WorldWideScience

Sample records for branchial ion transporters

  1. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbaek; Madsen, Steffen Søndergaard; Borski, Russell John

    2004-01-01

    The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt...

  2. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    Science.gov (United States)

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  3. Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Zikos, Aris; Seale, Andre P; Lerner, Darren T; Grau, E Gordon; Korsmeyer, Keith E

    2014-12-01

    This study investigated the effects of two rearing salinities, and acute salinity transfer, on the energetic costs of osmoregulation and the expression of metabolic and osmoregulatory genes in the gill of Mozambique tilapia. Using automated, intermittent-flow respirometry, measured standard metabolic rates (SMRs) of tilapia reared in seawater (SW, 130 mg O₂ kg⁻¹ h⁻¹) were greater than those reared in fresh water (FW, 103 mg O₂ kg⁻¹ h⁻¹), when normalized to a common mass of 0.05 kg and at 25±1°C. Transfer from FW to 75% SW increased SMR within 18h, to levels similar to SW-reared fish, while transfer from SW to FW decreased SMR to levels similar to FW-reared fish. Branchial gene expression of Na⁺-K⁺-2Cl⁻ cotransporter (NKCC), an indicator of SW-type mitochondria-rich (MR) cells, was positively correlated with SMR, while Na⁺-Cl⁻ cotransporter (NCC), an indicator of FW-type MR cells, was negatively correlated. Principal Components Analysis also revealed that branchial expression of cytochrome c oxidase subunit IV (COX-IV), glycogen phosphorylase (GP), and a putative mitochondrial biogenesis regulator in fish, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), were correlated with a higher SMR, plasma osmolality, and environmental salinity, while expression of glycogen synthase (GS), PGC-1β, and nuclear respiratory factor 1 (NRF-1) had negative correlations. These results suggest that the energetic costs of osmoregulation are higher in SW than in FW, which may be related to the salinity-dependent differences in osmoregulatory mechanisms found in the gills of Mozambique tilapia.

  4. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming.

    Science.gov (United States)

    Michael, Katharina; Kreiss, Cornelia M; Hu, Marian Y; Koschnick, Nils; Bickmeyer, Ulf; Dupont, Sam; Pörtner, Hans-O; Lucassen, Magnus

    2016-03-01

    Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na(+)/K(+) ATPase and V-type H(+) ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 μatm, 1200 μatm, 2200 μatm) at optimum (10 °C) and summer maximum temperature (18 °C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 °C, whereas expression of most transport proteins increased at medium PCO2 and 18 °C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na(+)/K(+) ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H(+) ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 °C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.

  5. Branchial cleft cyst

    Directory of Open Access Journals (Sweden)

    Vaishali Nahata

    2016-01-01

    Full Text Available Branchial cleft cyst, sinuses, and fistulae are among the most commonly encountered congenital anomalies in pediatric otolaryngic practice. They can present difficulty in diagnosis and surgical management. Here, I report a case of 14-year-old boy who presented with asymptomatic, congenital swelling located just below the jawline in the lateral part of the neck. The lesion was excised surgically. Histopathology showed the cyst lined by squamous as well as columnar ciliated epithelium, which was a characteristic finding of branchial cleft cyst. The aim of presenting this case is its rarity.

  6. Elevated seawater PCO₂ differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis.

    Science.gov (United States)

    Hu, Marian Y; Tseng, Yung-Che; Stumpp, Meike; Gutowska, Magdalena A; Kiko, Rainer; Lucassen, Magnus; Melzner, Frank

    2011-05-01

    The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immunohistochemical methods, we demonstrate that Na(+)/K(+)-ATPase (soNKA), a V-type H(+)-ATPase (soV-HA), and Na(+)/HCO(3)(-) cotransporter (soNBC) are colocalized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater Pco(2) (0.16 and 0.35 kPa) over a time course of 6 wk in different ontogenetic stages. The applied CO(2) concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late-stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII, and COX. In contrast, no hypercapnia-induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However, a transiently increased ion regulatory demand was evident during the initial acclimation reaction to elevated seawater Pco(2). Gill Na(+)/K(+)-ATPase activity and protein concentration were increased by ~15% during short (2-11 days) but not long-term (42-days) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the downregulation of ion regulatory and metabolic genes in late-stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater Pco(2).

  7. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  8. Report of a complete second branchial fistula.

    LENUS (Irish Health Repository)

    Khan, Mohammad Habibullah

    2010-08-01

    We report a case of complete congenital branchial fistula with an internal opening near the tonsillar fossa. Cysts, fistulas, and sinuses of the second branchial cleft are the most common developmental anomalies arising from the branchial apparatus. In our case, a 43-year-old man presented with a several-year history of a discharging sinus from the right side of his neck, consistent with a branchial fistula. He underwent various investigations and finally was treated with a one-stage complete surgical excision of the fistula tract. We describe the general clinical presentation, investigations, and surgical outcome of this case.

  9. Second type of first branchial cleft anomaly

    Directory of Open Access Journals (Sweden)

    Hitesh Verma

    2016-01-01

    Full Text Available First branchial cleft fistula is a rare congenital malformation of the head and neck with an incidence of <8% of all branchial cleft defects. The patient presenting with discharging sinus in the neck with discharging ear should be investigated for a possible branchial cleft anomaly. Rarity and diverse presentation often lead to misdiagnosis and inadequate treatment. Recurrent infection and scarring make intraoperative identification of facial nerve made very difficult. We report a case of a 5-year-old boy with a first branchial cleft fistula, in which discharge was observed through the fistulous opening on the right side of the face and along the ear canal.

  10. Composite oxygen ion transport element

    Science.gov (United States)

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  11. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?

    Science.gov (United States)

    Tresguerres, Martin; Katoh, Fumi; Orr, Elizabeth; Parks, Scott K; Goss, Greg G

    2006-01-01

    Despite all the efforts and technological advances during the last few decades, the cellular mechanisms for branchial chloride uptake in freshwater (FW) fish are still unclear. Although a tight 1 : 1 link with HCO-3 secretion has been established, not much is known about the identity of the ion-transporting proteins involved or the energizing steps that allow for the inward transport of Cl- against the concentration gradient. We propose a new model for Cl- uptake in FW fish whereby the combined action of an apical anion exchanger, cytoplasmic carbonic anhydrase, and basolateral V-type H+ -ATPase creates a local [HCO-3] high enough to energize Cl- uptake. Our model is based on analyses of structure-function relationships, reinterpretation of previous results, and novel observations about gill cell subtypes and immunolocalization of the V-H+ -ATPase.

  12. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael

    2006-03-01

    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  13. Ion transport from plasma ion source at ISOLTRAP

    CERN Document Server

    Steinsberger, Timo Pascal

    2017-01-01

    In this report, my work as CERN Summer Student at the ISOLTRAP experiment at ISOLDE is described. A new plasma ion source used as oine source for calibration and implemented before my arrival was commissioned and transportation settings for the produced ions to the ion traps were found. The cyclotron frequencies of 40Ar and the xenon isotopes 129-132Xe were measured using time-of-flight and phase-imaging ion-cyclotron-resonance mass spectroscopy.

  14. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  15. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  16. Parametric variations of ion transport in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.D. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Ernst, D. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1993-03-18

    This paper is divided into three roughly independent sections. The first is a historical review of the twenty year history of experimental ion heat transport measurements from many tokamaks. The second is a study of ion heat transport in Ohmic TFTR plasmas which shows that {chi}i {approximately} {chi}e {approx} 15{chi}i{sup neo}. Thus, ion heat transport is demonstrated to be strongly anomalous even the absence of auxiliary heating. The third section describes the variation of {chi}i with local ion temperature in TFTR during auxiliary heating, with emphasis on characterizing the differecens between transport in the L-mode and supershot regimes. The results are consistent with the conjecture that improved ion energy confinement in supershot plasmas is caused by a high ratio of T{sub 1}/T{sub e}.

  17. Benchmarking of Heavy Ion Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  18. Interfacial transport in lithium-ion conductors

    Science.gov (United States)

    Shaofei, Wang; Liquan, Chen

    2016-01-01

    Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance. Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Natural Science Foundation of China (Grant Nos. 51325206 and 11234013) and the National Basic Research Program of China (Grant No. 2012CB932900).

  19. Controlling fast transport of cold trapped ions

    CERN Document Server

    Walther, Andreas; Ruster, Thomas; Dawkins, Sam T; Ott, Konstantin; Hettrich, Max; Singer, Kilian; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich

    2012-01-01

    We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

  20. Carbon dioxide induced plasticity of branchial acid-base pathways in an estuarine teleost

    Science.gov (United States)

    Allmon, Elizabeth B.; Esbaugh, Andrew J.

    2017-01-01

    Anthropogenic CO2 is expected to drive ocean pCO2 above 1,000 μatm by 2100 – inducing respiratory acidosis in fish that must be corrected through branchial ion transport. This study examined the time course and plasticity of branchial metabolic compensation in response to varying levels of CO2 in an estuarine fish, the red drum, which regularly encounters elevated CO2 and may therefore have intrinsic resilience. Under control conditions fish exhibited net base excretion; however, CO2 exposure resulted in a dose dependent increase in acid excretion during the initial 2 h. This returned to baseline levels during the second 2 h interval for exposures up to 5,000 μatm, but remained elevated for exposures above 15,000 μatm. Plasticity was assessed via gene expression in three CO2 treatments: environmentally realistic 1,000 and 6,000 μatm exposures, and a proof-of-principle 30,000 μatm exposure. Few differences were observed at 1,000 or 6,000 μatm; however, 30,000 μatm stimulated widespread up-regulation. Translocation of V-type ATPase after 1 h of exposure to 30,000 μatm was also assessed; however, no evidence of translocation was found. These results indicate that red drum can quickly compensate to environmentally relevant acid-base disturbances using baseline cellular machinery, yet are capable of plasticity in response to extreme acid-base challenges. PMID:28378831

  1. Liners for ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  2. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  3. Electrochemistry of oxygen ion transport in slag

    Institute of Scientific and Technical Information of China (English)

    鲁雄刚; 丁伟中; 李福燊; 李丽芬; 周国治

    2002-01-01

    A systematic experiment relating to the electrochemistry of oxygen ion transport in slag has been studied in lab.An equivalent circuit has been used to describe ion transfer between metal and slag in this paper and a kinetic model with electrochemical characteristic representing oxygen ion immigration has been worked out.The different experimental phenomena can be explained generally by this model.It can be seen that the theoretical results are in good agreement with experiments.The comparison of experimental data with model calculation proved that the electrochemical model is right.

  4. Chamber transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Craig L., E-mail: clolson66@msn.com

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  5. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  6. Workshop on transport for a common ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.C. [Sandia National Labs., Albuquerque, NM (United States); Lee, E. [Lawrence Berkeley Lab., CA (United States); Langdon, B. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  7. Workshop on transport for a common ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.C. [Sandia National Labs., Albuquerque, NM (United States); Lee, E. [Lawrence Berkeley Lab., CA (United States); Langdon, B. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  8. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  9. Ion transport through a graphene nanopore

    CERN Document Server

    Hu, Guohui; Ghosal, Sandip; 10.1088/0957-4484/23/39/395501

    2013-01-01

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The non-uniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution with respect to reflection about the plane of the graphene sheet. The accumulation of liquid molecules in the vicinity of the nanopore...

  10. High energy H- ion transport and stripping

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  11. Actuation and ion transportation of polyelectrolyte gels

    Science.gov (United States)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  12. Roles of three branchial Na(+)-K(+)-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus.

    Science.gov (United States)

    Ip, Yuen K; Loong, Ai M; Kuah, Jie S; Sim, Eugene W L; Chen, Xiu L; Wong, Wai P; Lam, Siew H; Delgado, Inês L S; Wilson, Jonathan M; Chew, Shit F

    2012-07-01

    Three Na(+)-K(+)-ATPase (nka) α-subunit isoforms, nka α1a, nka α1b, and nka α1c, were identified from gills of the freshwater climbing perch Anabas testudineus. The cDNA sequences of nka α1a and nka α1b consisted of 3,069 bp, coding for 1,023 amino acids, whereas nka α1c was shorter by 22 nucleotides at the 5' end. In freshwater, the quantity of nka α1c mRNA transcripts present in the gills was the highest followed by nka α1a and nka α1b that was almost undetectable. The mRNA expression of nka α1a was downregulated in the gills of fish acclimated to seawater, indicating that it could be involved in branchial Na(+) absorption in a hypoosmotic environment. By contrast, seawater acclimation led to an upregulation of the mRNA expression of nka α1b and to a lesser extent nka α1c, indicating that they could be essential for ion secretion in a hyperosmotic environment. More importantly, ammonia exposure led to a significant upregulation of the mRNA expression of nka α1c, which might be involved in active ammonia excretion. Both seawater acclimation and ammonia exposure led to significant increases in the protein abundance and changes in the kinetic properties of branchial Na(+)-K(+)-ATPase (Nka), but they involved two different types of Nka-immunoreactive cells. Since there was a decrease in the effectiveness of NH(4)(+) to substitute for K(+) to activate branchial Nka from fish exposed to ammonia, Nka probably functioned to remove excess Na(+) and to transport K(+) instead of NH(4)(+) into the cell to maintain intracellular Na(+) and K(+) homeostasis during active ammonia excretion.

  13. Transport coefficients of He+ ions in helium

    Science.gov (United States)

    Johnsen, Rainer; Viehland, Larry; Gray, Benjamin; Wright, Timothy

    2016-09-01

    New experimental mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, have been determined. Uncertainties in the mobilities were reduced to about 1% by using a shuttered drift tube. Comparison with previously measured values show that only one set of previous data is reliable. We demonstrate that the mobilities and diffusion coeffcients of 4He+ in 4He can be calculated over wide ranges of E/N with high precision if accurate potential energy curves are available for the X2Σu+ and A2Σg+ states, and if one takes into account resonant charge transfer and corrects for quantum-mechanical effects. Potentials, obtained by extrapolation of results from d-aug-cc-pVXZ (X =6,7) basis sets using the CASSCF +MRCISD approach were found to be in exceptionally close agreement with the best potentials available (separately) and with experiment, and those were subsequently used in a new computer program to determine semi-classical phase shifts and transport cross sections, from which the gaseous ion transport coefficients are determined. A new set of data for the mobilities of alpha particles (He2+) ions was obtained as a byproduct of the experiment, but the transport theory has not yet been completed.

  14. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia.

    Science.gov (United States)

    Inokuchi, Mayu; Breves, Jason P; Moriyama, Shunsuke; Watanabe, Soichi; Kaneko, Toyoji; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-11-15

    This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.

  15. Ion age transport: developing devices beyond electronics

    Science.gov (United States)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  16. Ion transport by the amphibian primary ureter

    DEFF Research Database (Denmark)

    Møbjerg, Nadja

    2008-01-01

    putative ion transport mechanisms in the primary ureter of the freshwater amphibian Ambystoma mexicanum (axolotl). Primary ureters isolated from axolotl larvae were perfused in vitro and single cells were impaled across the basal cell membrane with glass microelectrodes. In 42 cells the membrane potential......+] steps from 3 to 20 mmol/l and a hyperpolarization of Vm upon lowering [Na+] from 102 to 2 mmol/l, indicating the presence of luminal K+ and Na+ conductances. This study provides the first functional data on the vertebrate primary ureter. The data show that the primary ureter of axolotl larvae...

  17. Traveling wave ion transport for the cyclotron gas stopper

    Energy Technology Data Exchange (ETDEWEB)

    Brodeur, M., E-mail: maxime.brodeur.2@nd.edu; Joshi, N.; Gehring, A.E.; Bollen, G.; Morrissey, D.J.; Schwarz, S.

    2013-12-15

    Highlights: • Estimated transport time of thermal ions of 5 ms or less for the cyclotron gas stopper using the ion surfing method. • Experimental investigation of a prototype ion conveyor to transport ions in the magnet magnetic field gradient. • Efficient long-distance ion transport with the conveyor is expected. -- Abstract: Next generation beam thermalization devices such as the cyclotron gas stopper are being developed to efficiently deliver a broad range of radioactive isotopes to experiments. Ion transport methods utilizing a traveling wave were investigated experimentally as part of the developments needed for this device. The “ion surfing” method, which will be used to transports thermal ions inside the main chamber of the cyclotron gas stopper, was found to transport ions at speeds reaching 75 m/s, resulting in net transport times as short as 5 ms. A second traveling wave transport method called the “ion conveyor” was investigated for the challenging task of extracting the ions through the cyclotron gas stopper magnetic field gradient. Results from the first prototype conveyor show a strong pressure and wave amplitude dependance for the transport efficiency. A second prototype designed to operate over a larger pressure range is currently being tested.

  18. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Science.gov (United States)

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion Batteries in Transportation.'' The forum will begin at 9:00 a.m. on both days and is open to all. Attendance...

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  20. Branchial cleft cyst: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Surekha Chavan

    2014-01-01

    Full Text Available First branchial cleft anomaly is a rare disease of the head and neck. Because of its rarity, first branchial cleft anomaly is often misdiagnosed and results in inappropriate management. In this article, we present a case of type II first branchial cleft anomaly. A middle-aged woman who had suffered from swelling on lower jaw visited our department with the chief complaint of a swelling. She underwent complete excision of the lesion with preservation of the facial nerve. The patient recovered well and had no recurrence at 1-year of follow up.

  1. Parallel transport quantum logic gates with trapped ions

    CERN Document Server

    de Clercq, Ludwig; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2015-01-01

    Quantum information processing will require combinations of gate operations and communication, with each applied in parallel to large numbers of quantum systems. These tasks are often performed sequentially, with gates implemented by pulsed fields and information transported either by moving the physical qubits or using photonic links. For trapped ions, an alternative approach is to implement quantum logic gates by transporting the ions through static laser beams, combining qubit operations with transport. This has significant advantages for scalability since the voltage waveforms required for transport can potentially be generated using micro-electronics integrated into the trap structure itself, while both optical and microwave control elements are significantly more bulky. Using a multi-zone ion trap, we demonstrate transport gates on a qubit encoded in the hyperfine structure of a beryllium ion. We show the ability to perform sequences of operations, and to perform parallel gates on two ions transported t...

  2. Ion transport in graphene nanofluidic channels.

    Science.gov (United States)

    Xie, Quan; Xin, Fang; Park, Hyung Gyu; Duan, Chuanhua

    2016-12-01

    Carbon nanofluidic structures made of carbon nanotubes or graphene/graphene oxide have shown great promise in energy and environment applications due to the newly discovered fast and selective mass transport. However, they have yet to be utilized in nanofluidic devices for lab-on-a-chip applications because of great challenges in their fabrication and integration. Herein we report the fabrication of two-dimensional planar graphene nanochannel devices and the study of ion transport inside a graphene nanochannel array. A MEMS fabrication process that includes controlled nanochannel etching, graphene wet transfer, and vacuum anodic bonding is developed to fabricate graphene nanochannels where graphene conformally coats the channel surfaces. We observe higher ionic conductance inside the graphene nanochannels compared with silica nanochannels with the same geometries at low electrolyte concentrations (10(-6) M-10(-2) M). Enhanced electroosmotic flow due to the boundary slip at graphene surfaces is attributed to the measured higher conductance in the graphene nanochannels. Our results also suggest that the surface charge on the graphene surface, originating from the dissociation of oxygen-containing functional groups, is crucial to the enhanced electroosmotic flow inside the nanochannels.

  3. Transport of ions across peritoneal membrane.

    Science.gov (United States)

    Islam, Nurul; Bulla, Nisar A; Islam, Shahina

    2004-12-15

    The electrical conductance of ions across the peritoneal membrane of young buffalo (approximately 18-24 months old) has been recorded. Aqueous solutions of NaF, NaNO3, NaCl, Na2SO4, KF, KNO3, KCl, K2SO4, MgCl2, CaCl2, CrCl3, MnCl2, FeCl3, CoCl2, and CuCl2 were used. The conductance values have been found to increase with increase in concentration as well as with temperature (15 to 35 degrees C) in these cases. The slope of plots of specific conductance, kappa, versus concentration exhibits a decrease in its values at relatively higher concentrations compared to those in extremely dilute solutions. Also, such slopes keep on increasing with increase in temperature. In addition, the conductance also attains a maximum limiting value at higher concentrations in the said cases. This may be attributed to a progressive accumulation of ionic species within the membrane. The kappa values of electrolytes follow the sequence for the anions: SO4(2-)>Cl->NO3->F- while that for the cations: K+>Na+>Ca2+>Mn2+>Co2+>Cu2+>Mg2+>Cr3+>Fe3+. In addition, the diffusion of ions depends upon the charge on the membrane and its porosity. The membrane porosity in relation to the size of the hydrated species diffusing through the membrane appears to determine the above sequence. As the diffusional paths in the membrane become more difficult in aqueous solutions, the mobility of large hydrated ions gets impeded by the membrane framework and the interaction with the fixed charge groups on the membrane matrix. Consequently, the membrane pores reduce the conductance of small ions, which are much hydrated. An increase in conductance with increase in temperature may be due to the state of hydration, which implies that the energy of activation for the ionic transport across the membrane follows the sequence of crystallographic radii of ions accordingly. The Eyring's equation, kappa=(RT/Nh)exp[-DeltaH*/RT]exp[DeltaS*/R], has been found suitable for explaining the temperature dependence of conductance in

  4. Lithium ion transport in a model of amorphous polyethylene oxide.

    Energy Technology Data Exchange (ETDEWEB)

    Boinske, P. T.; Curtiss, L.; Halley, J. W.; Lin, B.; Sutjianto, A.; Chemical Engineering; Univ. of Minnesota

    1996-01-01

    We have made a molecular dynamics study of transport of a single lithium ion in a previously reported model of amorphous polyethylene oxide. New ab initio calculations of the interaction of the lithium ion with 1,2-dimethoxyethane and with dimethyl ether are reported which are used to determine force fields for the simulation. We report preliminary calculations of solvation energies and hopping barriers and a calculation of the ionic conductivity which is independent of any assumptions about the mechanism of ion transport. We also report some details of a study of transport of the trapped lithium ion on intermediate time and length scales.

  5. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Verdon, Gregory [Weill Cornell Medical College, New York, NY (United States); Oh, SeCheol [Weill Cornell Medical College, New York, NY (United States); Serio, Ryan N. [Weill Cornell Medical College, New York, NY (United States); Boudker, Olga [Weill Cornell Medical College, New York, NY (United States)

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  6. {delta}f simulation of ion neoclassical transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Nakajima, N.; Okamoto, M.; Murakami, S. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-07-01

    Ion neoclassical transport with finite orbit width dynamics is calculated over whole poloidal cross section by using accurate {delta}f method which employs an improved like-particle collision operator and an accurate weighting scheme to solve drift kinetic equation. Ion thermal transport near magnetic axis shows a great reduction from its conventional neoclassical level due to non-standard orbit topology, like that of previous {delta}f simulation. On other hand, the direct particle loss from confinement region may strongly increase ion energy transport near the edge. It is found that ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. In the presence of steep density gradient, ion thermal conductivity is significantly reduced, and an ion particle flux is driven by self-collision alone. (author)

  7. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish

    Science.gov (United States)

    Hiroi, Junya; McCormick, Stephen D.

    2012-01-01

    Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized “ionocytes” in the gill epithelium. Antibodies against Na+/K+-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na+/K+/2Cl− cotransporter and CFTR Cl− channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.

  8. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  9. BRANCHIAL ELIMINATION OF SUPERHYDROPHOBIC ORGANIC COMPOUNDS BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    The branchial elimination of pentachloroethane and four congeneric polychlorinated bephenyls by rainbow trout was measured using a fish respirometer-metabolism chamber and an adsorption resin column. Branchial elimination was characterized by calculating a set of apparent in vivo...

  10. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  11. Transport of Sulphate Ions into Concrete

    Directory of Open Access Journals (Sweden)

    S. Modrý

    2000-01-01

    Full Text Available Penetration of sulphate ions the cement mortar specimen surface was studied. The sulphate ions diffusion front advances with increasing time, and the content of SO3 in surface layers increases as well. In spite of some experimental problems, electron probe microanalysis seems to be a useful tool for concrete corrosion study.

  12. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  13. Fast and efficient transport of large ion clouds

    CERN Document Server

    Kamsap, Marius Romuald; Champenois, Caroline; Guyomarc'H, Didier; Houssin, Marie; Knoop, Martina

    2015-01-01

    The manipulation of trapped charged particles by electric fields is an accurate, robust and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of the ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 50 000 ions. The design of the trap makes ions very sensitive to any mismatch between the assumed electric potential and the actual local one. Nevertheless, we show that being fast (100 $\\mu$s to transfer over more than 20 mm) increases the transport efficiency to values higher than 90 %, even with a large number of ions. For clouds of less than 2000 ions, a 100 % transfer efficiency is observed.

  14. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  15. Coupled gas and ion transport in quadrupole interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, M [Institute for Aerospace Studies, University of Toronto, Ontario, M3H 5T6 (Canada); Groth, C P T [Institute for Aerospace Studies, University of Toronto, Ontario, M3H 5T6 (Canada); Thomson, B A [MDS SCIEX, Concord, Ontario, L4K 4V8 (Canada); Baranov, V [MDS SCIEX, Concord, Ontario, L4K 4V8 (Canada); Collings, B A [MDS SCIEX, Concord, Ontario, L4K 4V8 (Canada); French, J B [MDS SCIEX, Concord, Ontario, L4K 4V8 (Canada)

    2008-01-21

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based (fluid) numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure are developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf) and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. The neutral dynamics is shown to have a strong influence on the ion transport whereas the electric field imparts a more gradual effect. The combined effect of the applied (dc and rf) electric field and neutral collision processes with the dilute neutral gas results in a strong tendency for ion focusing towards the axis of symmetry, with the overall efficiency governed by the mass-to-charge ratio.

  16. [One case of postoperative facial paralysis after first branchial fistula].

    Science.gov (United States)

    Wang, Xia; Xu, Yaosheng

    2015-12-01

    Pus overflow from patent's fistula belew the left face near mandibular angle 2 years agowith a little pain. Symptoms relieved after oral antibiotics. This symptom frequently occurred in the past six months. Postoperative facial paralysis occurred after surgery, and recovered after treatment. It was diagnosed as the postoperative facial paralysis after first branchial fistula surgery.

  17. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  18. Purinergic signalling in epithelial ion transport

    DEFF Research Database (Denmark)

    Novak, Ivana

    2011-01-01

    Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular function...

  19. Ion and water transport in charge-modified graphene nanopores

    Institute of Scientific and Technical Information of China (English)

    裘英华; 李堃; 陈伟宇; 司伟; 谭启檐; 陈云飞

    2015-01-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly infl uence fl uid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase–decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5%and 90.2%when the nanopores are negatively and positively charged, respectively. The Cl−ion current increases and reaches a plateau, and the Na+current decreases as the charge amount increases in systems in which Na+ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges.

