERCA in the latter is scant. The pump shares the catalytic properties of ion-motive ATPases of the P-type family, but has distinctive regulation properties. The SERCA pump is encoded by a family of three genes, SERCA1, 2, and 3, that are highly conserved but localized on different chromosomes. The SERCA isoform diversity is dramatically enhanced by alternative splicing of the transcripts, occurring mainly at the COOH-terminal. At present, more than 10 different SERCA isoforms have been detected at the protein level. These isoforms exhibit both tissue and developmental specificity, suggesting that they contribute to unique physiological properties of the tissue in which they are expressed. The function of the SERCA pump is modulated by the endogenous molecules phospholamban (PLB) and sarcolipin (SLN), expressed in cardiac and skeletal muscles. The mechanism of action of PLB on SERCA is well characterized, whereas that of SLN is only beginning to be understood. Because the SERCA pump plays a major role in muscle contraction, a number of investigations have focused on understanding its role in cardiac and skeletal muscle disease. These studies document that SERCA pump expression and activity are decreased in aging and in a variety of pathophysiological conditions including heart failure. Recently, SERCA pump gene transfer was shown to be effective in restoring contractile function in failing heart muscle, thus emphasizing its importance in muscle physiology and its potential use as a therapeutic agent.

  2. Altered expression of insulin receptor isoforms in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jiaqi Huang

    Full Text Available PURPOSE: Insulin-like growth factor (IGF signaling through human insulin receptor isoform A (IR-A contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a developed quantitative TaqMan real time-PCR-based assays (qRT-PCR to measure human insulin receptor isoforms with high specificity, (b evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies. EXPERIMENTAL DESIGN: mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized. RESULTS: The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes. CONCLUSIONS: The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.

  3. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Directory of Open Access Journals (Sweden)

    Opdenaker LM

    2014-12-01

    Full Text Available Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. Keywords: breast tumor, ALDH, ALDH1A1, ALDH1A3, stem-like cells, triple-negative cancer

  4. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes.

    Science.gov (United States)

    Hutson, Susan M; Sweatt, Andrew J; Lanoue, Kathryn F

    2005-06-01

    There are several features of the metabolism of the indispensable BCAAs that set them apart from other indispensable amino acids. BCAA catabolism involves 2 initial enzymatic steps that are common to all 3 BCAAs; therefore, the dietary intake of an individual BCAA impacts on the catabolism of all 3. The first step is reversible transamination followed by irreversible oxidative decarboxylation of the branched-chain alpha-keto acid transamination products, the branched chain alpha-keto acids (BCKAs). The BCAA catabolic enzymes are distributed widely in body tissues and, with the exception of the nervous system, all reactions occur in the mitochondria of the cell. Transamination provides a mechanism for dispersing BCAA nitrogen according to the tissue's requirements for glutamate and other dispensable amino acids. The intracellular compartmentalization of the branched-chain aminotransferase isozymes (mitochondrial branched-chain aminotransferase, cytosolic branched-chain aminotransferase) impacts on intra- and interorgan exchange of BCAA metabolites, nitrogen cycling, and net nitrogen transfer. BCAAs play an important role in brain neurotransmitter synthesis. Moreover, a dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their derivatives (e.g., BCKAs) results in neural dysfunction. The relatively low activity of catabolic enzymes in primates relative to the rat may make the human more susceptible to excess BCAA intake. It is hypothesized that the symptoms of excess intake would mimic the neurological symptoms of hereditary diseases of BCAA metabolism.

  5. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Peters, Günther H.J.; Harris, Pernille

    2017-01-01

    Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis...... of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism...

  6. The FU gene and its possible protein isoforms

    Directory of Open Access Journals (Sweden)

    Nöthen Markus M

    2004-07-01

    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  7. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes

    DEFF Research Database (Denmark)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B

    2015-01-01

    understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each...... isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level......, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two...

  8. An extracellular cell-attached pullulanase confers branched α-glucan utilization in human gut Lactobacillus acidophilus

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Goh, Yong Jun; Rasmussen, Kasper Bøwig

    2017-01-01

    binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here we explore the specificity of a representative of this group of pullulanases, LaPul13_14 and its role in branched α-glucans metabolism in the well characterized Lactobacillus acidophilus...... residents.This study highlights the pivotal role of debranching enzymes in the break-down of starchy branched α-glucan oligomers (α-limit dextrins) by human gut lactobacilli exemplified by Lactobacillus acidophilus NCFM, which is one of the best characterized strains used as probiotics.Our data bring novel...... NCFM that is widely used as a probiotic. Growth experiments of L. acidophilus NCFM on starch-derived branched substrates revealed preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable...

  9. Improved β Decay Branching Ratios

    Science.gov (United States)

    Iacob, V. E.; Hardy, J. C.; Golovko, V.

    2008-04-01

    The work we report here aims at increasing the precision possible in the measurement of branching ratios for superallowed β^+decays. Such highly accurate values are essential in generating precise ft-values for 0^+->0^+decays, which can then be used to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix [1]. The required precision is ˜0.1% or better. While this limit was already achieved in the case of ^34Ar [2], it would have been very difficult, if not impossible, to achieve it for other β^+-decays without an upgrade to our acquisition and data-reduction systems. We have thus improved the controls over all the key elements in our experimental set-up: we now have direct control over the dead-time for the singles and coincidence channels and <0.1 mm control over the source-detector distance. In addition, we have extensively studied the efficiency of the β-detector with source-measurements tested against various Monte Carlo programs [3]. We have tested our new acquisition set-up on ^60Co and ^22Na (β^- and β^+ emitters respectively) to validate our new methods. Preliminary results on the two sources are statistically consistent with the expected values. An ^34Ar decay experiment using the new experimental configuration has already been performed and is currently analyzed. [1] J.C. Hardy and I.S. Towner, PRC 71, 055501 (2005) [2] V. Iacob et al., BAPS 52(3)B16; BAPS 52(9)HF3 [3] V. Golovko et al., BAPS 52(9)DH4; this BAPS

  10. Serum amyloid A isoforms in serum and milk from cows with Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Kovačević-Filipović, Milica; Ilić, Vesna; Vujčić, Zoran; Dojnov, Biljana; Stevanov-Pavlović, Marija; Mijačević, Zora; Božić, Tatjana

    2012-01-15

    Serum amyloid A proteins (SAA) are very sensitive acute phase proteins, displaying multiple isoforms in plasma and different body fluids. They are currently under investigation as biomarkers of diseases. The aim of the present study was to compare the concentration and isoform expression of SAA in serum and milk of cows with bacteriologically negative milk (control group) and naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis (subclinical mastitis group). Somatic cell count (SCC) and bacteriological analyses were performed to establish the control and subclinical mastitis group. SAA concentration was evaluated using a commercial ELISA kit, while expression of different isoforms (serum A-SAA and milk M-SAA3 isoforms) was visualized by denaturing isoelectrical focusing and immunoblotting. The SAA concentrations in sera and milk of cows in the subclinical mastitis group were three and 100 times higher than in those from the control group of cows, respectively. Cows in the subclinical mastitis group had more acidic SAA isoforms in serum with the most prominent one at pI 5.5. This isoform was not detected in sera from the control group. Milk samples in the subclinical mastitis group contained abundant highly alkaline M-SAA3 isoforms and most of the serum isoforms, except for that at pI 5.5. In the subclinical mastitis group SAA isoforms with equivalent pI as serum isoforms accounted for 20% of the total SAA concentration in milk. There were significant differences in the concentrations and isoform patterns of SAA in serum and milk between the control and subclinical mastitis groups of cows. Also, we demonstrated that serum SAA isoforms were not transferred to milk proportion to their plasma content. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  12. GSK-3β phosphorylation of functionally distinct tau isoforms has differential, but mild effects

    Directory of Open Access Journals (Sweden)

    Gamblin T Chris

    2009-05-01

    Full Text Available Abstract Background Tau protein exists as six different isoforms that differ by the inclusion or exclusion of exons 2, 3 and 10. Exon 10 encodes a microtubule binding repeat, thereby resulting in three isoforms with three microtubule binding repeats (3R and three isoforms that have four microtubule binding repeats (4R. In normal adult brain, the relative amounts of 3R tau and 4R tau are approximately equal. These relative protein levels are preserved in Alzheimer's disease, although in other neurodegenerative tauopathies such as progressive supranuclear palsy, corticobasal degeneration and Pick's disease, the ratio of 3R:4R is frequently altered. Because tau isoforms are not equally involved in these diseases, it is possible that they either have inherently unique characteristics owing to their primary structures or that post-translational modification, such as phosphorylation, differentially affects their properties. Results We have determined the effects of phosphorylation by a kinase widely believed to be involved in neurodegenerative processes, glycogen synthase kinase-3β (GSK-3β, on the microtubule binding and inducer-initiated polymerization of these isoforms in vitro. We have found that each isoform has a unique microtubule binding and polymerization profile that is altered by GSK-3β. GSK-3β phosphorylation had differential effects on the isoforms although there were similarities between isoforms and the effects were generally mild. Conclusion These results indicate that tau phosphorylation by a single kinase can have isoform specific outcomes. The mild nature of these changes, however, makes it unlikely that differential effects of GSK-3β phosphorylation on the isoforms are causative in neurodegenerative disease. Instead, the inherent differences in the isoform interactions themselves and local conditions in the diseased cells are likely the major determinant of isoform involvement in various neurodegenerative disorders.

  13. [Croatian Medical Association--Branch Zagreb].

    Science.gov (United States)

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  14. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum.

    Science.gov (United States)

    Shoemark, Deborah K; Cliff, Matthew J; Sessions, Richard B; Clarke, Anthony R

    2007-06-01

    The lactate dehydrogenase enzyme from Plasmodium falciparum (PfLDH) is a target for antimalarial compounds owing to structural and functional differences from the human isozymes. The plasmodial enzyme possesses a five-residue insertion in the substrate-specificity loop and exhibits less marked substrate inhibition than its mammalian counterparts. Here we provide a comprehensive kinetic analysis of the enzyme by steady-state and transient kinetic methods. The mechanism deduced by product inhibition studies proves that PfLDH shares a common mechanism with the human LDHs, that of an ordered sequential bireactant system with coenzyme binding first. Transient kinetic analysis reveals that the major rate-limiting step is the closure of the substrate-specificity loop prior to hydride transfer, in line with other LDHs. The five-residue insertion in this loop markedly increases substrate specificity compared with the human muscle and heart isoforms.

  15. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  16. The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis1[W][OA

    Science.gov (United States)

    Srivastava, Avinash C.; Ramos-Parra, Perla A.; Bedair, Mohamed; Robledo-Hernández, Ana L.; Tang, Yuhong; Sumner, Lloyd W.; Díaz de la Garza, Rocío I.; Blancaflor, Elison B.

    2011-01-01

    A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis. PMID:21233333

  17. Overview of PAF-Degrading Enzymes.

    Science.gov (United States)

    Karasawa, Ken; Inoue, Keizo

    2015-01-01

    Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and β regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-β generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology. © 2015 Elsevier Inc. All rights reserved.

  18. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  19. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  20. Mechanisms of Side Branching and Tip Splitting in a Model of Branching Morphogenesis

    Science.gov (United States)

    Guo, Yina; Sun, Mingzhu; Garfinkel, Alan; Zhao, Xin

    2014-01-01

    Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE), due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth) direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1) a classic activator/inhibitor system along the growing stalk, and 2) the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1) side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2) tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3) when both instabilities are satisfied, tip bifurcation occurs together with side

  1. Mechanisms of side branching and tip splitting in a model of branching morphogenesis.

    Directory of Open Access Journals (Sweden)

    Yina Guo

    Full Text Available Recent experimental work in lung morphogenesis has described an elegant pattern of branching phenomena. Two primary forms of branching have been identified: side branching and tip splitting. In our previous study of lung branching morphogenesis, we used a 4 variable partial differential equation (PDE, due to Meinhardt, as our mathematical model to describe the reaction and diffusion of morphogens creating those branched patterns. By altering key parameters in the model, we were able to reproduce all the branching styles and the switch between branching modes. Here, we attempt to explain the branching phenomena described above, as growing out of two fundamental instabilities, one in the longitudinal (growth direction and the other in the transverse direction. We begin by decoupling the original branching process into two semi-independent sub-processes, 1 a classic activator/inhibitor system along the growing stalk, and 2 the spatial growth of the stalk. We then reduced the full branching model into an activator/inhibitor model that embeds growth of the stalk as a controllable parameter, to explore the mechanisms that determine different branching patterns. We found that, in this model, 1 side branching results from a pattern-formation instability of the activator/inhibitor subsystem in the longitudinal direction. This instability is far from equilibrium, requiring a large inhomogeneity in the initial conditions. It successively creates periodic activator peaks along the growing stalk, each of which later on migrates out and forms a side branch; 2 tip splitting is due to a Turing-style instability along the transversal direction, that creates the spatial splitting of the activator peak into 2 simultaneously-formed peaks at the growing tip, the occurrence of which requires the widening of the growing stalk. Tip splitting is abolished when transversal stalk widening is prevented; 3 when both instabilities are satisfied, tip bifurcation occurs

  2. Characterization of Non-Nitrocatechol Pan and Isoform Specific Catechol-O-methyltransferase Inhibitors and Substrates

    Science.gov (United States)

    2011-01-01

    Reduced dopamine neurotransmission in the prefrontal cortex has been implicated as causal for the negative symptoms and cognitive deficit associated with schizophrenia; thus, a compound which selectively enhances dopamine neurotransmission in the prefrontal cortex may have therapeutic potential. Inhibition of catechol-O-methyltransferase (COMT, EC 2.1.1.6) offers a unique advantage, since this enzyme is the primary mechanism for the elimination of dopamine in cortical areas. Since membrane bound COMT (MB-COMT) is the predominant isoform in human brain, a high throughput screen (HTS) to identify novel MB-COMT specific inhibitors was completed. Subsequent optimization led to the identification of novel, non-nitrocatechol COMT inhibitors, some of which interact specifically with MB-COMT. Compounds were characterized for in vitro efficacy versus human and rat MB and soluble (S)-COMT. Select compounds were administered to male Wistar rats, and ex vivo COMT activity, compound levels in plasma and cerebrospinal fluid (CSF), and CSF dopamine metabolite levels were determined as measures of preclinical efficacy. Finally, novel non-nitrocatechol COMT inhibitors displayed less potent uncoupling of the mitochondrial membrane potential (MMP) compared to tolcapone as well as nonhepatotoxic entacapone, thus mitigating the risk of hepatotoxicity. PMID:22860182

  3. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 2 (FGE.06Rev2): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs.......143, 09.341, 09.612, 09.871, 09.872 and 09.938]. Thirty-one of the 48 substances can exist as geometrical isomers [FL-no: 02.152, 02.195, 02.222, 02.234, 05.061, 05.082, 05.203, 05.217, 05.218, 05.220, 08.074, 08.102, 09.377, 09.567, 09.569, 09.572, 09.575, 09.638, 09.640, 09.643, 09.672, 09.673, 09...... in a wide range of food items. According to the default MSDI approach, the 48 flavouring substances in this group have intakes in Europe from 0.001 to 120 microgram/capita/day, which are below the thresholds of concern value for both structural class I (1800 microgram/person/day) and structural class II...

  5. Cellular and physical mechanisms of branching morphogenesis

    Science.gov (United States)

    Varner, Victor D.; Nelson, Celeste M.

    2014-01-01

    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  6. Src-independent ERK signaling through the rat α3 isoform of Na/K-ATPase.

    Science.gov (United States)

    Madan, Namrata; Xu, Yunhui; Duan, Qiming; Banerjee, Moumita; Larre, Isabel; Pierre, Sandrine V; Xie, Zijian

    2017-03-01

    The Na/K-ATPase α1 polypeptide supports both ion-pumping and signaling functions. The Na/K-ATPase α3 polypeptide differs from α1 in both its primary structure and its tissue distribution. The expression of α3 seems particularly important in neurons, and recent clinical evidence supports a unique role of this isoform in normal brain function. The nature of this specific role of α3 has remained elusive, because the ubiquitous presence of α1 has hindered efforts to characterize α3-specific functions in mammalian cell systems. Using Na/K-ATPase α1 knockdown pig kidney cells (PY-17), we generated the first stable mammalian cell line expressing a ouabain-resistant form of rat Na/K-ATPase α3 in the absence of endogenous pig α1 detectable by Western blotting. In these cells, Na/K-ATPase α3 formed a functional ion-pumping enzyme and rescued the expression of Na/K-ATPase β1 and caveolin-1 to levels comparable with those observed in PY-17 cells rescued with a rat Na/K-ATPase α1 (AAC-19). The α3-containing enzymes had lower Na+ affinity and lower ouabain-sensitive transport activity than their α1-containing counterparts under basal conditions, but showed a greater capacity to be activated when intracellular Na+ was increased. In contrast to Na/K-ATPase α1, α3 could not regulate Src. Upon exposure to ouabain, Src activation did not occur, yet ERK was activated through Src-independent pathways involving PI3K and PKC. Hence, α3 expression confers signaling and pumping properties that are clearly distinct from that of cells expressing Na/K-ATPase α1. Copyright © 2017 the American Physiological Society.

  7. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    A membrane-bound protein with N-methyltransferase activity, associated with phospholipid metabolism, has been isolated from purified human blood platelet plasma membranes. The activity of this enzyme has been detected in crude platelet preparations. However, the nature and properties of this enzyme and its ...

  8. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  9. Nesprins: tissue-specific expression of epsilon and other short isoforms.