  20. Phylogeny and cloning of ion transporters in mosquitoes.

    Science.gov (United States)

    Pullikuth, Ashok K; Filippov, Valeri; Gill, Sarjeet S

    2003-11-01

    Membrane transport in insect epithelia appears to be energized through proton-motive force generated by the vacuolar type proton ATPase (V-ATPase). However, secondary transport mechanisms that are coupled to V-ATPase activity have not been fully elucidated. Following a blood meal, the female mosquito regulates fluid and ion homeostasis through a series of characteristic behaviors that require brain-derived factors to regulate ion secretion. Despite the knowledge on the behaviors of the mosquito, little is known of the targets of several factors that have been implicated in cellular changes following a blood meal. This review discusses current models of membrane transport in insects and specific data on mosquito ion regulation together with the molecular aspects of membrane transport systems that are potentially linked to V-ATPase activity, which collectively determine the functioning of mosquito midgut and Malpighian tubules. Ion transport mechanisms will be discussed from a comparative physiology perspective to gain appreciation of the exquisite mechanisms of mosquito ion regulation.

  1. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  2. Chloride ion transport performance in slag mortar under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    WANG CaiHui; SUN Wei; JIANG JinYang; HAN JianDe; YE BangTu

    2012-01-01

    The transport performance of chloride ion in slag cement mortar was investigated experimentally.In the self-designed experiment,fatigue loading was coupled simultaneously with ion transportation process,the diffusion law of chloride ion was obtained by titration and the AE (acoustic emission) technique was employed to detect the real-time damage distribution in the mortar specimen.The results for fatigue stress levels of 0.3,0.4 and 0.5 and slag contents of 0,10%,30% and 50% showed that fatigue loading accelerated the diffusion of chloride ion in mortar and the acceleration effect increased with the increase in stress levels.Slag addition was found to improve anti-chloride ion erosion performance effectively with the best substitution level at 30%,because the inhibition effect of slag on chloride ion diffusion diminished when the slag content exceeded 30%.The comparative experiments indicated that dynamic load has a significant effect on the transport performance of chloride ion in slag cement mortar.

  3. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from...... the changes in oocyte volume in response to osmotic gradients. The specific SGLT1 and GAT1 Lp values were obtained by measuring Lp in the presence and absence of blockers (phlorizin and SKF89976A). In the presence of the blockers, the Lp values of oocytes expressing SGLT1 and GAT1 were indistinguishable from...... the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro...

  4. Ion and water transport in charge-modified graphene nanopores

    CERN Document Server

    Qiu, Yinghua; Chen, Weiyu; Si, Wei; Tan, Qiyan; Chen, Yunfei

    2016-01-01

    Porous graphene has high mechanical strength and atomic layer thickness, which make it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solution are a kind of strong long-range interaction which may have great influence on the fluid transport through nanopores. Here, molecular dynamics simulations were conducted to investigate ion and water transport through a 1.05-nm-in-diameter monolayer graphene nanopore with its edge charge-modified. From the results, it is found that the nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonously decrease. The co-ions rejection can reach 75% and 90% when the nanopores are negatively and positively charged, respectively. Cl ions current increases and reaches a plateau, and Na+ current decreases with the charge amount in the systems where they act as counterions. Beside...

  5. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, Peter, E-mail: p.spaedtke@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  6. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry.

    Science.gov (United States)

    Yan, Yu; Wang, Lin; Xue, Jianming; Chang, Hsueh-Chia

    2013-01-28

    We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as defined by a normalized density of the surface charge, significantly affects ion current rectification across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves through the tip, respectively), which is responsible for current rectification. For strongly selective negatively charged pores under positive bias, the current can be reduced by external field focusing and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These external phenomena produce a rectification inversion for highly selective pores at high (low) voltage (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we derive simple scaling laws to quantitatively capture empirical and numerical data for ion current rectification and rectification inversion of conic nanopores.

  7. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; CHEN YunFei; ZHONG Wu; YANG JueKuan

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented,and the process of ion transport in the nanochannel was simulated in this paper.The model consists of two water sinks at the two ends and a pump in the middle,which is different from a single pump model in previous MD simulations.Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the en-richment of counterions in the nanochannel.A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel,and the current in the pump region is mainly induced by the motion of counterions.In addition,the ion number in the pump region rapidly decreases as the external electric field is applied.In the equilibrated system,the electrically neutral character in the pump region is destroyed and this region displays a certain electrical char-acter,which depends on the surface charge.The ion distribution is greatly different from the results predicted by the continuum theory,e.g.a smaller peak value of Na+ concentration appears near the wall.The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density.The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model.The mechanism of some special ex-perimental phenomena in a nanochannel and the effect of the surface charge den-sity on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  8. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The model consists of two water sinks at the two ends and a pump in the middle, which is different from a single pump model in previous MD simulations. Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the enrichment of counterions in the nanochannel. A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel, and the current in the pump region is mainly induced by the motion of counterions. In addition, the ion number in the pump region rapidly decreases as the external electric field is applied. In the equilibrated system, the electrically neutral character in the pump region is destroyed and this region displays a certain electrical character, which depends on the surface charge. The ion distribution is greatly different from the results predicted by the continuum theory, e.g. a smaller peak value of Na+ concentration appears near the wall. The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density. The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model. The mechanism of some special experimental phenomena in a nanochannel and the effect of the surface charge density on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  9. Regional differences in rat conjunctival ion transport activities

    OpenAIRE

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expressio...

  10. Alkali ion transport of primycin modified erythrocytes.

    Science.gov (United States)

    Blaskó, K; Györgyi, S

    1981-01-01

    The effects of the antibiotic primycin on alkali cation transport of human erythrocytes were investigated. Primycin selectively increases the permeability of erythrocytes to alkali-cations according to the sequence: Cs+ greater than Rb+ approximately K+ greater than Na+. The time course of the cation effluxes depends on the antibiotic concentration and can be altered by negatively charged SDS. Some evidence is given for the mechanism of primycin-membrane interaction.

  11. Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore

    Science.gov (United States)

    Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand

    2016-01-01

    A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures. PMID:27835700

  12. Hall transport of divalent metal ion modified DNA lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha, E-mail: sunghapark@skku.edu [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae, E-mail: hjk3@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  13. Molecular Mechanism of Ion-Ion and Ion-Substrate Coupling in the Na+-Dependent Leucine Transporter LeuT

    OpenAIRE

    Caplan, David A.; Subbotina, Julia O.; Noskov, Sergei Yu.

    2008-01-01

    Ion-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood. The recent determination of a high-resol...

  14. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  15. Ion transport barriers triggered by plasma polarization in gyrokinetic simulations

    Science.gov (United States)

    Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.

    2013-07-01

    The creation of ion transport barriers by externally induced sheared E × B flows is investigated with the global, full-f and flux-driven gyrokinetic code GYSELA. A gyrokinetic source of vorticity is designed and proves to be efficient in polarizing the plasma. Induced sheared electric fields develop in the turbulent core and are accompanied by the creation of a transport barrier. The barrier and the sheared flow relax quasi-periodically because of zonal flow activity and a destabilizing temperature anisotropy induced by the vorticity source. A new cyclic mechanism leading to the relaxation of transport barriers in tokamaks is discovered.

  16. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  17. Vocal fold ion transport and mucin expression following acrolein exposure.

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Sivasankar, M Preeti

    2014-05-01

    The vocal fold epithelium is exposed to inhaled particulates including pollutants during breathing in everyday environments. Yet, our understanding of the effects of pollutants on vocal fold epithelial function is extremely limited. The objective of this study was to investigate the effect of the pollutant acrolein on two vocal fold epithelial mechanisms: ion transport and mucin (MUC) synthesis. These mechanisms were chosen as each plays a critical role in vocal defense and in maintaining surface hydration which is necessary for optimal voice production. Healthy, native porcine vocal folds (N = 85) were excised and exposed to an acrolein or sham challenge. A 60-min acrolein, but not sham challenge significantly reduced ion transport and inhibited cyclic adenosine monophosphate-dependent, increases in ion transport. Decreases in ion transport were associated with reduced sodium absorption. Within the same timeline, no significant acrolein-induced changes in MUC gene or protein expression were observed. These results improve our understanding of the effects of acrolein on key vocal fold epithelial functions and inform the development of future investigations that seek to elucidate the impact of a wide range of pollutant exposures on vocal fold health.

  18. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  19. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    Science.gov (United States)

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  20. Branchial cilia and sperm flagella recruit distinct axonemal components.

    Directory of Open Access Journals (Sweden)

    Alu Konno

    Full Text Available Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1 Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2 Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3 Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation.

  1. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    Energy Technology Data Exchange (ETDEWEB)

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  2. Transport of secondary electrons and reactive species in ion tracks

    CERN Document Server

    Surdutovich, Eugene

    2015-01-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well.

  3. Isothermal titration calorimetry of ion-coupled membrane transporters.

    Science.gov (United States)

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Benchmarking of neutron production of heavy-ion transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6172 (United States); Ronningen, R. M. [Michigan State Univ., National Superconductiong Cyclotron Laboratory, East Lansing, MI 48824-1321 (United States); Heilbronn, L. [Univ. of Tennessee, 1004 Estabrook Rd., Knoxville, TN 37996-2300 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)

  5. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hong [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro Gwanak-gu Seoul 151-742 South Korea; Han, Kee Sung [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Lee, Je Seung [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Lee, Albert S. [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Park, Seo Kyung [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Hong, Sung Yun [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Lee, Jong-Chan [School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro Gwanak-gu Seoul 151-742 South Korea; Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Hong, Soon Man [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Nanomaterials Science and Engineering, University of Science and Technology, Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea; Koo, Chong Min [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Nanomaterials Science and Engineering, University of Science and Technology, Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea

    2016-09-08

    We investigated a novel ionic mixture of an imidazolium-based room temperature IL containing ethylene oxide functionalized phosphite anion and a lithium salt that self-assembles into a smectic-ordered IL crystal. The two key features in this work are the unique origin of the smectic order of the ionic mixtures and the facilitated ion transport behavior in the smectic ordered IL crystal. In fact, the IL crystals are self-assembled through Coulombic interactions between ion species, not through the hydrophilic-phobic interactions between charged ion heads and hydrophobic long alkyl pendants or the steric interaction between mesogenic moieties. Furthermore, the smectic order in the IL crystal ionogel facilitates exceptional and remarkable ionic transport. Large ionic conductivity, viscoelastic robustness, and additional electrochemical stability of the IL crystal ionogels provide promising opportunities for future electrochemical applications.

  6. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  7. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  8. Carrier-mediated ion transport in lipid bilayer membranes.

    Science.gov (United States)

    Laprade, R; Grenier, F; Pagé-Dansereau, M; Dansereau, J

    1984-08-01

    The electrical properties predicted by a widely accepted model for carrier-mediated ion transport in lipid bilayers are described. The different steps leading to ion transport and their associated rate constants are reaction at the interface between an ion in the aqueous phase and a carrier in the membrane (kRi), followed by translocation of the ion-carrier complex across the membrane interior (kis) and its dissociation at the other interface (kDi) after which the free carrier crosses back the membrane interior (ks). Results on glyceryl monooleate (GMO) membranes for a family of homologue carriers, the macrotetralide actin antibiotics (nonactin, monactin, dinactin, trinactin, and tetranactin) and a variety of ions (Na+, Cs+, Rb+, K+, NH4+, and Tl+) are presented. Internally consistent data obtained from steady-state electrical measurements (zero-current potential and conductance, current-voltage relationship) allow us to obtain the equilibrium permeability ratios for the different ions and show that for a given carrier kRi is relatively invariant from one ion to the other, except for Tl+ (larger), which implies that the ionic selectivity is controlled by the dissociation of the complex. The values of the individual rate constants obtained from current relaxation experiments are also presented and confirm the findings from steady-state measurements, as well as the isostericity concept for complexes of different ions with the same carrier (kis invariant). These also allow us to determine the aqueous phase membrane and torus membrane partition coefficients. Finally, the observed increase in kis from nonactin to tetranactin and, for all homologues, from GMO-decane to solvent-free GMO membranes, together with the concomitant decrease in kDi, can be explained in terms of modifications of electrostatic energy profiles induced by variations in carrier size and membrane thickness.

  9. Mechanism of unassisted ion transport across membrane bilayers

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  10. Tests of the improved Weiland ion temperature gradient transport model

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, J.E.; Bateman, G.; Kritz, A.H. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1996-12-31

    The Weiland theoretically derived transport model for ion temperature gradient and trapped electron modes has been improved to include the effects of parallel ion motion, finite beta, and collisionality. The model also includes the effects of impurities, fast ions, unequal ion and electron temperatures, and finite Larmor radius. This new model has been implemented in our time-dependent transport code and is used in conjunction with pressure-driven modes and neoclassical theory to predict the radial particle and thermal transport in tokamak plasmas. Simulations of TFTR, DIII-D, and JET L-mode plasmas have been conducted to test how the new effects change the predicted density and temperature profiles. Comparisons are made with results obtained using the previous version of the model which was successful in reproducing experimental data from a wide variety of tokamak plasmas. Specifically, the older model has been benchmarked against over 50 discharges from at least 7 different tokamaks including L-mode scans in current, heating power, density, and dimensionless scans in normalized gyro-radius, collisionality, and beta. We have also investigated the non-diffusive elements included in the Weiland model, particularly the particle pinch in order to characterize its behavior. This is partly motivated by recent simulations of ITER. In those simulations, the older Weiland model predicted a particle pinch and ignition was more easily obtained.

  11. Ion Effects in the DARHT-II Downstream Transport

    CERN Document Server

    Chan, Kwok-Chi D; Ekdahl, Carl; Genoni, Thomas C; Hughes, Thomas P; Schulze, Martin E

    2005-01-01

    The DARHT-II accelerator produces an 18-MeV, 2-kA, 2-μs electron beam pulse. After the accelerator, the pulse is delivered to the final focus on an x-ray producing target via a beam transport section called the Downstream Transport. Ions produced due to beam ionization of residual gases in the Downstream Transport can affect the beam dynamics. Ions generated by the head of the pulse will cause modification of space-charge forces at the tail of the pulse so that the beam head and tail will have different beam envelopes. They may also induce ion-hose instability at the tail of the pulse. If these effects are significant, the focusing requirements of beam head and tail at the final focus will become very different. The focusing of the complete beam pulse will be time dependent and difficult to achieve, leading to less efficient x-ray production. In this paper, we will describe the results of our calculations of these ion effects at different residual-gas pressure levels. Our goal is to determine the ma...

  12. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    Science.gov (United States)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  13. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  14. Transport properties of ion implanted poly (p-phenylene vinylene)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B. (LEPOFI, Faculte des Sciences, 87 Limoges (France)); Ratier, B. (LEPOFI, Faculte des Sciences, 87 Limoges (France)); Moliton, A. (LEPOFI, Faculte des Sciences, 87 Limoges (France)); Moreau, C. (Cavendish Lab., Univ. of Cambridge, Cambridge (United Kingdom)); Friend, R.H. (Cavendish Lab., Univ. of Cambridge, Cambridge (United Kingdom))

    1993-04-19

    We have studied the effect of ion implantation on transport properties (thermopower S, dc conductivity [sigma], ac conductivity [sigma][sub T]) of poly (p-phenylene vinylene). We have noticed that the thermopower sign is characteristic of the implanted ion (S > 0 for halogen, S < 0 for alkali) at low implantation energy (E [<=] 50 keV). The slope of [sigma] = f (T[sup -1]) varies, with values for activation energy between 32 meV (D = 10[sup 16] ions/cm[sup 2]) and 57 meV (D = 10[sup 15] ions/cm[sup 2]): the activation energy falls as the fluence increases in the case of implantation at low energy (E [<=] 50 keV). AC conductivity has been studied as a function of frequency v (v = 20 Hz - 1 MHz) and of temperatures T (T = 100 K - 380 K). For lower fluences (D = 2.10[sup 15] ions/cm[sup 2]), at low temperatures the ac conductivity shows hopping behaviour, switching to activated behaviour at higher temperatures. For higher fluences (D = 2.10[sup 16] ions/cm[sup 2]) the main processes are thermally activated. Thus for a high implantation energy (E = 250 keV), the related conductivity is less thermally activated and the curve [sigma][sub T] = f (1/T) slightly depends on temperature (hopping mechanism). (orig.)

  15. Modeling of negative ion transport in a plasma source

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  16. Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure

    Science.gov (United States)

    Breves, Jason P.; Fujimoto, Chelsea K.; Phipps-Costin, Silas K.; Einarsdottir, Ingibjörg E.; Björnsson, Björn Thrandur; McCormick, Stephen

    2017-01-01

    BackgroundIn preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,−5a,−5b1,−5b2,−6b1 and−6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na+ /K + /2Cl − cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters.ResultsIndicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,−5b1 and−5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March.ConclusionsSalmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.

  17. Bivalent ion transport through graphene/PET nanopore

    Science.gov (United States)

    Yao, Huijun; Cheng, Yaxiong; Zeng, Jian; Mo, Dan; Duan, Jinglai; Liu, Jiande; Zhai, Pengfei; Sun, Youmei; Liu, Jie

    2016-05-01

    The PET suspended single graphene nanopore (G/PET) was produced by heavy ion irradiation and asymmetric chemical etching. The solutions of NiSO4, NiCl2, CuSO4 and CuCl2 with different concentration were adopted to study the transport properties of bivalent ion in single G/PET nanopore by measuring the I-V curves. The perfect "diode effect" and excellent rectification effect of G/PET nanopore were observed, and the huge rectification ratio up to 43.3 was obtained in NiSO4 solution. The great solution selectivity and ion current magnification effect of graphene/PET nanopore were also confirmed in our study.

  18. Quantum coherence in ion channels: Resonances, Transport and Verification

    CERN Document Server

    Vaziri, A

    2010-01-01

    Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coherence and what if any role it plays for the dynamics of the system. Here we suggest that the selectivity filter of ion channels may exhibit quantum coherence which might be relevant for the process of ion selectivity and conduction. We show that quantum resonances could provide an alternative approch to ultrafast 2D spectroscopy to probe these quantum coherences. We demonstrate that the emergence of resonances in the conduction of ion channels that are modulated periodicallly by time dependent external electric fields can serve as signitures of quantum coherence in such a system. Assessments of experimental feasibility and specific paths towards the experimental realization of such experiments are presented. We show that this may be probed by direct 2-D spectroscop...

  19. Regulation of lysosomal ion homeostasis by channels and transporters.

    Science.gov (United States)

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  20. Validation of Heavy Ion Transport Capabilities in PHITS

    Science.gov (United States)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  1. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  2. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  3. Effects of electrolytes on ion transport in Chitosan membranes

    Science.gov (United States)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  4. Incomplete reduction of branchial clefts in Mutton Merino lambs

    OpenAIRE

    Rhoda Leask; Kenneth P. Pettey; Gareth F. Bath

    2014-01-01

    Congenital malformations of the branchial arches, clefts and grooves have not been previously reported in sheep. These defects may be due to infectious agents (especially viruses), toxins or genetic abnormalities. Defects were reported in two of a set of quadruplet lambs born prematurely to an eight-tooth Mutton Merino ewe. The lambs weighed between 2.0 kg and 2.5 kg; this is below the normal expected birth weight of 3.5 kg for quadruplet lambs, below which viability is compromised. The first...

  5. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  6. Modeling of negative ion transport in a plasma source (invited)

    Science.gov (United States)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  7. Stormtime transport of ring current and radiation belt ions

    Science.gov (United States)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  8. Functional characterization and Me2+ ion specificity of a Ca2+-citrate transporter from Enterococcus faecalis

    NARCIS (Netherlands)

    Blancato, Victor S.; Magni, Christian; Lolkema, Juke S.

    2006-01-01

    Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg2+-citrate, Ca2+-citrate or Fe3+-citrate. The Fe3+-citrate transporter of Streptococcu

  9. A case with unilateral hypoglossal nerve injury in branchial cyst surgery

    Directory of Open Access Journals (Sweden)

    Mukherjee Sudipta

    2012-02-01

    Full Text Available Abstract An 11 years old boy came, with complain of mild dysarthria. Examination revealed marked hemiatrophy of left side of the tongue. Five months back he underwent ipsilateral branchial cyst operation. To our knowledge, no case was reported. After branchial cyst operation if there is any residual remnant chance of recurrence is very high.

  10. First and second branchial arch syndromes: multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Senggen, Elodie; Laswed, Tarek; Meuwly, Jean-Yves; Maestre, Leonor Alamo; Meuli, Reto; Gudinchet, Francois [University Hospital of Lausanne, Radiology Department, Lausanne (Switzerland); Jaques, Bertrand [University Hospital of Lausanne, Department of Otorhinolaryngology, Lausanne (Switzerland)

    2011-05-15

    First and second branchial arch syndromes (BAS) manifest as combined tissue deficiencies and hypoplasias of the face, external ear, middle ear and maxillary and mandibular arches. They represent the second most common craniofacial malformation after cleft lip and palate. Extended knowledge of the embryology and anatomy of each branchial arch derivative is mandatory for the diagnosis and grading of different BAS lesions and in the follow-up of postoperative patients. In recent years, many new complex surgical approaches and procedures have been designed by maxillofacial surgeons to treat extensive maxillary, mandibular and external and internal ear deformations. The purpose of this review is to evaluate the role of different imaging modalities (orthopantomogram (OPG), lateral and posteroanterior cephalometric radiographs, CT and MRI) in the diagnosis of a wide spectrum of first and second BAS, including hemifacial microsomia, mandibulofacial dysostosis, branchio-oto-renal syndrome, Pierre Robin sequence and Nager acrofacial dysostosis. Additionally, we aim to emphasize the importance of the systematic use of a multimodality imaging approach to facilitate the precise grading of these syndromes, as well as the preoperative planning of different reconstructive surgical procedures and their follow-up during treatment. (orig.)

  11. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    Science.gov (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  12. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  13. Heavy ion transport in the core of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.

  14. Study of negative ion transport phenomena in a plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.; Pamela, J. [Departement de Recherches sur la Fusion Controlee C. E., Cadarache, 13108 St-Paul-lez-Durance Cedex (France)

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}

  15. Study of negative ion transport phenomena in a plasma source

    Science.gov (United States)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  16. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  17. What's new in ion transports in the cochlea?

    Science.gov (United States)

    Couloigner, Vincent; Sterkers, Olivier; Ferrary, Evelyne

    2006-10-01

    Recent advances in the field of the physiology of inner ear fluids permitted the characterization of the molecular mechanisms involved in critical processes such as the absorption of K(+) through cochlear sensory hair cells (mechanoelectrical transduction) or the secretion of K(+) by marginal cells of the stria vascularis. In addition, new pathways for ion circulations were evidenced. Mutations of transporters involved in some of these pathways, especially in K(+) recycling through gap junction systems, and in local pH regulation, are among the most frequent etiologies of genetic deafness in humans.

  18. Ion transport and softening in a polymerized ionic liquid

    Science.gov (United States)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach

  19. Energetic Particle Diagnostics for Transport Analysis 3.Escaping Fast Ion Diagnostics for the Fast Particle Transport Analysis

    Science.gov (United States)

    Isobe, Mitsutaka; Shinohara, Kouji

    Escaping energetic ion diagnostics in magnetically confined plasma experiments are described in this lecture note. Experimental results from escaping energetic ion diagnostics in TFTR, JFT-2M, CHS and W7-AS are shown. In addition to mechanism of energetic ion loss from a viewpoint of particle orbit, effect of MHD activity on energetic particle transport is reviewed.

  20. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  1. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)

    2011-08-15

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  2. Incomplete reduction of branchial clefts in Mutton Merino lambs

    Directory of Open Access Journals (Sweden)

    Rhoda Leask

    2014-02-01

    Full Text Available Congenital malformations of the branchial arches, clefts and grooves have not been previously reported in sheep. These defects may be due to infectious agents (especially viruses, toxins or genetic abnormalities. Defects were reported in two of a set of quadruplet lambs born prematurely to an eight-tooth Mutton Merino ewe. The lambs weighed between 2.0 kg and 2.5 kg; this is below the normal expected birth weight of 3.5 kg for quadruplet lambs, below which viability is compromised. The firstborn lamb was severely affected by bilateral oroauricular fistulae. The second lamb was unilaterally affected on the right, less severely than the first. The third lamb was normal and the fourth was mummified. The occurrence of another case in this small flock almost a decade earlier indicates that there could be genetic involvement.

  3. Incomplete reduction of branchial clefts in Mutton Merino lambs.

    Science.gov (United States)

    Leask, Rhoda; Pettey, Kenneth P; Bath, Gareth F

    2014-05-19

    Congenital malformations of the branchial arches, clefts and grooves have not been previously reported in sheep. These defects may be due to infectious agents (especially viruses), toxins or genetic abnormalities. Defects were reported in two of a set of quadruplet lambs born prematurely to an eight-tooth Mutton Merino ewe. The lambs weighed between 2.0 kg and 2.5 kg; this is below the normal expected birth weight of 3.5 kg for quadruplet lambs, below which viability is compromised. The firstborn lamb was severely affected by bilateral oroauricular fistulae. The second lamb was unilaterally affected on the right, less severely than the first. The third lamb was normal and the fourth was mummified. The occurrence of another case in this small flock almost a decade earlier indicates that there could be genetic involvement.

  4. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  5. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in ...

  6. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Møbjerg, N.; Sørensen, J. N.

    2006-01-01

    Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl- and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...... transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space...

  7. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær

    2006-01-01

    Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...... transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space...

  8. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2015-01-01

    Full Text Available Curcumin ((1E,6E-1,7-Bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, the yellow biphenolic pigment isolated from turmeric (Curcuma longa, has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M and in vivo (340 and 170 mg/kg b.w., oral on Na+/K+ ATPase (NKA, Na+/H+ exchanger (NHE activity, and membrane lipid hydroperoxides (ROOH in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects.

  9. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    Science.gov (United States)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  10. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    Science.gov (United States)

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  11. Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model

    Energy Technology Data Exchange (ETDEWEB)

    James, Michael R. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States)]. E-mail: mrjames@lanl.gov; McKinney, G.W. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Hendricks, John S. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Moyers, Michael [Loma Linda University Medical Center, 11234 Anderson St., PO Box 2000, Loma Linda, CA 92354 (United States)

    2006-06-23

    Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as {sup 56}Fe or {sup 238}U traveling at energies of {>=}1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, {sup 3}He, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results.

  12. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  13. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  14. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  15. Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas

    CERN Document Server

    Barnes, M; Dorland, W

    2012-01-01

    Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.

  16. Effects of the organophosphorous methyl parathion on the branchial epithelium of a freshwater fish Metynnis roosevelti

    Directory of Open Access Journals (Sweden)

    Machado Marcelo Rubens

    2003-01-01

    Full Text Available Gills are vital structures for fish, since they are the main site for gaseous exchange as well as partially responsible for osmorregulation, acid-basic balance, excretion of nitrogenous compounds and taste. Chemicals in the water may alter the morphology of branchial cells of fish that are, therefore, a useful model for environmental impact and ecotoxicology studies. In order to investigate the effects of an organophosphorous compound, methyl parathion, on the gills of the fish, samples of Metynnis roosevelti were exposed to lethal (7ppm and sublethal (1ppm doses of Mentox 600 CE. Through light and scanning electron microscopy, shrinking of the branchial epithelium, followed by detachment and hyperplasia were observed. Externally, the branchial filaments presented the gradual disappearance of microridges. Even in sublethal doses, the organophosphorous reduced the health and fitness of these fish, as consequence of secondary effects derived from changes in the branchial epithelium, impairing oxygenation and ionic balance of the organism.

  17. First Branchial Cleft Fistula Associated with External Auditory Canal Stenosis and Middle Ear Cholesteatoma

    Directory of Open Access Journals (Sweden)

    shahin abdollahi fakhim

    2014-10-01

    Full Text Available Introduction: First branchial cleft anomalies manifest with duplication of the external auditory canal.   Case Report: This report features a rare case of microtia and congenital middle ear and canal cholesteatoma with first branchial fistula. External auditory canal stenosis was complicated by middle ear and external canal cholesteatoma, but branchial fistula, opening in the zygomatic root and a sinus in the helical root, may explain this feature. A canal wall down mastoidectomy with canaloplasty and wide meatoplasty was performed. The branchial cleft was excised through parotidectomy and facial nerve dissection.   Conclusion:  It should be considered that canal stenosis in such cases can induce cholesteatoma formation in the auditory canal and middle ear.

  18. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  19. Novel aspects of cholinergic regulation of colonic ion transport

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  20. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  1. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  2. Crystal Structure of a Potassium Ion Transporter TrkH

    Energy Technology Data Exchange (ETDEWEB)

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  3. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  4. Multidetector computerized tomographic fistulography in the evaluation of congenital branchial cleft fistulae and sinuses.

    Science.gov (United States)

    Sun, Zhipeng; Fu, Kaiyuan; Zhang, Zuyan; Zhao, Yanping; Ma, Xuchen

    2012-05-01

    The aim of this study was to primarily investigate the usefulness of computerized tomographic (CT) fistulography in the diagnosis and management of branchial cleft fistulae and sinuses. Fifteen patients with confirmed branchial fistulae or sinuses who had undergone CT fistulography were included. The diagnoses were confirmed by clinical, radiologic, or histopathologic examinations. The internal openings, distribution, and neighboring relationship of the lesions presented by CT fistulography were analyzed to evaluate the usefulness in comparison with x-ray fistulography. Nine patients were diagnosed with first branchial fistulae or sinuses, 2 with second branchial fistulae, and 4 with third or fourth branchial fistulae. The presence and location of the lesions could be seen on x-ray fistulography. The distribution of the lesions, internal openings, and neighboring relationship with parotid gland, carotid sheath, and submandibular gland could be clearly demonstrated on CT cross-sectional or volume-rendering images. CT fistulography could provide valuable information and benefit surgical planning by demonstrating the courses of branchial anomalies in detail. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. (Uncommon) Mechanisms of Branchial Ammonia Excretion in the Common Carp (Cyprinus carpio) in Response to Environmentally Induced Metabolic Acidosis.

    Science.gov (United States)

    Wright, Patricia A; Wood, Chris M; Hiroi, Junya; Wilson, Jonathan M

    2016-01-01

    Freshwater fishes generally increase ammonia excretion in acidic waters. The new model of ammonia transport in freshwater fish involves an association between the Rhesus (Rh) protein Rhcg-b, the Na(+)/H(+) exchanger (NHE), and a suite of other membrane transporters. We tested the hypothesis that Rhcg-b and NHE3 together play a critical role in branchial ammonia excretion in common carp (Cyprinus carpio) chronically exposed to a low-pH environment. Carp were exposed to three sequential environmental treatments-control pH 7.6 water (24 h), pH 4.0 water (72 h), and recovery pH 7.6 water (24 h)-or in a separate series were simply exposed to either control (72 h) or pH 4.0 (72 h) water. Branchial ammonia excretion was increased by ∼2.5-fold in the acid compared with the control period, despite the absence of an increase in the plasma-to-water partial pressure NH3 gradient. Alanine aminotransferase activity was higher in the gills of fish exposed to pH 4 versus control water, suggesting that ammonia may be generated in gill tissue. Gill Rhcg-b and NHE3b messenger RNA levels were significantly elevated in acid-treated relative to control fish, but at the protein level Rhcg-b decreased (30%) and NHE3b increased (2-fold) in response to water of pH 4.0. Using immunofluorescence microscopy, NHE3b and Rhcg-b were found to be colocalized to ionocytes along the interlamellar space of the filament of control fish. After 72 h of acid exposure, Rhcg-b staining almost disappeared from this region, and NHE3b was more prominent along the lamellae. We propose that ammoniagenesis within the gill tissue itself is responsible for the higher rates of branchial ammonia excretion during chronic metabolic acidosis. Unexpectedly, gill Rhcg-b does not appear to be important in gill ammonia transport in low-pH water, but the strong induction of NHE3b suggests that some NH4(+) may be eliminated directly in exchange for Na(+). These findings contrast with previous studies in larval zebrafish

  6. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  7. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Marius [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, SK-812 19 Bratislava, Slovak Republic (Slovakia); Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria)]. E-mail: marius.pavlovic@stuba.sk; Griesmayer, Erich [Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria); Seemann, Rolf [Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria)

    2005-06-11

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  8. The Transport of Solar Ions Through the Earth's Magnetosphere

    Science.gov (United States)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most

  9. The Transport of Solar Ions Through the Earth's Magnetosphere

    Science.gov (United States)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 RE, in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most part, in

  10. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  11. Temperature dependence of ion transport: the compensated Arrhenius equation.

    Science.gov (United States)

    Petrowsky, Matt; Frech, Roger

    2009-04-30

    The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.

  12. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  13. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    OpenAIRE

    Nielsen, Christoffer Peder; Bruus, Henrik

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find app...

  14. Transport implementation of the Bernstein-Vazirani algorithm with ion qubits

    Science.gov (United States)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  15. Transport Implementation of the Bernstein-Vazirani Algorithm with Ion Qubits

    CERN Document Server

    Fallek, Spencer; McMahon, Brian; Maller, Kara; Brown, Kenneth; Amini, Jason

    2016-01-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture relies upon ion transport and can readily be expanded to larger systems. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  16. Reliable transport through a microfabricated X-junction surface-electrode ion trap

    Science.gov (United States)

    Wright, Kenneth; Amini, Jason M.; Faircloth, Daniel L.; Volin, Curtis; Doret, S. Charles; Hayden, Harley; Pai, C.-S.; Landgren, David W.; Denison, Douglas; Killian, Tyler; Slusher, Richart E.; Harter, Alexa W.

    2013-03-01

    We report the design, fabrication and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a 90° cross. The trap is fabricated with very large scalable integration techniques which are compatible with scaling to a large quantum information processor. The shape of the radio-frequency electrodes is optimized with a genetic algorithm to reduce axial pseudopotential barriers and minimize ion heating during transport. Seventy-eight independent dc control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs and determine the rate of ion loss due to transport. Doppler-cooled ions survive more than 105 round-trip transits between junction legs without loss and more than 65 consecutive round trips without laser cooling.

  17. First branchial cleft anomalies: presentation, variability and safe surgical management.

    Science.gov (United States)

    Magdy, Emad A; Ashram, Yasmine A

    2013-05-01

    First branchial cleft (FBC) anomalies are uncommon. The aim of this retrospective clinical study is to describe our experience in dealing with these sporadically reported lesions. Eighteen cases presenting with various FBC anomalies managed surgically during an 8-year period at a tertiary referral medical institution were included. Ten were males (56 %) and eight females (44 %) with age range 3-18 years. Anomaly was right-sided in 12 cases (67 %). None were bilateral. Nine patients (50 %) had prior abscess incision and drainage procedures ranging from 1 to 9 times. Two also had previous unsuccessful surgical excisions. Clinical presentations included discharging tract openings in external auditory canal/conchal bowl (n = 9), periauricular (n = 6), or upper neck (n = 4); cystic postauricular, parotid or upper neck swellings (n = 5); and eczematous scars (n = 9). Three distinct anatomical types were encountered: sinuses (n = 7), fistulas (n = 6), and cysts (n = 5). Complete surgical excision required superficial parotidectomy in 11 patients (61 %). Anomaly was deep to facial nerve (FN) in three cases (17 %), in-between its branches in two (11 %) and superficial (but sometimes adherent to the nerve) in remaining cases (72 %). Continuous intraoperative electrophysiological FN monitoring was used in all cases. Two cases had postoperative temporary lower FN paresis that recovered within 2 months. No further anomaly manifestation was observed after 49.8 months' mean postoperative follow-up (range 10-107 months). This study has shown that awareness of different presentations and readiness to identify and protect FN during surgery is essential for successful management of FBC anomalies. Intraoperative electrophysiological FN monitoring can help in that respect.

  18. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  19. Reliable transport through a microfabricated X-junction surface-electrode ion trap

    CERN Document Server

    Wright, Kenneth; Faircloth, Daniel L; Volin, Curtis; Doret, S Charles; Hayden, Harley; Pai, C-S; Landgren, David W; Denison, Douglas; Killian, Tyler; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    We report the design, fabrication, and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a ninety-degree cross. The trap is fabricated with very-large-scalable-integration (VLSI) techniques which are compatible with scaling to a larger quantum information processor. The shape of the radio-frequency (RF) electrodes is optimized with a genetic algorithm to minimize axial pseudopotential barriers and to minimize ion heating during transport. Seventy-eight independent DC control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs, trapping of ion chains with nearly-equal spacing in one of the trap's linear sections, and merging and splitting ions from these chains. Doppler-cooled ions survive more than 10^5 round-trip transits between junction legs without loss and more than sixty-five consecutive round trips without lase...

  20. Propionate alters ion transport by rabbit distal colon

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, P.J.; Weiser, M.M.; Duffey, M.E.

    1986-03-01

    The primary anions of the colon are short-chain fatty acids (SCFA) produced by intestinal microorganisms from endogenous secretions and dietary fiber. The effects of the SCFA propionate on ion transport by the epithelium of rabbit distal colon were studied on tissues stripped of underlying musculature and mounted in Ussing chambers. When tissues were bathed with NaCl Ringer's solutions at 37/sup 0/C (5% CO/sub 2/-21mM HCO/sub 3/, pH 7.4) replacement of 33mM Cl/sup -/ in both tissue baths by propionate reduced short-circuit current (Isc) from 86 to 35 ..mu..A/cm/sup 2/ and increased transepithelial conductance (G/sub t/) from 3.6 to 5.6mS/cm/sup 2/. Unidirectional /sup 14/C-propionate flux measurements revealed that this ion was secreted at a rate of 0.5..mu..Eq/cm/sup 2/hr. Intracellular measurements with potential and pH sensitive microelectrodes showed that propionate reduced intracellular pH (PH/sub i/) from 6.84 to 6.68 (P < 0.02), depolarized the apical membrane potential (phi/sub a/) by 4mV (P < 0.02) and decreased the membrane fractional resistance (f/sub R/) from .78 to .71 (P < 0.001). Addition of 0.1mM amiloride to the mucosal bath reversed Isc to -18..mu..A/cm/sup 2/, decreased G/sub t/ to 5.3mS/cm/sup 2/, hyperpolarized phi/sub a/ by 5mV (P < 0.05) and increased f/sub R/ to 0.85 (P < 0.001). Amiloride had no effect on pH/sub i/. These results show that propionate can be secreted by rabbit distal colon and that exposure to this SCFA causes cell acidification and electrophysiological changes consistent with H/sup +/ secretion.

  1. High-fidelity transport of trapped-ion qubits through an X-junction trap array.

    Science.gov (United States)

    Blakestad, R B; Ospelkaus, C; VanDevender, A P; Amini, J M; Britton, J; Leibfried, D; Wineland, D J

    2009-04-17

    We report reliable transport of (9)Be(+) ions through an "X junction" in a 2D trap array that includes a separate loading and reservoir zone. During transport the ion's kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.

  2. Modulation of ion transport across rat distal colon by cysteine

    Directory of Open Access Journals (Sweden)

    Martin eDiener

    2012-03-01

    Full Text Available The aim of this study was to identify the actions of stimulation of endogenous production of H2S by cysteine, the substrate for the two H2S-producing enzymes, cystathionin-beta-synthase and cystathionin-gamma-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and beta-cyano-L-alanine, i.e. inhibitors of H2S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e. an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl- and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl- secretion, whereas Na cysteinate – after a transient inhibitory phase – activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K+ channels. Indeed, after preinhibition of basolateral K+ channels with tetrapentylammonium or Ba2+, the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H2S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H2S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H2S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.

  3. Theory of Nucleon Transport in Deep Inelastic Heavy Ion Reactions.

    Science.gov (United States)

    Sherman, Andrew Bruce

    Heavy ion reactions induced by projectiles of A > 80 at bombarding energies of 5-10 MeV/nucleon were studied using classical dynamical models. The damping of the relative motion was accounted for by radial and tangential friction, which dissipated both energy and angular momentum. Deformations were initially simulated by a simple phenomenological prescription for the entrance channel/exit channel asymmetry in the nuclear and centrifugal potentials. Later, a time dependent prolate spheroidal deformation was assumed for the exit channel, and its effect on all forces was explicitly treated. In that treatment the nuclear forces were derived from the proximity potential and the one-body proximity friction. The most important aspect of this work was the treatment of mass and charge transport. Transfer was treated as a random process occurring at finite time intervals along the trajectory. The probability of transfer at a given time was governed by a driving force derived from the liquid-drop binding energy and the nuclear temperature. All forces affecting the collision dynamics as well as the transfer driving forces were adjusted instantaneously to reflect any change in the charge or mass. Because the process was random, the equations of motion were solved by a Monte-Carlo procedure, whereby each impact parameter (or partial wave) was integrated many times, yielding a distribution for the scattering angle, final kinetic energy, final mass and final charge. The model was very successful in fitting the peak of the angular distribution and most of the observed energy loss. The qualitative features of the mass or charge distributions were accounted for by the model, including the increase of the width with increased energy loss. However, the model was not able to account for all of the observed width of either the mass (or charge) distributions or the angular distributions. This was true even if the effects of thermal fluctuations were included. The reasons for these

  4. Global anomalous transport of ICRH- and NBI-heated fast ions

    CERN Document Server

    Wilkie, George J; Abel, Ian G; Dorland, William; Fülöp, Tünde

    2016-01-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Furthermore, we move beyond the trace approximatio...

  5. A Case Series: Outcome of Endoscopic Electrocautery in the Management of Branchial Fistula

    Directory of Open Access Journals (Sweden)

    Goh Bee See

    2015-09-01

    Full Text Available Objective: This is a series of five cases of branchial anomalies which were diagnosed and treated in a span of six years in the Department of Otorhinolaryngology, Head & Neck Surgery, Universiti Kebangsaan Malaysia Medical Centre (UKMMC. The main objective of this article is to highlight the use of endoscopic electrocautery in the management of branchial fistula. Case report: five cases were reported of the age group between 11 months old to 16 years who presented with an intermittent mucoid discharge from an external opening in the neck since birth and three cases were on the left side and the other two cases were bilateral fistula. Direct laryngoscopy under general anaesthesia was done as part of diagnostic and therapeutic management for the patients. Conclusion: Endoscopic electrocautery is a safe method and appears to be an effective alternative to open excision for branchial fistula.

  6. Global anomalous transport of ICRH- and NBI-heated fast ions

    Science.gov (United States)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  7. Ablation plasma transport using multicusp magnetic field for laser ion source

    Science.gov (United States)

    Takahashi, K.; Umezawa, M.; Uchino, T.; Ikegami, K.; Sasaki, T.; Kikuchi, T.; Harada, N.

    2016-05-01

    We propose a plasma guiding method using multicusp magnetic field to transport the ablation plasma keeping the density for developing laser ion sources. To investigate the effect of guiding using the magnetic field on the ablation plasma, we demonstrated the transport of the laser ablation plasma in the multicusp magnetic field. The magnetic field was formed with eight permanent magnets and arranged to limit the plasma expansion in the radial direction. We investigated the variation of the plasma ion current density and charge distribution during transport in the magnetic field. The results indicate that the plasma is confined in the radial direction during the transport in the multicusp magnetic field.

  8. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    Science.gov (United States)

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  9. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Toi, K. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Nagaoka, K. [National Institute for Fusion Science, Toki, Japan; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Okumura, S. [National Institute for Fusion Science, Toki, Japan

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  10. Effect of energetic-ion-driven MHD instabilities on energetic-ion-transport in compact helical system and large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Okamura, S. [National Institute for Fusion Science, Toki (Japan); Ogawa, K. [Department of Energy Science and Engineering, Nagoya University, Nagoya (Japan); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-08-15

    This paper describes (1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and (2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Functional characterization of neuroendocrine regulation of branchial carbonic anhydrase induction in the euryhaline crab Callinectes sapidus.

    Science.gov (United States)

    Mitchell, Reed T; Henry, Raymond P

    2014-12-01

    Carbonic anhydrase (CA) plays an essential role as a provider of counterions for Na(+)/H(+) and Cl(-)/HCO3 (-) exchange in branchial ionic uptake processes in euryhaline crustaceans. CA activity and gene expression are low in crabs acclimated to full-strength seawater, with transfer to low salinity resulting in large-scale inductions of mRNA and subsequent enzyme activity in the posterior ion-regulating gills (e.g., G7). In the green crab Carcinus maenas, CA has been shown to be under inhibitory neuroendocrine control by a putative hormone in the x-organ-sinus gland complex (XOSG), located in the eyestalk. This study characterizes the neuroendocrine regulation of CA induction in the blue crab Callinectes sapidus, a commonly used experimental organism for crustacean osmoregulation. In crabs acclimated to full-strength seawater, eyestalk ligation (ESL) triggered a 1.8- and 100-fold increase in CA activity and mRNA, respectively. Re-injection with eyestalk homogenates abolished increases in CA activity and fractionally reduced CA gene expression. ESL also enhanced CA induction by 33% after 96 h in crabs transferred to 15 ppt salinity. Injection of eyestalk homogenates into intact crabs transferred from 35 to 15 ppt diminished by 43% the CA induction stimulated by low salinity. These results point to the presence of a repressor hormone in the eyestalk. Separate injections of medullary tissue (MT) and sinus gland (SG), two components of the eyestalk, reduced salinity-stimulated CA activity by 22% and 49%, suggesting that the putative repressor is localized to the SG. Crabs injected with SG extract harvested from crabs acclimated to 5 ppt showed no decrease in CA activity, demonstrating that the hormone is down-regulated at low salinity. Our results show the presence in the XOSG of an inhibitory compound that regulates salinity-stimulated CA induction. © 2014 Marine Biological Laboratory.

  12. Beamline for low-energy transport of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  13. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    CERN Document Server

    Nielsen, Christoffer P

    2013-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  14. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  15. Ion and solvent Transport in Polypyrrole: Experimental Test of Osmotic Model

    DEFF Research Database (Denmark)

    Velmurugu, Yogambigai; Skaarup, Steen

    2005-01-01

    Ion and solvent transport in the conjugated polymer actuator material, polypyrrole, doped with the immobile anion dodecyl benzene sulphonate, has been investigated by simultaneous cyclic voltammetry and Electrochemical Quartz Crystal Microbalance measurements. The purpose was to elucidate...

  16. White Paper on Ion Beam Transport for ICF: Issues, R&D Need,and Tri-Lab Plans

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.; Lee, E.; Langdon, B.

    2005-05-04

    To date, most resources for ion beam fusion have been devoted to development of accelerators and target physics; relatively few resources have gone into ion beam transport development. Because of theoretical studies and substantial experience with electron beam transport, the ion beam transport community is now poised to develop and optimize ion beam transport for ICF. Because of this Tri-Lab effort, a path for coordinated development of ion beam transport has been established. The rate of progress along this path will now be determined largely by the availability of resources.

  17. Neonate with VACTERL Association and a Branchial Arch Anomaly without Hydrocephalus.

    Science.gov (United States)

    Velazquez, Danitza; Pereira, Elaine; Havranek, Thomas

    2016-03-01

    VACTERL (vertebral anomalies, anal atresia, cardiac defect, tracheoesophageal fistula, renal anomaly, limb anomalies) is an association of anomalies with a wide spectrum of phenotypic expression. While the majority of cases are sporadic, there is evidence of an inherited component in a small number of patients as well as the potential influence of nongenetic risk factors (maternal diabetes mellitus). Presence of hydrocephalus has been reported in VACTERL patients (VACTERL-H) in the past, with some displaying branchial arch anomalies. We report the unique case of an infant of diabetic mother with VACTERL association and a branchial arch anomaly-in the absence of hydrocephalus.

  18. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. T

  19. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, M. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Manfredi, G. [Dublin Inst. for Advanced Studies (Ireland). School of CosmicPhysics

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author) 19 refs.

  20. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  1. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  2. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    Science.gov (United States)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  3. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Science.gov (United States)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  4. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  5. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, M.; Groth, C.P.T. [Univ. of Toronto, Inst. for Aerospace Studies, Toronto, Ontario (Canada)]. E-mail: jugroot@utias.utoronto.ca; groth@utias.utoronto.ca; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B. [MDS SCIEX, Concord, Ontario (Canada)

    2004-07-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  6. Numerical investigation of ion transport in the interface region of mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, M.; Groth, C.P.T. [Univ. of Toronto, Inst. for Aerospace Studies, Toronto, Ontario (Canada)]. E-mail: jugroot@utias.utoronto.ca; groth@utias.utoronto.ca; Thomson, B.A.; Baranov, V.; Collings, B.A. [MDS SCIEX, Concord, Ontario (Canada)

    2003-07-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key features of the ion motion. The influences of the neutral gas flow, electric field, and flow field geometry on ion mobility are all carefully assessed. Numerical results are given which are relevant to the ion flows occurring in the interface regions of mass spectrometer systems. (author)

  7. Coherent Diabatic Ion Transport and Separation in a Multi-Zone Trap Array

    CERN Document Server

    Bowler, R; Lin, Y; Tan, T R; Hanneke, D; Jost, J D; Home, J P; Leibfried, D; Wineland, D J

    2015-01-01

    We investigate the motional dynamics of single and multiple ions during transport between and separation into spatially distinct locations in a multi-zone linear Paul trap. A single 9Be+ ion in a 2 MHz harmonic well located in one zone was laser-cooled to near its ground state of motion and transported 370 micrometers by moving the well to another zone. This was accomplished in 8 microseconds, corresponding to 16 periods of oscillation. Starting from a state with n=0.1 quanta, during transport the ion was excited to a displaced coherent state with n=1.6 quanta but on completion was returned close to its motional ground state with n=0.2. Similar results were achieved for the transport of two ions. We also separated chains of up to 9 ions from one potential well to two distinct potential wells. With two ions this was accomplished in 55 microseconds, with final excitations of about 2 quanta for each ion. Fast coherent transport and separation can significantly reduce the time overhead in certain architectures fo...

  8. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  9. Computational study of effect of water finger on ion transport through water-oil interface

    Science.gov (United States)

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  10. Promotion of Water Channels for Enhanced Ion Transport in 14-nm-diameter Carbon Nanotubes.

    Science.gov (United States)

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-06

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after applying an electric potential. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  11. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NARCIS (Netherlands)

    Dykstra, J.E.; Biesheuvel, P.M.; Bruning, H.; Heijne, ter A.

    2014-01-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since mo

  12. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes.

    Science.gov (United States)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor; Ganesan, Venkat

    2016-04-21

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al2O3nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al2O3nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seen to be determined by an interplay between the nanoparticle-polymer,nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.

  13. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels

    CERN Document Server

    Ganim, Ziad; Vaziri, Alipasha

    2011-01-01

    Despite a large body of work, the exact molecular details underlying ion-selectivity and transport in the potassium channel have not been fully laid to rest. One major reason has been the lack of experimental methods that can probe these mechanisms dynamically on their biologically relevant time scales. Recently it was suggested that quantum coherence and its interplay with thermal vibration might be involved in mediating ion-selectivity and transport. In this work we present an experimental strategy for using time resolved infrared spectroscopy to investigate these effects. We show the feasibility by demonstrating the IR absorption and Raman spectroscopic signatures of potassium binding model molecules that mimic the transient interactions of potassium with binding sites of the selectivity filter during ion conduction. In addition to guide our experiments on the real system we have performed molecular dynamic-based simulations of the FTIR and 2DIR spectra of the entire KcsA complex, which is the largest comp...

  14. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  15. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  16. Scheme for N-Qubit Toffoli Gate by Transport of Trapped Ultracold Ions

    Institute of Scientific and Technical Information of China (English)

    YANG Wan-Li; WEI Hua; CHEN Chang-Yong

    2008-01-01

    We propose a potentially practical scheme for implementing an n-qubit Toffoli gate by elaborately controlling the transport of ultracold ions through stationary laser beams. Conditioned on the uniform ionic transport velocity, the n-qubit Toffoli gate can be realized with high fidelity and high successful probability under current experimental conditions, which depends on a single resonant interaction with n trapped ions and has constant implementation time with the increase of qubits. We show that the increase of the ion number can improve the fidelity and the successful probability of the Toffoli gate.

  17. Metal ion transport quantified by ICP-MS in intact cells

    Science.gov (United States)

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  18. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  19. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, K.; Sorensen, M.G.; Jensen, V.K.;

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...... is currently not well understood. We used a battery of ion channel inhibitors, human osteoclasts, and their subcellular compartments to perform an unbiased analysis of the importance of the different ion transporters for acidification of the resorption lacuna in osteoclasts. CD14(+) monocytes from human...... peripheral blood were isolated, and mature osteoclasts were generated using RANKL and M-CSF. The human osteoclasts were (1) used for acridine orange assays for evaluation of lysosomal acidification, (2) used for bone resorption assays, (3) used for generation of osteoclasts membranes for acid influx...

  20. Papillary Thyroid Carcinoma in a Branchial Cleft Cyst without a Thyroid Primary: Navigating a Diagnostic Dilemma

    Directory of Open Access Journals (Sweden)

    Douglas S. Ruhl

    2013-01-01

    Full Text Available We report a rare case of papillary thyroid carcinoma incidentally found within a branchial cleft cyst. Only four other cases have been described in the literature. A total thyroidectomy and selective neck dissection was performed, and no evidence of occult primary disease was found after review of fine sections. Branchial cleft cysts are the most common lateral neck masses. Ectopic thyroid tissue within a branchial cleft cyst is an unusual phenomenon, and papillary thyroid carcinoma arising from this tissue is extremely rare. Clinicians are left with a diagnostic dilemma when presented with thyroid tissue neoplasm within a neck cyst in the absence of a thyroid primary—is this a case of metastatic disease with a missed primary or rather carcinoma arising in ectopic thyroid tissue? A thorough discussion of the etiologies of these lateral neck masses is reviewed including the embryogenesis of thyroid tissue in a branchial cleft cyst. The prognosis of patients with papillary thyroid carcinoma in lateral neck cysts without a primary site identified appears to be good following excision of the cyst and total thyroidectomy. Other management recommendations regarding these unique lateral neck malignancies are also presented.