    Directory of Open Access Journals (Sweden)

    Nguyen Thuy Duong

    Full Text Available Nesprin-1-giant and nesprin-2-giant regulate nuclear positioning by the interaction of their C-terminal KASH domains with nuclear membrane SUN proteins and their N-terminal calponin-homology domains with cytoskeletal actin. A number of short isoforms lacking the actin-binding domains are produced by internal promotion. We have evaluated the significance of these shorter isoforms using quantitative RT-PCR and western blotting with site-specific monoclonal antibodies. Within a complete map of nesprin isoforms, we describe two novel nesprin-2 epsilon isoforms for the first time. Epsilon isoforms are similar in size and structure to nesprin-1-alpha. Expression of nesprin isoforms was highly tissue-dependent. Nesprin-2-epsilon-1 was found in early embryonic cells, while nesprin-2-epsilon-2 was present in heart and other adult tissues, but not skeletal muscle. Some cell lines lack shorter isoforms and express only one of the two nesprin genes, suggesting that either of the giant nesprins is sufficient for basic cell functions. For the first time, localisation of endogenous nesprin away from the nuclear membrane was shown in cells where removal of the KASH domain by alternative splicing occurs. By distinguishing between degradation products and true isoforms on western blots, it was found that previously-described beta and gamma isoforms are expressed either at only low levels or with a limited tissue distribution. Two of the shortest alpha isoforms, nesprin-1-alpha-2 and nesprin-2-alpha-1, were found almost exclusively in cardiac and skeletal muscle and a highly conserved and alternatively-spliced exon, available in both nesprin genes, was always included in these tissues. These "muscle-specific" isoforms are thought to form a complex with emerin and lamin A/C at the inner nuclear membrane and mutations in all three proteins cause Emery-Dreifuss muscular dystrophy and/or inherited dilated cardiomyopathy, disorders in which only skeletal muscle and

  10. Arkansas State University Beebe Branch Faculty Handbook.

    Science.gov (United States)

    Arkansas State Univ., Beebe.

    Arkansas State University Beebe Branch provides a liberal arts oriented program for traditional and nontraditional students. Its faculty handbook contains institutional goals, description of responsibilities of administrative officers and faculty committees, faculty employment policies, and administrative and instructional policies. The…

  11. 77 FR 39143 - Executive Branch Qualified Trusts

    Science.gov (United States)

    2012-07-02

    ... executive branch qualified trust, an entity must meet the strict requirements for independence set forth in... this subpart. A parent or guardian may execute the umbrella trust agreement on behalf of a required...

  12. FY 1990 Applied Sciences Branch annual report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.M.; Dippo, P.C. (eds.)

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  13. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  14. High level protein-purification allows the unambiguous polypeptide determination of latent isoform PPO4 of mushroom tyrosinase.

    Science.gov (United States)

    Mauracher, Stephan G; Molitor, Christian; Michael, Claudia; Kragl, Martin; Rizzi, Andreas; Rompel, Annette

    2014-03-01

    Tyrosinases catalyze two initial reaction steps in the formation of melanin. Purification of tyrosinases had always been a process accompanied with various problems caused by enzymatic browning processes. Here, an approach is presented for the purification of the latent enzyme from mushrooms which averts and removes interfering compounds (e.g. polyphenols) in advance to the extraction process. The described method is supposed being well suitable as a general protein purification protocol from natural sources like fungi and plants. The purified enzyme was investigated in detail by means of mass spectrometry: its intact protein mass was determined as 64,247.3 Da and it was identified as number four of in total six isoforms (PPO1-6) by means of sequence analysis. Some PTMs, strain specific sequence disparities and several cleavage sites including the one causing enzyme-activation (Ser³⁸³) were determined, thus, providing insights on the maturation process of this latent tyrosinase zymogen. Based on these sequence data it can be concluded that the polypeptide backbone of the latent form of the tyrosinase PPO4 ranges from Ser² to Thr⁵⁶⁵, missing when compared to the gene-derived sequence a small part (46 amino acids) of the C-terminal tail. The high content on hydrophobic amino acids within this missing tail gives rise to speculations whether this part might have a function as a membrane anchor. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair

    2009-12-01

    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  16. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Non-denaturing polyacrlamide gel electrophoresis (PAGE) revealed three catalase (CAT) isoformes, three superoxide dismutase (SOD) isoformes and five peroxidase (POX) isoformes. One new SOD isoforme and two new CAT isoformes were found as response to high concentration of Cu. The bands density of these ...

  17. How Banks Go Abroad : Branches or Subsidiaries?

    OpenAIRE

    Cerutti, Eugenio; Dell'Ariccia, Giovanni; Martínez Pería, Maria Soledad

    2005-01-01

    The authors examine the factors that influence banks' type of organizational form when operating in foreign markets using an original database of the branches and subsidiaries in Latin America and Eastern Europe of the top 100 international banks. They find that regulation, taxation, the degree of desired penetration in the local market, and host-country economic and political risks matter. Banks are more likely to operate as branches in countries that have higher corporate taxes and when the...

  18. Branch retinal artery occlusion in Susac's syndrome

    Directory of Open Access Journals (Sweden)

    Ricardo Evangelista Marrocos de Aragão

    2015-02-01

    Full Text Available Susac's syndrome is a rare disease attribuited to a microangiopathy involving the arterioles of the cochlea, retina and brain. Encefalopathy, hearing loss, and visual deficits are the hallmarks of the disease. Visual loss is due to multiple, recurrent branch arterial retinal occlusions. We report a case of a 20-year-old women with Susac syndrome presented with peripheral vestibular syndrome, hearing loss, ataxia, vertigo, and vision loss due occlusion of the retinal branch artery.

  19. All change at the CERN UBS branch

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    UBS branches across the country are being modernised, and the CERN branch is no exception. The Bulletin brings you a preview of the project, which will get under way in January 2013.   Mock-up of the renovated UBS branch. The changes at the UBS branch in CERN's Main Building will be no simple facelift. The entire bank will be renovated, transforming the present relatively confined premises into an open and attractive area. "The renovation of the UBS branches is part of a wider campaign designed to further enhance our customer relations," explains Ezio Mangia, the head of the CERN branch.  The UBS bank currently occupies three sets of premises in CERN's Main Building (two on the ground floor and one in the basement). "By the end of the work, which is scheduled to be completed by the middle of next year, CERN customers will benefit from a new area with open-plan counters and "hole-in-the-wall" machines accessible to...

  20. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA.

    Science.gov (United States)

    Zhang, Yan; Gaikwad, Nilesh W; Olson, Kevin; Zahid, Muhammad; Cavalieri, Ercole L; Rogan, Eleanor G

    2007-07-01

    Accumulating evidence suggests that specific metabolites of estrogens, namely, catechol estrogen quinones, react with DNA to form adducts and generate apurinic sites, which can lead to the mutations that induce breast cancer. Oxidation of estradiol (E(2)) produces 2 catechol estrogens, 4-hydroxyestradiol (4-OHE(2)) and 2-OHE(2) among the major metabolites. These, in turn, are oxidized to the quinones, E(2)-3,4-quinone (E(2)-3,4-Q) and E(2)-2,3-Q, which can react with DNA. Oxidation of E(2) to 2-OHE(2) is mainly catalyzed by cytochrome P450 (CYP) 1A1, and CYP3A4, whereas oxidation of E(2) to 4-OHE(2) in extrahepatic tissues is mainly catalyzed by CYP1B1 as well as some CYP3As. The potential involvement of CYP isoforms in the further oxidation of catechols to semiquinones and quinones has, however, not been investigated in detail. In this project, to identify the potential function of various CYPs in oxidizing catechol estrogens to quinones, we used different recombinant human CYP isoforms, namely, CYP1A1, CYP1B1, and CYP3A4, with the scope of oxidizing the catechol estrogens 2-OHE(2) and 4-OHE(2) to their respective estrogen quinones, which then reacted with DNA. The depurinating adducts 2-OHE(2)-6-N3Ade, 4-OHE(2)-1-N3Ade, and 4-OHE(2)-1-N7Gua were observed in the respective reaction systems by ultraperformance liquid chromatography/tandem mass spectrometry. Furthermore, more than 100-fold higher levels of estrogen-glutathione (GSH) conjugates were detected in the reactions. Glutathione conjugates were observed, in much smaller amounts, when control microsomes were used. Depurinating adducts, as well as GSH conjugates, were obtained when E(2)-3,4-Q was incubated with CYP1B1 or control microsomes in a 30-minute reaction, further demonstrating that GSH is present in these recombinant enzyme preparations. These experiments demonstrated that CYP1A1, CYP1B1, and CYP3A4 are able to oxidize catechol estrogens to their respective quinones, which can further react with GSH

  1. Human UGT2B7 is the major isoform responsible for the glucuronidation of clopidogrel carboxylate.

    Science.gov (United States)

    Ji, Jin-Zi; Huang, Bei-Bei; Gu, Tong-Tong; Tai, Ting; Zhou, Huan; Jia, Yu-Meng; Mi, Qiong-Yu; Zhang, Meng-Ran; Xie, Hong-Guang

    2018-02-01

    Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate-glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3- to 12-fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis-Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well-characterized UGT2B7 substrates) in a concentration-dependent manner, or by fluconazole (a typical UGT2B7-selective inhibitor) in a time-dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration-dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug-drug interactions between clopidogrel and the other substrate drugs of UGT2B7. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Better branch prediction through prophet/critic hybrids

    OpenAIRE

    Falcón Samper, Ayose Jesús; Stark, Jared; Ramírez Bellido, Alejandro; Lai, Konrad; Valero Cortés, Mateo

    2005-01-01

    The prophet/critic hybrid conditional branch predictor has two component predictors. The prophet uses a branch's history to predict its direction. We call this prediction and the ones for branches following it the branch future. The critic uses the branch's history and future to critique the prophet's prediction. The hybrid combines the prophet's prediction with the critique, either agrees or disagree, forming the branch's overall prediction. Results shows these hybrids can reduce mispredicts...

  3. A Comparative Analysis of Schemes for Correlated Branch Prediction

    OpenAIRE

    Young, Cliff; Gloy, Nicolas; Smith, Michael D.

    1995-01-01

    Modern high-performance architectures require extremely accurate branch prediction to overcome the performance limitations of conditional branches. We present a framework that categorizes branch prediction schemes by the way in which they partition dynamic branches and by the kind of predictor that they use. The framework allows us to compare and contrast branch prediction schemes, and to analyze why they work. We use the framework to show how a static correlated branch prediction scheme incr...

  4. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    Science.gov (United States)

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Alternative splicing determines the interaction of SMRT isoforms with nuclear receptor-DNA complexes.

    Science.gov (United States)

    Faist, Flavie; Short, Stephen; Kneale, G Geoff; Sharpe, Colin R

    2009-06-01

    Signalling by small molecules, such as retinoic acid, is mediated by heterodimers comprising a class II nuclear receptor and an RXR (retinoid X receptor) subunit. The receptors bind to DNA response elements and act as ligand-dependent transcription factors, but, in the absence of signal, the receptors bind the co-repressors SMRT [silencing mediator for RAR (retinoic acid receptor) and TR (thyroid hormone receptor)] and NCoR (nuclear receptor co-repressor) and repress gene expression. Alternative splicing of the SMRT transcript in mammals generates six isoforms containing 1, 2 or 3 CoRNR (co-repressor for nuclear receptor) box motifs which are responsible for the interactions with nuclear receptors. We show that human cell lines express all six SMRT isoforms and then determine the binding affinity of mouse SMRT isoforms for RAR/RXR and three additional class II nuclear receptor-DNA complexes. This approach demonstrates the importance of the full complement of CoRNR boxes within each SMRT protein, rather than the identity of individual CoRNR boxes, in directing the interaction of SMRT with nuclear receptors. Each class of SMRT isoform displays a distinct feature, as the 1-box isoform discriminates between DNA response elements, the 2-box isoforms promote high-affinity binding to TR complexes and the 3-box isoforms show differential binding to nuclear receptors. Consequently, the differential deployment of SMRT isoforms observed in vivo could significantly expand the regulatory capacity of nuclear receptor signalling.

  6. Insulin receptor isoforms : an integrated view focused on gestational diabetes mellitus

    NARCIS (Netherlands)

    Westermeier, F.; Sáez, T.; Arroyo, P.; Toledo, F.; Gutierrez, J.; Sanhueza, C.; Pardo, F.; Leiva, A.; Sobrevia, L.

    The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms

  7. Analysis of transcriptional isoforms of collagen types IX, II, and I in the developing avian cornea by competitive polymerase chain reaction.

    Science.gov (United States)

    Fitch, J M; Gordon, M K; Gibney, E P; Linsenmayer, T F

    1995-01-01

    The genes for the alpha 1(IX), alpha 1(II), and alpha 2(I) collagen chains can give rise to different isoforms of mRNA, generated by alternative promotor usage [for alpha 1(IX) and alpha 2(I)] or alternative splicing [for alpha 1(II)]. In this study, we employed competitive reverse transcriptase PCR to quantitate the amounts of transcriptional isoforms for these genes in the embryonic avian cornea from its inception (about 3 1/2 days of development) to 11 days. In order to compare values at different time points, the results were normalized to those obtained for the "housekeeping" enzyme, glycerol-3-phosphate dehydrogenase (G3PDH). These values were compared to those obtained from other tissues (anterior optic cup and cartilage) that synthesize different combinations of the collagen isoforms. We found that, in the cornea, transcripts from the upstream promotor of alpha 1(IX) collagen (termed "long IX") were predominant at stage 18-20 (about 3 1/2 days), but then fell rapidly, and remained at a low level. By 5 days (just before stromal swelling) the major mRNA isoform of alpha 1(IX) was from the downstream promoter (termed "short IX"). The relative amount of transcript for the short form of type IX collagen rose to a peak at about 6 days of development, and then declined. Throughout this period, the predominant transcriptional isoform of the collagen type II gene was IIA (i.e., containing the alternatively spliced exon 2). This indicates that the molecules of type II collagen that are assembled into heterotypic fibrils with type I collagen possess, at least transiently, an amino-terminal globular domain similar to that found in collagen types I, III, and V. For type I, the "bone/tendon" mRNA isoform of the alpha 2(I) collagen gene was predominant; transcripts from the downstream promotor were at basal levels. In other tissues expressing collagen types IX and II, long IX was expressed predominantly with the IIA form in the anterior optic cup at stage 22/23; in 14 1

  8. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Directory of Open Access Journals (Sweden)

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.

  9. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training.

    Science.gov (United States)

    Andersen, J L; Klitgaard, H; Saltin, B

    1994-06-01

    The myosin heavy chain (MHC) composition of single fibres from m. vastus lateralis of a group of male sprint athletes (n = 6) was analysed, before and after a three months period of intensive strength- and interval-training, using a sensitive gel electrophoretic technique. Significant improvements were observed after training in almost all of a series of performance tests. After training the sprinters revealed a decrease in fibres containing only MHC isoform I (52.0 +/- 3.0% vs. 41.2 +/- 4.7% (mean +/- SE) (P training (12.9 +/- 5.0% vs. 5.1 +/- 3.1% (P sprinters seems therefore to contain both MHC isoforms IIA and IIB. Sprint-training appears to induce an increased expression of MHC isoform IIA in skeletal muscles. This seems related to a bi-directional transformation from both MHC isoforms I and IIB towards MHC isoform IIA.

  10. Regions conferring isoform-specific function in the catalytic subunit of the Na,K-pump.

    Science.gov (United States)

    Pressley, Thomas A; Duran, Marie-Josee; Pierre, Sandrine V

    2005-09-01

    The Na,K-pump (i.e., Na,K-ATPase) is critical for maintaining the ionic gradients across the plasma membranes of animal cells. Its component subunits are expressed in multiple forms, but the physiological relevance of this subunit diversity remains unknown. The primary contributor to overall catalysis, the alpha subunit, exists in four isoforms. There are observed kinetic differences among these isoforms, but their subtlety makes them an unlikely basis for physiological significance. Instead, recent work suggests that the major functional distinction among the isoforms is their interaction with regulatory proteins. Moreover, the isoform-specific effects of modulatory agents such as protein kinase C seem to originate within two regions of structural divergence: the amino terminus and eleven residues near the center of the alpha subunit, the isoform-specific region.

  11. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function.

    Science.gov (United States)

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A

    2012-09-21

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that functional evolution can be inferred from the changes in protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced C(α) representation of the protein structure while enzymatic function is described by Enzyme Commission numbers. Similarity of the binding pocket dynamics at each branch of the protein family's phylogeny was analyzed in two ways: (1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and (2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the α-amylase, D-isomer-specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal mode analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mass-production of human ACAT-1 and ACAT-2 to screen isoform-specific inhibitor: a different substrate specificity and inhibitory regulation.

    Science.gov (United States)

    Cho, Kyung-Hyun; An, Sojin; Lee, Woo-Song; Paik, Young-Ki; Kim, Young-Kook; Jeong, Tae-Sook

    2003-10-03

    Recently, acyl-CoA:cholesterol acyltransferase was found to be present as two isoforms, ACAT-1 and ACAT-2, in mammalian tissues with different metabolic functions and tissue-specific locations. In this study, the isoforms were mass-produced individually from insect cells to establish a more sensitive and reliable screening method for specific inhibitors against each isoform. The expressed hACAT-1 and hACAT-2 appeared as a 50 kDa- and a 46 kDa-band on SDS-PAGE, respectively, from Hi5 cells and they preferred to exist in oligomeric form, from dimer to tetramer, during the purification process. They also exhibited an approximate 3.4 to 3.7-fold increase in activities when compared to rat liver microsomal fractions at the same protein concentration. Known ACAT inhibitors, pyripyropene A, oleic acid anilide, and diethyl pyrocarbonate, were tested to evaluate the inhibitory specificity and sensitivity of the expressed enzymes. Interestingly, pyripyropene A inhibited only the hACAT-2 fraction with IC(50)=0.64 microM but not the hACAT-1 fraction; whereas the fatty acid anilide did not show a significant difference in inhibitory activity with either hACAT-1 or hACAT-2. Furthermore, cholesterol was more rapidly utilized by hACAT-1, but hACAT-2 esterified other cholic acid derivatives more efficiently. These results suggest that the specificity of each substrate and inhibitor was highly different, depending on each isoform from the viewpoint of the regulatory site and the substrate binding site location.

  13. Molecular Dynamics Simulations and Structural Analysis to Decipher Functional Impact of a Twenty Residue Insert in the Ternary Complex of Mus musculus TdT Isoform.

    Directory of Open Access Journals (Sweden)

    Eshita Mutt

    Full Text Available Insertions/deletions are common evolutionary tools employed to alter the structural and functional repertoire of protein domains. An insert situated proximal to the active site or ligand binding site frequently impacts protein function; however, the effect of distal indels on protein activity and/or stability are often not studied. In this paper, we have investigated a distal insert, which influences the function and stability of a unique DNA polymerase, called terminal deoxynucleotidyl transferase (TdT. TdT (EC:2.7.7.31 is a monomeric 58 kDa protein belonging to family X of eukaryotic DNA polymerases and known for its role in V(DJ recombination as well as in non-homologous end-joining (NHEJ pathways. Two murine isoforms of TdT, with a length difference of twenty residues and having different biochemical properties, have been studied. All-atom molecular dynamics simulations at different temperatures and interaction network analyses were performed on the short and long-length isoforms. We observed conformational changes in the regions distal to the insert position (thumb subdomain in the longer isoform, which indirectly affects the activity and stability of the enzyme through a mediating loop (Loop1. A structural rationale could be provided to explain the reduced polymerization rate as well as increased thermosensitivity of the longer isoform caused by peripherally located length variations within a DNA polymerase. These observations increase our understanding of the roles of length variants in introducing functional diversity in protein families in general.

  14. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  15. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Joanne M Kingsbury

    2015-12-01

    Full Text Available The conserved target of rapamycin complex 1 (TORC1 integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT, which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

  16. Enzymes and muscle diseases

    Directory of Open Access Journals (Sweden)

    M. Plebani

    2011-09-01

    Full Text Available Skeletal muscle disorders may result in release of muscle enzymes into the circulation and give increased serum enzyme activity. A variety of enzymes routinely determined in the clinical laboratory may be elevated, but creatine kinase is the enzyme present in the highest concentration in muscle, and in every variety of muscle disease is the serum enzyme which shows the greatest incidence and degree of elevation. Aspartate aminotransferase is the enzyme associated most significantly with inflammation. A diagnostic algorithm based on the combined measurement of creatine kinase, aspartate aminotransferase and aldolase has been found to discriminate muscular distrophies from polymyositis and other myopathies. This combination of laboratory tests has diagnostic application and thus allows the clinician to better select patients who need to have a skeletal muscle biopsy as a diagnostic procedure.

  17. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  18. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn

    2010-11-01

    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  19. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  20. Enzymes in animal nutrition

    OpenAIRE

    Scientific Committee on Animal Nutrition

    2011-01-01

    This report brings overview of endogenous as well as exogenous enzymes and their role and importance in animal nutrition. Enzymes for animal nutrition have been systematically developed since 1980´s. Phytase, xylanase and β-glucanase are used in poultry-rising, pig breeding, aquaculture and begin to push to the ruminant nutrition. Phytase increase availability of P, Ca, Zn, digestibility of proteins and fats. Its positive effect on the environment is well described – enzymes decrease the cont...

  1. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  2. A Unifying Theory of Branching Morphogenesis.

    Science.gov (United States)

    Hannezo, Edouard; Scheele, Colinda L G J; Moad, Mohammad; Drogo, Nicholas; Heer, Rakesh; Sampogna, Rosemary V; van Rheenen, Jacco; Simons, Benjamin D

    2017-09-21

    The morphogenesis of branched organs remains a subject of abiding interest. Although much is known about the underlying signaling pathways, it remains unclear how macroscopic features of branched organs, including their size, network topology, and spatial patterning, are encoded. Here, we show that, in mouse mammary gland, kidney, and human prostate, these features can be explained quantitatively within a single unifying framework of branching and annihilating random walks. Based on quantitative analyses of large-scale organ reconstructions and proliferation kinetics measurements, we propose that morphogenesis follows from the proliferative activity of equipotent tips that stochastically branch and randomly explore their environment but compete neutrally for space, becoming proliferatively inactive when in proximity with neighboring ducts. These results show that complex branched epithelial structures develop as a self-organized process, reliant upon a strikingly simple but generic rule, without recourse to a rigid and deterministic sequence of genetically programmed events. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The vitamin E isoforms α-tocopherol and γ-tocopherol have opposite associations with spirometric parameters: the CARDIA study

    OpenAIRE

    Marchese, Michelle E.; Kumar, Rajesh; COLANGELO, Laura A.; Avila, Pedro C.; Jacobs, David R.; Gross, Myron; Sood, Akshay; Liu, Kiang; Cook-Mills, Joan M.

    2014-01-01

    Background Clinical studies of the associations of vitamin E with lung function have reported conflicting results. However, these reports primarily examine the α-tocopherol isoform of vitamin E and have not included the isoform γ-tocopherol which we recently demonstrated in vitro opposes the function of α-tocopherol. We previously demonstrated, in vitro and in animal studies, that the vitamin E isoform α-tocopherol protects, but the isoform γ-tocopherol promotes lung inflammation and airway h...

  4. Anomalous branching pattern of the portal vein: right posterior portal vein originating from the left portal vein.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kiryu, Shigeru

    2017-05-01

    To introduce a rare variant branching pattern of the portal vein with clinical relevance. A 55-year-old man was examined by contrast-enhanced computed tomography to investigate the cause of fever and mildly elevated hepatic enzyme levels. Based on computed tomography, liver abscesses were identified which may have caused the fever and elevated hepatic enzyme levels. And a variation in the branching pattern of the portal vein was also detected in this patient, which has not been reported previously; the right posterior portal vein originated from the end of the horizontal part of the left portal vein. Identification of this rare branching pattern of the portal vein prior to hepatectomy, liver transplantation, and portal vein embolization is considered important to prevent complications. A rare variant in which the right posterior portal vein originated from the left portal vein was identified. Recognition of this variant may be important prior to surgical or interventional radiological strategies.

  5. Food and feed enzymes.

    Science.gov (United States)

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  6. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    Science.gov (United States)

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

  7. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation.

    Science.gov (United States)

    Zoch, Ansgar; Mayerl, Steffen; Schulz, Alexander; Greither, Thomas; Frappart, Lucien; Rübsam, Juliane; Heuer, Heike; Giovannini, Marco; Morrison, Helen

    2015-01-01

    The tumour suppressor Merlin, encoded by the gene NF2, is frequently mutated in the autosomal dominant disorder neurofibromatosis type II, characterised primarily by the development of schwannoma and other glial cell tumours. However, NF2 is expressed in virtually all analysed human and rodent organs, and its deletion in mice causes early embryonic lethality. Additionally, NF2 encodes for two major isoforms of Merlin of unknown functionality. Specifically, the tumour suppressor potential of isoform 2 remains controversial. In this study, we used Nf2 isoform-specific knockout mouse models to analyse the function of each isoform during development and organ homeostasis. We found that both isoforms carry full tumour suppressor functionality and can completely compensate the loss of the other isoform during development and in most adult organs. Surprisingly, we discovered that spermatogenesis is strictly dependent on the presence of both isoforms. While the testis primarily expresses isoform 1, we noticed an enrichment of isoform 2 in spermatogonial stem cells. Deletion of either isoform was found to cause decreased sperm quality as observed by maturation defects and head/midpiece abnormalities. These defects led to impaired sperm functionality as assessed by decreased sperm capacitation. Thus, we describe spermatogenesis as a new Nf2-dependent process. Additionally, we provide for the first time in vivo evidence for equal tumour suppressor potentials of Merlin isoform 1 and isoform 2.

  8. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions

    DEFF Research Database (Denmark)

    Kjelgaard-Hansen, Mads Jens; Christensen, Michelle B.; Lee, Marcel Huisung

    2007-01-01

    with systemic inflammatory activity, and up to four major isoforms with apparent isoelectric points between 6.1 and 7.9 were identified. In synovial fluid from inflamed joints one or more highly alkaline SAA isoforms (with apparent isoelectric points above 9.3) were identified, with data suggesting local...... production of these isoforms in the canine inflamed joint....

  9. Linear and Branched PEIs (Polyethylenimines and Their Property Space

    Directory of Open Access Journals (Sweden)

    Claudiu N. Lungu

    2016-04-01

    Full Text Available A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent and is reflected in its local electronic (and/or magnetic properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI macromolecules (linear LPEI and branched BPEI, respectively with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry purpose.

  10. Measurement of Tau Lepton Branching Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, N.

    2003-12-19

    We present {tau}{sup -} lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample of {tau}{sup -} {yields} {nu}{sub {tau}}K{sup -}{pi}{sup +}{pi}{sup -} events, we examine the resonance structure of the K{sup -}{pi}{sup +}{pi}{sup -} system and obtain the first measurements of branching fractions for {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1270) and {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1400). We also describe a complete set of branching fraction measurements in which all the decays of the {tau}{sup -} lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, {mu}, {pi}, and K.

  11. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Neale Harrison

    Full Text Available N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368, but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.

  12. ATP-mediated kinome selectivity: the missing link in understanding the contribution of individual JAK Kinase isoforms to cellular signaling.

    Science.gov (United States)

    Thorarensen, Atli; Banker, Mary Ellen; Fensome, Andrew; Telliez, Jean-Baptiste; Juba, Brian; Vincent, Fabien; Czerwinski, Robert M; Casimiro-Garcia, Agustin

    2014-07-18

    Kinases constitute an important class of therapeutic targets being explored both by academia and the pharmaceutical industry. The major focus of this effort was directed toward the identification of ATP competitive inhibitors. Although it has long been recognized that the intracellular concentration of ATP is very different from the concentrations utilized in biochemical enzyme assays, little thought has been devoted to incorporating this discrepancy into our understanding of translation from enzyme inhibition to cellular function. Significant work has been dedicated to the discovery of JAK kinase inhibitors; however, a disconnect between enzyme and cellular function is prominently displayed in the literature for this class of inhibitors. Herein, we demonstrate utilizing the four JAK family members that the difference in the ATP Km of each individual kinase has a significant impact on the enzyme to cell inhibition translation. We evaluated a large number of JAK inhibitors in enzymatic assays utilizing either 1 mM ATP or Km ATP for the four isoforms as well as in primary cell assays. This data set provided the opportunity to examine individual kinase contributions to the heterodimeric kinase complexes mediating cellular signaling. In contrast to a recent study, we demonstrate that for IL-15 cytokine signaling it is sufficient to inhibit either JAK1 or JAK3 to fully inhibit downstream STAT5 phosphorylation. This additional data thus provides a critical piece of information explaining why JAK1 has incorrectly been thought to have a dominant role over JAK3. Beyond enabling a deeper understanding of JAK signaling, conducting similar analyses for other kinases by taking into account potency at high ATP rather than Km ATP may provide crucial insights into a compound's activity and selectivity in cellular contexts.

  13. Cloning and quantitative determination of the human Ca2+/calmodulin-dependent protein kinase II (CaMK II) isoforms in human beta cells.

    Science.gov (United States)

    Rochlitz, H; Voigt, A; Lankat-Buttgereit, B; Göke, B; Heimberg, H; Nauck, M A; Schiemann, U; Schatz, H; Pfeiffer, A F

    2000-04-01

    The Ca2+/calmodulin-dependent protein kinase II (CaMK II) is highly expressed in pancreatic islets and associated with insulin secretion vesicles. The suppression of CaMK II disturbs insulin secretion and insulin gene expression. There are four isoforms of CaMK II, alpha to delta, that are expressed from different genes in mammals. Our aim was to identify the isoforms of CaMK II expressed in human beta cells by molecular cloning from a human insulinoma cDNA library and to assess its distribution in humans. The previously unknown complete coding sequences of human CaMK IIbeta and the kinase domain of CaMK IIdelta were cloned from a human insulinoma cDNA library. Quantitative determination of CaMK II isoform mRNA was carried out in several tissues and beta cells purified by fluorescence activated cell sorting and compared to the housekeeping enzyme pyruvate dehydrogenase. We found CaMK IIbeta occurred in three splice variants and was highly expressed in endocrine tissues such as adrenals, pituitary and beta cells. Liver showed moderate expression but adipose tissue or lymphocytes had very low levels of CaMK IIbeta-mRNA. In human beta cells CaMK IIbeta and delta were expressed equally with pyruvate dehydrogenase whereas tenfold lower expression of CaMK IIgamma and no expression of CaMK IIalpha were found. Although CaMK IIdelta is ubiquitously expressed, CaMK IIbeta shows preferential expression in neuroendocrine tissues. In comparison with the expression of a key regulatory enzyme in glucose oxidation, pyruvate dehydrogenase, two of the four CaM kinases investigated are expressed at equally high levels, which supports an important role in beta-cell physiology. These results provide the basis for exploring the pathophysiological relevance of CaMK IIbeta in human diabetes.

  14. Crack branching in cross-ply composites

    Science.gov (United States)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  15. The branching channel network in the Yangtze Estuary

    NARCIS (Netherlands)

    Wang, Z.B.; Ding, P.X.

    2012-01-01

    The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel

  16. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  17. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development

    Science.gov (United States)

    Waite, Mindy R.; Skidmore, Jennifer M.; Micucci, Joseph A.; Shiratori, Hidetaka; Hamada, Hiroshi; Martin, James F.; Martin, Donna M.

    2012-01-01

    Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development. PMID:23147109

  18. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  19. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas.

    Science.gov (United States)

    Wu, Yulong; Cheng, Mei; Shi, Zhen; Feng, Zhenqing; Guan, Xiaohong

    2014-01-01

    Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.

  20. Different expression of synemin isoforms in glia and neurons during nervous system development.

    Science.gov (United States)

    Izmiryan, A; Cheraud, Y; Khanamiryan, L; Leterrier, J F; Federici, T; Peltekian, E; Moura-Neto, V; Paulin, D; Li, Z; Xue, Z G

    2006-08-15

    The synemin gene encodes proteins belonging to the intermediate filament family. These proteins confer resistance to mechanical stress and modulate cell shape. Three synemin isoforms, of 180 (H), 150 (M) and 41 (L) kDa, are produced by alternative splicing of the pre-mRNA and are regulated differently during development. The three isoforms differ in their C-terminal tail domains, while their IF rod domains are identical. Synemins H/M occurred together with nestin and vimentin in glial progenitors during the early differentiation of the developing mouse central nervous system. They are later found in GFAP-labeled cells. In contrast, the L isoform appeared only in neurons, together with neurofilaments and betaIII-tubulin in the brain after birth. However, synemin L appeared from E13 in the peripheral nervous system, where it was confined to the neurons of spinal ganglia. In the meantime, the synemin H/M isoforms were found in both the neurons and Schwann cells of the sensorial ganglia from E11. Tissue fractionation and purification of IFs from adult mouse spinal cord revealed that the synemin L isoform binds to neurofilaments associated with the membrane compartment. This report describes the synthesis of the three synemin isoforms by selective cell types, and their temporal and spatial distributions. Mechanisms specific to neurons and glia probably control the splicing of the common synemin mRNA and the synthesis of each synemin isoform.

  1. Inulin isoforms differ by repeated additions of one crystal unit cell

    Science.gov (United States)

    Cooper, Peter D.; Barclay, Thomas G.; Ginic-Markovic, Milena; Gerson, Andrea R.; Petrovsky, Nikolai

    2014-01-01

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the ‘energetic unit’ equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an ‘energetic unit’ equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. PMID:24528745

  2. Inulin isoforms differ by repeated additions of one crystal unit cell.

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2014-03-15

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the 'energetic unit' equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an 'energetic unit' equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nature of branching in disordered materials

    Science.gov (United States)

    Kulkarni, Amit S.

    The phenomenon of structural branching is ubiquitous in a wide array of materials such as polymers, ceramic aggregates, networks and gels. These materials with structural branching are a unique class of disordered materials and often display complex architectures. Branching has a strong influence over the structure-property relationships of these materials. Despite the generic importance across a wide spectrum of materials, our physical understanding of the scientific nature of branching and the analytic description and quantification of branching is at an early stage, though many decades of effort have been made. For polymers, branching is conventionally characterized by hydrodynamic radius (size exclusion chromatography, SEC, rheology) or by counting branch sites (nuclear magnetic resonance spectroscopy, NMR). SEC and rheology are, at best, qualitative; and quantitative characterization techniques like NMR and transmission electron microscopy (TEM) (for ceramic nanoparticulate aggregates) have limitations in providing routine quantification. Effective structure characterization, though an important step in understanding these materials, remains elusive. For ceramic aggregates, theoretical work has dominated and only a few publications on analytic studies exist to support theory. A new generic scaling model is proposed in Chapter I, which encompasses the critical structural features associated with these complex architectures. The central theme of this work is the application of this model to describe a variety of disordered structures like aggregated nano-particulates, long chain branched polymers like polyethylene, hyperbranched polymers, multi-arm star polymers, and cyclic macromolecules. The application of the proposed model to these materials results in a number of fundamental structural parameters, like the mass-fractal dimension, df, the minimum path dimension, dmin, connectivity dimension, c, and the mole fraction branch content, φbr. These dimensions

  4. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  5. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  6. Complex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latency

    Directory of Open Access Journals (Sweden)

    Katie Caviness

    2016-03-01

    Full Text Available Human cytomegalovirus (HCMV, a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC model of chronic infection, in a CD34+ hematopoietic progenitor cell (HPC model of latency, and in an in vivo NOD-scid IL2Rγcnull humanized (huNSG mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34+ HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection.

  7. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Petrovsky, Nikolai

    2013-01-01

    In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using 1H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) “melting” or “freezing” points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators. PMID:23853206

  8. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  9. Amperometric enzyme electrodes

    OpenAIRE

    Calvo,E.J.; Danilowicz, C.

    1997-01-01

    Recent advances on amperometric enzyme electrodes are reviewed with particular emphasis on biosensors based on Glucose Oxidase and Horseradish Peroxidase. Redox mediation by artificial soluble and polymer attached redox mediators is discussed in terms of recent theoretical developments and experimental verification. The dependence of the amperometric response on substrate and mediator concentration, enzyme concentration, electrode potential and film thickness are analyzed. Possible applicatio...