  1. Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes

    CERN Document Server

    Tedesco, M; Biesheuvel, P M

    2016-01-01

    Transport of water through ion-exchange membranes is of importance both for electrodialysis (ED) and reverse electrodialysis (RED). In this work, we extend our previous theory [J. Membrane Sci., 510, (2016) 370-381] and include water transport in a two-dimensional model for (R)ED. Following a Maxwell-Stefan (MS) approach, ions in the membrane have friction with the water, pore walls, and one another. We show that when ion-ion friction is neglected, the MS-approach is equivalent to the hydrodynamic theory proposed by Deen for nanofiltration. The model describes all fluxes of ions and water self-consistently as function of the driving forces. After validation against experimental data from literature for ED and RED, the model is also used to analyze single-pass seawater ED and RED with highly concentrated solutions. All fluxes and velocities of water and ions in the membranes are calculated, and the influence of water and coion leakage is investigated under different conditions.

  2. Design of New Electrode Interface to Improve Transport of Atmospheric Pressure Ions into a Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Francis Beaudry

    2009-01-01

    Full Text Available An intermediate electrode was developed to improve the transfer of ions in atmospheric pressure from a first location, the ion source, to a second location, the mass spectrometer. The new apparatus increase the efficiency of mass analysis of molecular constituents of liquids, including trace analysis of chemical entities, in which an electrospray (ES or IonSpray™ (IS technique is used to produce electrically charged droplets which divide and evaporate to form gaseous ions of the molecular constituents. The gas phase ions are transported to the mass spectrometer by an electric field generated by a new electrode design that separates the two fundamental functions of an electrospray or an IonSpray™, which are the nebulization of charged droplets and the transport of ions into the mass analyzer. The results suggest that the new apparatus provide a gain in signal intensity up to 10 compared with the commercial product. A significant improvement in ion transport results in higher precision and accuracy and/or reduction of the amount of material needed for analysis.

  3. Improved high-fidelity transport of trapped-ion qubits through a multi-dimensional array

    CERN Document Server

    Blakestad, R B; VanDevender, A P; Wesenberg, J H; Biercuk, M J; Leibfried, D; Wineland, D J

    2011-01-01

    We have demonstrated transport of Be+ ions through a 2D Paul-trap array that incorporates an X-junction, while maintaining the ions near the motional ground-state of the confining potential well. We expand on the first report of the experiment [1], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport are explained, along with the methods used to mitigate such excitation. We reduced the motional excitation below the results in Ref. [1] by a factor of approximately 50. The effect of a mu-metal shield on qubit coherence is also reported. Finally, we examined a method for exchanging energy between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes without directly accessing the modes with lasers. These results establish how trapped ions can be transported in a large-scale quantum processor with high fidelity.

  4. Heating and ion transport in a Y-junction surface-electrode trap

    CERN Document Server

    Shu, G; Volin, C; Buikema, A; Nichols, C S; Stick, D; Brown, Kenneth R

    2014-01-01

    We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.

  5. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    Science.gov (United States)

    Eskandari, Sepehr; Willford, Samantha L; Anderson, Cynthia M

    2017-01-01

    The purpose of this review is to highlight recent evidence in support of a 3 Na(+): 1 Cl(-): 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na(+), Cl(-), and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na(+), Cl(-), and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na(+), Cl(-), and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na(+), 0-5 Cl(-), and 1-5 GABA per transport cycle. Only the 3 Na(+): 1 Cl(-): 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na(+): 1 Cl(-): 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.

  6. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  7. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    Science.gov (United States)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  8. The hyal and ventral branchial muscles in caecilian and salamander larvae: homologies and evolution.

    Science.gov (United States)

    Kleinteich, Thomas; Haas, Alexander

    2011-05-01

    Amphibians (Lissamphibia) are characterized by a bi-phasic life-cycle that comprises an aquatic larval stage and metamorphosis to the adult. The ancestral aquatic feeding behavior of amphibian larvae is suction feeding. The negative pressure that is needed for ingestion of prey is created by depression of the hyobranchial apparatus as a result of hyobranchial muscle action. Understanding the homologies of hyobranchial muscles in amphibian larvae is a crucial step in understanding the evolution of this important character complex. However, the literature mostly focuses on the adult musculature and terms used for hyal and ventral branchial muscles in different amphibians often do not reflect homologies across lissamphibian orders. Here we describe the hyal and ventral branchial musculature in larvae of caecilians (Gymnophiona) and salamanders (Caudata), including juveniles of two permanently aquatic salamander species. Based on previous alternative terminology schemes, we propose a terminology for the hyal and ventral branchial muscles that reflects the homologies of muscles and that is suited for studies on hyobranchial muscle evolution in amphibians. We present a discussion of the hyal and ventral branchial muscles in larvae of the most recent common ancestor of amphibians (i.e. the ground plan of Lissamphibia). Based on our terminology, the hyal and ventral branchial musculature of caecilians and salamanders comprises the following muscles: m. depressor mandibulae, m. depressor mandibulae posterior, m. hyomandibularis, m. branchiohyoideus externus, m. interhyoideus, m. interhyoideus posterior, m. subarcualis rectus I, m. subarcualis obliquus II, m. subarcualis obliquus III, m. subarcualis rectus II-IV, and m. transversus ventralis IV. Except for the m. branchiohyoideus externus, all muscles considered herein can be assigned to the ground plan of the Lissamphibia with certainty. The m. branchiohyoideus externus is either apomorphic for the Batrachia (frogs

  9. Multilineage differentiation of ectomesenchymal cells isolated from the first branchial arch.

    Science.gov (United States)

    Deng, M J; Jin, Y; Shi, J N; Lu, H B; Liu, Y; He, D W; Nie, X; Smith, A J

    2004-01-01

    Cranial neural crest-derived ectomesenchymal cells may be pluripotent stem cells that are capable of generating a range of phenotypes. The fate of these cells appears to be determined in part by intrinsic genetic programs and also by the influence of extracellular signals in the local environment. The extent of lineage determination once neural crest cells have migrated to the first branchial arch is not clear, although branchial arch pattern is not thought to be the result of crest predetermination. The aim of the present study was to test the hypothesis that ectomesenchymal cells of the first branchial arch show properties of pluripotent stem cells, the lineage of which may be directed by specific molecular signaling. Ectomesenchymal cells were enzymatically isolated from the mandibular processes of BALB/c mice and maintained in an undifferentiated state while cultured with leukemia inhibitory factor or induced to differentiate by lineage-specific induction factors or growth conditions, including transforming growth factor beta, forskolin, and a mineralization-promoting medium. Morphological observations and immunocytochemistry demonstrated that cells could be induced to differentiate into smooth muscle cells, glial cells, and osteoblasts, respectively. In the presence of the mineralization-promoting medium, alkaline phosphatase activity increased significantly and mineralization nodules formed. The data reported support the concept that many, although not all, first branchial arch-derived ectomesenchymal cells show properties of multipotent stem cells, the subsequent fate of which can be influenced by induction factors and growth conditions. Some cells, however, showed a degree of commitment with respect to their fate. The possible application of first branchial arch-derived stem cells to tissue engineering of the orofacial tissues should involve consideration of the developmental stage of cell harvesting and the desired cell fate.

  10. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Lihong Chen

    2016-01-01

    Full Text Available The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1, although glucose transporter type 2 (GLUT2 may also play a role. The membrane potential of small intestinal epithelial cells (IEC is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  11. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    Science.gov (United States)

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  12. Interface transport properties in ion-gated nano-sheets

    NARCIS (Netherlands)

    Ye, J. T.; Zhang, Y. J.; Kasahara, Y.; Iwasa, Y.

    Recent advances in atomic-scale preparation of ultrathin nano-sheets and efficient field-effect gating mediated by movement of ions have provided a prolific paradigm for creating exotic states at interfaces of a new-type of device called electric-double layer transistors (EDLTs). We present a short

  13. Modeling Chamber Transport for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  14. Modeling chamber transport for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  15. Neutralisation and transport of negative ion beams: physics and diagnostics

    Science.gov (United States)

    Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Brombin, M.; Cavenago, M.; Chitarin, G.; Dalla Palma, M.; Delogu, R.; Fellin, F.; Fonnesu, N.; Marconato, N.; Pasqualotto, R.; Pimazzoni, A.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.; Zaniol, B.; Zaupa, M.

    2017-04-01

    Neutral beam injection is one of the most important methods of plasma heating in thermonuclear fusion experiments, allowing the attainment of fusion conditions as well as driving the plasma current. Neutral beams are generally produced by electrostatically accelerating ions, which are neutralised before injection into the magnetised plasma. At the particle energy required for the most advanced thermonuclear devices and particularly for ITER, neutralisation of positive ions is very inefficient so that negative ions are used. The present paper is devoted to the description of the phenomena occurring when a high-power multi-ampere negative ion beam travels from the beam source towards the plasma. Simulation of the trajectory of the beam and of its features requires various numerical codes, which must take into account all relevant phenomena. The leitmotiv is represented by the interaction of the beam with the background gas. The main outcome is the partial neutralisation of the beam particles, but ionisation of the background gas also occurs, with several physical and technological consequences. Diagnostic methods capable of investigating the beam properties and of assessing the relevance of the various phenomena will be discussed. Examples will be given regarding the measurements collected in the small flexible NIO1 source and regarding the expected results of the prototype of the neutral beam injectors for ITER. The tight connection between measurements and simulations in view of the operation of the beam is highlighted.

  16. Computational modelling of chloride ion transport in reinforced concrete

    NARCIS (Netherlands)

    Meijers, S.J.H.; Bijen, J.M.J.M.; De Borst, R.; Fraaij, A.L.A.

    2001-01-01

    Exposure to a saline environment is a major threat with respect to the durability of reinforced concrete structures. The chloride ions, which are present in seawater and de-icing salts, are able to penetrate the concrete up to the depth of the reinforcement. They can eventually trigger a pitting cor

  17. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  18. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  19. Indispensable Role of Ion Channels and Transporters in the Auditory System.

    Science.gov (United States)

    Mittal, Rahul; Aranke, Mayank; Debs, Luca H; Nguyen, Desiree; Patel, Amit P; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Chapagain, Prem; Eshraghi, Adrien A; Liu, Xue Zhong

    2017-04-01

    Ear is a complex system where appropriate ionic composition is essential for maintaining the tissue homeostasis and hearing function. Ion transporters and channels present in the auditory system plays a crucial role in maintaining proper ionic composition in the ear. The extracellular fluid, called endolymph, found in the cochlea of the mammalian inner ear is particularly unique due to its electrochemical properties. At an endocochlear potential of about +80 mV, signaling initiated by acoustic stimuli at the level of the hair cells is dependent on the unusually high potassium (K(+) ) concentration of endolymph. There are ion channels and transporters that exists in the ear to ensure that K(+) is continually being cycled into the stria media endolymph. This review is focused on the discussion of the molecular and genetic basis of previously and newly recognized ion channels and transporters that support sensory hair cell excitation based on recent knock-in and knock-out studies of these channels. This article also addresses the molecular and genetic defects and the pathophysiology behind Meniere's disease as well as how the dysregulation of these ion transporters can result in severe defects in hearing or even deafness. Understanding the role of ion channels and transporters in the auditory system will facilitate in designing effective treatment modalities against ear disorders including Meniere's disease and hearing loss. J. Cell. Physiol. 232: 743-758, 2017. © 2016 Wiley Periodicals, Inc.

  20. Mechanisms involved in the transport of mercuric ions in target tissues.

    Science.gov (United States)

    Bridges, Christy C; Zalups, Rudolfs K

    2017-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.

  1. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  2. Endocrine regulation of ion transport in the avian lower intestine

    DEFF Research Database (Denmark)

    Laverty, Gary; Elbrønd, Vibeke Sødring; Árnason, Sighvatur S.

    2006-01-01

    acid cotransporters, while the coprodeum is relatively inactive. Following acclimation to low salt diets, however, both colon and coprodeum shift to a pattern of high expression of electrogenic sodium channels, and the colonic cotransporter activity is simultaneously downregulated. These changes...... in the transport patterns seem to be regulated, at least in part, by aldosterone. Our recent work with this tissue has focused on whether aldosterone alone can account for the low salt pattern of transport. Other work has looked at the changes in morphology and in proportions of cell types that occur during...... chronic acclimation to high or low salt diets, and on a cAMP-activated chloride secretion pathway. Recent findings suggesting effects of other hormones on lower intestinal transport are also presented....

  3. Theoretical Study of Ion Transport in the Gramicidin a Channel

    Science.gov (United States)

    Roux, Benoi T.

    Modern techniques are used to study the permeation process of ions through the gramicidin A channel. The conformation of the gramicidin molecule is investigated experimentally in dimethylsulfoxide/acetone using the techniques of two-dimensional NMR spectroscopy. An empirical energy function is developed from ab initio calculations to represent the interaction of Li^{+}, Na^{+} and K^ {+} ions with the backbone of polypeptides; the parameters are tested in dense systems with free energy simulations. The dynamics of the gramicidin A channel dimer in the absence of water and ions is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The behavior of the water molecules in the channel is studied with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane. the potential of mean force and the mobility of Na^{+ }, K^{+} and water are calculated in the interior of a gramicidin-like periodic poly (L,D)-alanine beta -helix. The potential of mean force of Na^ {+} ion along the axis of the gramicidin A channel is calculated with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane; the gramicidin channel is modeled as a right -handed head-to-head beta-helix dimer. Binding sites are found at the extremities of the channel; no large activation energy barrier is caused by the dehydration process at the entrance of the channel. In the appendices, Statistical Mechanical theories are used to investigate the equilibrium and dynamical properties of the liquid state. A theory of aqueous solutions is used to provide an interpretation for the Born model of ion hydration at the molecular level; the Born radius of hydration is interpreted in terms of the first peak in the solute-solvent radial distribution function. We show that some proposed closures for the RISM equation of Chandler and Andersen possess no solution because

  4. Identification of a chloride ion binding site in Na+/Cl -dependent transporters.

    Science.gov (United States)

    Forrest, Lucy R; Tavoulari, Sotiria; Zhang, Yuan-Wei; Rudnick, Gary; Honig, Barry

    2007-07-31

    The recent determination of the crystal structure of the leucine transporter from Aquifex aeolicus (aaLeuT) has provided significant insights into the function of neurotransmitter:sodium symporters. Transport by aaLeuT is Cl(-) independent, whereas many neurotransmitter:sodium symporters from higher organisms depend on Cl(-) ions. However, the only Cl(-) ion identified in the aaLeuT structure interacts with nonconserved residues in extracellular loops, and thus the relevance of this binding site is unclear. Here, we use calculations of pK(A)s and homology modeling to predict the location of a functionally important Cl(-) binding site in serotonin transporter and other Cl(-)-dependent transporters. We validate our model through the site-directed mutagenesis of residues predicted to coordinate the Cl(-) ion and through the observation of sequence conservation patterns in other Cl(-)-dependent transporters. The proposed site is located midway across the membrane and is formed by residues from transmembrane helices 2, 6, and 7. It is close to the Na1 sodium binding site, thus providing an explanation for the coupling of Cl(-) and Na(+) ions during transport. Other implications of the model are also discussed.

  5. Evaluation of influence of surface barrier in solid on ion reflection by bipartition model of ion transport

    Institute of Scientific and Technical Information of China (English)

    YANG Dai-Lun; WU Zhang-Wen

    2004-01-01

    The influence of surface barrier of solid upon ion reflection was studied in a few papers of other authors by using the Monte-Carlo simulation. Based on the bipartition model of ion transport, a new analytical theory has been developed instead of the MC simulation, due to important implication of the effect for fusion research. In the present paper we have calculated the number reflection coefficients of H+, D+, He and T+ normally incident on C,Al and Cu for ion energy from several eV to one hundred keV respectively. Our computational results accorded with the MC simulation. The results have shown that the effect of surface barrier on ion reflection becomes evident when the energy of incident ions is lower than one keV. In particular, for the ion energy from several eV to one hun dred eV, the discrepancies of number reflection coefficients can increase up to 0.1~0.3, showing this influence to be very important.

  6. Effect of Cd ions on transport properties of orthomanganites

    CERN Document Server

    Troyanchuk, I O; Pastushonok, S N

    1998-01-01

    Magnetic and magnetotransport measurements have been used to study the compositional dependence of the electronic properties of the solid solutions La sub 0 sub . sub 7 (Pb sub 0 sub . sub 3 sub - sub x Cd sub x)MnO sub 3 and Nd sub 0 sub . sub 7 (Pb sub 0 sub . sub 3 sub - sub x Cd sub x)MnO sub 3. It was found that these compounds are ferromagnets and have the rhombohedrally or orthorhombically distorted perovskite structure. The substitution of Pb ions by Cd leads to the transition from the metallic to the insulating state. The intermediate compositions exhibit two peaks of the resistivity and magnetoresistance. The high-temperature peak is associated with the Curie temperature whereas there is no magnetic anomaly in the temperature interval of the second peak. We suppose that Cd ions participate in the formation of the narrow impurity band limiting the mobility of charge carriers. (author)

  7. Ion mobility and transport barriers in the tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H.; Hazeltine, R.D.; Valanju, P.M. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Zhang, Y.Z. [International Centre for Theoretical Physics, Trieste (Italy)

    1993-06-01

    The character of charged particle motion in an axisymmetric toroidal system with a constant radial electric field is investigated both analytically and numerically. Ion radial mobility caused by the combined effects of the radial electric field and charge exchange is found. A simple moment argument in the banana regime matches the simulation results well. Relation of present work and high confinement (H-mode) experiment is also discussed.

  8. Numerical investigation of interface region flows in mass spectrometers: ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Jugroot, Manish [Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Groth, Clinton P T [Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Thomson, Bruce A [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada); Baranov, Vladimir [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada); Collings, Bruce A [MDS SCIEX, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 (Canada)

    2004-02-21

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described that are relevant to ion flows occurring in the interface region of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure are developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key features of the ion motion. The influences of the neutral gas flow, electric field, and flow field geometry on ion mobility are all carefully assessed. Several ions of varying mass and charge are considered, and the relative importance of competing effects (i.e. electric field and ion-neutral collision effects) is discussed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for high-speed, hypersonic jet flows.

  9. Electrical Resistance and Transport Numbers of Ion-Exchange Membranes Used in Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    causes damage to the membrane. This work presents the result from transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc. CR67 HMR412 cation-exchange membranes and Ionics, Inc. AR204 SXZR anion-exchange membranes), which have been used in four......Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to know if this contact with the soil...... different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new...

  10. Binding of alkali metal ions by cyclic polyethers: significance in ion transport processes.

    Science.gov (United States)

    Izatt, R M; Rytting, J H; Nelson, D P; Haymore, B L; Christensen, J J

    1969-04-25

    Values for the formation constant (log K), the change in enthalpy (triangle upH degrees ), and the change in entropy (triangle upS degrees ) have been determined for the interaction of lithium, sodium, potassium, rubidium, and cesium ions with the two isomers of the cyclic polyether, 2,5,8,15,18,21-hexaoxatricyclo[20.4.0.0(9,14)] hexacosane. The stability order of these metal ions with either isomer is identical to the permeability order for these same metal ions with the structurally related antibiotics, valinomycin and monactin.

  11. Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    Science.gov (United States)

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J; Jung, JinSei; Moon, In Seok; Moon, Sung K; Choi, Jae Young

    2015-12-14

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid.

  12. A multi-ion generalized transport model of the polar wind

    Science.gov (United States)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  13. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    Science.gov (United States)

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.

  14. A Monte Carlo Simulation for the Ion Transport in Glow Discharges with Dusts

    Institute of Scientific and Technical Information of China (English)

    SUN Ai-Ping; PU Wei; QIU Xiao-Ming

    2001-01-01

    We use the Monte Carlo method to simulate theion transport in the rf parallel plate glow discharge with a negative-voltage pulse connected to the electrode. It is found that self-consistent field, dust charge, dust concentration,and dust size influence the energy distribution and the density of the ions arriving at the target, and in particular, the latter two make significant influence. As dust concentration or dust size increases, the number of ions arriving at the target reduces greatly.

  15. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    OpenAIRE

    Adams, S.; R.P. Rao

    2010-01-01

    Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV) parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach...

  16. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  17. The molecular mechanism of ion-dependent gating in secondary transporters.

    Science.gov (United States)

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  18. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  19. Colonic epithelial ion transport is not affected in patients with diverticulosis

    DEFF Research Database (Denmark)

    Osbak, Philip S; Bindslev, Niels; Poulsen, Steen S;

    2007-01-01

    BACKGROUND: Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt...... (controls) except for diverticulosis in 22 (D-patients). Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use...... with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies. Udgivelsesdato: 2007-null...

  20. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  1. The mechanism of the NH4 ion oscillatory transport across the excitable cell membrane

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2005-01-01

    Full Text Available This paper presents results on typical oscillations of the membrane potential induced by the excitation of the cell membrane by different concentrations of the NH4Cl solution. The existence of four classes of oscillations of the membrane potential and several different single and local impulses rhythmically occurring were determined. It is known that the oscillatory processes of the membrane potential are in direct dependence on oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane. A hypothesis on a possible mechanism of oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane is also presented.

  2. Epithelial ion transport in rabbit corneas following myopic keratomileusis.

    Science.gov (United States)

    Swinger, C A; Candia, O A; Marcus, S; Barker, B A; Kornmehl, E W

    1986-08-01

    In isolated rabbit corneas that had undergone lamellar keratectomy or myopic keratomileusis, the stimulation of chloride transport by 10(-5) M epinephrine was completely inhibited at 1 week following surgery. At 28 days following surgery, both groups responded to 10(-7) M epinephrine. The response to 10(-5) M amphotericin B was normal both at 1 week and at 28 days following surgery. We conclude that, although the Na-K pump was not affected by the lamellar keratectomy and cryolathing, that either the epithelial beta receptors and/or the cAMP pathway were temporarily inhibited for at least 1 week following surgery. A lamellar keratectomy, therefore, can have an adverse effect on the epithelial transport system of the corneal epithelium even though the epithelium may appear normal clinically.

  3. Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1.

    Science.gov (United States)

    Kazmier, Kelli; Sharma, Shruti; Islam, Shahidul M; Roux, Benoît; Mchaourab, Hassane S

    2014-10-14

    Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na(+)-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na(+)/leucine transporter LeuT, our results suggest that Na(+) binding at the conserved second Na(+) binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.

  4. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout

    DEFF Research Database (Denmark)

    FARRELL, AP; STEFFENSEN, JF

    1987-01-01

    Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so...... the relative oxygen cost of the cardiac pumps decreased from 4.6% at rest to 1.9% at the critical swimming speed. The relative oxygen cost of the branchial pump is significant in the resting and slowly swimming fish, being 10 to 15% of total oxygen uptake. However, when swimming trout switch to a ram mode...... of ventilation, a considerable saving in oxygen cost is accrued by switching the cost of ventilation from the branchial to the tail musculature. Thus, the relative oxygen cost of the branchial and cardiac pumps actually decreases at critical swimming speed compared to rest and therefore is unlikely to be a major...

  5. Ion transport by mitochondria-rich cells in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Ussing, H H; Spring, K R

    1987-01-01

    rate limiting for the uptake of KCl when Ki is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral....... Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From...... the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9 +/- 1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to -100 mV, serosa grounded) resulted in a cell volume increase with a time course...

  6. Computational studies of transport in ion channels using metadynamics.

    Science.gov (United States)

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  7. Luminal oxidants selectively modulate electrogenic ion transport in rat colon

    Institute of Scientific and Technical Information of China (English)

    Julio M Mayol; Yolanda Adame-Navarrete; Pilar Alarma-Estrany; Elena Molina-Roldan; Fernando Huete-Toral; Jesus A Fernandez-Represa

    2006-01-01

    AIM: To investigate the effects of luminal exposure to H2O2 and two related thiol oxidizing agents on basal and stimulated chloride secretion in native colon using electrophysiological and pharmacological approaches.METHODS: Unstripped rat distal colon segments were mounted in Ussing chambers. Potential difference, cal culated resistance and short-circuit current across unstripped colon segments were monitored with a dual voltage/current clamp. Paracellular permeability was assessed by measuring the mucosa-to-serosa flux of a fluorescent probe (FITC).RESULTS: Luminal exposure to hydrogen peroxide transitorily stimulated chloride secretion without altering barrier function. This stimulatory effect could be blocked by basolateral atropine but not indomethacin. The cysteine and methionine oxidizing compounds, phenylarsine oxide and chloramine T respectively, mimicked the effect of H2O2, except for a drop in transcolonic resistance after 30 min. In contrast to the observed stimulatory effect on basal secretion, cAMP-stimulated electrogenic ion trans port was blunted by luminal H2O2. However, the Ca2+-activated response remained unchanged.CONCLUSION: H2O2 may be an important selective modulator of intestinal ion and water secretion in certain pathologic conditions such as inflammation or ischemiareperfusion by multiple mechanisms.

  8. Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction

    Institute of Scientific and Technical Information of China (English)

    A.G.Gaikwad; A.M.Rajput

    2010-01-01

    A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...

  9. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  10. On the crucial features of a single-file transport model for ion channels

    CERN Document Server

    Liang, Kuo Kan

    2013-01-01

    It has long been accepted that the multiple-ion single-file transport model is appropriate for many kinds of ion channels. However, most of the purely theoretical works in this field did not capture all of the important features of the realistic systems. Nowadays, large-scale atomic-level simulations are more feasible. Discrepancy between theories, simulations and experiments are getting obvious, enabling people to carefully examine the missing parts of the theoretical models and methods. In this work, it is attempted to find out the essential features that such kind of models should possess, in order that the physical properties of an ion channel be adequately reflected.

  11. Light ion components of the galactic cosmic rays: nuclear interactions and transport theory.

    Science.gov (United States)

    Cucinotta, F A; Townsend, L W; Wilson, J W; Shinn, J L; Badhwar, G D; Dubey, R R

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy ion induced reactions. In the primary GCR, 4He is the most abundant nucleus after 1H. However, there are also a substantial fluxes of 2H and 3He. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragmentation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  12. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)

    2004-08-15

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  13. Controlling and measuring quantum transport of heat in trapped-ion crystals.

    Science.gov (United States)

    Bermudez, A; Bruderer, M; Plenio, M B

    2013-07-26

    Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.

  14. Isospin effects in heavy-ion reactions: Results from transport theories

    Directory of Open Access Journals (Sweden)

    Colonna M.