  10. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    industries, while Taq polymerase T 4 lysozyme, ribonuclease and malate dehydrogenase are enzymes used in research laboratories. A major limitation of most enzymes used in the industries/ research .... pol 1 , (8) Small domain of Klentaq 1 and (C) Superimposed cluster of aromatic residues in K1entaq1. (thick lines) ...

  11. The monocarboxylate transporter inhibitor α-cyano-4-hydroxycinnamic acid disrupts rat lung branching.

    Science.gov (United States)

    Granja, Sara; Morais-Santos, Filipa; Miranda-Gonçalves, Vera; Viana-Ferreira, Manuel; Nogueira, Rosete; Nogueira-Silva, Cristina; Correia-Pinto, Jorge; Baltazar, Fátima

    2013-01-01

    The human embryo develops in a hypoxic environment. In this way, cells have to rely on the glycolytic pathway for energy supply, leading to an intracellular accumulation of monocarboxylates such as lactate and pyruvate. These acids have an important role in cell metabolism and their rapid transport across the plasma membrane is crucial for the maintenance of intracellular pH homeostasis. This transport is mediated by a family of transporters, designated by monocarboxylate transporters (MCTs), namely isoforms 1 and 4. MCT1/4 expression is regulated by the ancillary protein CD147.The general aim of this study was to characterize the expression pattern of MCT1/4, CD147 and the glucose transporter GLUT1 during human fetal lung development and elucidate the role of MCTs in lung development. The expression pattern of MCT1/4 and GLUT1 was characterized by immunohistochemistry and fetal lung viability and branching were evaluated by exposing rat fetal lung explants to CHC, an inhibitor of MCT activity. Our findings show that all the biomarkers are differently expressed during fetal lung development and that CHC appears to have an inhibitory effect on lung branching and viability, in a dose dependent way. We provide evidence for the role of MCTs in embryo lung development, however to prove the dependence of MCT activity further studies are waranted. © 2014 S. Karger AG, Basel.

  12. Cross-Talk between Alternatively Spliced UGT1A Isoforms and Colon Cancer Cell Metabolism.

    Science.gov (United States)

    Audet-Delage, Yannick; Rouleau, Michèle; Rouleau, Mélanie; Roberge, Joannie; Miard, Stéphanie; Picard, Frédéric; Têtu, Bernard; Guillemette, Chantal

    2017-03-01

    Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function as a complex protein network connecting other metabolic pathways with an influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues-namely, the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by coimmunoprecipitation in the HT115 colon cancer cells and was supported by a partial colocalization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect, with a higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites, including many intermediates derived from the glycolysis and tricarboxylic acid cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2 mRNA in colon tumors compared with normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. [Selective regulation of laccase isoform production by the Lentinus strigosus 1566 fungus].

    Science.gov (United States)

    Myasoedova, N M; Gasanov, N B; Chernykh, A M; Kolomytseva, M P; Golovleva, L A

    2015-01-01

    The effects of a number of culture medium components, such as peptone, yeast extract, mono- and disaccharides, copper ions, 2,6-dimethylphenol, and polycaproamide fiber, on the laccase activity dynamics in the culture liquid and laccase isoform production by the Lentinus strigosus 1566 fungus were studied. It was demonstrated that some saccharides selectively induced or inhibited the synthesis of different laccase isoforms. Similar action was exerted by copper ions, 2,6-dimethylphenol, and polycaproamide fiber, as well as by their combination. Selective in vivo regulation of the production of certain laccase isoforms by basidial fungi by means of altering the culturing medium composition can be utilised for various biotechnological purposes.

  14. SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno.

    OpenAIRE

    Pearson-White, S

    1993-01-01

    We have cloned and sequenced a novel human isoform of sno, snoI for insertion. SnoI contains 1330 nucleotides inserted in place of 7 nucleotides of the snoN mRNA. Sno is a member of the ski protooncogene family, which has been implicated in muscle development. The two previously known sno alternatively spliced isoforms are snoN (684 amino acids), and snoA (415 amino acids); snoI encodes a truncated isoform of 399 amino acids (44,298 MW). Southern blot experiments show that snoI contains a thi...

  15. Genetic variants regulating expression levels and isoform diversity during embryogenesis.

    Science.gov (United States)

    Cannavò, Enrico; Koelling, Nils; Harnett, Dermot; Garfield, David; Casale, Francesco P; Ciglar, Lucia; Gustafson, Hilary E; Viales, Rebecca R; Marco-Ferreres, Raquel; Degner, Jacob F; Zhao, Bingqing; Stegle, Oliver; Birney, Ewan; Furlong, Eileen E M

    2017-01-19

    Embryonic development is driven by tightly regulated patterns of gene expression, despite extensive genetic variation among individuals. Studies of expression quantitative trait loci (eQTL) indicate that genetic variation frequently alters gene expression in cell-culture models and differentiated tissues. However, the extent and types of genetic variation impacting embryonic gene expression, and their interactions with developmental programs, remain largely unknown. Here we assessed the effect of genetic variation on transcriptional (expression levels) and post-transcriptional (3' RNA processing) regulation across multiple stages of metazoan development, using 80 inbred Drosophila wild isolates, identifying thousands of developmental-stage-specific and shared QTL. Given the small blocks of linkage disequilibrium in Drosophila, we obtain near base-pair resolution, resolving causal mutations in developmental enhancers, validated transcription-factor-binding sites and RNA motifs. This fine-grain mapping uncovered extensive allelic interactions within enhancers that have opposite effects, thereby buffering their impact on enhancer activity. QTL affecting 3' RNA processing identify new functional motifs leading to transcript isoform diversity and changes in the lengths of 3' untranslated regions. These results highlight how developmental stage influences the effects of genetic variation and uncover multiple mechanisms that regulate and buffer expression variation during embryogenesis.

  16. Merlin isoform 2 in neurofibromatosis type 2-associated polyneuropathy.

    Science.gov (United States)

    Schulz, Alexander; Baader, Stephan L; Niwa-Kawakita, Michiko; Jung, Marie Juliane; Bauer, Reinhard; Garcia, Cynthia; Zoch, Ansgar; Schacke, Stephan; Hagel, Christian; Mautner, Victor-Felix; Hanemann, C Oliver; Dun, Xin-Peng; Parkinson, David B; Weis, Joachim; Schröder, J Michael; Gutmann, David H; Giovannini, Marco; Morrison, Helen

    2013-04-01

    The autosomal dominant disorder neurofibromatosis type 2 (NF2) is a hereditary tumor syndrome caused by inactivation of the NF2 tumor suppressor gene, encoding merlin. Apart from tumors affecting the peripheral and central nervous systems, most NF2 patients develop peripheral neuropathies. This peripheral nerve disease can occur in the absence of nerve-damaging tumors, suggesting an etiology that is independent of gross tumor burden. We discovered that merlin isoform 2 (merlin-iso2) has a specific function in maintaining axonal integrity and propose that reduced axonal NF2 gene dosage leads to NF2-associated polyneuropathy. We identified a merlin-iso2-dependent complex that promotes activation of the GTPase RhoA, enabling downstream Rho-associated kinase to promote neurofilament heavy chain phosphorylation. Merlin-iso2-deficient mice exhibited impaired locomotor capacities, delayed sensory reactions and electrophysiological signs of axonal neuropathy. Sciatic nerves from these mice and sural nerve biopsies from NF2 patients revealed reduced phosphorylation of the neurofilament H subunit, decreased interfilament spacings and irregularly shaped axons.

  17. Partial Order Reduction for Probabilistic Branching Time

    NARCIS (Netherlands)

    Baier, Christel; d' Argenio, P.R.; Größer, Marcus

    2005-01-01

    In the past, partial order reduction has been used successfully to combat the state explosion problem in the context of model checking for non-probabilistic systems. For both linear time and branching time specifications, methods have been developed to apply partial order reduction in the context of

  18. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...

  19. Medial branch neurotomy in low back pain

    Energy Technology Data Exchange (ETDEWEB)

    Masala, Salvatore; Mammucari, Matteo; Simonetti, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); Nano, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); University ' ' Tor Vergata' ' , Department of Radiology, Rome (Italy); Marcia, Stefano [S. Giovanni di Dio Hospital, Department of Diagnostic and Molecular Imaging, Cagliari (Italy)

    2012-07-15

    This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)

  20. Origin of buds, branches, and sprouts

    Science.gov (United States)

    Kevin T. Smith

    2014-01-01

    Recent research shows that survivor trees in rural, managed forests rebuild broken crowns with new branches and foliage after ice storm injury (Shortle et al. 2014). Veteran trees in historic parks and landscapes show repeated cycles of crown loss and recovery (Fay 2002). Crown rebuilding or reiteration from sprouts is a physiological response with architectural...

  1. Academic Branch Libraries: Assessment and Collection Development

    Science.gov (United States)

    Poole, Julie

    2009-01-01

    An ongoing project at Mercer University's Regional Academic Center Libraries illustrates how utilizing established assessment guidelines, stakeholder input, and a clear understanding of audience and curriculum needs may all be used to optimize a collection. Academic branch libraries often have clear collection development limitations in terms of…

  2. Headward growth and branching in subterranean channels

    Science.gov (United States)

    Kudrolli, Arshad; Ionkin, Nikolay; Panaitescu, Andreea

    2017-11-01

    We investigate the erosive growth of channels in a thin subsurface sedimentary layer driven by hydrodynamic drag toward understanding subterranean networks and their relation to river networks charged by ground water. Building on a model based on experimental observations of fluid-driven evolution of bed porosity, we focus on the characteristics of the channel growth and their bifurcations in a horizontal rectangular domain subject to various fluid source and sink distributions. We find that the erosion front between low- and high-porosity regions becomes unstable, giving rise to branched channel networks, depending on the spatial fluctuations of the fluid flow near the front and the degree to which the flow is above the erodibility threshold of the medium. Focusing on the growth of a network starting from a single channel, and by identifying the channel heads and their branch points, we find that the number of branches increases sublinearly and is affected by the source distribution. The mean angles between branches are found to be systematically lower than river networks in humid climates and depend on the domain geometry.

  3. Glucoamylase isoform (GAII) purified from a thermophilic fungus ...

    African Journals Online (AJOL)

    GAII bound to the DEAECellulose and was eluted with a NaCl gradient, while GAI did not bind to the resin. GAII presented electrophoretic homogeneity in 6% denaturing and non-denaturing PAGE, separately, with a molecular mass of 83 kDa, after the second round DEAE-Cellulose purification step. The enzyme pI was 7.2.

  4. The AFCRL Lunar amd Planetary Research Branch

    Science.gov (United States)

    Price, Stephan D.

    2011-07-01

    The Lunar and Planetary research program led by Dr John (Jack) Salisbury in the 1960s at the United States Air Force Cambridge Research Laboratories (AFCRL) investigated the surface characteristics of Solar System bodies. The Branch was one of the first groups to measure the infrared spectra of likely surface materials in the laboratory under appropriate vacuum and temperature conditions. The spectral atlases created from the results were then compared to photometric and spectral measurements obtained from ground- and balloon-based telescopes to infer the mineral compositions and physical conditions of the regoliths of the Moon, Mars and asteroids. Starting from scratch, the Branch initially sponsored observations of other groups while its in-house facilities were being constructed. The earliest contracted efforts include the spatially-resolved mapping of the Moon in the first half of the 1960s by Richard W. Shorthill and John W. Saari of the Boeing Scientific Research Laboratories in Seattle. This effort ultimately produced isophotal and isothermal contour maps of the Moon during a lunation and time-resolved thermal images of the eclipsed Moon. The Branch also sponsored probe rocket-based experiments flown by Riccardo Giacconi and his group at American Science and Engineering Inc. that produced the first observations of X-ray stars in 1962 and later the first interferometric measurement of the ozone and C02 emission in the upper atmosphere. The Branch also made early use of balloon-based measurements. This was a singular set of experiments, as these observations are among the very few mid-infrared astronomical measurements obtained from a balloon platform. Notable results of the AFCRL balloon flights were the mid-infrared spectra of the spatially-resolved Moon obtained with the University of Denver mid-infrared spectrometer on the Branch's balloon-borne 61-cm telescope during a 1968 flight. These observations remain among the best available. Salisbury also funded

  5. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids.

    Science.gov (United States)

    Blaisse, Michael R; Dong, Hongjun; Fu, Beverly; Chang, Michelle C Y

    2017-10-18

    Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L(-1)) or branched enoic acids (1.12 ± 0.06 g L(-1)) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.

  6. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu

    2017-10-20

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre\\'s ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  7. DEEPre: sequence-based enzyme EC number prediction by deep learning.

    Science.gov (United States)

    Li, Yu; Wang, Sheng; Umarov, Ramzan; Xie, Bingqing; Fan, Ming; Li, Lihua; Gao, Xin

    2017-10-23

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number. We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre's ability to capture the functional difference of enzyme isoforms. The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  8. Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.

    Science.gov (United States)

    Dölle, Christian; Ziegler, Mathias

    2009-02-15

    The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.

  9. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  10. Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina (Rhodophyta)

    Science.gov (United States)

    Zhao, Jiqiang; Li, Lixia

    2014-11-01

    Macroalgae in a littoral zone are inevitably exposed to UV-B irradiance. We analyzed the effects of UV-B on isoenzyme patterns and activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) of red algae Grateloupia filicina (Lamour.) C. Agardh. The activities of SOD, CAT, and APX changed in response to UV-B in a time- and dose-dependent manner. POX activity increased significantly under all three UV-B treatments. The enzymatic assay showed three distinct bands of SODI (Mn-SOD), SODII (Fe-SOD), and SODIII (CuZn-SOD) under a low (Luv) and medium (Muv) dose of UV-B irradiation, while SODI and SODIII activities decreased significantly when exposed to a high dose of UV-B irradiation (Huv). The activity of POX isoenzymes increased significantly after exposure to UV-B, which is consistent with the total activity. In addition, a clear decrease in activity of CATIV was detected in response to all the three doses of UV treatments. Some bands of APX isoenzyme were also clearly influenced by UV-B irradiation. Correspondingly, the daily growth rate declined under all the three exposure doses, and was especially significant under Muv and Huv treatments. These data suggest that, although the protection mechanisms of antioxidant defense system are partly inducible by UV-B to prevent the damage, G. filicina has incomplete tolerance to higher UV-B irradiation stress.

  11. An abnormally glycosylated isoform of erythropoietin in hemangioblastoma is associated with polycythemia.

    Science.gov (United States)

    Delanghe, Sigurd E; Dierick, Jan; Maenhout, Thomas M; Zabeau, Lennart; Tavernier, Jan; Claes, Kathleen; Bleyen, Joris; Delanghe, Joris R

    2015-01-01

    Hemangioblastomas express erythropoietin and the patients often present with polycythemia. Serum erythropoietin was measured using a commercial immunoassay, a functional erythropoietin assay and iso-electric focusing. Despite the polycythemia, serum erythropoietin remained low, while a functional erythropoietin-assay showed a 4-5 higher activity in serum compared to the immunoassay. Iso-electric focusing of serum erythropoietin indicated overrepresentation of highly sialylated erythropoietin isoforms produced by the tumor. As a result, altered affinity of the monoclonal antibody used in the immunoassay for the hypersialylated isoforms was suggested. Analysis of erythropoietin isoforms may be helpful in distinguishing the ectopic erythropoietin isoforms from normally glycosylated erythropoietin. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Altered β-Amyloid Precursor Protein Isoforms in Mexican Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    V. J. Sánchez-González

    2006-01-01

    Full Text Available Objective: To determine the β-amyloid precursor protein (βAPP isoforms ratio as a risk factor for Alzheimer’s Disease and to assess its relationship with demographic and genetic variables of the disease.

  13. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  14. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease

    NARCIS (Netherlands)

    Kamphuis, W.; Middeldorp, J.; Kooijman, L.; Sluijs, J.A; Kooi, E.J.; Moeton, M.; Freriks, M.; Mizee, M.R.; Hol, E.M.

    2014-01-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of

  15. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease

    NARCIS (Netherlands)

    Kamphuis, W.; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of

  16. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  17. Complex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latency.

    Science.gov (United States)

    Caviness, Katie; Bughio, Farah; Crawford, Lindsey B; Streblow, Daniel N; Nelson, Jay A; Caposio, Patrizia; Goodrum, Felicia

    2016-03-01

    Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34(+) hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2Rγc (null) humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34(+) HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection. The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target

  18. Distinct chromatographic forms of human hemi-myeloperoxidase obtained by reductive cleavage of the dimeric enzyme. Evidence for subunit heterogeneity.

    Science.gov (United States)

    Taylor, K L; Guzman, G S; Pohl, J; Kinkade, J M

    1990-09-15

    The enzyme myeloperoxidase (MPO) is a functionally important glycoprotein of neutrophilic granulocytes and occurs in three major isoforms (forms 1, 2, and 3) that are dimeric structures composed of two heavy subunit-light subunit protomers, each of which is associated with a chlorine-like prosthetic group. In the present study, highly purified MPO isoforms were obtained from the cells of a single normal donor, and each protein was subjected to reductive alkylation under nondenaturing conditions. The resulting enzymatically active protomers were separated from unreacted dimer using gel filtration chromatography. Use of a fast protein liquid chromatography cation exchange system with a Mono S matrix revealed heterogeneity of the protomers, and allowed essentially complete resolution of the protomers of MPO form 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two resolved protomeric species under reducing conditions revealed small but reproducible differences in the Mr of their heavy subunits (59,000 and 57,000). Treatment with either endo-beta-N-acetylglucosaminidase or peptide N-glycohydrolase F reduced the Mr of each heavy subunit by approximately 3000 but did not change their relative electrophoretic mobilities. Heavy and light subunits were prepared from each of the MPO isoforms by reductive alkylation under conditions that allowed full retention of the prosthetic group with the heavy subunit. Reverse-phase chromatography and amino-terminal sequencing showed that each MPO isoform contained one major species of light subunit and several minor species. No differences in peroxidatic activity or inhibition by salicylhydroxamic acid were observed among any of the MPO isoforms or resolved protomers, but the latter were considerably more heat labile than dimeric forms of the enzyme and a monomeric form isolated from HL-60 cells. This is the first report of the isolation and partial characterization of distinct protomers from a single isoform of human

  19. 3rd Workshop on Branching Processes and their Applications

    CERN Document Server

    González, Miguel; Gutiérrez, Cristina; Martínez, Rodrigo; Minuesa, Carmen; Molina, Manuel; Mota, Manuel; Ramos, Alfonso; WBPA15

    2016-01-01

    This volume gathers papers originally presented at the 3rd Workshop on Branching Processes and their Applications (WBPA15), which was held from 7 to 10 April 2015 in Badajoz, Spain (http://branching.unex.es/wbpa15/index.htm). The papers address a broad range of theoretical and practical aspects of branching process theory. Further, they amply demonstrate that the theoretical research in this area remains vital and topical, as well as the relevance of branching concepts in the development of theoretical approaches to solving new problems in applied fields such as Epidemiology, Biology, Genetics, and, of course, Population Dynamics. The topics covered can broadly be classified into the following areas: 1. Coalescent Branching Processes 2. Branching Random Walks 3. Population Growth Models in Varying and Random Environments 4. Size/Density/Resource-Dependent Branching Models 5. Age-Dependent Branching Models 6. Special Branching Models 7. Applications in Epidemiology 8. Applications in Biology and Genetics Offer...

  20. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    , a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high...

  1. [Subchronic toxicity test of genetically modified rice with double antisense starch-branching enzyme gene].

    Science.gov (United States)

    Li, Min; Piao, Jianhua; Yang, Xiaoguang

    2010-07-01

    To observe the sub-chronic toxic effects of the genetically modified rice with double antisense SBE gene. Based on gender and weight, weanling Wistar rats were randomly sorted into five groups: non-genetically modified rice group (group A), genetically modified rice group (group B), half genetically modified rice group (group C), quarter genetically modified rice group (group D) and AIN-93G normal diet group (group E). Indicators were the followings: body weight, food consumption, blood routine, blood biochemical test, organ weight, bone density and pathological examination of organs. At the middle of the experiment, the percentage of monocyte of female group B was less than that of group E (P 0.05), and no notable abnormity in the pathological examination of main organs (P > 0.05). There were no enough evidence to confirm the sub-chronic toxicity of genetically modified rice on rats.

  2. Clinical considerations of the glandular branch of the lacrimal artery.

    Science.gov (United States)

    Kluckman, Matthew; Fan, Jerry; Balsiger, Heather; Scott, Gabriel; Gest, Thomas

    2015-10-01

    The lacrimal artery is classically described as a branch of the ophthalmic artery supplied by the internal carotid. In this study, 25 orbits were dissected to identify variations in glandular branching and to compare them to previously published accounts. The glandular branching patterns of the lacrimal artery fall into two categories, those that branch (56%) and those that do not branch (44%). We found the medial and lateral glandular branches to be equal in diameter with a divergence of 2.67-40.58 mm proximal to the gland parenchyma. The long glandular branches run alongside the superolateral aspect of the orbit. The lateral branch runs lateral to the lateral rectus muscle. The medial branch runs superomedial to the lateral rectus muscle and lateral to the superior rectus muscle. In relation to the lacrimal gland, the medial branch enters the superior aspect of the gland parenchyma and the lateral branch enters its inferior aspect. The average branch lengths were 17.88 mm (medial) and 13.51 mm (lateral) as measured with a Mitutoyo Absolute 1/100 mm caliper. We could not confirm the existence of a third branch supplying the lacrimal gland, as posited by other authors. The key finding in this study is that the lacrimal gland is predominantly supplied by two significant arterial branches, both of which must be identified during procedures involving the lateral orbit. © 2015 Wiley Periodicals, Inc.

  3. The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles

    Science.gov (United States)

    Rotoli, Deborah; Cejas, Mariana-Mayela; Maeso, María-del-Carmen; Pérez-Rodríguez, Natalia-Dolores; Morales, Manuel; Ávila, Julio

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Recent studies point out that gliomas exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma. Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating cellular dynamics, particularly during cancer progression. The aim of this study was to determine the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms, β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples. Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM, although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly, differences in isoforms expression have been observed between primary and secondary GBM: in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms expression in GBM could be related to a different ionic handling, to a different relationship between astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β subunits as adaptor proteins and transcription factors. PMID:29117147

  4. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development

    OpenAIRE

    Waite, Mindy R.; Skidmore, Jennifer M.; Micucci, Joseph A.; Shiratori, Hidetaka; Hamada, Hiroshi; Martin, James F.; Martin, Donna M.

    2012-01-01

    Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and c...

  5. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  6. MAPT isoforms: differential transcriptional profiles related to 3R and 4R splice variants.

    Science.gov (United States)

    Chen, Shufen; Townsend, Kirk; Goldberg, Terry E; Davies, Peter; Conejero-Goldberg, Concepcion

    2010-01-01

    Tau aggregation in neurofibrillary tangles is a pathological hallmark in tauopathies including Alzheimer's disease (AD). The predominant aggregation of certain MAPT (tau gene) isoforms, either the 4-repeat (4R tau) or the 3-repeat (3R tau) isoform has been widely described in tauopathies. Alterations of the 4R tau to 3R tau ratio may be a key for tau-related neurodegeneration. To study the biological consequences in expression between tau splicing isoforms 4R and 3R, we analyzed the main neurobiological effects of inclusion of the repeat region coded by exon 10 in MAPT. We compared the transcriptional profiles of the 4R tau isoforms to 3R tau isoforms using whole-genome gene expression profiling microarrays using human neuroblastoma SH-SY5Y cell lines overexpressing either human 4R tau or 3R tau isoforms. We identified 68 transcripts that differed significantly (at p 4R and 3R isoforms as conditioned on a second variant, the so-called 2N inclusion. We extended these findings in a 2 × 2 ANOVA to examine interaction effects of these variants. Transcripts involved in embryonic development were downregulated when exon 10 was present, while transcripts related to outgrowth of neurites were generally upregulated. An important pathway implicated in AD also differed between the 3R and 4R cell lines, Wnt signaling. These studies demonstrate expression differences between MAPT isoforms 4R tau and 3R tau due to the inclusion/exclusion of the repeat region coded for by exon 10. Our data add to complex findings on the role of 3R/4R in normal and abnormal neuronal function and highlight several molecular mechanisms that might drive neurodegeneration, or perhaps, set the stage for it.

  7. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    Directory of Open Access Journals (Sweden)

    Niels Jacob Aachmann-Andersen

    Full Text Available The membrane-assisted isoform immunoassay (MAIIA quantitates erythropoietin (EPO isoforms as percentages of migrated isoforms (PMI. We evaluated the effect of recombinant human EPO (rhEPO on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13; high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13; or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3 % (mean (SD. High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2% (p<0.00001 and 45.2 (7.3% (p<0.00001. Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8% (p<0.00001 and 46.1 (10.4% (p<0.00001. In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4% (p=0.029; low-dose Epoetin beta: 73.1 (17.8% (p=0.039. In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  8. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression.

    Directory of Open Access Journals (Sweden)

    Thomas P Stricker

    2017-03-01

    Full Text Available Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+ subtype and fourteen triple negative (TN subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.

  9. Efficient regulation of branching morphogenesis via fibroblast growth factor receptor 2c in early-stage embryonic mouse salivary glands.

    Science.gov (United States)

    Shibuya, Minami; Ikari, Tatsuya; Sugiyama, Goro; Ohyama, Yukiko; Kumamaru, Wataru; Nagano, Koki; Sugiura, Tsuyoshi; Shirasuna, Kanemitsu; Mori, Yoshihide

    Salivary gland (SG) defects have a wide range of health implications, including xerostomia, bacterial infections, and oral health issues. Branching morphogenesis is critical for SG development. A clear understanding of the mechanisms underlying this process will accelerate SG regeneration studies. Fibroblast growth factor receptor 2 (FGFR2) interacts with multiple fibroblast growth factors (FGFs), which promote development. FGFR2 consists of two isoforms, FGFR2b and FGFR2c. FGFR2b is critical for SG development, but little is known about the expression and function of FGFR2c. We investigated the expression of all FGFR family members in fetal SGs between embryonic day 12.5 (E12.5) and E18.5. Based on RT-PCR, we observed an increase in the expression of not only Fgfr2b, but also Fgfr2c in early-stage embryonic mouse SGs, suggesting that FGFR2c is related to SG development. The branch number decreased in response to exogenous FGF2 stimulation, and this effect was suppressed by a mouse anti-FGFR2c neutralizing antibody (NA) and siRNA targeting FGFR2c, whereas FGFR2b signaling was not inhibited. Moreover, the expression of marker genes related to EMT was induced by FGF2, and this expression was suppressed by the NA. These results suggested that branching morphogenesis in SGs is regulated by FGFR2c, in addition to FGFR2b. Interestingly, FGFR2c signaling also led to increased fgf10 expression, and this increase was suppressed by the NA. FGFR2c signaling regulates branching morphogenesis through the activation of FGFR2b signaling via increased FGF10 autocrine. These results provide new insight into the mechanisms by which crosstalk between FGFR2b and FGFR2c results in efficient branching morphogenesis. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  11. Enzyme catalysed tandem reactions.

    Science.gov (United States)

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-04-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a reversible process to become irreversible, to shift the equilibrium reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of different classes of organic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Starch Biorefinery Enzymes.

    Science.gov (United States)

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  13. Regulation profile of phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs) components towards UDP-glucuronosyltransferases (UGTs) isoforms.

    Science.gov (United States)

    Gao, Xin; Qu, Hengyan; Ai, Chun-Zhi; Cao, Yun-Feng; Huang, Ting; Chen, Jian-Xing; Zeng, Jia; Sun, Xiao-Yu; Hong, Mo; Gonzalez, Frank J; Liu, Zeyuan; Fang, Zhong-Ze

    2015-03-01

    1.Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2.UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3.About 50 μM of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.

  14. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  15. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation

    Directory of Open Access Journals (Sweden)

    Marion Schiengold

    2006-01-01

    Full Text Available The multidrug resistance (MDR phenotype is associated with the expression of P-glycoprotein (Pgp, coded by the multigenic mdr family. Mice present the isoforms mdr1 and mdr3, which are responsible for multidrug resistance, and mdr2, that is involved in the transport of phospholipids. mdr1 expression has more recently been associated also with the secretion of steroid hormones. This work presents an RT-PCR analysis of the expression of mdr isoforms, in several organs of mice during different phases of the estrous cycle. Additionally, females were ovariectomized, submitted to different hormone treatments, and their uterus was analyzed for the expression of mdr isoforms. The results show that in the adrenal gland and ovaries mdr1 is the main isoform during proestrus, and that progesterone or a combination of progesterone and estrogen induce the expression of all mdr isoforms in the uterus of ovariectomized females. We suggest that the functions of mdr1 and mdr3 are overlapping, that mdr3 may be the more efficient isoform in the detoxification function, and that mdr1 may be more closely related to the secretion of steroid hormones.

  16. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  17. Absolute Quantitation of Isoforms of Post-translationally Modified Proteins in Transgenic Organism*

    Science.gov (United States)

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-01-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (Pisf) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent 14N-coded synthetic peptide standards and 15N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (Tisf) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (Raqu). The Pisf was finally determined by integrating the two empirically measured variables using the following equation: Pisf = Tisf · Raqu. The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants. PMID:22442259

  18. Isoforms of green fluorescent protein differ from each other in solvent molecules 'trapped' inside this protein.

    Science.gov (United States)

    Glukhova, Kseniya F; Marchenkov, Victor V; Melnik, Tatiana N; Melnik, Bogdan S

    2017-05-01

    Green fluorescent protein (GFP) has been studied quite thoroughly, however, up to now some experimental data have not been explained explicitly. For example, under native conditions this protein can have two isoforms differing in their mobility in gel. In this case, no differences between the isoforms are revealed under denaturing conditions. In order to understand the difference in the isoforms of this protein, we have investigated GFP-cycle3 using mass spectrometry, gel electrophoresis, size exclusion chromatography, microcalorimetry, and spectroscopy methods under varying conditions. We have also designed and studied three mutant forms of this protein with substitutions of amino acid residues inside the GFP barrel. The mutations have allowed us to influence the formation of different GFP isoforms. Each of the mutant proteins has predominantly only one isoform. As a result of the performed research, it can be concluded that most likely the GFP isoforms differ in the solvent molecules 'trapped' inside the GFP barrel. In their turn, these molecules have an effect on the protein charge and consequently on its mobility at electrophoresis under native conditions.

  19. Engineering Erg10 thiolase from Saccharomyces cerevisiae as a synthetic toolkit for the production of branched-chain alcohols.

    Science.gov (United States)

    Torres-Salas, Pamela; Bernal, Vicente; López-Gallego, Fernando; Martínez-Crespo, Javier; Sánchez-Murcia, Pedro Alejandro; Barrera, Víctor; Morales-Jiménez, Rocío; García-Sánchez, Ana; Mañas-Fernández, Aurora; Seoane, José Miguel; Sagrera Polo, Marta; Miranda, Juande D; Calvo, Javier; Huertas, Sonia; Torres, José Luis; Alcalde-Bascones, Ana; González-Barrera, Sergio; Gago, Federico; Morreale, Antonio; González-Barroso, María Del Mar

    2018-01-23

    Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such position exert effects on the activity and product selectivity of the enzymes that are highly dependent on protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants in position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol which is interesting as branched model compound.

  20. Advances in enzyme immobilisation

    CSIR Research Space (South Africa)

    Brady, D

    2009-07-10

    Full Text Available substrate to fix the structure of cyclodextrin glycosyltransferases during rigidification by immobilisation, thereby enhancing the synthetic capability of the enzyme relative to its hydrolytic activity. In particular, modulation of enzyme... aggregates for enantioselective nitrile hydrolysis. Adv Synth Catal 349:2167- 2176 Kaulpiboon J, Pongsawasdi P, Zimmermann W (2007) Molecular imprinting of cyclodextrin glycosyltransferases from Paenibacillus sp. A11 and Bacillus macerans with γ-cyclodextrin...

  1. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  2. Masquerading bundle branch block: a variety of right bundle branch block with left anterior fascicular block.

    Science.gov (United States)

    Elizari, Marcelo V; Baranchuk, Adrian; Chiale, Pablo A

    2013-01-01

    The so-called 'masquerading' type of right bundle branch block is caused by the simultaneous presence of a high-degree left anterior fascicular block often accompanied with severe left ventricular enlargement and/or fibrotic block in the anterolateral wall of the left ventricle. These conditions tend to reorient the terminal electrical forces of the QRS complex towards the left and upwards, in such a way that the characteristic slurred S wave in lead I becomes smaller or even disappears. In many cases of standard masquerading right bundle branch block, a small Q wave in lead I is present due to the initial forces of the left anterior fascicular block, which are oriented rightwards and inferiorly. However, in some cases, the Q wave in lead I also vanishes, and the mimicking of a left bundle branch block becomes perfect in standard leads. This is commonly associated with an inferior myocardial infarction or severe inferior fibrosis in cardiomyopathies. The typical QRS changes of right bundle branch block may eventually be concealed even in the right precordial leads; under such circumstances, the ECG diagnosis may be mistaken and the right bundle branch block totally missed. The masquerading right bundle branch block carries a poor prognosis, since it always implies the presence of a severe underlying heart disease.

  3. Enzyme kinetics in drug metabolism: fundamentals and applications.

    Science.gov (United States)

    Nagar, Swati; Argikar, Upendra A; Tweedie, Donald J

    2014-01-01

    Enzymes are protein catalysts that lower the energy barrier for a reaction and speed the rate of a chemical change. The kinetics of reactions catalyzed by enzymes, as well as several mechanisms underlying the kinetics, have been comprehensively studied and written in textbooks (1, 2). The importance of quantitative evaluation of enzymatic processes has been recognized in many fields of study, including biochemistry, molecular biology, and pharmaceutical sciences to name a few. In pharmaceutical sciences, the applications of enzyme kinetics range from hit finding efforts for new chemical entities on a pharmacological target to concentration effect relationships to large-scale biosynthesis. The study of the science of drug metabolism has two principal concepts-rate and extent. While understanding disposition pathways and identification of metabolites provides an insight into the extent of metabolism, kinetics of depletion of substrates (endogenous or exogenous) and formation of metabolites deals with the rate of metabolism. The current textbook specifically focuses on kinetics of drug-metabolizing enzymes, detailing specific enzyme classes, and discusses kinetics as they apply to drug transporters. This textbook also outlines additional factors that contribute to the kinetics of reactions catalyzed by these proteins such as variability in isoforms (pharmacogenomics) and experimental factors including key concepts such as alterations of substrate concentrations due to binding. Applications of these approaches in predicting kinetic parameters and alternative approaches for enzymes (systems biology) and transporters are also discussed. The final section focuses on real-life examples (case studies) to try and exemplify the applications of enzyme kinetic principles. This chapter provides a brief overview outlining some key concepts within each of the sections and the chapters within this textbook.