    2015-01-01

    Full Text Available We discuss recent studies, within the framework of transport theories, on heavy ion reactions between charge asymmetric systems, from low up to Fermi energies. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. Results are critically reviewed, also trying to establish a link, when possible, between the outcome of different transport models.

  15. SODIUM ION-DEPENDENT AMINO-ACID-TRANSPORT IN MEMBRANE-VESICLES OF BACILLUS-STEAROTHERMOPHILUS

    NARCIS (Netherlands)

    HEYNE, RIR; DEVRIJ, W; CRIELAARD, W; KONINGS, WN

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (K(t) = 1.0 mM) and L-leucine (K(t) = 0.4 mM). In contrast, the Na+-H+-L-glutamate transport system has a high affinity for sodium io

  16. Particle-in-Cell Simulations of the VENUS Ion Beam Transport System

    CERN Document Server

    Todd, Damon; Leitner, Daniela; Lyneis, Claude; Qiang, Ji

    2005-01-01

    The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. D...

  17. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  18. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    Science.gov (United States)

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications.

  19. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    Science.gov (United States)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  20. Energetic cost of active branchial ventilation in the sharksucker, Echeneis naucrates

    DEFF Research Database (Denmark)

    Steffensen, J F; Lomholt, J P

    1983-01-01

    1. Sharksuckers use active branchial ventilation when swimming or at rest in stationary water. When attached to a moving object or when placed in a water current, they shift to ram gill ventilation as water velocity exceeds a certain threshold. 2. Water velocities required for the transition from......, no further increase in oxygen consumption was observed. 5. It is concluded that the energetic cost of active ventilation in sharksuckers is lower than has previously been reported for fish in general....

  1. Cell degeneration and mitosis in the buccopharyngeal and branchial membranes in the mouse embryo.

    Science.gov (United States)

    Poelmann, R E; Dubois, S V; Hermsen, C; Smits-van Prooije, A E; Vermeij-Keers, C

    1985-01-01

    The frequencies of cell degeneration and mitosis were investigated in the rupturing buccopharyngeal membrane (BPM) and in the persistent first branchial membrane (BM). In the BPM, cell degeneration starts many hours before rupture is visible, but mitotic figures are absent. In the BM this situation is reversed: mitotic figures are regularly observed, but a degenerating cell only occasionally. It is concluded that the ratio between the numbers of degenerating and dividing cells regulates the fate of both the BPM and the BM.

  2. Open and Endoscopic Management of Fourth Branchial Pouch Sinus - Our Experience.

    Science.gov (United States)

    Arunachalam, Pavai; Vaidyanathan, Venkatraman; Sengottan, Palaninathan

    2015-10-01

    Introduction Acute suppurative neck infections associated with third or fourth branchial arch fistulas are frequently recurrent. Third and fourth branchial arch anomalies are much less common and usually present with recurrent left thyroid lobe abscesses. Objectives The authors present their experience in treating such cases that were observed exclusively in children. Methods The study involved performing a retrospective review of five cases in PSG Institute of Medical Sciences & Research. All cases were evaluated radiologically and with Direct Rigid hypopharyngoscopy. Definitive surgery was performed, including hemithyroidectomy. Results The patients consisted of five children, two boys and three girls. All of them presented with recurrent episodes of neck infection. Investigations performed included computed tomography (CT) fistulography, rigid hypopharyngoscopy and ultrasound, which were useful in preoperatively delineating pyriform sinus fistulous tract. All patients underwent neck exploration with excision of the fistulous tract and hemithyroidectomy. Upon follow-up, all patients are asymptomatic. Conclusions Recurrent neck abscesses in a child should alert the clinician to the possibility of a fourth branchial arch anomaly; therefore, children with this condition require a complete evaluation so the anomaly can be ruled out.

  3. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks.

    Science.gov (United States)

    Erickson, Priscilla A; Glazer, Andrew M; Cleves, Phillip A; Smith, Alyson S; Miller, Craig T

    2014-08-07

    In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus aculeatus, have repeatedly colonized countless freshwater lakes and streams, where new diets lead to morphological adaptations related to feeding. Here, we show that heritable increases in branchial bone length have convergently evolved in two independently derived freshwater stickleback populations. In both populations, an increased bone growth rate in juveniles underlies the convergent adult phenotype, and one population also has a longer cartilage template. Using F2 crosses from these two freshwater populations, we show that two quantitative trait loci (QTL) control branchial bone length at distinct points in development. In both populations, a QTL on chromosome 21 controls bone length throughout juvenile development, and a QTL on chromosome 4 controls bone length only in adults. In addition to these similar developmental profiles, these QTL show similar chromosomal locations in both populations. Our results suggest that sticklebacks have convergently evolved longer branchial bones using similar genetic and developmental programmes in two independently derived populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum.

    Science.gov (United States)

    Yasui, Kinya; Kaji, Takao; Morov, Arseniy R; Yonemura, Shigenobu

    2014-04-01

    The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern.

  5. Thyroid papillary carcinoma arising in ectopic thyroid tissue within a neck branchial cyst

    Directory of Open Access Journals (Sweden)

    Di Fiore Agnese

    2006-05-01

    Full Text Available Abstract Background Thyroid gland derives from one median anlage at the base of the tongue, and from the two fourth branchial pouches. A number of anomalies may occur during their migration. These can be in form of ectopic tissues, which are frequently found along the course of thyroglossal duct and rarely in other sites, many of these may develop same diseases as the thyroid gland. Case presentation A 36-years-old female presented with a 3 month history of left side neck mass. The mass disappeared following aspiration of brown colored fluid, which on cytological examination showed cells with nuclear irregularities that warranted the resection of the lesion. The histology demonstrated a thyroid papillary carcinoma arising within the branchial cyst. Thereafter, the patient underwent a total thyroidectomy with central lymph nodes dissection. Histology showed a multifocal papillary carcinoma with central lymph nodes metastases. Only four cases of primary thyroid carcinomas in neck branchial cyst have been described so far. Conclusion In a lateral cystic neck mass, although rare, occurrence of ectopic thyroid tissue and presence of a papillary thyroid carcinoma should be kept in mind.

  6. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    Science.gov (United States)

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV.

  7. Chloride Ion Transport in Fly Ash Mortar under Action of Fatigue Loading

    Institute of Scientific and Technical Information of China (English)

    WANG Caihui; SUN Wei; JIANG Jinyang

    2012-01-01

    In order to study the chloride ion transport performance in fly ash addition mortar,a new method,in which the fatigue loading and chloride diffusion are undertaken simultaneously,was developed.This method realizes coupling the fatigue damage process and the process of chloride transporting of fly ash mortar.The transport performance of chloride in fly ash mortar specimens was studied under different stress levels.Moreover,the effect of fly ash content on transport performance of chloride ion in mortar was investigated.AE (Acoustic Emission) and SEM were used to acquire the damage distribution of mortar specimens under action of fatigue load.The results show that the diffusion coefficient of chloride in mortar specimens increases with stress level of fatigue loading.The addition of fly ash can mitigate the penetration of chloride ion.The results of microcrack 3D location acquired by AE,accompanied with crack characterizing from SEM,indicate that the damage degree of mortar specimen increases with stress level of fatigue loading.Furthermore,higher damage degree of mortar leads to more the chloride ion content in the sample.

  8. Nanofluidic carbon-dioxide sensor using nanoscale hydronium-dominated ion transport theory

    DEFF Research Database (Denmark)

    Crumrine, A.M.; Shah, D.; Andersen, Mathias Bækbo

    2011-01-01

    We demonstrate a nanofluidic-based carbon dioxide sensor through corroboration with our nanochannel hydroniumdominated ion transport model. We verify the predictive power of our model by comparing calculated and measured conductances of solutions with added HCl in both bulk and in nanochannel geo...

  9. PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells.

    NARCIS (Netherlands)

    Lanke, K.H.W.; Krenn, B.M.; Melchers, W.J.G.; Seipelt, J.; Kuppeveld, F.J.M. van

    2007-01-01

    Previously, it was shown that pyrrolidine dithiocarbamate (PDTC) inhibits proteolytic polyprotein processing and replication of human rhinovirus by transporting metal ions into cells. Here, it is shown that PDTC also inhibits replication of two other picornaviruses: coxsackievirus B3 (CVB3), a close

  10. The Role of the NHERF-1 and NHERF-2 Adapter Proteins in Intestinal Ion Transport Regulation

    NARCIS (Netherlands)

    N. Broere (Nellie)

    2008-01-01

    textabstractThe chloride channel CFTR (cystic fibrosis transmembrane conductance regulator) and the sodium/proton exchanger NHE3 are key proteins involved in transepithelial ion and water transport in several epithelial tissues, including the intestine. In this thesis we mainly focus on the role of

  11. Nanofluidic carbon-dioxide sensor using nanoscale hydronium-dominated ion transport theory

    DEFF Research Database (Denmark)

    Crumrine, A.M.; Shah, D.; Andersen, Mathias Bækbo;

    2011-01-01

    We demonstrate a nanofluidic-based carbon dioxide sensor through corroboration with our nanochannel hydroniumdominated ion transport model. We verify the predictive power of our model by comparing calculated and measured conductances of solutions with added HCl in both bulk and in nanochannel...

  12. Fast-ion transport induced by Alfvén eigenmodes in the ASDEX Upgrade tokamak

    DEFF Research Database (Denmark)

    Garcia-Munoz, M.; Classen, I.G.J.; Geiger, B.

    2011-01-01

    A comprehensive suite of diagnostics has allowed detailed measurements of the Alfvén eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [1]. Reversed shear Alfvén eigenmodes (RSAEs) and toroidal induced Alfvén eigenmodes (TAEs) have been driven u...

  13. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  14. On the transport of ions released in the magnetotail by the AMPTE-IRM satellite

    Science.gov (United States)

    Cladis, J. B.; Francis, W. E.

    1988-01-01

    The Ba and Li ions releasd into the magnetotail in spring 1985 by the AMPTE-IRM satellite were not observed subsequently in the inner magnetosphere with the AMPTE-CCE satellite. These results were studied by using a Monte Carlo code to compute the transport of the ions. For each release several hundred ion guiding-center trajectories were computed under simulated magnetospheric conditions, using the Tsyganenko-Usmanov (1982) magnetic-field model and the Millstone Hill convection-electric-field model (Oliver et al., 1983). The corotation and convection electric fields were mapped to altitudes above the ionosphere, assuming the magnetic-field lines to be equipotentials. The initial conditions of the ions, at the times at which the ions were picked up by the electric field, were estimated by taking into consideration the release conditions and the early-time collective effects. The results indicate that the Ba(+) ions were not observed because the CCE satellite was not along the drift paths of the ions, and the Li(+) ions were not observed because their fluxes at the satellite were too low.

  15. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  16. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  19. Heavy ion beam transport and focusing with an insulator guide in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Someya, T.; Nakamura, T.; Sasaki, J.; Kawata, S. [Utsunomiya Univ., Dept. of Energy and Environment Sciences, Utsunomiya, Tochigi (Japan)

    2001-09-01

    One of the key issues on the heavy ion beam inertial confinement fusion is an efficient transport and beam focusing. To get a fine focusing on the fuel pellet, neutralization of the space change of an incident beam is required. The space charge of beam has to be neutralized for the fine focusing. In this paper, we propose to employ an insulator tube guide, through which a heavy ion beam is transported and focused. We confirm that the beam space charge is effectively neutralized by electrons emitted from the insulator beam guide and the ion beam fine focusing is realized. This result shows a possibility of a good beam focusing by the insulator beam guide. (author)

  20. Ion collisional transport coefficients in the solar wind at 1 AU

    CERN Document Server

    Hellinger, Petr

    2016-01-01

    Proton and alpha particle collisional transport coefficients (isotropization, relative deceleration frequencies and heating rates) at 1 AU are quantified using the WIND/SWE data. In agreement with previous studies the ion-ion Coulomb collisions are generally important for slow solar wind streams and tend to reduce the temperature anisotropies, the differential streaming and the differences between proton and alpha particle temperatures. In slow solar wind streams the Coulomb collisions between protons and alpha particles are important for the overall proton energetics as well as for the relative deceleration between the two species. It is also shown that ion temperature anisotropies and differential streaming need to be generally taken into account for evaluation of the collisional transport coefficients.

  1. Drift Mode Growth Rate and Associated Ion Thermal Transport in Reversed Magnetic Shear Tokamak Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Ke; QIU Xiao-Ming

    2001-01-01

    Drift mode linear growth rate and quasi-linear ion thermal transport in the reversed magnetic shear plasma are investigated by using the two-fluid theory, previously developed by Weiland and the Chalmers group [J. Nucl.Fusion, 29 (1989) 1810; ibid. 30 (1990) 983]. The theory is here extended to include both the radial electrical field shear (dEr/dr) and the electron fluid velocity (Ve) in the sheared coordinate system. Here, Ve describes the coupling between the safety factor q and the Er × B velocity V E. Their influences on the growth rate and associated ion thermal transport are obtained numerically. In addition, the ion heat pinch in the reversed shear plasma is observed. Qualitatively, the present conclusions are in good agreement with the experimental results.

  2. The ATR noninvasive detection of transported medicinal ions and the performance of newly designed iontophoresis instruments

    Science.gov (United States)

    Ueda, Toyotoshi; Watanabe, Yukio; Suzuki, Harue

    2005-02-01

    The attenuated total reflection and near-infrared diffusive-reflection methods are proposed as safe and powerful ways to detect and measure the quantity of medication transported by iontophoresis. Especially, the former method can evaluate the quantity of such negative ions as L-ascorbyl-2-phosphate in the top (horny) layer of epidermis (about 1 μm under the skin surface) using, respectively, characteristic ion's bands. Factors making iontophoresis more effective are discussed from the points of electric currents, duty ratio, frequency of superposing intermittent current, simultaneous supersonic perforation, etc. The use of intermittent direct current superposed by 40 kHz pulsed current and pulse irradiation of supersonic waves accelerated drastically the disappearing rate of transported ions from the horny layer with a life of 10 h to 1 min. This technique may be applied to a new and powerful drug delivery system into topical deep tissues.

  3. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  4. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies.

    Science.gov (United States)

    Kline, Crystal F; Mohler, Peter J

    2014-02-01

    The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé Copyright © 2013 Elsevier B.V. All rights reserved.

  5. a Comprehensive Model of Global Transport and Localized Layering of Metallic Ions in the Upper Atmosphere.

    Science.gov (United States)

    Carter, Leonard Nelson, Jr.

    1995-01-01

    The physics and chemistry of atmospheric metallic ions have been an active area of research for many years; however, a number of issues remain unresolved. Numerical models have been developed and used to establish and validate theories of metallic ion dynamics. While agreement with observational measurements has generally been satisfactory, these models have embodied highly simplified pictures of the total physical system, usually focusing on a single aspect of metallic dynamics. The model described herein is considered the first to simulate all phases of the life cycle of metallic ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral atoms to ions through photoionization and charge exchange with ambient ions. Global ion transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric tidal wind field, and finally annihilation by chemical neutralization and compound formation are treated. The end result of this developmental effort is a model that has not only shown good agreement with observations, but has also shed new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. The model has been used, in both one- and two -dimensional versions, to simulate ion dynamics in the vertical dimension (at Arecibo, PR, 19^circ N, 67^circW), and in the vertical and meridional dimensions from the equator to 45^circN, ranging over a 90 to 4000 km altitude span. Model output analysis confirms the dominant role of both global and local transport to the ions' life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90-150 km height region. The model also

  6. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  7. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  8. Mass transport model of ions within biofilms under the effect of external field

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; TANG Xue-xi

    2006-01-01

    A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes ofNH4+ and Ca2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430 μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.

  9. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-05-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO{sub 2}-laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges.

  10. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    Science.gov (United States)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  11. Structural and fast ion transport properties of glassy and amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, D.H.; Georgopoulos, P.

    1989-11-01

    This research has dealt with ionic conductivity in two classes of electrolytes. Solid inorganic, as well as polymer. In the former case, a structural characterization study of the fast Ag{sup +} ion conducting glassy electrolyte Ag{sub 0.25}Ge{sub 0.19}Se{sub 0.56} was undertaken by means of differential anomalous x-ray scattering techniques. The Ag{sup +} ion transport behavior was probed with the aid of complex impedance spectroscopy and pulsed field gradient NMR measurements of the Ag{sup +} ion diffusivity. We found evidence suggesting that short (3.1--3.5 A) Ag-Ag distances are present. The observed prefactor for conductivity suggests that the number of mobile Ag{sup +} ions in this glass is significantly less than expected from its stoichiometry. The transport property results were examined in the light of our structural findings and analyses were attempted in terms of some reasonable microscopic models. The other major aspect of this research, dealing with amorphous poly(ethylene glycol)-LiCF{sub 3}SO{sub 3} electrolytes, involved measurements, via the pulsed field gradient NMR method, of the diffusivity of the polymer host, the cation (Li{sup +}) and the anion (CF{sub 3}SO{sub 3}{sup -}) in these complexes and the ionic conductivity, via complex impedance spectroscopy. Based on the conductivity prefactors, it appears that these amorphous polymer electrolytes exhibit classical Meyer-Nelder behavior; moreover, our ion transport results could be rationalized in terms of an ion association model (involving ion pairs and higher order aggregates).

  12. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    Science.gov (United States)

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  13. Fast-ion transport in the presence of magnetic reconnection induced by sawtooth oscillations in ASDEX Upgrade

    NARCIS (Netherlands)

    Geiger, B.; Garcia-Munoz, M.; Dux, R.; Ryter, F.; Tardini, G.; Orte, L. B.; Classen, I.G.J.; Fable, E.; Fischer, R.; Igochine, V.; McDermott, R. M.

    2014-01-01

    The transport of beam-generated fast ions has been investigated experimentally at the ASDEX Upgrade tokamak in the presence of sawtooth crashes. After sawtooth crashes, phase space resolved fast-ion D-alpha measurements show a significant reduction of the central fast-ion density-more than 50%-toget

  14. Selectively accelerated lithium ion transport to silicon anodes via an organogel binder

    Science.gov (United States)

    Hwang, Chihyun; Cho, Yoon-Gyo; Kang, Na-Ri; Ko, Younghoon; Lee, Ungju; Ahn, Dongjoon; Kim, Ju-Young; Kim, Young-Jin; Song, Hyun-Kon

    2015-12-01

    Silicon, a promising high-capacity anode material of lithium ion batteries, suffers from its volume expansion leading to pulverization and low conductivities, showing capacity decay during cycling and low capacities at fast charging and discharging. In addition to popular active-material-modifying strategies, building lithium-ion-rich environments around silicon surface is helpful in enhancing unsatisfactory performances of silicon anodes. In this work, we accelerated lithium ion transport to silicon surface by using an organogel binder to utilize the electroactivity of silicon in a more efficient way. The cyanoethyl polymer (PVA-CN), characterized by high lithium ion transference number as well as appropriate elastic modulus with strong adhesion, enhanced cycle stability of silicon anodes with high coulombic efficiency even at high temperature (60 °C) as well as at fast charging/discharging rates.

  15. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport.

    Science.gov (United States)

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Dylan; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and applications-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion-transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of the metal Indium on lithium. By means of Joint-Density Functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including enabling exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that utilize both alloying and plating chemistries for charge storage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?

    Science.gov (United States)

    Harris, Kenneth R

    2016-12-01

    There have long been arguments supporting the concept of ion association in molten salts and ionic liquids, largely based on differences between the conductivity and that predicted from self-diffusion coefficients by the Nernst-Einstein equation for noninteracting ions. It is known from molecular dynamics simulations that even simple models based on charged hard spheres show such a difference due to the (anti)-correlation of ion motions. Formally this is expressed as a difference between the velocity cross-correlation coefficient of the oppositely charged ions and the mean of those for the two like-charged ions. This article examines molten salt and ionic liquid transport property data, comparing simple and model associated salts (ZnCl2, PbCl2, and TlCl) including weakly dissociated molecular liquids (H2O, HCOOH, H2SO4). Analysis employing Laity resistance coefficients (rij) shows that the common ion-association rationalization is flawed, consistent with recent direct measurements of the degree of ionicity in ionic liquid chlorides and with theoretical studies. However, the protic ionic liquids [PyrOMe][BF4] and [DBUH][CH3SO3] have larger than usual NE deviation parameters (>0.5), and large negative like-ion rii, analogous to those of ZnCl2. Structural, spectroscopic, and theoretical studies are suggested to determine whether these are indeed genuine examples of association.

  17. Net ion fluxes and ammonia excretion during transport of Rhamdia quelen juveniles

    Directory of Open Access Journals (Sweden)

    Luciano de Oliveira Garcia

    2015-10-01

    Full Text Available The objective of this study was to verify net ion fluxes and ammonia excretion in silver catfish transported in plastic bags at three different loading densities: 221, 286 and 365g L-1 for 5h. A water sample was collected at the beginning and at the end of the transport for analysis of water parameters. There was a significant positive relationship between net ion effluxes and negative relationship between ammonia excretion and loading density, demonstrated by the following equations: Na+: y-24.5-0.27x, r2=0.99, Cl-: y=40.2-0.61x, r2=0.98, K+: y=8.0-27.6x, r2=0.94; ammonia excretion: y=-11.43+0.017x, r2=0.95, where y: net ion flux (mmol kg-1 h-1 or ammonia excretion (mg kg-1h-1 and x: loading density (g. Therefore, the increase of loading density increases net ion loss, but reduces ammonia excretion during the transport of silver catfish, indicating the possibility of ammonia accumulation

  18. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  19. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC

    Science.gov (United States)

    Krah, Alexander; Zachariae, Ulrich

    2017-08-01

    Bacteria have developed a variety of different mechanisms to defend themselves from compounds that are toxic to them, such as antibiotics. One of these defence mechanisms is the expulsion of drugs or other noxious compounds by multidrug efflux pumps. Multidrug and toxic compound extrusion (MATE) transporters are efflux pumps that extrude metabolic waste and a variety of antibiotics out of the cell, using an ion gradient as energy source. They function via an alternating-access mechanism. When ions bind in the outward facing conformation, a large conformational change to the inward facing conformation is induced, from which the ion is released and the extruded chemical compound is bound. NorM proteins, which are usually coupled to a Na+ gradient, are members of the MATE family. However, for NorM-VC from Vibrio cholerae, it has been shown that this MATE transporter is additionally coupled to protons. How H+ and Na+ binding are coupled mechanistically to enable drug antiport is not well understood. In this study, we use molecular dynamics simulations to illuminate the sequence of ion binding events that enable efflux. Understanding this antiport mechanism is important to support the development of novel compounds that specifically inhibit the functional cycle of NorM transporters.

  20. Ion Transport and Structural Properties of Polymeric Electrolytes and Ionic Liquids from Molecular Dynamics Simulations

    Science.gov (United States)

    Borodin, Oleg

    2010-03-01

    Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.

  1. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D. [and others

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  2. Understanding transport simulations of heavy-ion collisions at 100 and 400 AMeV: Comparison of heavy ion transport codes under controlled conditions

    CERN Document Server

    Xu, Jun; Tsang, ManYee Betty; Wolter, Hermann; Zhang, Ying-Xun; Aichelin, Joerg; Colonna, Maria; Cozma, Dan; Danielewicz, Pawel; Feng, Zhao-Qing; Fevre, Arnaud Le; Gaitanos, Theodoros; Hartnack, Christoph; Kim, Kyungil; Kim, Youngman; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Napolitani, Paolo; Ono, Akira; Papa, Massimo; Song, Taesoo; Su, Jun; Tian, Jun-Long; Wang, Ning; Wang, Yong-Jia; Weil, Janus; Xie, Wen-Jie; Zhang, Feng-Shou; Zhang, Guo-Qiang

    2016-01-01

    Transport simulations are very valuable for extracting physics information from heavy-ion collision experiments. With the emergence of many different transport codes in recent years, it becomes important to estimate their robustness in extracting physics information from experiments. We report on the results of a transport code comparison project. 18 commonly used transport codes were included in this comparison: 9 Boltzmann-Uehling-Uhlenbeck-type codes and 9 Quantum-Molecular-Dynamics-type codes. These codes have been required to simulate Au+Au collisions using the same physics input for mean fields and for in-medium nucleon-nucleon cross sections, as well as the same initialization set-up, the impact parameter, and other calculational parameters at 100 and 400 AMeV incident energy. Among the codes we compare one-body observables such as rapidity and transverse flow distributions. We also monitor non-observables such as the initialization of the internal states of colliding nuclei and their stability, the co...

  3. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  4. Heavy-ion transport codes for radiotherapy and radioprotection in space

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide

    2006-06-15

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n {sup 40}Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets.

  5. The role of zinc ions in reverse transport mediated by monoamine transporters

    DEFF Research Database (Denmark)

    Scholze, Petra; Nørregaard, Lene; Singer, Ernst A;

    2002-01-01

    investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin...

  6. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na(+) ,K(+) -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca(2+) -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na(+) ,K(+) -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and

  7. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Sørensen, Mette G; Jensen, Vicki K;

    2008-01-01

    is currently not well understood. We used a battery of ion channel inhibitors, human osteoclasts, and their subcellular compartments to perform an unbiased analysis of the importance of the different ion transporters for acidification of the resorption lacuna in osteoclasts. CD14(+) monocytes from human...... peripheral blood were isolated, and mature osteoclasts were generated using RANKL and M-CSF. The human osteoclasts were (1) used for acridine orange assays for evaluation of lysosomal acidification, (2) used for bone resorption assays, (3) used for generation of osteoclasts membranes for acid influx...

  8. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    Science.gov (United States)

    Ehrnstorfer, Ines A.; Manatschal, Cristina; Arnold, Fabian M.; Laederach, Juerg; Dutzler, Raimund

    2017-01-01

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons. PMID:28059071

  9. Anomalous transport effects and possible environmental symmetry 'violation' in heavy-ion collisions

    Indian Academy of Sciences (India)

    Jinfeng Liao

    2015-05-01

    The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible in such domains. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the chiral magnetic effect, chiral separation effect, chiral electric separation effect, chiral electric/magnetic waves, etc.) in the hot QCD fluid formed by such collisions.

  10. Numerical modeling of ion transport in a ESI-MS system

    CERN Document Server

    Gimelshein, N; Lilly, T; Moskovets, E

    2013-01-01

    Gas and ion transport in the capillary-skimmer subatmospheric interface of a mass spectrometer, which is typically utilized to separate unevaporated micro-droplets from ions, was studied numerically using a two-step approach spanning multiple gas dynamic regimes. The gas flow in the heated capillary and in the interface was determined by solving numerically the Navier-Stokes equation. The capillary-to-skimmer gas/ion flow was modeled through the solution of the full Boltzmann equation with a force term. The force term, together with calculated aerodynamic drag, determined the ion motion in the gap between the capillary and skimmer. The three-dimensional modeling of the impact of the voltage applied to the Einzel lens on the transmission of doubly-charged peptides ions through the skimmer orifice was compared with experimental data obtained in the companion study. Good agreement between measured and computed signals was observed. The numerical results indicate that as many as 75% ions that exit from the capill...