  4. Threonine 201 in the diiron enzyme toluene 4-monooxygenase is not required for catalysis.

    Science.gov (United States)

    Pikus, J D; Mitchell, K H; Studts, J M; McClay, K; Steffan, R J; Fox, B G

    2000-02-01

    The diiron enzyme toluene 4-monooxygenase from Pseudomonas mendocina KR1 catalyzes the NADH- and O(2)-dependent hydroxylation of toluene. A combination of sequence alignments and spectroscopic studies indicate that T4MO has an active site structure closely related to the crystallographically characterized methane monooxygenase hydroxylase. In the methane monooxygenase hydroxylase, active site residue T213 has been proposed to participate in O(2) activation by analogy to certain proposals made for cytochrome P450. In this work, mutagenesis of the comparable residue in the toluene 4-monooxygenase hydroxylase, T201, has been used to investigate the role of an active site hydroxyl group in catalysis. Five isoforms (T201S, T201A, T201G, T201F, and T201K) that retain catalytic activity based on an in vivo indigo formation assay were identified, and detailed characterizations of the purified T201S, T201A, and T201G variants are reported. These isoforms have k(cat) values of 1.2, 1.0, and 0.6 s(-)(1), respectively, and k(cat)/K(M) values that vary by only approximately 4-fold relative to that of the native isoform. Moreover, these isoforms exhibit 80-90% coupling efficiency, which also compares favorably to the >94% coupling efficiency determined for the native isoform. For the T201S, T201A, and T201G isoforms, the regiospecificity of toluene hydroxylation was nearly identical to that of the natural isoform, with p-cresol representing 90-95% of the total product distribution. In contrast, the T201F isoform caused a substantial shift in the product distribution, and gave o- and p-cresol in a 1:1 ratio. In addition, the amount of benzyl alcohol was increased approximately 10-fold with the T201F isoform. For reaction with p-xylene, previous studies have shown that the native isoform reacted to give 4-methybenzyl alcohol and 2, 5-dimethylphenol in a 4:1 ratio [Pikus, J. D., Studts, J. M., McClay, K., Steffan, R. J., and Fox, B. G. (1997) Biochemistry 36, 9283-9289]. For

  5. Dielectric response of branched copper phthalocyanine

    Science.gov (United States)

    Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.

    2017-09-01

    The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.

  6. Branching time, indeterminism and tense logic

    DEFF Research Database (Denmark)

    Ploug, Thomas; Øhrstrøm, Peter

    2012-01-01

    This paper deals with the historical and philosophical background of the introduction of the notion of branching time in philosophical logic as it is revealed in the hitherto unpublished mail-correspondence between Saul Kripke and A.N. Prior in the late 1950s. The paper reveals that the idea...... was first suggested by Saul Kripke in a letter to A.N. Prior, dated September 3, 1958, and it is shown how the elaboration of the idea in the course of the correspondence was intimately intervowen with considerations of how to represent indeterminism and of the adequacy of tensed logic in light of special...... relativity. The correspondence underpins the point that Prior’s later development of branching time may be understood as a crucial part of his attempt at the formulating a conceptual framework integrating basic human notions of time and free choice....

  7. Branched standard spines of 3-manifolds

    CERN Document Server

    Benedetti, Riccardo

    1997-01-01

    This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.

  8. Photovoltaic Program Branch annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K A [ed.

    1990-03-01

    This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

  9. The soluble pool of HLA-G produced by human trophoblasts does not include detectable levels of the intron 4-containing HLA-G5 and HLA-G6 isoforms.

    Science.gov (United States)

    Blaschitz, A; Juch, H; Volz, A; Hutter, H; Daxboeck, C; Desoye, G; Dohr, G

    2005-10-01

    In the context of implantation and pregnancy, several immunomodulating functions have been attributed to the different HLA-G isoforms. Increasing attention is now being addressed to the actively secreted soluble forms, because they might have a systemic function or could be useful as diagnostic tools. However, the cellular source of secretion, even during pregnancy, where HLA-G expression level is known to be highest, is still under debate. To elucidate the conflicting results, we investigated the isoform distribution in human first trimester and term placentas in situ and in vitro. Results obtained by applying immunohistochemistry, western blot, enzyme-linked immunosorbent assay (ELISA) and RT-PCR show that (1) all of the alpha1 domain-containing HLA-G isoforms are restrictedly expressed in the extravillous cytotrophoblasts (EVCTs) and very few first-trimester syncytiotrophoblasts, which directly cover cell columns, whereas mesenchymal cells of the villous chorion do not express HLA-G; (2) as demonstrated in western blots, trophoblasts express only the HLA-G1 isoform; (3) HLA-G5 and -G6 transcripts could be detected in human term placenta and isolated first-trimester trophoblasts but levels are extremely low; and (4) conditioned media of primary first-trimester trophoblasts, and the chorion laeve-derived trophoblastic cell line AC1-M59 do contain HLA-G1 fragments shed from the cell surface. Our data provide substantial evidence that none of the intron 4-containing isoforms, the so-called actively secreted, soluble HLA-G5 or -G6, are produced by human trophoblasts in situ or in vitro.

  10. COELIAC TRUNK BRANCHING PATTERN AND VARIATION

    Directory of Open Access Journals (Sweden)

    Jude Jose Thomson

    2017-01-01

    Full Text Available BACKGROUND Anatomical variations involving the visceral arteries are common. However, variations in coeliac trunk are usually asymptomatic, they may become important in patients undergoing diagnostic angiography for gastrointestinal bleeding or prior to an operative procedure. This study was useful for knowing the possible morphological variations before an upper abdominal surgery. MATERIALS AND METHODS This was a descriptive study done by cadaveric dissection, conducted on thirty cadavers. The coeliac trunk being examined for its origin, branching pattern, distribution, and variations. Results were statistically analysed and compared with the previous studies. RESULTS In our study, 60% of the coeliac trunk shows variations and 40% have normal branching pattern. A complete absence of coeliac trunk was observed in one case. In the present study the Right inferior phrenic artery arising from coeliac trunk in 2 cases (6.6% and left inferior phrenic artery arising from coeliac trunk in 3 cases (9.9%. Both inferior phrenic arteries are arising from coeliac trunk in 2 cases (6.6%. The common hepatomesenteric trunk and gastro splenic trunk was found in 1 case (3.3%. Hepatosplenic trunk was found in 2 cases (6.6%. In another 2 cases (6.6% gastric and hepatic artery originate from coeliac trunk but splenic artery has a separate origin from abdominal aorta. An absent trunk was also found in 1 case (3.3%. In 5 cases (16.7% showed trifurcation with variation in the branching pattern. CONCLUSION The branching pattern and extreme degree variability in coeliac trunk as brought out in the observations of the present study make it obvious that the present study almost falls in description with previous studies.

  11. Multiple-Block Ahead Branch Predictors

    OpenAIRE

    Seznec, André; Jourdan, Stéphan; Sainrat, Pascal; Michaud, Pierre

    1996-01-01

    A basic rule in computer architecture is that a processor cannot execute an application faster than it fetches its instructions. To overcome the instruction fetch bottleneck shown in wide-dispatch «brainiac» processors, this paper presents a novel cost-effective mechanism called the multiple-block ahead branch predictor that predicts in an efficient way addresses of multiple basic blocks in a single cycle. Moreover and unlike the previous multiple predictor schemes, the multiple-block ahead b...

  12. [Importance of the 11β-hydroxysteroid dehydrogenase enzyme in clinical disorders].

    Science.gov (United States)

    Feldman, Karolina; Likó, István; Nagy, Zsolt; Szappanos, Agnes; Grolmusz, Vince Kornél; Tóth, Miklós; Rácz, Károly; Patócs, Attila

    2013-02-24

    Glucocorticoids play an important role in the regulation of carbohydrate and amino acid metabolism, they modulate the function of the immune system, and contribute to stress response. Increased and decreased production of glucocorticoids causes specific diseases. In addition to systemic hypo- or hypercortisolism, alteration of local synthesis and metabolism of cortisol may result in tissue-specific hypo- or hypercortisolism. One of the key enzymes participating in the local synthesis and metabolism of cortisol is the 11β-hydroxysteroid dehydrogenase enzyme. Two isoforms, type 1 and type 2 enzymes are located in the endoplasmic reticulum and catalyze the interconversion of hormonally active cortisol and inactive cortisone. The type 1 enzyme mainly works as an activator, and it is responsible for the generation of cortisol from cortisone in liver, adipose tissue, brain and bone. The gene encoding this enzyme is located on chromosome 1. The authors review the physiological and pathophysiological processes related to the function of the type 1 11β-hydroxysteroid dehydrogenase enzyme. They summarize the potential significance of polymorphic variants of the enzyme in clinical diseases as well as knowledge related to inhibitors of enzyme activity. Although further studies are still needed, inhibition of the enzyme activity may prove to be an effective tool for the treatment of several diseases such as obesity, osteoporosis and type 2 diabetes.

  13. Alterations in mRNA 3' UTR Isoform Abundance Accompany Gene Expression Changes in Human Huntington's Disease Brains.

    Science.gov (United States)

    Romo, Lindsay; Ashar-Patel, Ami; Pfister, Edith; Aronin, Neil

    2017-09-26

    The huntingtin gene has two mRNA isoforms that differ in their 3' UTR length. The relationship of these isoforms with Huntington's disease is not established. We provide evidence that the abundance of huntingtin 3' UTR isoforms differs between patient and control neural stem cells, fibroblasts, motor cortex, and cerebellum. Huntingtin 3' UTR isoforms, including a mid-3' UTR isoform, have different localizations, half-lives, polyA tail lengths, microRNA sites, and RNA-binding protein sites. Isoform shifts in Huntington's disease motor cortex are not limited to huntingtin; 11% of alternatively polyadenylated genes change the abundance of their 3' UTR isoforms. Altered expression of RNA-binding proteins may be associated with aberrant isoform abundance; knockdown of the RNA-binding protein CNOT6 in control fibroblasts leads to huntingtin isoform differences similar to those in disease fibroblasts. These findings demonstrate that mRNA 3' UTR isoform changes are a feature of molecular pathology in the Huntington's disease brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Structural basis for isoform-selective inhibition in nitric oxide synthase.

    Science.gov (United States)

    Poulos, Thomas L; Li, Huiying

    2013-02-19

    in isoform-selectivity. For example, we expected that the aminopyridine group on our inhibitors would form a hydrogen bond with a conserved Glu inside the NOS active site. Instead, in one group of inhibitors, the aminopyridine group extends outside of the active site where it interacts with a heme propionate. For this orientation to occur, a conserved Tyr side chain must swing out of the way. This unanticipated observation taught us about the importance of inhibitor chirality and active site dynamics. We also successfully used computational methods to gain insights into the contribution of the state of protonation of the inhibitors to their selectivity. Employing the lessons learned from the aminopyridine inhibitors, the Silverman lab designed and synthesized symmetric double-headed inhibitors with an aminopyridine at each end, taking advantage of their ability to make contacts both inside and outside of the active site. Crystal structures provided yet another unexpected surprise. Two of the double-headed inhibitor molecules bound to each enzyme subunit, and one molecule participated in the generation of a novel Zn(2+) site that required some side chains to adopt alternate conformations. Therefore, in addition to achieving our specific goal, the development of nNOS selective compounds, we have learned how subtle differences in dynamics and structure can control protein-ligand interactions and often in unexpected ways.

  15. Fabrication and characterization of branched carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Sharali Malik

    2016-09-01

    Full Text Available Carbon nanotubes (CNTs have atomically smooth surfaces and tend not to form covalent bonds with composite matrix materials. Thus, it is the magnitude of the CNT/fiber interfacial strength that limits the amount of nanomechanical interlocking when using conventional CNTs to improve the structural behavior of composite materials through reinforcement. This arises from two well-known, long standing problems in this research field: (a inhomogeneous dispersion of the filler, which can lead to aggregation and (b insufficient reinforcement arising from bonding interactions between the filler and the matrix. These dispersion and reinforcement issues could be addressed by using branched multiwalled carbon nanotubes (b-MWCNTs as it is known that branched fibers can greatly enhance interfacial bonding and dispersability. Therefore, the use of b-MWCNTs would lead to improved mechanical performance and, in the case of conductive composites, improved electrical performance if the CNT filler was better dispersed and connected. This will provide major benefits to the existing commercial application of CNT-reinforced composites in electrostatic discharge materials (ESD: There would be also potential usage for energy conversion, e.g., in supercapacitors, solar cells and Li-ion batteries. However, the limited availability of b-MWCNTs has, to date, restricted their use in such technological applications. Herein, we report an inexpensive and simple method to fabricate large amounts of branched-MWCNTs, which opens the door to a multitude of possible applications.

  16. Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts.

    Science.gov (United States)

    Magnusson, Per; Sharp, Christopher A; Farley, John R

    2002-11-01

    In vitro, bone alkaline phosphatase (BALP) is released from the osteoblast membrane with its glycosylphosphatidylinositol (GPI) anchor still attached (i.e., in an anchor-intact form); however, in vivo, BALP circulates as a variable mixture of anchorless isoforms, which can be identified by high-performance liquid chromatography (HPLC). Previous studies have shown that the relative abundance of these BALP isoforms in serum may be clinically useful for the diagnosis and management of metabolic bone disease. In the current studies, we describe a method for the determination of anchorless BALP isoforms in extracts of bone and we present novel data on the conversion of anchor-intact to anchorless BALP by incubation with endogenous circulating GPI-specific phospholipase D (GPI-PLD). A 72-h extraction with 0.1% Triton X-100 released approximately 90% of the BALP activity from powdered bone. An average of 19% of this activity was anchorless, but essentially all of the activity could be converted to the anchorless form by incubation with partially purified GPI-PLD from human serum. Using HPLC, we detected four BALP isoforms (B/I, B1x, B1, and B2) in these GPI-PLD-treated extracts of bone. An additional BALP fraction was also detected in the samples during the initial phase of GPI-PLD treatment. The abundance of the BALP isoforms differed between bone and serum, particularly for the B/I isoform, which comprised, on average, 18% of the BALP in GPI-PLD-treated extracts of healthy bone tissue, but only 6% of the total BALP activity in serum from healthy individuals. Based on our recent finding of differences in the number of sialic acid residues between the BALP isoforms, we hypothesize that this difference between BALP isoforms in serum and extracts of bone is due to the different patterns of glycosylation, which results in different biological half-lives in the circulation. A preliminary application of our method to the extraction of BALP isoforms from a small number of human

  17. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  18. Intravascular hemolysis induced by phospholipases A2from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms.

    Science.gov (United States)

    Fernández, María Laura; Quartino, Pablo Yunes; Arce-Bejarano, Ruth; Fernández, Julián; Camacho, Luis F; Gutiérrez, José María; Kuemmel, Daniel; Fidelio, Gerardo; Lomonte, Bruno

    2018-04-01

    A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A 2 (PLA 2 ) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA 2 -17, a direct hemolytic enzyme, and PLA 2 -12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA 2 -17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA 2 -12 lacked these effects. PLA 2 -12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA 2 -17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA 2 -17 could hydrolyze substrate at a pressure of 20 mN m -1 , in contrast to PLA 2 -12 or the non-toxic pancreatic PLA 2 . This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA 2 -12 and PLA 2 -17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA 2 -17 presents a less basic interfacial surface than PLA 2 -12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA 2 s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  20. The role of selective cyclooxygenase isoforms in human intestinal smooth muscle cell stimulated prostanoid formation and proliferation

    Directory of Open Access Journals (Sweden)

    Walter E. Longo

    1998-01-01

    Full Text Available Intestinal smooth muscle plays a major role in the repair of injured intestine and contributes to the prostanoid pool during intestinal inflammatory states. Cyclooxygenase (COX, which catalyzes the conversion of arachidonic acid to prostanoids exists in two isoforms, COX-1 and COX-2. The purpose of this study was to determine the relative contributions of COX-1 and COX-2 in the production of prostanoids by human intestinal smooth muscle (HISM cells when stimulated by interleukin-1β (IL-1β and lipopolsaccharide (LPS. Furthermore the effects of specific COX-1 and COX-2 inhibitors on the proliferation of smooth muscle cells was also evaluated. Confluent monolayer cultures of HISM cells were incubated with IL-1β or LPS for 0-24 h while control cells received medium alone. PGE2 and PGI2 as 6-keto-PGF1α and LTB4 were measured by a specific radioimmunoassay. COX enzymes were evaluated by Western immunoblotting. Unstimulated and stimulated cells were exposed to the specific COX-1 inhibitor valerylsalicylic acid (VSA and the COX-2 inhibitors NS-398 and SC-58125. The effects of serum on proliferation were then evaluated in the presence of each of the specific COX inhibitors by incorporation of 3H-thym idine into DNA. IL-1β and LPS increased both PGE2 and 6-ketoPGF1α in a dose dependent fashion with enhanced production detected two hours following exposure. Neither stimulus stimulated LTB4 release. Immunoblot analysis using isoform-specific antibodies showed that both COX-1 and COX-2 were present constitutively. Furthermore, COX-1 was upregulated by each inflammatory stimulus. In a separate set of experiments cells were pretreated with either the selective COX-1 inhibitor VSA or the selective COX-2 inhibitors NS-398 or SC-58125 prior to treatment with IL-1β or LPS. The COX-1 and COX-2 inhibitors decreased both basal and IL-1β and LPS stimulated prostanoid release. Spontaneous DNA synthesis was present and serum consistently increased proliferation

  1. Inhibitors of testosterone biosynthetic and metabolic activation enzymes.

    Science.gov (United States)

    Ye, Leping; Su, Zhi-Jian; Ge, Ren-Shan

    2011-12-02

    The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B), for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1) for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz) and plant constituents (genistein and gossypol). This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

  2. Inhibitors of Testosterone Biosynthetic and Metabolic Activation Enzymes

    Directory of Open Access Journals (Sweden)

    Leping Ye

    2011-12-01

    Full Text Available The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1 for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B, for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1 for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3 for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1 and 2 (SRD5A2 in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz and plant constituents (genistein and gossypol. This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

  3. EFSA Panel on F ood Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 63, Revision 2 (FGE.63Rev2): Consideration of aliphatic secondary alcohols, ketones and related esters evaluated by JECFA (59 th and 6 9 th meeting s ) structurally related to saturated and unsaturated aliphatic secondary alcohols, ketones and esters of secondary alcohols and saturated linear or branched - chain carboxylic acids evaluated by EFSA in FGE.07 Rev4

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further...