  11. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Olesen, Søren-Peter; Christ, Torsten

    2009-01-01

    The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrical...... activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well......-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid...

  12. Na+,K+-ATPase amino acids involved in transport of the 3rd sodium ion

    DEFF Research Database (Denmark)

    Holm, Rikke; Einholm, Anja P.; Toustrup-Jensen, Mads Schak

    856A and Q856E exhibit ~24-,~9- and ~4-fold reduction of Na+ affinity, respectively, relative to wt, and the Q856 mutants display wt-like interaction with K+ at the E2P sites, thus supporting the hypothesis that the channel containing D923/928 and Q856 is a transport pathway for the third Na+ ion. I...... α3 mutant D923N, which is associated with RDP [1]. D923 is located in the cytoplasmic half of transmembrane helix M8 in a putative transport channel between M5, M7, M8 and M10. The external K+ sites behaved wild type (wt)-like in the mutant, suggesting that D923 is associated with the third Na+ ion...... mutated C932 close to the proposed channel inlet. C932F reduced Na+ affinity ~73-fold. This fits into a model, where the bulky phenylalanine prevents Na+ from entering the channel....

  13. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  14. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  15. A high-density association screen of 155 ion transport genes for involvement with common migraine

    Science.gov (United States)

    Nyholt, Dale R.; LaForge, K. Steven; Kallela, Mikko; Alakurtti, Kirsi; Anttila, Verneri; Färkkilä, Markus; Hämaläinen, Eija; Kaprio, Jaakko; Kaunisto, Mari A.; Heath, Andrew C.; Montgomery, Grant W.; Göbel, Hartmut; Todt, Unda; Ferrari, Michel D.; Launer, Lenore J.; Frants, Rune R.; Terwindt, Gisela M.; de Vries, Boukje; Verschuren, W.M. Monique; Brand, Jan; Freilinger, Tobias; Pfaffenrath, Volker; Straube, Andreas; Ballinger, Dennis G.; Zhan, Yiping; Daly, Mark J.; Cox, David R.; Dichgans, Martin; van den Maagdenberg, Arn M.J.M.; Kubisch, Christian; Martin, Nicholas G.; Wessman, Maija; Peltonen, Leena; Palotie, Aarno

    2008-01-01

    The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case–control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case–control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out. PMID:18676988

  16. Investigation of Impurity Ion Transport with Laser Blow-off in HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    CUI Zheng-Ying; DONG Yun-Bo; DENG Wei; YANG Qing-Wei; DING Xuan-Tong; HUANG Yuan; SUN Ping; ZHENG Yong-Zhen; SHI Pei-Lan; LU Jie; FU Bing-Zhong; ZHANG Peng; PAN Yu-Dong

    2006-01-01

    @@ Non-recycling impurities are injected into ohmic HL-2A plasma for the first time. The impurities of titanium and aluminium are injected in the discharges with varying plasma density and current. The convection and diffusion process of the injected impurity ions during the inward phase are qualitatively investigated. The results show that the transport of impurities is much slower in the central region of the plasma than outside of it and that it is greatly enhanced during sawtooth crashes.

  17. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular......-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  18. Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Hagelaar, G.; Kohen, N.; Boeuf, J. P.

    2017-01-01

    Negative ion sources for fusion are high densities plasma sources in large discharge volumes. There are many challenges in the modeling of these sources, due to numerical constraints associated with the high plasma density, to the coupling between plasma and neutral transport and chemistry, the presence of a magnetic filter, and the extraction of negative ions. In this paper we present recent results concerning these different aspects. Emphasis is put on the modeling approach and on the methods and approximations. The models are not fully predictive and not complete as would be engineering codes but they are used to identify the basic principles and to better understand the physics of the negative ion sources.

  19. Matching and transporting an intense ion beam through a solenoid focusing channel

    Directory of Open Access Journals (Sweden)

    J. E. Coleman

    2008-05-01

    Full Text Available An experiment to inject and match a 10  μs, singly charged K^{+} ion bunch at an ion energy of 0.3 MeV, current of 45 mA, and dimensionless perveance of 10^{-3} into a solenoid lattice has been carried out at LBNL. The principal objective of this experiment is to match and transport the space-charge dominated ion beam and compare predicted and measured emittance. Initial investigation also presented the opportunity to study electron cloud effects and the effects of misalignments. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density, transverse distributions, and phase space of the beam at different diagnostic planes.

  20. Control of local ion transport to create unique functional nanodevices based on ionic conductors

    Directory of Open Access Journals (Sweden)

    Kazuya Terabe, Tsuyoshi Hasegawa, Changhao Liang and Masakazu Aono

    2007-01-01

    Full Text Available The development of nanometer-scale devices operating under a new principle that could overcome the limitations of current semiconductor devices has attracted interest in recent years. We propose that nanoionic devices that operate by controlling the local transport of ions are promising in this regard. It is possible to control the local transport of ions using the solid electrochemical properties of ionic and electronic mixed conductors. As an example of this concept, here, we report a method of controlling the transport of silver ions of the mixed-conductor silver sulfide (Ag2S crystal and basic research on nanoionic devices based on this mixed conductor. These devices show unique functions such as atom deposition, resistance switching, and quantum point contact switching. The switches operate through the formation and dissolution of an atomic bridge between the electrodes, and the behavior is realized by control of the local solid-state electrochemical reaction. Potential nanoionic devices utilizing the unique functions and characters that do not exist in conventional semiconductor devices are discussed.

  1. Challenge for more precise e- and ion-transport in gases and liquids

    Science.gov (United States)

    White, Ron

    2016-09-01

    The full potential of technologies driven by non-equilibrium electron and ion processes in gases, liquids and soft-matter can only be realised once the basic physics has been mastered. The central component in this pursuit is an ever increasing need for the precise determination of electron and ion transport in such media. Over the last few decades, the group at James Cook University and collaborators have developed a suite of multi-term Boltzmann equation solutions to treat temporal and spatial non-locality for electrons and ions in electric and magnetic fields in gaseous systems. In this presentation, we will highlight recent developments including (i) a space-time multi-term solution of Boltzmann's equation; (ii) a unified treatment of electron and ion solutions of Boltzmann's equation which avoids mass ratio expansions; (iii) the treatment dense gases and liquids, including coherent scattering, screened potentials and (self) trapped bubble state effects, the latter of which can give rise to fractional transport behaviour, and (iv) the application to consider the self-consistency of cross-sections for electrons in biomolecules. Contributors: G. Boyle, P. Stokes, M. Casey, N. Garland, D. Cocks, D. Konovalov, S. Dujko, R. E. Robson, K. F. Ness, M. Brunger, S. Buckman, J. de Urquijo and Z. Lj. Petrovic. Support: Australian Research Council.

  2. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  3. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    Directory of Open Access Journals (Sweden)

    S. Adams

    2010-12-01

    Full Text Available Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc..

  4. “Uphill” cation transport: A bioinspired photo-driven ion pump

    Science.gov (United States)

    Zhang, Zhen; Kong, Xiang-Yu; Xie, Ganhua; Li, Pei; Xiao, Kai; Wen, Liping; Jiang, Lei

    2016-01-01

    Biological ion pumps with active ionic transport properties lay the foundation for many life processes. However, few analogs have been produced because extra energy is needed to couple to this “uphill” process. We demonstrate a bioinspired artificial photo-driven ion pump based on a single polyethylene terephthalate conical nanochannel. The pumping process behaving as an inversion of zero-volt current can be realized by applying ultraviolet irradiation from the large opening. The light energy can accelerate the dissociation of the benzoic acid derivative dimers existing on the inner surface of nanochannel, which consequently produces more mobile carboxyl groups. Enhanced electrostatic interaction between the ions traversing the nanochannel and the charged groups on the inner wall is the key reason for the uphill cation transport behavior. This system creates an ideal experimental and theoretical platform for further development and design of various stimuli-driven and specific ion–selective bioinspired ion pumps, which anticipates wide potential applications in biosensing, energy conversion, and desalination. PMID:27774511

  5. Evidence of low dimensional ion transport in mechanosynthesized nanocrystalline BaMgF4.

    Science.gov (United States)

    Preishuber-Pflügl, F; Wilkening, M

    2014-07-14

    Mechanochemical milling provides a versatile method for the preparation of nano-sized, defect rich, polycrystalline materials. If ionic materials are considered, the transport parameters of the mobile ions may greatly differ from those of the microcrystalline counterparts prepared by conventional synthesis routes. Little is known about ionic conduction in nanocrystalline materials having crystal structures that offer spatially confined transport pathways. Here, we focused on mechanosynthesized BaMgF4 that combines both nanocrystallinity and anisotropic F(-) transport. The preparation of nanocrystalline BaMgF4 is presented as a facile and rapid one-pot procedure. The reaction was followed by X-ray diffraction and high-resolution (19)F nuclear magnetic resonance (NMR) spectroscopy. NMR helped prove the formation of X-ray amorphous compounds as well as the transformation of the starting materials into the final product BaMgF4. Most importantly, besides enhanced conduction properties compared to a single crystal, our broadband impedance spectra reveal characteristics pointing to anisotropic (low dimensional) ion transport processes even in the nanocrystalline form of BaMgF4.

  6. A 3D model for ion beam formation and transport simulation

    Science.gov (United States)

    Qiang, J.; Todd, D.; Leitner, D.

    2006-09-01

    In this paper, we present a three-dimensional model for self consistently modeling ion beam formation from plasma ion sources and transporting in low energy beam transport systems. A multi-section overlapped computational domain has been used to break the original transport system into a number of weakly coupled subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain after each particle tracking to obtain the self-consistent space-charge forces and the particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the finite difference multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the straight beam transport section and in Frenet-Serret coordinates for the bending magnet section. This model can have important application in design and optimization of the low energy beam line optics of the proposed Rare Isotope Accelerator (RIA) front end.

  7. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  8. Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites

    Science.gov (United States)

    Mogurampelly, Santosh; Ganesan, Venkat

    2015-03-01

    Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.

  9. Transport properties and electroanalytical response characteristics of drotaverine ion-selective sensors.

    Science.gov (United States)

    Kharitonov, Sergey V

    2005-08-01

    The construction and electroanalytical response characteristics of poly(vinyl chloride) matrix ion-selective sensors (ISSs) for drotaverine hydrochloride are described. The membranes incorporate ion-association complexes of drotaverine with tetraphenylborate, picrate, tetraiodomercurate, tetraiodobismuthate, Reinecke salt, and heteropolycompounds of Keggin structure-molybdophosphoric acid, tungstophosphoric acid, molybdosiliconic acid and tungstosiliconic acid as electroactive materials for ionometric sensor controls. These ISSs have a linear response to drotaverine hydrochloride over the range 8 x 10(-6) to 5 x 10(-2) mol L(-1) with cationic slopes from 51 to 58 mV per concentration decade. These ISSs have a fast response time (up to 1 min), a low determination limit (down to 4.3 x 10(-6) mol L(-1)), good stability (3-5 weeks), and reasonable selectivity. Permeabilities and ion fluxes through a membrane were calculated for major and interfering ions. Dependences of the transport properties of the membranes on the concentrations of the ion exchanger and near-membrane solution and their electrochemical characteristics are presented. The ISSs were used for direct potentiometry and potentiometric titration (sodium tetraphenylborate) of drotaverine hydrochloride. Results with mean accuracy of 99.1+/-1.0% of nominal were obtained which corresponded well to data obtained by use of high-performance liquid chromatography.

  10. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  11. Initial binding of ions to the interhelical loops of divalent ion transporter CorA: replica exchange molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III Hexamine ions or Mg(2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III Hexamine ions were found to bind stronger with the loop than Mg(2+ ions with binding free energy -7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg(2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III Hexamine ions on CorA ions transportation.

  12. Initial binding of ions to the interhelical loops of divalent ion transporter CorA: replica exchange molecular dynamics simulation study.

    Science.gov (United States)

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg(2+) ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg(2+) ions with binding free energy -7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg(2+) ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation.

  13. Ion channels and transporters in the electroreceptive ampullary epithelium from skates.

    Science.gov (United States)

    Lu, J; Fishman, H M

    1995-01-01

    Two ampullary epithelial properties necessary for electroreception were used to identify the types of ion channels and transporters found in apical and basal membranes of ampullary receptor cells of skates and to assess their individual role under voltage-clamp conditions. The two essential properties are (1) a steady-state negative conductance generated in apical membranes and (2) a small, spontaneous current oscillation originating in basal membranes (Lu and Fishman, 1995). The effects of pharmacological agents and ion substitutions on these properties were evaluated from transorgan or transepithelial complex admittance determinations in the frequency range 0.125 to 50 Hz measured in individual, isolated ampullary organs. In apical membranes, L-type Ca channels were found to be responsible for generation of the steady-state negative conductance. In basal membranes, K and Ca-dependent Cl (Cl(Ca)) channels were demonstrated to contribute to a net positive membrane conductance. L-type Ca channels were also evident in basal membranes and are thought to function in synaptic transmission from the electroreceptive epithelium to the primary afferent nerve. In addition to ion channels in basal membranes, two transporters (Na+/K+ pump and Na(+)-Ca+ exchanger) were apparent. Rapid (minutes) cessation of the current oscillation after blockage of any of the basal ion channels (Ca, Cl(Ca), K) suggests critical involvement of each of these channel types in the generation of the oscillation. Suppression of either Na+/K+ transport or Na(+)-Ca2+ exchange also eliminated the oscillation but at a slower rate, indicating an indirect effect. PMID:8599653

  14. Branchial blood flow distribution in the blue shark (Prionace glauca) and the leopard shark (Triakis semifasciata).

    Science.gov (United States)

    Lai, N C; Graham, J B; Bhargava, V; Lowell, W R; Shabetai, R

    1989-01-01

    Electromagnetic flow (EMF) quantification of total cardiac stroke flow is not feasible for most elasmobranchs because the vascular anatomy precludes probe placement adjacent to the heart and proximal to all afferent branchial arteries (aba). Most previous studies report a fractional cardiac flow, made with the EMF probe placed on the ventral aorta between the innominate arteries and aba 3. Estimation of total cardiac stroke flow from such data requires a flow correction factor obtained by sacrificing the fish, and carrying out a two step in situ/in vitro flow calibration procedure which is based on tenuous assumptions. Ventral aortic blood flow measurements using the EMF techniques were carried out on large blue sharks, and radiographic imaging studies of ventral aortic and branchial blood flow were done on leopard sharks to verify previously estimated fractional cardiac stroke flow correction factors. The innominate flow fraction determined for both species in these studies are similar and agree with previous estimates for elasmobranchs. EMF data for Prionace show 38% of cardiac stroke flow goes to the innominate arteries, 23% into aba 3, 12% into aba 4, and 27% into aba 5. Radiographic analyses with Triakis reveal that 32% of its cardiac stroke volume flows into the innominate arteries which is in agreement with the in situ/in vitro fractional flow estimate (33%).

  15. Diagnosis and management of first branchial fistula: a study of 12 cases

    Institute of Scientific and Technical Information of China (English)

    OU Yong-kang; XU Yao-dong; LIU Xiang; HUANG Xiao-ming; PENG Jie-ren; ZHENG Yi-qing

    2008-01-01

    To report authors' experiences in the diagnosis and treatments of congenital first branchial fistula (congenital auriculocervical fistula). Materials and Methods Twelve cases of congenital first branchial fistula were reviewed. Of these, 8 underwent fistulectomy with facial nerve dissection and partial parotidectomy and 4 underwent simple fistulectomy. Results The inner openings (upper opening) of fistulae lay in the following sites: inferioposterior wall at the junction of cartilaginous and bony segments of the auricular canal and inferior wall of cartilaginous auricular canal. The outer openings(lower opening) lay along the anterior border of upper sternocleidomastoid muscle, at the mastoid tip and posterior to the mandibular angle. Complete fistulae resection was achieved in all but one case. Eleven cases were followed for 5 year with no recurrence. Recurrence occurred in 1 case 6 months after the primary surgery and revision surgery was performed. Conclusions Pre-operative radiography for the location and course of the fistula is crucial for successful fistula resection, especially in cases with past infections. Facial nerve dissection should be done routinely for deeply located fistulae.

  16. Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    Science.gov (United States)

    Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T. I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; Seki, R.; Takeiri, Y.; Yokoyama, M.; Maeta, S.; Nakata, M.; Yoshinuma, M.; Yamada, I.; Yasuhara, R.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Tokuzawa, T.; Goto, M.; Oishi, T.; Morita, S.; Suzuki, C.; Emoto, M.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Makino, R.; Seki, T.; Kasahara, H.; Saito, K.; Kamio, S.; Nagasaki, K.; Mutoh, T.; Kaneko, O.; Morisaki, T.; the LHD Experiment Group

    2017-08-01

    A simultaneous high ion temperature (T i) and high electron temperature (T e) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of T e/T i by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity {χ\\text{i}}/T\\text{i}1.5 at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in T i in the entire plasma region, even though the core transport was degraded.

  17. Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    Science.gov (United States)

    Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael

    1995-01-01

    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in

  18. Energetic Ion Transport and Concomitant Change of the Fusion Reactivity during Reconnection Events in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; V.V. Lutsenko; R.B. White; Yu.V. Yakovenko

    2004-07-06

    Effects of MHD reconnection events on the beam-plasma fusion reactivity and transport of the beam ions are studied. Based on the analysis of fusion reactivity changes induced by MHD events, the conclusion is drawn that the strong drops of the neutron yield during sawtooth crashes observed in the National Spherical Torus experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] are associated with both a particle redistribution inside the plasma and a loss of the beam ions. Mechanisms of the energetic ion transport during sawtooth crashes are analyzed, in particular, with the use of the resonance adiabatic invariant derived in this paper. A numerical simulation of the particle motion during a sawtooth crash in NSTX is done with the code OFSEF [Ya. I. Kolesnichenko, et al., Nucl. Fusion 40, 1325 (2000)] extended for a better description of the particle precession. It is shown that the motion of toroidally passing particles in NSTX can become stochastic under the influence of a crash. This stochasticity, as well as the motion along the resonance island, leads to the escape of some particles from the plasma.

  19. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Ronningen, Reginald Martin [Michigan State University; Remec, Igor [Oak Ridge National Laboratory; Heilbronn, Lawrence H. [University of Tennessee-Knoxville

    2013-06-07

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for design simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".

  20. H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics.

    Science.gov (United States)

    Shawki, Ali; Knight, Patrick B; Maliken, Bryan D; Niespodzany, Eric J; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a widely expressed, iron-preferring membrane transport protein. Animal models establish that DMT1 plays indispensable roles in intestinal nonheme-iron absorption and iron acquisition by erythroid precursor cells. Rare mutations in human DMT1 result in severe microcytic-hypochromic anemia. When we express DMT1 in RNA-injected Xenopus oocytes, we observe rheogenic Fe(2+) transport that is driven by the proton electrochemical potential gradient. In that same preparation, DMT1 also transports cadmium and manganese but not copper. Whether manganese metabolism relies upon DMT1 remains unclear but DMT1 contributes to the effects of overexposure to cadmium and manganese in some tissues. There exist at least four DMT1 isoforms that arise from variant transcription of the SLC11A2 gene. Whereas these isoforms display identical functional properties, N- and C-terminal variations contain cues that direct the cell-specific targeting of DMT1 isoforms to discrete subcellular compartments (plasma membrane, endosomes, and lysosomes). An iron-responsive element (IRE) in the mRNA 3'-untranslated region permits the regulation of some isoforms by iron status, and additional mechanisms by which DMT1 is regulated are emerging. Natural-resistance-associated macrophage protein-1 (NRAMP1)-the only other member of the mammalian SLC11 gene family-contributes to antimicrobial function by extruding from the phagolysosome divalent metal ions (e.g. Mn(2+)) that may be essential cofactors for bacteria-derived enzymes or required for bacterial growth. The principal or only intestinal nonheme-iron transporter, DMT1 is a validated therapeutic target in hereditary hemochromatosis (HHC) and other iron-overload disorders.

  1. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    MURAD, SOHAIL [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  2. Ion transport through a charged cylindrical membrane pore contacting stagnant diffusion layers

    Science.gov (United States)

    Andersen, Mathias B.; Biesheuvel, P. M.; Bazant, Martin Z.; Mani, Ali

    2012-11-01

    Fundamental understanding of the ion transport in membrane systems by diffusion, electromigration and advection is important in widespread processes such as de-ionization by reverse osmosis and electrodialysis and electro-osmotic micropumps. Here we revisit the classical analysis of a single cylindrical pore, see e.g. Gross and Osterle [J Chem Phys 49, 228 (1968)]. We extend the analysis by including the well-established concept of contacting stagnant diffusion layers on either side of the pore; thus, the pore is not in direct equilibrium with the reservoirs. Inside the pore the ions are assumed to be in quasi-equilibrium in the radial direction with the surface charge on the pore wall and we obtain a 1D model by area-averaging. We demonstrate that in some extreme limits this model reduces to simpler models studied in the literature; see e.g. Yaroshchuk [J Membrane Sci 396, 43 (2012)]. Using our model we present predictions of important transport effects such as variation of transport numbers inside the membrane, onset of limiting current, and transient dynamics described by the method of characteristics.

  3. ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development.

    Science.gov (United States)

    Sahu, Tejram; Boisson, Bertrand; Lacroix, Céline; Bischoff, Emmanuel; Richier, Quentin; Formaglio, Pauline; Thiberge, Sabine; Dobrescu, Irina; Ménard, Robert; Baldacci, Patricia

    2014-11-01

    The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria. © 2014 Institut Pasteur. Published under the terms of the CC BY 4.0 license.

  4. The role of ion transport phenomena in memristive double barrier devices

    Science.gov (United States)

    Dirkmann, Sven; Hansen, Mirko; Ziegler, Martin; Kohlstedt, Hermann; Mussenbrock, Thomas

    2016-10-01

    In this work we report on the role of ion transport for the dynamic behavior of a double barrier quantum mechanical Al/Al2O3/NbxOy/Au memristive device based on numerical simulations in conjunction with experimental measurements. The device consists of an ultra-thin NbxOy solid state electrolyte between an Al2O3 tunnel barrier and a semiconductor metal interface at an Au electrode. It is shown that the device provides a number of interesting features such as an intrinsic current compliance, a relatively long retention time, and no need for an initialization step. Therefore, it is particularly attractive for applications in highly dense random access memories or neuromorphic mixed signal circuits. However, the underlying physical mechanisms of the resistive switching are still not completely understood yet. To investigate the interplay between the current transport mechanisms and the inner atomistic device structure a lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport. The simulation results indicate that the drift of charged point defects within the NbxOy is the key factor for the resistive switching behavior. It is shown in detail that the diffusion of oxygen modifies the local electronic interface states resulting in a change of the interface properties.

  5. Study of electron transport across the magnetic filter of NIO1 negative ion source

    Science.gov (United States)

    Veltri, P.; Sartori, E.; Cavenago, M.; Serianni, G.; Barbisan, M.; Zaniol, B.

    2017-08-01

    In the framework of the accompanying activities in support to the ITER NBI test facility, a relatively compact radiofrequency (RF) ion source, named NIO1 (Negative Ion Optimization, phase 1) was developed in Padua, Italy, in collaboration between Consorzio RFX and INFN. Negative hydrogen ions are formed in a cold, inductively coupled plasma with a 2MHz, 2.5 kW external antenna. A low electron energy is necessary to increase the survival probability of negative ions in the proximity of the extraction area. This goal is accomplished by means of a transversal magnetic field, confining the high energy electrons better than the colder electrons. In NIO1, this filter field can cover different topologies, exploiting different set of magnets and high current paths. In this contribution we study the property of the plasma in the vicinity of the extraction region for two different B field configurations. For this experiment the source was operated in pure volume conditions, in hydrogen and oxygen plasmas. The experimental data, measured by spectroscopic means, is interpreted also with the support of finite element analyses simulations of the magnetic field and a dedicated particle in cell (PIC) numerical model for the electron transport across it, including Coulomb and gas collisions.

  6. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    Science.gov (United States)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  7. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    Science.gov (United States)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  8. Ion transport studies on the PLT tokamak during neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, S.; Cavallo, A.; Cohen, S.; Daughney, C.; Denne, B.; Hinnov, E.; Hosea, J.; Hulse, R.; Hwang, D.; Schilling, G.

    1983-12-01

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10/sup 3/ cm/sec superposed to a diffusion coefficient of the order 10/sup 4/ cm/sup 2//sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element.

  9. Ion Transport Properties of Mechanically Stable symmetric ABCBA Pentablock Copolymers with Quaternary Ammonium Functionalized Midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han; Zeng, Di; Vandiver, Melissa A.; Kusoglu, Ahmet; Seifert, Soenke; Hayward, Ryan C.; Weber, Adam Z.; Herring , Andrew M.; Coughlin, E. Bryan; Liberatore, Matthew W.

    2017-01-01

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  10. Transport of Indium, Gallium and Thallium Metal Ions Through Chromatographic Fiber Supported Solid Membrane in Acetylacetone Containing Mixed Solvents

    Institute of Scientific and Technical Information of China (English)

    Abaji Gaikwad

    2011-01-01

    The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent system has been explored. The fibers supported solid membranes were prepared with chemical synthesis from cellulose fibers and citric acid with the carboxylic acid ion exchange groups introduced. The experimental variables, such as concentration of metal ions (10^-2 to 10^-4 mol.L^-1) in the source solution, mixed solvent composition [for exampl, e, acetylacetone, (2,4-pentanedione), (HAA) 20% (by volume), 1,4-dioxane 10% to 60% and HC1 0.25 to 2 mol.L^-1] in the receiving phase and stirring speed (50-130 r.min ) of the bulk source and receiving phase, were explored. The efficiency of mixed solvents for the transport of metal ions from the source to receiving phase through the fiber supported solid membrane was evaluated. The combined ion exchange solvent extraction (CIESE) was observed effective for the selective transport of thallium, indium and gallium metal ions through fiber supported solid membrane in mixed solvents. The oxonium salt formation in the receiving phase enhances thallium, indium and gallium metal ion transport through solid membrane phase. The selective transport of thallium metal ions from source phase was observed from indium and gallium metal ions in the presence of hydrochloric acid in organic solvents in receiving phase. The separation of thallium metal ions from the binary mixtures of Be(II), Ti(IV), AI(III) Ca(II), Mg(II), K (I), La(III) and Y(III) was carried out in the mixed solvent system using cellulose fiber supported solid membrane.

  11. Effect of counter- and co-ions on the structural transport parameters of sulfoacid cationite membranes

    Science.gov (United States)

    Demina, O. A.; Falina, I. V.; Kononenko, N. A.; Demin, A. V.

    2016-08-01

    The diffusion permeability and specific electroconductivity of MK-40 sulfoacid cationite and Nafion 425 membranes are studied experimentally in NaOH, NaCl, and HCl solutions with various concentrations. The resulting concentration dependences of the electrodiffusion characteristics and data on the nonexchange sorption of the electrolytes are used to calculate the structural transport parameters of the membranes in terms of a two-phase conduction model. Analysis of a set of parameters, including the electroconductivity and diffusion permeability of the membrane gel phase, the volume fractions of the conductive phases, and a parameter that reflects their relative positions, the Donnan constant, and the diffusion coefficients of counter and co-ions in the membrane gel phase reveals the effect the nature of counter- and co-ions has on the electrodiffusion, structural, and sorption characteristics of sulfoacid cationite membranes with different types of structure.

  12. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    CERN Document Server

    Schmuck, Markus

    2012-01-01

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...

  13. Influence of conducting plate boundary conditions on the transverse envelope equations describing intense ion beam transport

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2004-06-01

    Full Text Available In typical diagnostic applications, intense ion beams are intercepted by a conducting plate associated with devices used to measure beam phase-space projections. This results in the transverse space-charge field near the plate being shorted out, rendering simple envelope models with constant space-charge strength inaccurate. Here we develop corrected envelope models based on analytical calculations to account for this effect on the space-charge term of the envelope equations, thereby removing a systematic source of error in the equations and enabling more accurate comparisons with experiment. For common intense beam parameters, we find that the envelope correction occurs primarily in the envelope angles near the plate and that the effect can be large enough to degrade precision beam matching in periodic transport lattices. Results are verified with 3D self-consistent particle-in-cell simulations based on intense beam experiments associated with driver development for heavy-ion fusion.

  14. Dynamics of Ion Temperature Gradient Turbulence and Transport with a Static Magnetic Island

    CERN Document Server

    Izacard, Olivier; James, Spencer D; Brennan, Dylan P

    2015-01-01

    The quantification of the interaction mechanism between large-scale magnetohydrodynamics instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulation, with BOUT++ [B. Dudson et al., Comput. Phys. Comm. 180, 1467 (2009)] used to evolve simple five-field fluid models in a sheared slab geometry. This work focuses upon understanding the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island in a weakly electromagnetic two-dimensional five-field model as key parameters such as ion temperature gradient, magnetic gradients and static magnetic island size are varied. The simulation results are then used to calculate the effective turbulent transport coefficient (i.e. resistivity) that is compared against classical coefficient. As part of this work, t...

  15. Ion Transport and Microstructure of Sandwich Cementitious Materials Exposed to Chloride Environment

    Institute of Scientific and Technical Information of China (English)

    WANG Xingang; WANG Kai; WANG Rui; XIE Tao; HUANG Jie

    2015-01-01

    Ion transport of sandwich cementitious materials (SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete (HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coefifcient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials (ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM

  16. Isotopic dependence of impurity transport driven by ion temperature gradient turbulence

    CERN Document Server

    Guo, Weixin; Zhuang, Ge

    2016-01-01

    Hydrogenic ion mass effects, namely the isotopic effects on impurity transport driven by ion temperature gradient (ITG) turbulence are investigated using gyrokinetic theory. For non-trace impurities, changing from hydrogen (H) to deuterium (D), and to tritium (T) plasmas, the outward flux for lower (higher) ionized impurities or for lighter (heavier) impurities is found to decrease (increase), although isotopic dependence of ITG linear growth rate is weak. This is mainly due to the decrease of outward (inward) convection, while the isotopic dependence of diffusion is relatively weak. In addition, the isotopic effects reduce (enhance) the impurity flux of fully ionized carbon (C6+) for weaker (stronger) magnetic shear. In trace impurity limit, the isotopic effects are found to reduce the accumulation of high-Z tungsten (W). Moreover, the isotopic effects on the peaking factor (PF) of trace high-Z W get stronger with stronger magnetic shear.

  17. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  18. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    Science.gov (United States)

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  19. Multi-region Transport and Competitive Ion Exchange in Partially Saturated Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.(BATTELLE (PACIFIC NW LAB)); Gamerdinger, Amy P.(WASHINGTON STATE UNIV TC); S.M. Hassanizadeh, R.J. Schotting, et al.

    2002-01-01

    In most natural subsurface settings cesium sorbs very strongly to sediments, effectively limiting its transport. At the Hanford Site in Washington State (USA), vadose zone migration of 137Cs from subsurface high-level radioactive waste tanks has been detected over 40 meters below the ground surface. Batch and saturated laboratory column studies provided the basis for a quantitative multisite, multicomponent ion exchange model of Cs+ competition with Na+, K+, Ca++, and Mg++ in a composite Hanford soil. The validity of this model under unsaturated conditions was examined in a series of reactive transport column experiments performed in an ultracentrifuge at different liquid saturations. For each experiment, a constant, uniform saturation was maintained using a steady influx of a 5 M sodium nitrate solution with 5.4E-5 M cesium iodide. Of interest was the potential for enhanced cesium transport due to the presence of immobile liquid and/or bypassed regions. Mobile and immobile fluid fractions, dispersion, and the rate of mass transfer between mobile and immobile regions were determined from the tracer breakthrough. At higher saturations ({approx} 65%), the tracer and cesium behavior could be predicted to a large degree using a single mobile region with the previously developed multicomponent ion exchange model. At lower saturations ({approx} 23%), however, the tracer breakthrough indicated a relatively large immobile fluid fraction, which could be described with a multi-region approach. In this experiment, cesium broke through earlier and at higher concentrations than predicted by multi-region theory combined with the existing cesium ion exchange model. This behavior is consistent with a higher density of exchange sites in the immobile fluid region.

  20. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, D. J. [PPPL; Boedo, J. A. [University of California San Diego; Burrell, K. H. [General Atomics; Chang, C. S. [PPPL; Canik, J. M. [ORNL; deGrassie, J. S. [General Atomics; Gerhardt, S. P. [PPPL; Grierson, B. A. [General Atomics; Groebner, R. J. [General Atomics; Maingi, Rajesh [PPPL; Smith, S. P. [General Atomics

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  1. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides

    KAUST Repository

    Ordoñez, Natalia Maria

    2013-09-03

    Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular. © Springer Science+Business Media New York 2013.

  2. Flux-driven gyrokinetic simulations of ion turbulent transport at low magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y; Strugarek, A; Dif-Pradalier, G; Abiteboul, J; Allfrey, S; Garbet, X; Ghendrih, Ph; Grandgirard, V; Latu, G, E-mail: yanick.sarazin@cea.fr

    2010-11-01

    Ion Temperature Gradient driven turbulence is investigated with the global full-f gyrokinetic code GYSELA for different magnetic equilibria. Reversed shear and monotonous q profile cases do not exhibit dramatic changes nor in the dynamics nor in the level of turbulence, leading to similar mean profiles. Especially, no transport barrier is observed in the vicinity of s = 0 in the general case, although the radial extent of the gap without resonant modes is larger than the typical turbulence correlation length. Conversely, a transport barrier is found to develop in the gap region if non resonant modes are artificially suppressed from the simulation. Such simulations tend to reconcile previously published contradictory results, while extending the analysis to more realistic flux-driven gyrokinetic regimes.

  3. Transport Parameters For Positive IONS In Pure H2O DC Discharge

    Science.gov (United States)

    Petrovic, Zoran; Stojanovic, Vladimir; Jovanovic, Jasmina; Maric, Dragana

    2016-09-01

    Transport properties of positive ions originating from H2O (H2O+, OH+) in DC fields and at the room temperature were calculated by using Monte Carlo simulation technique. Initially, the relevant cross section sets were assessed by using Denpoh-Nanbu theory for resolving between elastic and reactive collision events and then resolving contribution of exothermic processes from available experimental data. Newest experimentally or theoretically determined cross sections were compiled and included wherever possible. We present transport coefficients for low and moderate reduced electric fields E / N (N-gas density) accounting for non-conservative processes. Acknowledgment to Ministry of Education, Science and Technology of Republic Serbia, Projects No. 171037 and 410011.

  4. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Science.gov (United States)

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  5. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  6. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    Science.gov (United States)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  7. Design of a two-ion-source (2-IS) beam transport line for the production of multi charged radioactive ion beams

    CERN Document Server

    Banerjee, V; Bandyopadhyay, A; Chattopadhyay, S; Polley, A; Nakagawa, T; Kamigaito, O; Goto, A; Yano, Y

    2000-01-01

    A 'two-ion-source' beam transport line between a surface ionization source and a 6.4 GHz on-line Electron Cyclotron Resonance Ion Source (ECRIS) for the production of multi-charged radioactive ions has been designed. The 1 sup + ions from the surface ionization source are decelerated and focused onto the ECRIS plasma so that they can be efficiently trapped there and further ionized to charge state q>1 sup +. A scheme for stepwise and gradual deceleration of the 1 sup + ion beam consisting of a multi-electrode decelerator and a tuning electrode placed before the ECRIS has been optimized. The beam dynamics calculations show that the 1 sup + beam decelerated to energies of 20-50 eV could be focused to a spot size smaller than the radial dimensions of the ECR plasma zone.

  8. Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    Science.gov (United States)

    Willford, Samantha L; Anderson, Cynthia M; Spencer, Shelly R; Eskandari, Sepehr

    2015-08-01

    Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

  9. Coulombic interactions during advection-dominated transport of ions in porous media

    Science.gov (United States)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport

  10. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    Science.gov (United States)

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

  11. Filament transport, warm ions and erosion in ASDEX Upgrade L-modes

    Science.gov (United States)

    Birkenmeier, G.; Manz, P.; Carralero, D.; Laggner, F. M.; Fuchert, G.; Krieger, K.; Maier, H.; Reimold, F.; Schmid, K.; Dux, R.; Pütterich, T.; Willensdorfer, M.; Wolfrum, E.; The ASDEX Upgrade Team

    2015-03-01

    The dynamics of blob filaments are investigated in the scrape-off layer of ASDEX Upgrade by means of lithium beam emission spectroscopy. A comparison of the measurements in L-mode with a recently developed analytical blob model based on a drift-interchange-Alfvén fluid model indicates an influence of a finite ion temperature on the blob dynamics which has typically been neglected in other blob models. The blob dynamics agree well with the sheath-connected regime at lower plasma densities, and inertial effects play only a minor role. At higher densities, a transition into another regime with large blob amplitudes and increased transport is found. This points to a prominent role of blob transport at higher Greenwald fractions. On the basis of the measured blob properties, the erosion on plasma facing components is estimated. For pure deuterium plasmas, the high ion temperatures of blobs lead to a dominant erosion induced by blobs. However, if an impurity concentration of 1% is taken into account, the blob-induced erosion plays a minor role and background plasma parameters determine the total gross erosion.

  12. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    Science.gov (United States)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  13. Structural features of ion transport and allosteric regulation in sodium-calcium exchanger (NCX proteins

    Directory of Open Access Journals (Sweden)

    Moshe eGiladi

    2016-02-01

    Full Text Available Na+/Ca2+ exchanger (NCX proteins extrude Ca2+ from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj along with molecular dynamic simulations and ion flux analyses, have assigned the ion binding sites for 3Na+ and 1Ca2+, which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca2+-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca2+-dependent regulation is ortholog, isoform and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative or no response to regulatory Ca2+. The crystal structures of the two-domain (CBD12 tandem have revealed a common mechanism involving a Ca2+-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca2+ (entrapped at the two-domain interface depends on the alternative-splicing segment (at CBD2, thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium 45Ca2+ binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca2+ binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca2+ binding to CBD1 rigidifies

  14. Procedures for the preparation and culture of 'reconstructed' rainbow trout branchial epithelia.

    Science.gov (United States)

    Kelly, S P; Fletcher, M; Pärt, P; Wood, C M

    2000-01-01

    Techniques for the in vitro 'reconstruction' of freshwater rainbow trout branchial epithelia using the primary culture of gill cells on permeable polyethylene terephthalate cell culture filter supports are described. Representing models of the freshwater fish gill, epithelia grown by two separate techniques are composed of branchial pavement cells with or without the inclusion of mitochondria-rich (MR) cells. The generation of epithelia consisting of pavement cells only (via a method called single seeded inserts = SSI) involves an initial period of flask culture during which time MR cells, that appear unable to attach to the culture flask base, are excluded from the general cell populace. Alternately, the generation of a heterogeneous epithelia consisting of both pavement cells and MR cells (via a method called double seeded inserts = DSI) is facilitated by the direct seeding of cells into cell culture filter inserts. Critical to this second procedure is the repeat seeding of filter inserts over a two day period. Repeat seeding appears to allow MR cells to nest amongst the attached cell layer generated by the first day's seeding. The use of cell culture filter supports allows free access to both the apical and basolateral compartment of the epithelium and is ideal for experimental manipulation. Cells are grown under symmetrical conditions (apical media/basolateral media) and epithelium growth is measured as a function of transepithelial resistance (TER). When the epithelia exhibit a plateau in growth they can be subjected to asymmetrical conditions (freshwater apical/media basolateral) in order to assess gill cell function as in vivo.

  15. Electron and ion transport equations in computational weakly-ionized plasmadynamics

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Bernard [Department of Aerospace Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Macheret, Sergey O.; Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)

    2014-02-15

    A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized.

  16. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  17. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  18. Quantifying the relative importance of transcellular and paracellular ion transports to coral polyp calcification

    Directory of Open Access Journals (Sweden)

    Sönke eHohn

    2015-01-01

    Full Text Available Ocean acidification due to rising atmospheric pCO2 slows down coral calcification and impedes reef formation, with deleterious consequences for the diversity of reef ecosystems. Such interactions contrast with the capacity of corals to actively regulate the chemical composition of the calcifying fluid where calcification occurs. This regulation involves the active transport of calcium, bicarbonate, and hydrogen ions through epithelium cells, the transcellular pathway. Ions can also passively diffuse through intercellular spaces via the paracellular pathway, which directly exposes the calcifying fluid to changes in ocean chemistry. Although evidence exists for both pathways, their relative contribution to coral calcification remains unknown. Here we use a mathematical model to test the plausibility of different calcification mechanisms also in relation to ocean acidification. We find that the paracellular pathway generates an efflux of calcium and carbonate from the calcifying fluid, causing a leakage of ions that counteracts the concentration gradients maintained by the transcellular pathway. Increasing ocean acidity exacerbates this carbonate leakage and reduces the ability of corals to accrete calcium carbonate.

  19. Experiments with low energy ion beam transport into toroidal magnetic fields

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The stellarator-type storage ring for accumulation of multi- Ampere proton and ion beams with energies in the range of $100~AkeV$ to $1~AMeV$ is designed at Frankfurt university. The main idea for beam confinement with high transversal momentum acceptance was presented in EPAC2006. This ring is typically suited for experiments in plasma physics and nuclear astrophysics. The accumulator ring with a closed longitudinal magnetic field is foreseen with a strength up to $6-8~T$. The experiments with two room temperature 30 degree toroids are needed. The beam transport experiments in toroidal magnetic fields were first described in EPAC2008 within the framework of a proposed low energy ion storage ring. The test setup aims on developing a ring injection system with two beam lines representing the main beam line and the injection line. The primary beam line for the experiments was installed and successfully commissioned in 2009. A special diagnostics probe for \\textit{"in situ"} ion beam detection was installed.This...

  20. A multiphase ion-transport analysis of the electrostatic disjoining pressure: implications for binary droplet coalescence

    Science.gov (United States)

    Mason, Lachlan; Gebauer, Felix; Bart, Hans-Jörg; Stevens, Geoffrey; Harvie, Dalton

    2016-11-01

    Understanding the physics of emulsion coalescence is critical for the robust simulation of industrial solvent extraction processes, in which loaded organic and raffinate phases are separated via the coalescence of dispersed droplets. At the droplet scale, predictive collision-outcome models require an accurate description of the repulsive surface forces arising from electrical-double-layer interactions. The conventional disjoining-pressure treatment of double-layer forces, however, relies on assumptions which do not hold generally for deformable droplet collisions: namely, low interfacial curvature and negligible advection of ion species. This study investigates the validity bounds of the disjoining pressure approximation for low-inertia droplet interactions. A multiphase ion-transport model, based on a coupling of droplet-scale Nernst-Planck and Navier-Stokes equations, predicts ion-concentration fields that are consistent with the equilibrium Boltzmann distribution; indicating that the disjoining-pressure approach is valid for both static and dynamic interactions in low-Reynolds-number settings. The present findings support the development of coalescence kernels for application in macro-scale population balance modelling.

  1. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions

    Science.gov (United States)

    Terada, Kentaro; Yokota, Shoichiro; Saito, Yoshifumi; Kitamura, Naritoshi; Asamura, Kazushi; Nishino, Masaki N.

    2017-01-01

    For five days of each lunar orbit, the Moon is shielded from solar wind bombardment by the Earth's magnetosphere, which is filled with terrestrial ions. Although the possibility of the presence of terrestrial nitrogen and noble gases in lunar soil has been discussed based on their isotopic composition 1 , complicated oxygen isotope fractionation in lunar metal 2,3 (particularly the provenance of a 16O-poor component) re­mains an enigma 4,5 . Here, we report observations from the Japanese spacecraft Kaguya of significant numbers of 1-10 keV O+ ions, seen only when the Moon was in the Earth's plasma sheet. Considering the penetration depth into metal of O+ ions with such energy, and the 16O-poor mass-independent fractionation of the Earth's upper atmosphere 6 , we conclude that biogenic terrestrial oxygen has been transported to the Moon by the Earth wind (at least 2.6 × 104 ions cm‑2 s‑1) and implanted into the surface of the lunar regolith, at around tens of nanometres in depth 3,4 . We suggest the possibility that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar surface.

  2. Identification of uterine ion transporters for mineralisation precursors of the avian eggshell

    Directory of Open Access Journals (Sweden)

    Jonchère Vincent

    2012-09-01

    Full Text Available Abstract Background In Gallus gallus, eggshell formation takes place daily in the hen uterus and requires large amounts of the ionic precursors for calcium carbonate (CaCO3. Both elements (Ca2+, HCO3- are supplied by the blood via trans-epithelial transport. Our aims were to identify genes coding for ion transporters that are upregulated in the uterine portion of the oviduct during eggshell calcification, compared to other tissues and other physiological states, and incorporate these proteins into a general model for mineral transfer across the tubular gland cells during eggshell formation. Results A total of 37 candidate ion transport genes were selected from our database of overexpressed uterine genes associated with eggshell calcification, and by analogy with mammalian transporters. Their uterine expression was compared by qRTPCR in the presence and absence of eggshell formation, and with relative expression levels in magnum (low Ca2+/HCO3- movement and duodenum (high rates of Ca2+/HCO3- trans-epithelial transfer. We identified overexpression of eleven genes related to calcium movement: the TRPV6 Ca2+ channel (basolateral uptake of Ca2+, 28 kDa calbindin (intracellular Ca2+ buffering, the endoplasmic reticulum type 2 and 3 Ca2+ pumps (ER uptake, and the inositol trisphosphate receptors type 1, 2 and 3 (ER release. Ca2+ movement across the apical membrane likely involves membrane Ca2+ pumps and Ca2+/Na+ exchangers. Our data suggests that Na+ transport involved the SCNN1 channel and the Na+/Ca2+ exchangers SLC8A1, 3 for cell uptake, the Na+/K+ ATPase for cell output. K+ uptake resulted from the Na+/K+ ATPase, and its output from the K+ channels (KCNJ2, 15, 16 and KCNMA1. We propose that the HCO3- is mainly produced from CO2 by the carbonic anhydrase 2 (CA2 and that HCO3- is secreted through the HCO3-/Cl- exchanger SLC26A9. HCO3- synthesis and precipitation with Ca2+ produce two H+. Protons are absorbed via the membrane’s Ca2+ pumps ATP2B1

  3. Na(+)-K(+)-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.

    Science.gov (United States)

    Borok, Z; Danto, S I; Dimen, L L; Zhang, X L; Lubman, R L

    1998-01-01

    We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na(+)-K(+)-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was added to confluent AEC monolayers on day 4 in culture. Exposure of AEC monolayers to KGF on day 4 resulted in dose-dependent increases in short-circuit current (Isc) compared with controls by day 5, with further increases occurring through day 8. Relative Na(+)-K(+)-ATPase alpha 1-subunit mRNA abundance was increased by 41% on days 6 and 8 after exposure to KGF, whereas alpha 2-subunit mRNA remained only marginally detectable in both the absence and presence of KGF. Levels of mRNA for the beta 1-subunit of Na(+)-K(+)-ATPase did not increase, whereas cellular alpha 1- and beta 1-subunit protein increased 70 and 31%, respectively, on day 6. mRNA for alpha-, beta-, and gamma-rENaC all decreased in abundance after treatment with KGF. These results indicate that KGF upregulates active ion transport across AEC monolayers via a KGF-induced increase in Na pumps, primarily due to increased Na(+)-K(+)-ATPase alpha 1-subunit mRNA expression. We conclude that KGF may enhance alveolar fluid clearance after acute lung injury by upregulating Na pump expression and transepithelial Na transport across the alveolar epithelium.

  4. Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Nakhoul, Hani N; Kalliny, Medhat I; Gyftopoulos, Alex; Rabon, Edd; Doetjes, Rienk; Brown, Karen; Nakhoul, Nazih L

    2011-07-01

    The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.

  5. Flux dependent MeV self-ion-induced effects on Au nanostructures: dramatic mass transport and nanosilicide formation.

    Science.gov (United States)

    Ghatak, J; Umananda Bhatta, M; Sundaravel, B; Nair, K G M; Liou, Sz-Chian; Chen, Cheng-Hsuan; Wang, Yuh-Lin; Satyam, P V

    2008-08-13

    We report a direct observation of dramatic mass transport due to 1.5 MeV Au(2+) ion impact on isolated Au nanostructures of average size ≈7.6 nm and height ≈6.9 nm that are deposited on Si(111) substrate under high flux (3.2 × 10(10)-6.3 × 10(12) ions cm(-2) s(-1)) conditions. The mass transport from nanostructures was found to extend up to a distance of about 60 nm into the substrate, much beyond their size. This forward mass transport is compared with the recoil implantation profiles using SRIM simulation. The observed anomalies with theory and simulations are discussed. At a given energy, the incident flux plays a major role in mass transport and its redistribution. The mass transport is explained on the basis of thermal effects and the creation of rapid diffusion paths in the nanoscale regime during the course of ion irradiation. The unusual mass transport is found to be associated with the formation of gold silicide nano-alloys at subsurfaces. The complexity of the ion-nanostructure interaction process is discussed with a direct observation of melting (in the form of spherical fragments on the surface) phenomena. Transmission electron microscopy, scanning transmission electron microscopy, and Rutherford backscattering spectroscopy methods have been used.

  6. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  7. Diffusive Transport Particle Simulations of Cold and Hot Ions Under Northward Interplanetary Magnetic Field

    Science.gov (United States)

    Mata, W.; Wang, C.; Lemon, C. L.; Lyons, L. R.

    2013-12-01

    The main difference seen in the plasma sheet between northward interplanetary magnetic field (NIMF) and southward interplanetary magnetic field (SIMF) intervals is that the plasma sheet is colder and denser during NIMF [e.g., Terasawa et al., 1997]. The basic processes responsible for these changes in the plasma sheet during NIMF and SIMF are not fully understood. The plasma sheet densities increase gradually following a northward turning of the IMF [Wing et al., 2005], and the density change is associated with a < ~1 keV cold population near the flanks. Observations also show a large variation in density across the tail with higher densities near the flanks than at midnight [e.g., Wing and Newell.,2002; Wang et al., 2006], which suggests that there are transport processes that allow the cold particles access to the midnight sector from the flanks. It has been proposed [e.g., Terasawa et al., 1997; Antonova, 2006] that diffusion may transport cold particles from the flanks deep into the plasma sheet. Diffusive particle transport results from fluctuations in the plasma sheet flow in the presence of a spatial gradient in the particle number. In this study we add electric and magnetic field perturbations to the background Tsyganenko 2001 (T01) magnetic field and Weimer 2000 electric potential with the superposition of different waves to determine whether diffusive transport can account for the gradual cooling and densification of the plasma sheet during NIMF. We follow the guiding center drift and full particle drift, where appropriate, of over 20,000 protons with arbitrary pitch angles and energies from 32 eV-30 keV in the simulation region from X = -10 to -50 and |Y| < 20 RE .We then obtain particle distributions by mapping the phase space densities to realistic source distributions based on THEMIS and Geotail observations and compute the resulting plasma moments. We investigate if diffusion can transport colder ions more efficiently than the hotter ions from the

  8. Inelastic low-temperature transport through a quantum dot with a Mn ion

    Energy Technology Data Exchange (ETDEWEB)

    Niu Pengbin, E-mail: niupengbin123456@gmail.com [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Yao Hui; Li Zhijian [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Nie Yihang, E-mail: nieyh@sxu.edu.cn [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China)

    2012-07-15

    Using the nonequilibrium Hubbard operator Green's function technique, we study the inelastic low-temperature quantum transport through an artificial single-molecule magnet coupled to a single phonon mode. For a minimal model based on CdTe quantum dot doped with a single Mn{sup 2+} ion (S=5/2), the calculated results show that in the presence of hole-phonon coupling, in addition to main Kondo-like peaks associated with (2S+1) sublevels of spin pair states, satellite Kondo-like peaks originating from emitting phonons appear in the local density of states and differential conductance. Moreover, the number of these phonon-induced Kondo-like peaks depends on the parity of the local large spin, i.e., S=integer or half-integer. It is expected that the intrinsic properties of artificial single-molecule magnets can be obtained by detecting these transport characteristics. - Highlights: Black-Right-Pointing-Pointer We study inelastic transport through an ASMM in low temperature regime. Black-Right-Pointing-Pointer An analytical formula for the retarded Green's function is derived. Black-Right-Pointing-Pointer Phonon-induced Kondo-like peaks depending on the parity of local spin are found. Black-Right-Pointing-Pointer Single-particle and Kondo-like elastic (inelastic) tunneling processes are discussed.