  4. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    Science.gov (United States)

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  5. Characterization of phospholipid hydroperoxide glutathione metabolizing peroxidase (gpx4) isoforms in Coho salmon olfactory and liver tissues and their modulation by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu; Harris, Sean M.; Espinoza, Herbert M.; McClain, Valerie [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Gallagher, Evan P., E-mail: evang3@uw.edu [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Cloned two gpx4 isoforms (gpx4a and gpx4b) from the Coho salmon peripheral olfactory system. Black-Right-Pointing-Pointer Developed qPCR assays for a comprehensive analysis of gpx4 expression in 10 tissues. Black-Right-Pointing-Pointer High initial rates of GPx4 enzymatic activity in Coho olfactory and liver tissues. Black-Right-Pointing-Pointer Examined the effect of cadmium on gpx4 expression in olfactory and liver tissues. - Abstract: Exposure to environmental contaminants, including various pesticides and trace metals, can disrupt critical olfactory-driven behaviors of fish such as homing to natal streams, mate selection, and an ability to detect predators and prey. These neurobehavioral injuries have been linked to reduced survival and population declines. Despite the importance of maintaining proper olfactory signaling processes in the presence of chemical exposures, little is known regarding chemical detoxification in the salmon olfactory system, and in particular, the antioxidant defenses that maintain olfactory function. An understudied, yet critical component of cellular antioxidant defense is phospholipid hydroperoxide glutathione peroxidase (PHGPx/GPx4), an isoform within the family of selenium-dependent glutathione peroxidase (GPx) enzymes that can directly reduce lipid peroxides and other membrane-bound complex hydroperoxides. In this study, we cloned two gpx4 isoforms (gpx4a and gpx4b) from Coho salmon olfactory tissues and compared their modulation in olfactory and liver tissues by cadmium, an environmental pollutant and olfactory toxicant that cause oxidative damage as a mechanism of toxicity. Amino acid sequence comparisons of the two gpx4 isoforms shared 71% identity, and also relatively high sequence identities when compared with other fish GPx4 isoforms. Sequence comparisons with human GPx4 indicated conservation of three important active sites at selenocysteine (U46), glutamine (Q81), and tryptophan (W

  6. Preserving the pulmonary vagus nerve branches during thoracoscopic esophagectomy

    NARCIS (Netherlands)

    Weijs, Teus J.; Ruurda, Jelle P.|info:eu-repo/dai/nl/257561021; Luyer, Misha D P; Nieuwenhuijzen, Grard A P; van der Horst, Sylvia; Bleys, Ronald L A W|info:eu-repo/dai/nl/134440455; van Hillegersberg, Richard|info:eu-repo/dai/nl/110706242

    Background: Pulmonary vagus branches are transected as part of a transthoracic esophagectomy and lymphadenectomy for cancer. This may contribute to the development of postoperative pulmonary complications. Studies in which sparing of the pulmonary vagus nerve branches during thoracoscopic

  7. Asymmetric Branching in Biological Resource Distribution Networks

    Science.gov (United States)

    Brummer, Alexander Byers

    There is a remarkable relationship between an organism's metabolic rate (resting power consumption) and the organism's mass. It may be a universal law of nature that an organism's resting metabolic rate is proportional to its mass to the power of 3/4. This relationship, known as Kleiber's Law, appears to be valid for both plants and animals. This law is important because it implies that larger organisms are more efficient than smaller organisms, and knowledge regarding metabolic rates are essential to a multitude of other fields in ecology and biology. This includes modeling the interactions of many species across multiple trophic levels, distributions of species abundances across large spatial landscapes, and even medical diagnostics for respiratory and cardiovascular pathologies. Previous models of vascular networks that seek to identify the origin of metabolic scaling have all been based on the unrealistic assumption of perfectly symmetric branching. In this dissertation I will present a theory of asymmetric branching in self-similar vascular networks (published by Brummer et al. in [9]). The theory shows that there can exist a suite of vascular forms that result in the often observed 3/4 metabolic scaling exponent of Kleiber's Law. Furthermore, the theory makes predictions regarding major morphological features related to vascular branching patterns and their relationships to metabolic scaling. These predictions are suggestive of evolutionary convergence in vascular branching. To test these predictions, I will present an analysis of real mammalian and plant vascular data that shows: (i) broad patterns in vascular networks across entire animal kingdoms and (ii) within these patterns, plant and mammalian vascular networks can be uniquely distinguished from one another (publication in preparation by Brummer et al.). I will also present results from a computational study in support of point (i). Namely, that asymmetric branching may be the optimal strategy to

  8. The KCNH2-IVS9-28A/G mutation causes aberrant isoform expression and hERG trafficking defect in cardiomyocytes derived from patients affected by Long QT Syndrome type 2.

    Science.gov (United States)

    Mura, Manuela; Mehta, Ashish; Ramachandra, Chrishan J; Zappatore, Rita; Pisano, Federica; Ciuffreda, Maria Chiara; Barbaccia, Vincenzo; Crotti, Lia; Schwartz, Peter J; Shim, Winston; Gnecchi, Massimiliano

    2017-08-01

    Long QT Syndrome type 2 (LQT2) is caused by mutations in the KCNH2 gene that encodes for the α-subunit (hERG) of the ion channel conducting the rapid delayed rectifier potassium current (IKr). We have previously identified a disease causing mutation (IVS9-28A/G) in the branch point of the splicing of KCNH2 intron 9. However, the mechanism through which this mutation causes the disease is unknown. We generated human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from fibroblasts of two IVS9-28A/G mutation carriers. IVS9-28A/G iPSC-CMs showed prolonged repolarization time, mimicking what observed at the ECG level in the same patients. The expression of the full-length ERG1a isoform resulted reduced, whereas the C-terminally truncated ERG1aUSO isoform was upregulated in mutant iPSC-CMs, with consequent alteration of the physiological ERG1aUSO/ERG1a ratio. Importantly, we observed an impairment of hERG trafficking to the cell membrane. The severity of the alterations in hERG expression and trafficking correlated with the clinical severity of the disease in the two patients under study. Finally, we were able to revert the trafficking defect and reduce the repolarization duration in LQT2 iPSC-CMs using the proteasome inhibitor ALLN. Our results highlight the key role of the KCNH2 intron 9 branch point in the regulation of KCNH2 isoform expression and hERG channel function, and allow to categorize the IVS9-28A/G mutation as LQT2 class 2 mutation. These findings may result in a more personalized clinical management of IVS9-28A/G mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  10. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  11. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2

    Science.gov (United States)

    Guntur, Ananya R.; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-01-01

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response—a function of CC cells—when they encounter strong UV, an aversive stimulus for young larvae. PMID:26443856

  12. Conditional ablation of the RFX4 isoform 1 transcription factor: Allele dosage effects on brain phenotype.

    Directory of Open Access Journals (Sweden)

    Ping Xu

    Full Text Available Regulatory factor X4 (RFX4 isoform 1 is a recently discovered isoform of the winged helix transcription factor RFX4, which can bind to X-box consensus sequences that are enriched in the promoters of cilia-related genes. Early insertional mutagenesis studies in mice first identified this isoform, and demonstrated that it was crucial for mouse brain development. RFX4 isoform 1 is the only RFX4 isoform significantly expressed in the mouse fetal and adult brain. In this study, we evaluated conditional knock-out (KO mice in which one or two floxed alleles of Rfx4 were deleted early in development through the use of a Sox2-Cre transgene. Heterozygous deletion of Rfx4 resulted in severe, non-communicating congenital hydrocephalus associated with hypoplasia of the subcommissural organ. Homozygous deletion of Rfx4 resulted in formation of a single ventricle in the forebrain, and severe dorsoventral patterning defects in the telencephalon and midbrain at embryonic day 12.5, a collection of phenotypes that resembled human holoprosencephaly. No anatomical abnormalities were noted outside the brain in either case. At the molecular level, transcripts encoded by the cilia-related gene Foxj1 were significantly decreased, and Foxj1 was identified as a direct gene target of RFX4 isoform 1. The phenotypes were similar to those observed in the previous Rfx4 insertional mutagenesis studies. Thus, we provide a novel conditional KO animal model in which to investigate the downstream genes directly and/or indirectly regulated by RFX4 isoform 1. This model could provide new insights into the pathogenesis of obstructive hydrocephalus and holoprosencephaly in humans, both relatively common and disabling birth defects.

  13. Expression of sarcoplasmic-endoplasmic reticulum Ca-ATPase isoforms in masticatory muscles.

    Science.gov (United States)

    Sánchez, Gabriel A; Trinks, Pablo W; Richard, Susana B; Di Croce, Daniel E; Takara, Delia

    2014-02-01

    The aim of this study was to characterize the sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA) isoforms in rabbit masticatory muscles compared with those in fast-twitch muscle. It was hypothesized that combined expression of the SERCA isoforms in fast- and slow-twitch muscles accounts for lower Ca-ATPase activity. SERCA was isolated by differential centrifugation, the isoforms were determined by ELISA, and the activity of each isoform was measured using a colorimetric method. Activity was tested for significance by anova, and the distribution of isoforms was assessed using the chi-square test (P < 0.05) and correlated to SERCA activity using Spearman's rank correlation. SERCA1 was predominant (90.5%) in fast-twitch muscle, whereas a mixture of SERCA isoforms was found in masticatory muscles: 62-78% was SERCA2, 20-37% was SERCA1, and the SERCA3 content was negligible. Depressor muscles showed a significantly higher content (77.8%) of SERCA2, and elevator muscles showed a higher content (35.4%) of SERCA1. Elevator muscles showed higher expression of SERCA2a (58%), and depressor muscles showed higher expression of SERCA2b (20%). The SERCA1 content was mainly SERCA1a and significantly higher for elevator muscles (33%), whereas depressor muscles showed a higher content of SERCA1b (4%). The SERCA1 content of fast-twitch muscle was mainly SERCA1a (88.5%). It is concluded that the mixture of different SERCA isoforms, along with a substantial content of SERCA2b, in masticatory muscles would support lower Ca-ATPase activity and calcium transport. © 2013 Eur J Oral Sci.

  14. Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2.

    Science.gov (United States)

    Guntur, Ananya R; Gu, Pengyu; Takle, Kendra; Chen, Jingyi; Xiang, Yang; Yang, Chung-Hui

    2015-10-20

    The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response--a function of CC cells--when they encounter strong UV, an aversive stimulus for young larvae.

  15. Quantitation of Human Metallothionein Isoforms in Cells, Tissues, and Cerebrospinal Fluid by Mass Spectrometry.

    Science.gov (United States)

    Shabb, J B; Muhonen, W W; Mehus, A A

    2017-01-01

    Metallothioneins (MTs) are a family of small, highly conserved, cysteine-rich metal-binding proteins that are important for zinc and copper homeostasis, protection against oxidative stress, and buffering against toxic heavy metals. Individual human MT isoforms are candidate biomarkers for heavy metal toxicity, and selected cancers and neurodegenerative diseases. The similar antigenicity of human MT-1 and MT-2 isoforms precludes development of antibody-based assays for their individual quantitation. Metal-based MT quantitation methods do not directly measure MT isoforms. A bottom-up mass spectrometry-based approach solves these problems by exploiting the unique masses and chromatographic properties of the acetylated N-terminal tryptic peptides of MT isoforms. These unusually hydrophilic 20- to 21-residue peptides contain five invariant cysteines. Strong cation exchange chromatography separates them from bulk internal tryptic peptides. Reversed-phase chromatography further separates them from more hydrophobic peptides of similar mass. Absolute quantitation is obtained by adding MT peptide standards alkylated with (15)N-iodoacetamide to biological samples alkylated with (14)N-iodoacetamide. Accurate quantitation is enhanced by dimethyl sulfide treatment to reverse oxidation of the N-terminal methionine. Originally optimized for measuring MT isoforms in cell lines, the method has been adapted to quantify MT isoforms in brain tissue and cerebrospinal fluid. The method can also be adapted for relative quantitation of MT isoforms between matched biological samples. It cannot be used to measure human MT-4 because of an arginine at position 4. Except for this type of limitation, the method is applicable to MT quantitation in many other species. © 2017 Elsevier Inc. All rights reserved.

  16. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  17. A case of 'Masquerading' bundle branch block: a forgotten concept.

    Science.gov (United States)

    Choudhary, Dinesh; Namboodiri, Narayanan; Tharakan, Jaganmohan A

    2014-01-01

    'Masquerading' bundle branch block (right bundle branch block in the precordial leads with left bundle branch block in frontal leads and left axis deviation) is seen most commonly with coronary artery disease and hypertension. No definite explanation is available so far for these changes. We are presenting a case of rare congenital intranuclear inclusion myopathy with congestive heart failure and 'Masquerading' bundle branch block in ECG. Copyright © 2013 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  18. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.

    Science.gov (United States)

    Han, Mei; Heppel, Simon C; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  19. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP pathway enzyme expression in Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Mei Han

    Full Text Available In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS, a new (type I DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR, respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms, DXR, and hydroxymethylbutenyl diphosphate synthase (HDS were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  20. Enzymes in the in-situ pellicle of children with different caries activity.

    Science.gov (United States)

    Grychtol, Susann; Viergutz, Gabriele; Pötschke, Sandra; Bowen, William H; Hoth-Hannig, Wiebke; Leis, Birgit; Umanskaya, Natalia; Hannig, Matthias; Hannig, Christian

    2015-08-28

    The present study investigated, for the first time, enzymes in the in-situ pellicle of children. Furthermore, it was purposed to detect glucosyltransferase (GTF) isoforms in each child's pellicle. Twenty-four children (5-9 yr of age) participated in the study. Twelve were caries free with no decayed, missing, and filled teeth (dmft), whereas 12 had active caries (dmft ≥ 2, indicating at least two untreated carious lesions). Bovine enamel slabs, fixed on individual upper jaw splints, were utilized for pellicle formation in situ. After 3 and 30 min, samples were tested for amylase, lysozyme, and peroxidase activities; total GTF activity was examined only in the 30-min pellicle. Gold-immunolabelling was used to quantify the GTF B, C, and D isoforms in the pellicle by transmission electron microscopy (TEM). All enzymes tested were detected in the children's in-situ pellicle in an active conformation, and there were no significant differences in their levels of activity between caries-free and caries-active children. All GTF isoforms were found to be randomly distributed within all pellicle layers, althoug GTF B was only detected very sporadically. A significantly higher amount of GTF D was detected in the pellicle of caries-active children. Pellicle formation in children is characterized by uniformity and selectivity. Glucosyltransferase D might represent a possible biomarker for high caries risk in children. © 2015 Eur J Oral Sci.

  1. Not all lubricin isoforms are substituted with a glycosaminoglycan chain

    DEFF Research Database (Denmark)

    Lord, Megan S; Estrella, Ruby P; Chuang, Christine Y

    2012-01-01

    digestion using a sandwich enzyme-linked immunosorbent assay approach. Aggrecan was not found to form complexes with lubricin in synovial fluid which confirmed that the MAb 3-B-3 CS and MAb 5-D-4 KS structures decorated lubricin. These data demonstrate that lubricin present in human synovial fluid...... in human synovial fluid to provide insight into its biological role. Lubricin was detected as a major band at approximately 360 kDa which co-migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a chondroitin sulfate (CS)-containing proteoglycan that was detected by both monoclonal...

  2. Editor's Choice - Effect of Branch Stent Choice on Branch-related Outcomes in Complex Aortic Repair.

    Science.gov (United States)

    Mastracci, T M; Carrell, T; Constantinou, J; Dias, N; Martin-Gonzalez, T; Katsargyris, A; Modarai, B; Resch, T; Verhoeven, E L G; Burnell, M; Haulon, S

    2016-04-01

    The use of branched stent grafts for the treatment of thoracoabdominal aneurysms [TAAA] is increasing, but mating stent graft choice has not been studied. This study combined experience of five high volume centres to assess a preferred mating stent. Data from five centres were retrospectively combined. Patients were included if they underwent stent graft for treatment of TAAA that used only branches to mate with visceral and renal vessels. All patients with fenestrations in their device were excluded. Perioperative details, reintervention, occlusion, and death were recorded. Outcome of occlusion or reintervention, as well as a composite outcome of any death, occlusion, or reintervention was planned using a per-patient, and per-branch analysis. In 235 included patients, there were 940 vessels available for placement of mating stent. The average age of included patients was 70 years (SD 7.9), and 179 of the 235 were male. Medical comorbidities included diabetes in 29/234 (12.4%), current smoker in 81/233 (34.8%), and COPD in 77/234 (32.9%). The primary stent deployed was self-expanding in 556 branches, balloon expandable in 231 branches, and was unknown in 92 branches. After a mean of 20.7 months (SD 25) follow-up, there have been 44 incidents of occlusion or reintervention, of which 40 culprit stents are known. Where the stent placed is known, the event rate in renal branches (35/437, 8%) is higher than that of visceral branches (8/443, 1.8%). There is no difference in occlusion or reintervention between self-expanding and balloon expandable stents (HR 0.95, p = .91) but there is a statistically significant difference between renal and visceral artery occlusions (HR 3.51, p = 0.001). There appears to be no difference in occlusion or reintervention rate for branch vessels mated with balloon expandable compared with self-expanding stents. Renal events appear to outnumber visceral events in this population. Copyright © 2016 European Society for Vascular Surgery

  3. 46 CFR 111.75-5 - Lighting branch circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lighting branch circuits. 111.75-5 Section 111.75-5...-GENERAL REQUIREMENTS Lighting Circuits and Protection § 111.75-5 Lighting branch circuits. (a) Loads. A lighting distribution panel must not supply branch circuits rated at over 30 amperes. (b) Connected Load...

  4. 46 CFR 169.690 - Lighting branch circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Lighting branch circuits. 169.690 Section 169.690... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.690 Lighting branch circuits. Each lighting branch circuit must meet the requirements of § 111.75-5 of this chapter...

  5. Dendrimers and methods of preparing same through proportionate branching

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yihua (Bruce); Yue, Xuyi

    2015-09-15

    The present invention provides for monodispersed dendrimers having a core, branches and periphery ends, wherein the number of branches increases exponentially from the core to the periphery end and the length of the branches increases exponentially from the periphery end to the core, thereby providing for attachment of chemical species at the periphery ends without exhibiting steric hindrance.

  6. Weighted Branching Simulation Distance for Parametric Weighted Kripke Structures

    DEFF Research Database (Denmark)

    Foshammer, Louise; Larsen, Kim Guldstrand; Mariegaard, Anders

    2016-01-01

    This paper concerns branching simulation for weighted Kripke structures with parametric weights. Concretely, we consider a weighted extension of branching simulation where a single transitions can be matched by a sequence of transitions while preserving the branching behavior. We relax this notion...

  7. Structural dynamics branch research and accomplishments to FY 1992

    Science.gov (United States)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  8. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  9. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    Directory of Open Access Journals (Sweden)

    Lennart Hilbert

    2013-10-01

    Full Text Available The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text]A, [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text], [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text], [Formula: see text]-actin ([Formula: see text]A, [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text], and [Formula: see text]-actin-tropomoysin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text]. Actin sliding analysis with our specifically developed video analysis software followed by statistical assessment (Bootstrapped Principal Component Analysis indicated that the in vitro motility of [Formula: see text]A, [Formula: see text]A, and [Formula: see text]A-Tm[Formula: see text] is not distinguishable. Compared to these three 'baseline conditions', statistically significant differences ([Formula: see text] were: [Formula: see text]A-Tm[Formula: see text] - actin sliding velocity increased 1.12-fold, [Formula: see text]A-Tm[Formula: see text] - motile fraction decreased to 0.96-fold, stop time elevated 1.6-fold, [Formula: see text]A-Tm[Formula: see text] - run time elevated 1.7-fold. We constructed a mathematical model, simulated actin sliding data, and adjusted the kinetic parameters so as to mimic the experimentally observed differences: [Formula: see text]A-Tm[Formula: see text] - myosin binding to actin, the main, and the secondary myosin power stroke are accelerated, [Formula: see text

  10. Baseline left bundle branch block with right bundle branch escape complexes in a patient with coronary artery disease, presents like an alternating bundle branch block: a case report

    Science.gov (United States)

    Bhimaraj, Arvind; Abusin, Salaheldin; Margeta, Bosko

    2008-01-01

    Alternating bundle branch block (ABBB) is a less commonly encountered phenomenon with the advent of re-perfusion therapy for acute myocardial infarction. ECGs simulating the appearance of an ABBB need to be carefully analysed. We present an ECG showing a baseline Left Bundle Branch Block(LBBB) progressing to a high grade AV block with escape complexes having a Right Bundle Branch Block (RBBB) morphology. Such an ECG can be mistaken for an ABBB if not analysed carefully. PMID:19116014

  11. Mammalian cells contain two functionally distinct PBAF complexes incorporating different isoforms of PHF10 signature subunit.

    Science.gov (United States)

    Brechalov, Alexander V; Georgieva, Sofia G; Soshnikova, Nataliya V

    2014-01-01

    The PBAF subtype of the mammalian chromatin remodeling SWI/SNF complex has wide and diverse functions in transcription regulation and development, being both transcription activator and repressor. However, a mechanism accounting for such functional diversity remains unclear. Human PHF10/BAF45a subunit of the PBAF complex plays an important role in brain development but has not been studied sufficiently. We have shown that the PHF10 gene encodes 2 types of evolutionarily conserved, ubiquitously expressed isoforms that are incorporated into the PBAF complex in a mutually exclusive manner. One isoform contains C-terminal tandem PHD fingers, which in the other isoform are replaced by the consensus sequence for phosphorylation-dependent SUMO 1 conjugation (PDSM). PBAF complexes containing different PHF10 isoforms can bind to the promoters of the same genes but produce different effects on the recruitment of Pol II to the promoter and on the level of gene transcription. In addition, it is only the PBAF with PHD-containing isoform that activates proliferation. Our study demonstrates the existence of functionally different PBAF complexes in mammalian cell. It also provides an insight into the molecular structure and role of human PHF10/BAF45a and characterizes it as an essential PBAF subunit.

  12. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Directory of Open Access Journals (Sweden)

    Petra Arnostova

    2011-01-01

    Full Text Available The expression of two cardiac myosin heavy chain (MyHC isoforms in response to the thyroid status was studied in left ventricles (LVs of Lewis rats. Major MyHC isoform in euthyroid and hyperthyroid LVs had a higher mobility on SDS-PAGE, whereas hypothyroid LVs predominantly contained a MyHC isoform with a lower mobility corresponding to that of the control soleus muscle. By comparing the MyHC profiles obtained under altered thyroid states together with the control soleus, we concluded that MyHCα was represented by the lower band with higher mobility and MyHCβ by the upper band. The identity of these two bands in SDS-PAGE gels was confirmed by western blot and mass spectrometry. Thus, in contrast to the literature data, we found that the MyHCα possessed a higher mobility rate than the MyHCβ isoform. Our data highlighted the importance of the careful identification of the MyHCα and MyHCβ isoforms analyzed by the SDS-PAGE.

  13. Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads.

    Science.gov (United States)

    Malartre, Marianne; Short, Stephen; Sharpe, Colin

    2006-04-15

    The corepressor SMRT acts on a range of transcription factors, including the retinoid and thyroid hormone nuclear receptors. The carboxy-terminal region of SMRT contains CoRNR box motifs that mediate these interactions. We have shown, in Xenopus, that SMRT can exist as isoforms containing either two or three CoRNR boxes depending on the alternative splicing of exon 37b. The number of SMRT transcript isoforms expressed increases during development until all sixteen possible isoforms are identified in the swimming tadpole. To eliminate specific SMRT isoforms, we have developed a process that uses an antisense morpholino oligonucleotide in Xenopus to dictate the outcome of alternative splicing at a defined exon and used this to inhibit the formation of transcripts containing exon 37b. These embryos are therefore limited to the expression of SMRT isoforms that contain two rather than three CoRNR boxes. Analysis of responsive genes in these embryos shows that targets of thyroid hormone, but not retinoid signaling are affected by the elimination of exon 37b. Morpholino-injected embryos have swimming abnormalities and develop altered head morphology, an expanded olfactory epithelium and disorganized peripheral axons. These experiments indicate a critical role for the alternative splicing of SMRT in development.

  14. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Haiyan Xia

    Full Text Available Friedreich ataxia (FRDA is an inherited neurodegenerative disease caused by frataxin (FXN deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III, which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.

  15. Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia.

    Science.gov (United States)

    Bui, Phuong; Bagherie-Lachidan, Mazdak; Kelly, Scott P

    2010-04-12

    A primary cultured gill epithelium from the puffer fish Tetraodon nigroviridis was developed to examine the corticosteroid regulation of claudin isoform mRNA abundance in fish gills. Preparations were composed of polygonal epithelial cells exhibiting concentric apical microridges and zonula occludens-1 immunoreactivity along cell margins. No evidence was found to indicate the presence of Na(+)-K(+)-ATPase-immunoreactive or mitochondria-rich cells in cultured preparations. Therefore, epithelia appear to be composed of gill pavement cells (PVCs) only. An RT-PCR profile of 12 salinity responsive gill claudin tight junction (TJ) proteins (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b) revealed the absence of Tncldn6, -10d and -10e in cultured epithelia, suggesting that these isoforms are not associated with gill PVCs. Cortisol treatment of cultured epithelia dose-dependently increased or decreased mRNA abundance of select claudin isoforms. Transcript abundance of several claudin isoforms was unaffected by cortisol treatment. These data provide evidence for the cell specific distribution of claudins in fish gills and suggest that heterogeneous alterations in the abundance of select claudin isoforms contribute to the corticosteroid regulation of gill permeability.

  16. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Science.gov (United States)

    Markov, Denis I.; Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Levitsky, Dmitrii I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS) to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl). Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain. PMID:21151434

  17. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Directory of Open Access Journals (Sweden)

    Eugene O. Zubov

    2010-10-01

    Full Text Available We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1 containing different “essential” (or “alkali” light chains, A1 or A2. We applied differential scanning calorimetry (DSC to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in  the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl. Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain.

  18. Tropomyosin isoforms present in the sea anemone, Anthopleura japonica (Anthozoa, Cnidaria).

    Science.gov (United States)

    Fujinoki, Masakatsu; Tomiyama, Toshiko; Ishimoda-Takagi, Tadashi

    2002-12-01

    Five isoforms of tropomyosin, designated as TMa, TMb, TMc, TMd, and TMe, were detected in the sea anemone, Anthopleura japonica. The apparent molecular weights of these isoforms were estimated to be approximately 30 kD to 37.5 kD, and their pI values were approximately 4.55 (TMa and TMb) and 4.65 (TMc, TMd, and TMe). Although sea anemone tropomyosin isoforms have the ability to bind to rabbit skeletal muscle actin, they preferably bind to actin at higher concentrations of Mg(2+) (10-20 mM) and slightly lower pH (6.2-7.2) than those used in conventional conditions. Antigenic properties of sea anemone tropomyosin seemed to be considerably specific to each isoform. Distribution of tropomyosin isoforms in the sea anemone body was somewhat portion-specific. TMa, TMb, and TMe were detected similarly in the extracts from tentacle, oral disc, column, mouth, and pedal disc. Although TMc and TMd were detected abundantly in the tentacle extract and moderately in the column and mouth extracts, these components were not contained in the pedal disc extract and detected only faintly in the oral disc extract. Copyright 2002 Wiley-Liss, Inc.

  19. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.

    Science.gov (United States)

    Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei

    2017-09-29

    Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.

  20. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A.

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  1. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus.

    Science.gov (United States)

    Westermeier, F; Sáez, T; Arroyo, P; Toledo, F; Gutiérrez, J; Sanhueza, C; Pardo, F; Leiva, A; Sobrevia, L

    2016-05-01

    The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Effect of ethacrynic acid on sodium pump alpha isoforms in SH-SY5Y cells.

    Science.gov (United States)

    Valdes, Renee M; Huff, Mary O; El-Masri, M Adnan; El-Mallakh, Rif S

    2003-04-01

    Ethacrynic acid (ECA), a diuretic that has several cellular actions, increases expression of the sodium and potassium-activated adenosine triphosphatase (Na, K-ATPase or Na pump) in normal lymphocytes, but not in lymphocytes of bipolar patients. While this has been proposed to be important in the pathophysiology of bipolar illness, the response of neural tissues to ECA is unknown. Human neuroblastoma SH-SY5Y cells differentiated with 10-microM retinoic acid were treated with various ECA concentrations for 3 days, and changes in Na-pump alpha-isoform expression were quantified with densitometric analysis of Western bands. Expression of alpha1 and alpha3 Na pump isoforms significantly increased with 10-5 M ECA. Cells treated with 10-6 or 10-7 M ECA showed no change in Na-pump expression, while cells treated with 10-4 M ECA died. The alpha2 isoform could not be detected in differentiated SH-SY5Y cells. The effect of ECA on alpha1-isoform in neural tissue is similar to that observed in lymphocytes. As alpha3 isoform is not expressed in lymphocytes, however, we conclude that lymphocytes are an incomplete model of neural tissue.

  3. Effect of ouabain on sodium pump alpha-isoform expression in an animal model of mania.

    Science.gov (United States)

    Hamid, Humera; Gao, Yonglin; Lei, Zhenmin; Hougland, M Tyler; El-Mallakh, Rif S

    2009-10-01

    While the pathophysiologic mechanisms of bipolar illness are unknown, a dysregulation of electrolytes, particularly intracellular sodium (Na) and calcium (Ca), are thought to contribute to the illness. Ouabain, a potent Na pump inhibitor, administered intracerebroventricularly (ICV), has been used previously to model mania. The current study evaluates the effect of ICV ouabain on Na pump isoform expression in rat brain. Animals received 5 microl ICV of either 10(-3) M ouabain or artificial cerebrospinal fluid (aCSF). They were then sacrificed 7 days after the ICV injection and specific brain areas were dissected and frozen until the assay (frontal cortex, hippocampus, and basal ganglia). The three isoforms of the alpha subunit of the Na pump that are expressed in the brain were quantified with immunoblot analysis with actin serving as internal control. The behavioral hyperactivity seen in rats receiving ICV ouabain is associated with an increase of expression of the glial-specific alpha2 isoform in the basal ganglia, and the neuron-specific alpha3 isoforms in the frontal cortex. These findings, in association with human post mortem studies finding that alpha2 is underexpressed in the temporal cortex of bipolar subjects, suggest that Na pump isoform expression may be of interest in the pathophysiology of mania.

  4. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.

    2012-01-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic...... giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R ~ 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality...... found that the four CN peaks may be paired—the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations...

  5. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from th...

  6. [Laccase of the lignolytic fungus Trametes hirsuta: purification and characterization of the enzyme, and cloning and primary structure of the gene].

    Science.gov (United States)

    Rebrikov, D V; Rebrikov, D N; Stepanova, E V; Koroleva, O V; Budarina, Zh I; Zakharova, M V; Iurkova, T V; Solonin, A S; Belova, O V; Pozhidaeva, Z A; Leont'evskiĭ, A A

    2006-01-01

    The main physicochemical characteristics of the major isoform of the laccase secreted by the fungu, Trametes hirsuta 072 were studied. The enzyme belongs to the group of high redox potential laccases (E(T1) = 790 +/- 5), and it oxidizes with high efficiency various substrates of phenolic nature. The gene of this isoform was cloned, and its nucleotide sequence was determined. The length of the complete gene is 2134 bp. It comprises 11 exons and 10 introns. Analysis of the amino acid sequence of T. hirsuta 072 laccase demonstrated a high homology (to 96.9%) to the other laccases secreted by fungi of the genus Trametes.

  7. Structure of ‘linkerless’ hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket

    Energy Technology Data Exchange (ETDEWEB)

    Tabackman, Alexa A.; Frankson, Rochelle; Marsan, Eric S.; Perry, Kay; Cole, Kathryn E. (Ithaca); (Cornell); (Christopher Newport U)

    2016-11-04

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98 Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.

  8. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  9. enzyme-linked

    African Journals Online (AJOL)

    SA MEDIESE TYDSKRIF DEEL 63 29 JANUARIE 1983. B surface antigen in donated screening and confirmation by immunosorbent assay. Hepatitis blood - enzyme-linked. M. O. BUBB, T. ... weeks at weekly intervals. After 6 weeks test blood samples were ... This assay normally takes 3 hours. Results. Fig. 1. Frequency ...

  10. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog...

  12. Enzymes and fungal virulence

    African Journals Online (AJOL)

    may be common across a variety of fungal pathogens. Most fungal pathogens and ... Fungi utilize the food substances in their immediate vicinity to .... digestion of the fungal secreted enzymes thereby denying access to the host cell. For a pathogen to be successful, it mttst be able to circumvent or overcome these antifungal ...

  13. [Elevated liver enzymes].

    Science.gov (United States)

    Holstege, Axel

    2016-10-01

    Elevated liver enzymes are a frequent finding in both symptomatic and asymptomatic patients necessitating further evaluation to clarify the underlying disease. Three different patterns of increased liver enzymes can be defined to allow for a more precise and rational further diagnostic approach. A predominant increase in transaminase activities reflects a disturbance of hepatocellular integrity which can be found in patients with viral hepatitis, genetic liver diseases like Wilson`s disease or hemochromatosis, and drug-induced liver diseases. A second pattern is characterized by high serum alkaline phosphatase and γ-glutamyltranspeptidase activities indicating cholestatic liver diseases. The next important diagnostic measure in this group is an ultrasound study discerning intra- from extrahepatic cholestasis. Intrahepatic cholestatic diseases include primary and secondary sclerosing cholangitis, genetic disturbances of canalicular membrane transporters or drug-induced liver dieseases. Extrahepatic cholestasis involves obstruction of the large bile ducts by gall stones or tumors. The third enzym pattern is defined by a predominant rise in γ-glutamyl transpeptidase which is observed in alcoholic or non-alcoholic fatty liver disease and infiltrating liver diseases. A rise in liver enzymes is not necessarily indicative of a primary hepatic origin. Extrahepatic diseases often cause similarly increased serum activities. In addition even higher values can be observed under normal conditions during pregnancy or in adolescens. Lower values in asymptomatic patients should only be controlled since more than 30% of elevated transaminases spontaneously normalize during follow-up. © Georg Thieme Verlag KG Stuttgart · New York.

  14. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  15. Enzymes and fungal virulence

    African Journals Online (AJOL)

    Plant pathogenic fungi secrete extracellular enlymes that are capable of degrading the cell walls of their host plants. These CWDES may be necessary for penetration ofthc cell wall harricr. as well as for generation of simple molecules that can he assimilated for growth. Most of these enzymes are substrawinducible and both ...

  16. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  17. Organization and targets of the European Branch

    Energy Technology Data Exchange (ETDEWEB)

    Cataldi, R.

    1997-12-01

    After a short historical review of the formation, objectives and organization of the International Geothermal Association (IGA), this paper describes the functions, goals and activities of the IGA European Branch. In particular, the paper illustrates the plan of action established for the periods 1993-`95 and 1996-`98, and the issues dealt with by the European Forum as of August 1996. The last section of the paper outlines the main problems to be faced in the near future in order to facilitate the aggregation of efforts, the amalgamation of promotional initiatives and the coordination of the basic activities needed for the consolidation and growth of the geothermal community in Europe. (orig.)

  18. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  19. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  20. Anomaly matching on the Higgs branch

    Science.gov (United States)

    Shimizu, Hiroyuki; Tachikawa, Yuji; Zafrir, Gabi

    2017-12-01

    We point out that we can almost always determine by the anomaly matching the full anomaly polynomial of a supersymmetric theory in 2d, 4d or 6d if we assume that its Higgs branch is the one-instanton moduli space of some group G. This method not only provides by far the simplest method to compute the central charges of known theories of this class, e.g. 4d E 6,7,8 theories of Minahan and Nemeschansky or the 6d E-string theory, but also gives us new pieces of information about unknown theories of this class.