  9. Dose estimation in space using the Particle and Heavy-Ion Transport code System (PHITS)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Katarina

    2009-06-15

    The radiation risks in space are well known, but work still needs to be done in order to fully understand the radiation effects on humans and how to minimize the risks especially now when the activity in space is increasing with plans for missions to the Moon and Mars. One goal is to develop transport codes that can estimate the radiation environment and its effects. These would be useful tools for reducing the radiation effects when designing and planning space missions. The Particle and Heavy-Ion Transport code System, PHITS, is a three dimensional Monte Carlo code with great possibilities to perform radiation transport calculations and estimating radiation exposure such as absorbed dose, equivalent dose and dose equivalent. Therefore a benchmarking with experiments performed at the ISS was done and also an estimation of different material's influences on the shielding was made. The simulated results already agree reasonable with the measurements, but can most likely be significantly improved when more realistic shielding geometries will be used. This indicates that PHITS is a useful tool for estimating radiation risks for humans in space and when designing shielding of space crafts

  10. Synthesis and characterization of polymer electrolyte membranes with controlled ion transport properties

    Science.gov (United States)

    Xu, Kui

    2011-12-01

    Ion-containing block copolymers hold promise as next-generation polymer electrolyte membrane (PEM) materials due to their capability to self-assemble into ordered nanostructures facilitating proton transport over a wide range of conditions. Ion-containing block copolymers, sulfonated poly(styrene- b-vinylidene fluoride-b-styrene), with varied degrees of sulfonation were synthesized. The synthetic strategy involved a new approach to chain-end functionalized poly(vinylidene fluoride) as a macro-initiator followed by atom transfer polymerization of styrene and sulfonation. Characterization of the polymers were extensively carried out by 1H and 19F nuclear magnetic resonance and Fouriertransform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analysis. Tapping mode atomic force microscopy and transmission electron microscopy were applied to study the phase separation and self-assembled morphology. Strong dependence of ion exchange capacity, water absorption, morphology and proton conductivity on the degree of sulfonation has been found. It has been observed that the conductivities of the block copolymers are considerably higher than the random copolymers of polystyrene and sulfonated polystyrene possessing similar ion exchange capacities. Copolymers of vinylidene fluoride and perfluoro(4-methyl-3,6-dioxane-7-ene) sulfonyl fluoride containing amino end-groups were synthesized for the first time. The prepared aminoterminated polymers underwent cross-linking reactions with 1,3,5-benzene triisocyanate to form proton conductive networks. The chain-end crosslinked fluoropolymer membranes exhibited excellent thermal, hydrolytic and oxidative stabilities. The ion exchange capacity, water uptake, the state of absorbed water, and transport properties of the membranes were found to be highly dependent upon the chemical composition of the copolymers. The cross-linked membranes showed extremely low methanol permeability, while maintaining high proton

  11. Active transport, ion movements, and pH changes : I. The chemistry of pH changes.

    Science.gov (United States)

    Good, N E

    1988-10-01

    The transport of substances across cell membranes may be the most fundamental activity of living things. When the substance transported is any ion there can be a change in the concentration of hydrogen ions on the two sides of the membrane. These hydrogen ion concentration changes are not caused by fluxes of hydrogen ions although fluxes of hydrogen ions may sometimes be involved. The reason for the apparent contradiction is quite simple. All aqueous systems are subject to two constraints: (1) to maintain the charge balance, the sum of the cationic charges must equal the sum of the anionic charges and (2) the product of the molar concentration of H(+) and the molar concentration of OH(-), established and maintained by the association and the dissociation of water, remains always at 10(-14). As a consequence the concentrations of H(+) and OH(-) are determined uniquely by differences between the concentrations of the other cations and anions, with [H(+)] and [OH(-)] being dependent variables. Hydrogen ions and hydroxyl ions can be produced or consumed in local reactions whereas any strong ions such as Cl(-), Mg(2+), or K(+) can be neither produced nor consumed in biological reactions. Further consequences of these truisms are outlined here in terms of the chemistry of the kinds of reactions which can lead to pH changes.

  12. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage

    Science.gov (United States)

    Perera, Sanjaya D.; Archer, Randall B.; Damin, Craig A.; Mendoza-Cruz, Rubén; Rhodes, Christopher P.

    2017-03-01

    Rechargeable magnesium batteries provide the potential for lower cost and improved safety compared with lithium-ion batteries, however obtaining cathode materials with highly reversible Mg-ion capacities is hindered by the high polarizability of divalent Mg-ions and slow solid-state Mg-ion diffusion. We report that incorporating poly(ethylene oxide) (PEO) between the layers of hydrated vanadium pentoxide (V2O5) xerogels results in significantly improved reversible Mg-ion capacities. X-ray diffraction and high resolution transmission electron microscopy show that the interlayer spacing between V2O5 layers was increased by PEO incorporation. Vibrational spectroscopy supports that the polymer interacts with the V2O5 lattice. The V2O5-PEO nanocomposite exhibited a 5-fold enhancement in Mg-ion capacity, improved stability, and improved rate capabilities compared with V2O5 xerogels. The Mg-ion diffusion coefficient of the nanocomposite was increased compared with that of V2O5 xerogels which is attributed to enhanced Mg-ion mobility due to the shielding interaction of PEO with the V2O5 lattice. This study shows that beyond only interlayer spacing, the nature of interlayer interactions of Mg-ions with V2O5, PEO, and H2O are key factors that affect Mg-ion charge transport and storage in layered materials. The design of layered materials with controlled interlayer interactions provides a new approach to develop improved cathodes for magnesium batteries.

  13. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures

    Science.gov (United States)

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-01

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  14. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  15. Explaining the isotope effect on heat transport in L-mode with the collisional electron-ion energy exchange

    Science.gov (United States)

    Schneider, P. A.; Bustos, A.; Hennequin, P.; Ryter, F.; Bernert, M.; Cavedon, M.; Dunne, M. G.; Fischer, R.; Görler, T.; Happel, T.; Igochine, V.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Morel, P.; Willensdorfer, M.; the ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-06-01

    In ASDEX Upgrade (AUG), the normalised gyroradius {ρ\\star} was varied via a hydrogen isotope scan while keeping other dimensionless parameters constant. This was done in L-mode, to minimise the impact of pedestal stability on confinement. Power balance and perturbative transport analyses reveal that the electron heat transport is unaffected by the differences in isotope mass. Nonlinear simulations with the Gene code suggest that these L-mode discharges are ion temperature gradient (ITG) dominated. The different gyroradii due to the isotope mass do not necessarily result in a change of the predicted heat fluxes. This result is used in simulations with the Astra transport code to match the experimental profiles. In these simulations the experimental profiles and confinement times are reproduced with the same transport coefficients for hydrogen and deuterium plasmas. The mass only enters in the energy exchange term between electrons and ions. These numerical observations are supported by additional experiments which show a lower ion energy confinement compared to that of the electrons. Additionally, hydrogen and deuterium plasmas have a similar confinement when the energy exchange time between electrons and ions is matched. This strongly suggests that the observed isotope dependence in L-mode is not dominated by a gyroradius effect, but a consequence of the mass dependence in the collisional energy exchange between electrons and ions.

  16. ß-adrenergic regulation of ion transport in pancreatic ducts: Patch-clamp study of isolated rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I

    1998-01-01

    much smaller effects. At comparable concentrations, it depolarized Vm by a few millivolts. Neither agonist had significant effects on intracellular Ca2+. CONCLUSIONS: This study provides the first direct evidence that adrenergic stimulation, namely, that of beta-adrenoceptors, controls ion transport....... METHODS: Small intralobular ducts were isolated from rat pancreas and studied in vitro by the whole-cell patch clamp technique. Cell membrane voltages and currents were indicators of cellular ion transport. In some ducts, intracellular Ca2+ activity was measured by fluorescence optical methods. RESULTS...... in pancreatic ducts. Similar to secretin, isoproterenol stimulation leads to opening of luminal Cl- channels, and HCO3- enters the lumen in exchange for Cl-....

  17. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex

    Directory of Open Access Journals (Sweden)

    Novoa-Aponte Lorena

    2012-10-01

    Full Text Available Abstract Background P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood. Results In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC according to the type of ion transported across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found. Conclusions The high content of heavy metal transporters found in the MTBC suggests that they could play an important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections.

  18. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  19. Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport

    CERN Document Server

    An, Shuoming; del Campo, Adolfo; Kim, Kihwan

    2016-01-01

    Adiabatic dynamics plays an essential role in quantum technologies. By driving a quantum system slowly, the quantum evolution can be engineered with suppressed excitation. Yet, environmentally-induced decoherence limits the implementation of adiabatic protocols. Shortcuts to adiabaticity (STA) have the potential to revolutionize quantum technologies by speeding up the time evolution while mimicking adiabatic dynamics. These nonadiabatic protocols can be engineered by means an auxiliary control field is used to tailor excitations. Here we present the first experimental realization of counterdiabatic driving in a continuous variable system, implementing a shortcut to the adiabatic transport of a trapped ion, in which nonadiabatic transitions are suppressed during all stages of the process. The resulting dynamics is equivalent to a "fast-motion video" of the adiabatic trajectory. We experimentally demonstrate the enhanced robustness of the protocol with respect to alternative approaches based on classical local ...

  20. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.

    Science.gov (United States)

    Ruiz, Luis; Benjamin, Ari; Sullivan, Matthew; Keten, Sinan

    2015-05-07

    We use atomistic nonequilibrium molecular dynamics simulations to demonstrate how specific ionic flux in peptide nanotubes can be regulated by tailoring the lumen chemistry through single amino acid substitutions. By varying the size and polarity of the functional group inserted into the nanotube interior, we are able to adjust the Na(+) flux by over an order of magnitude. Cl(-) is consistently denied passage. Bulky, nonpolar groups encourage interactions between the Na(+) and the peptide backbone carbonyl groups, disrupting the Na(+) solvation shell and slowing the transport of Na(+). Small groups have the opposite effect and accelerate flow. These results suggest that relative ion flux and selectivity can be precisely regulated in subnanometer pores by molecularly defining the lumen according to biological principles.

  1. Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation.

    Science.gov (United States)

    Smith, Kyle C; Mukherjee, Partha P; Fisher, Timothy S

    2012-05-21

    The high-rate, high-capacity potential of LiFePO4-based lithium-ion battery cathodes has motivated numerous experimental and theoretical studies aiming to realize such performance through nano-sizing, tailoring of particle shape through synthesis conditions, and doping. Here, a granular mechanics study of microstructures formed by dense jammed packings of experimentally and theoretically inspired LiFePO4 particle shapes is presented. A strong dependence of the resultant packing structures on particle shapes is observed, in which columnar structures aligned with the [010] direction inhibit diffusion along [010] in anisotropic LiFePO4. Transport limitations are induced by [010] columnar order and lead to catastrophic performance degradation in anisotropic LiFePO4 electrodes. Further, judicious mixing of nanoplatelets with additive nanoparticles can frustrate columnar ordering and thereby enhance the rate capability of LiFePO4 electrodes by nearly an order of magnitude.

  2. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Kreiss, C M; Michael, K; Lucassen, M; Jutfelt, F; Motyka, R; Dupont, S; Pörtner, H-O

    2015-10-01

    Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3-4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na(+)/H(+)-exchange and HCO3 (-) transport at high PCO2 (2200 µatm), paralleled by higher Na(+)/K(+)-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na(+)/K(+)-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na(+) and/or Cl(-) concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.

  3. New advances in the pathophysiology of intestinal ion transport and barrier function in diarrhea and the impact on therapy.

    Science.gov (United States)

    Hoque, Kazi Mirajul; Chakraborty, Subhra; Sheikh, Irshad Ali; Woodward, Owen M

    2012-06-01

    Diarrhea remains a continuous threat to human health worldwide. Scaling up the best practices for diarrhea prevention requires improved therapies. Diarrhea results from dysregulation of normal intestinal ion transport functions. Host-microbe contact is a key determinant of this response. Underlying mechanisms in the disease state are regulated by intracellular signals that modulate the activity of individual transport proteins responsible for ion transport and barrier function. Similarly, virulence factors of pathogens and their complex interaction with the host has shed light on the mechanism of enteric infection. Great advances in our understanding of the pathophysiologic mechanisms of epithelial transport, and host-microbe interaction have been made in recent years. Application of these new advances may represent strategies to decrease pathogen attachment, enhance intestinal cation absorption, decrease anion secretion and repair barrier function. This review highlights the new advances and better understanding in the pathophysiology of diarrheal diseases and their impact on therapy.

  4. Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine.

    Science.gov (United States)

    Seale, Andre P; Stagg, Jacob J; Yamaguchi, Yoko; Breves, Jason P; Soma, Satoshi; Watanabe, Soichi; Kaneko, Toyoji; Cnaani, Avner; Harpaz, Sheenan; Lerner, Darren T; Grau, E Gordon

    2014-09-15

    Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.

  5. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye

    2012-07-01

    Full Text Available Hydrogen sulfide (H2S, a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1 ion channels such as calcium (L-type, T-type and intracellular stores, potassium (KATP and small conductance channels and chloride channels, (2 glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.

  6. 39K, 23Na, and 31P NMR Studies of Ion Transport in Saccharomyces cerevisiae

    Science.gov (United States)

    Ogino, T.; den Hollander, J. A.; Shulman, R. G.

    1983-09-01

    The relationship between efflux and influx of K+, Na+, and intracellular pH (pHin) in yeast cells upon energizing by oxygenation was studied by using the noninvasive technique of 39K, 23Na, and 31P NMR spectroscopy. By introducing an anionic paramagnetic shift reagent, Dy3+(P3O105-)2, into the medium, NMR signals of intra- and extracellular K+ and Na+ could be resolved, enabling us to study ion transport processes by NMR. Measurements showed that 40% of the intracellular K+ and Na+ in yeast cells contributed to the NMR intensities. By applying this correction factor, the intracellular ion concentrations were determined to be 130-170 mM K+ and 2.5 mM Na+ for fresh yeast cells. With the aid of a home-built solenoidal coil probe for 39K and a double-tuned probe for 23Na and 31P, we could follow time courses of K+ and Na+ transport and of pHin with a time resolution of 1 min. It was shown that H+ extrusion is correlated with K+ uptake and not with Na+ uptake upon energizing yeast cells by oxygenation. When the cells were deenergized after the aerobic period, K+ efflux, H+ influx, and Na+ influx were calculated to be 1.6, 1.5, and 0.15 μ mol/min per ml of cell water, respectively. Therefore, under the present conditions, K+ efflux is balanced by exchange for H+ with an approximate stoichiometry of 1:1.

  7. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  8. New experimental trends for phosphoinositides research on ion transporter/channel regulation.

    Science.gov (United States)

    Mori, Masayuki X; Inoue, Ryuji

    2014-01-01

    Phosphoinositides(4,5)-bisphosphates [PI(4,5)P2] critically controls membrane excitability, the disruption of which leads to pathophysiological states. PI(4,5)P2 plays a primary role in regulating the conduction and gating properties of ion channels/transporters, through electrostatic and hydrophobic interactions that allow direct associations. In recent years, the development of many molecular tools have brought deep insights into the mechanisms underlying PI(4,5)P2-mediated regulation. This review summarizes the methods currently available to manipulate the cell membrane PI(4,5)P2 level including pharmacological interventions as well as newly designed molecular tools. We concisely introduce materials and experimental designs suitable for the study of PI(4,5)P2-mediated regulation of ion-conducting molecules, in order to assist researchers who are interested in this area. It is our further hope that the knowledge introduced in this review will help to promote our understanding about the pathology of diseases such as cardiac arrhythmias, bipolar disorders, and Alzheimer's disease which are somehow associated with a disruption of PI(4,5)P2 metabolism.

  9. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability.

    Science.gov (United States)

    Shin, Dong Won; Guiver, Michael D; Lee, Young Moo

    2017-03-03

    A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.

  10. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  11. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    Science.gov (United States)

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins.

  12. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  13. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  14. Transport properties of the fluid produced at Relativistic Heavy-Ion Collider

    Indian Academy of Sciences (India)

    Rajeev S Bhalerao

    2010-08-01

    It is by now well known that the relativistic heavy-ion collisions at RHIC, BNL have produced a strongly interacting fluid with remarkable properties, among them the lowest ever observed ratio of the coefficient of shear viscosity to entropy density. Arguments based on ideas from the string theory, in particular the AdS/CFT correspondence, led to the conjecture – now known to be violated – that there is an absolute lower limit 1/4 on the value of this ratio. Causal viscous hydrodynamics calculations together with the RHIC data have put an upper limit on this ratio, a small multiple of 1/4, in the relevant temperature regime. Less well-determined is the ratio of the coefficient of bulk viscosity to entropy density. These transport coefficients have also been studied non-perturbatively in the lattice QCD framework, and perturbatively in the limit of high-temperature QCD. Another interesting transport coefficient is the coefficient of diffusion which is also being studied in this context. In this paper some of these recent developments are reviewed and then the opportunities presented by the anticipated LHC data are discussed, for the general nuclear physics audience.

  15. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  16. The effect of Cratylia floribunda lectin on renal hemodynamics and ion transport

    Directory of Open Access Journals (Sweden)

    Alexandre Havt

    2015-09-01

    Full Text Available Lectins have been described as glycoproteins that reversibly and specifically bind to carbohydrates. Legume lectins isolated from the subtribe Diocleinae (Canavalia, Dioclea andCratylia are structurally homologous with respect to their primary structures. The Diocleinae lectins of Canavalia brasiliensis, Dioclea guianensis andCanavalia ensiformis have been shown to distinctly alter physiological parameters in isolated rat kidneys. Thus, the aim of this study was to investigate the effect of Cratylia floribunda lectin (CFL on renal hemodynamics and ion transport in rats. In isolated perfused kidneys, CFL (10 mg/mL, n=5 increased RPP, RVR and decreased %TK+, but did not change urinary flow, glomerular filtration rate, sodium or chloride tubular transport. In isolated perfused mesenteric bed, CFL (3 and 10 mg/mL/min; n=4 did not alter tissue basal tonus or tissue contraction by phenylephrine (1 mM/mL/min. In conclusion, the seed lectin of Cratylia floribunda increased renal hemodynamic parameters showing a kaliuretic effect. This effect could be of tubular origin, rather than a result from haemodynamic alterations.

  17. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-08-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters.

  18. Electronic and transport properties of Ge nanoparticle pellets structured by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gondorf, Andreas; Geller, Martin; Lorke, Axel [Universitaet Duisburg-Essen, Duisburg (Germany)

    2010-07-01

    Semiconductor nanoparticles are of interest for future electronic and optoelectronic devices, especially low cost, flexible, printable electronics. We investigate here the transport properties (charge carrier concentration and mobility) of Ge nanoparticles, which were synthesized in the gas-phase and pressed into pellets. The nanoparticles inside these pellets sinter into a sponge-like structure, that may exhibit unusual magneto-transport properties similar to the strong magnetoresistance observed in nanoporous gold [Fujita, PRL 101, 166601 (2008)]. The measurements are made on directly contacted macroscopic pellets and on Hall-bar microstructures fabricated by a focused ion beam (FIB). In the FIB fabrication process, a lamella is cut out of a pellet and positioned onto a prestructured substrate with metal contacts. The sample is connected with the contacts by deposition of platinum. Finally the disk is etched by FIB into a Hallbar shape. We use I-V and Hall-measurements and find a very weak but measurable Hall-effect and a negative magnetoresistance of about 0.01% at 2.5 T. At room temperature, Ge nanoparticles show a charge carrier concentration of about 4.10{sup 14} cm{sup -3}, comparable to the intrinsic charge carrier concentration in bulk germanium. Ge nanoparticles have a very low mobility of 0.1 cm{sup 2}/Vs at 25 C, which is comparable to the mobility of organic semiconductors, so that Ge nanoparticles may be suitable in some applications which are presently based on organic semiconductors.

  19. Bulk matter evolution and extraction of jet transport parameter in heavy-ion collisions at RHIC

    CERN Document Server

    Chen, Xiao-Fang; Wang, Enke; Wang, Xin-Nian; Xu, Zhe

    2010-01-01

    Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single hadron suppression in high-energy heavy-ion collisions at the RHIC energy are analyzed within the higher-twist (HT) approach to the medium modified fragmentation functions and the next-to-leading order (NLO) perturbative QCD (pQCD) parton model. Assuming that the jet transport parameter $\\hat q$ is proportional to the particle number density in both QGP and hadronic phase, experimental data on jet quenching in deeply inelastic scattering (DIS) off nuclear targets can provide guidance on $\\hat q_{h}$ in the hot hadronic matter. One can then study the dependence of extracted initial value of jet quenching parameter $\\hat q_{0}$ at initial ...

  20. Directed flow in heavy-ion collisions from PHSD transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Cassing, Wolfgang; Konchakovski, Volodya; Palmese, Alessia [Institute for Theoretical Physics, Justus-Liebig-Universitaet, Giessen (Germany)

    2015-07-01

    We study the proton and kaon directed and elliptic flows for Au+Au collisions at AGS energies (E{sub Lab}=2-8 AGeV) and low SPS energies up to √(s{sub NN})=7.7 GeV within the Parton-Hadron-String-Dynamics (PHSD/HSD) transport models. PHSD is a microscopic off-shell transport approach, which successfully describes heavy-ion collisions in a wide range of energies, and HSD represents the hadronic sector of PHSD. We compare our results with data from the E895 and STAR Collaborations and we investigate the sensitivity of the flow observables with respect to momentum-dependent hadronic potentials. This analysis can provide important information on these potentials, since they are known from the G-matrix theory approximately up to twice nuclear matter density and consequently extrapolations at higher baryon densities and large momenta have to been probed. We also explore the possibility that the flow observables are influenced by chiral symmetry restoration, that is expected to occur at high density and/or temperature.

  1. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  2. Evolutionary descent of prion genes from the ZIP family of metal ion transporters.

    Directory of Open Access Journals (Sweden)

    Gerold Schmitt-Ulms

    Full Text Available In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease.

  3. An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Georg; Gamnitzer, Peter [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Gravemeier, Volker, E-mail: vgravem@lnm.mw.tum.de [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Wall, Wolfgang A. [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)

    2013-10-15

    Highlights: •We present a computational method for coupled multi-ion transport in turbulent flow. •The underlying formulation is a variational multiscale finite element method. •It is combined with the isogeometric concept for electrochemical systems. •Coupled multi-ion transport in fully turbulent Taylor–Couette flow is simulated. •This example is an important model problem for rotating cylinder electrodes. -- Abstract: Electrochemical processes, such as electroplating of large items in galvanic baths, are often coupled to turbulent flow. In this study, we propose an isogeometric residual-based variational multiscale finite element method for multi-ion transport in dilute electrolyte solutions under turbulent flow conditions. In other words, this means that the concepts of isogeometric discretization and variational multiscale methods are successfully combined for developing a method capable of simulating the challenging problem of coupled multi-ion transport in turbulent flow. We present a comprehensive three-dimensional computational method taking into account, among others, coupled convection–diffusion-migration equations subject to an electroneutrality constraint in combination with phenomenological electrode-kinetics modeling. The electrochemical subproblem is one-way coupled to turbulent incompressible flow via convection. Ionic mass transfer in turbulent Taylor–Couette flow is investigated, representing an important model problem for rotating-cylinder-electrode configurations. Multi-ion transport as considered here is an example for mass transport at high Schmidt number (Sc=1389). An isogeometric discretization is especially advantageous for the present problem, since (i) curved boundaries can be represented exactly, and (ii) it has been proven to provide very accurate solutions for flow quantities when being applied in combination with residual-based variational multiscale modeling. We demonstrate that the method is robust and provides

  4. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    Science.gov (United States)

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.; White, R. B.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team

    2017-08-01

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfvén eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold in beam power, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. Comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. The bulk fast-ion distribution and instability behavior was manipulated through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the ‘kick model’ produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. These studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.

  5. Site-specific regulation of ion transport by prolactin in rat colon epithelium.

    Science.gov (United States)

    Deachapunya, Chatsri; Poonyachoti, Sutthasinee; Krishnamra, Nateetip

    2012-05-15

    The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I(sc)) in the distal colon with an EC(50) value of 100 ng/ml and increased I(sc) in the proximal colon with an EC(50) value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I(sc) was not affected by Na(+) channel blocker amiloride or Cl(-) channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K(+) channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K(+) channel blockers, Ba(2+), tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I(sc) was also inhibited by Na(+)-K(+)-2Cl(-) transporter inhibitor bumetanide, Ba(2+), and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I(sc) was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I(sc) in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca(2+) chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K(+) secretion in the distal colon and activation of Cl(-) secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca(2+) mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon.

  6. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  7. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing a t...

  8. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.).

    Science.gov (United States)

    P G, Kavitha; Kuruvilla, Sam; Mathew, M K

    2015-12-01

    Micronutrients are important for the growth and development of plants, which deploy families of transporters for their uptake and distribution. We have functionally characterized a novel transition metal ion transporter from rice, OsZIP6 (Oryza sativa zinc regulated transporter, iron regulated transporter-like protein 6). The transporter was found to be transcriptionally activated in shoot and root tissues in response to deficiency in Fe(2+), Zn(2+) and Mn(2+). OsZIP6 was expressed in Xenopus laevis oocytes, where currents were observed on addition of Co(2+), Fe(2+) and Cd(2+) but not Zn(2+), Mn(2+) and Ni(2+). This substrate range for OsZIP6, identified using two-electrode voltage clamp electrophysiology was confirmed by atomic absorption spectroscopy. Ion transport by OsZIP6 was found to be pH dependent and enhanced transport was observed at acidic pH. Radioisotope uptake suggested that Co(2+) competitively inhibits Fe(2+) uptake by OsZIP6. Identification and characterization of ZIP family members from crop plants will contribute to an understanding of nutrient mineral homeostasis in these plants.

  9. Surgical Approaches to First Branchial Cleft Anomaly Excision: A Case Series

    Directory of Open Access Journals (Sweden)

    Lourdes Quintanilla-Dieck

    2016-01-01

    Full Text Available Objectives. First branchial cleft anomalies (BCAs constitute a rare entity with variable clinical presentations and anatomic findings. Given the high rate of recurrence with incomplete excision, identification of the entire tract during surgical treatment is of paramount importance. The objectives of this paper were to present five anatomic variations of first BCAs and describe the presentation, evaluation, and surgical approach to each one. Methods. A retrospective case review and literature review were performed. We describe patient characteristics, presentation, evaluation, and surgical approach of five patients with first BCAs. Results. Age at definitive surgical treatment ranged from 8 months to 7 years. Various clinical presentations were encountered, some of which were atypical for first BCAs. All had preoperative imaging demonstrating the tract. Four surgical approaches required a superficial parotidectomy with identification of the facial nerve, one of which revealed an aberrant facial nerve. In one case the tract was found to travel into the angle of the mandible, terminating as a mandibular cyst. This required en bloc excision that included the lateral cortex of the mandible. Conclusions. First BCAs have variable presentations. Complete surgical excision can be challenging. Therefore, careful preoperative planning and the recognition of atypical variants during surgery are essential.

  10. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).

    Science.gov (United States)

    Tresguerres, Martin; Katoh, Fumi; Fenton, Heather; Jasinska, Edyta; Goss, Greg G

    2005-01-01

    To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.

  11. Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species.

    Science.gov (United States)

    Barott, Katie L; Perez, Sidney O; Linsmayer, Lauren B; Tresguerres, Martin

    2015-08-01

    Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed that mitochondria, an essential source of ATP for energetically costly ion transporters, were abundant throughout the tissues of A. yongei. Additionally, transmission electron microscopy revealed septate junctions in all cell layers of A. yongei, as previously reported for S. pistillata, as well as evidence for transcellular vesicular transport in calicoblastic cells. Antibodies against the alpha subunit of Na(+)/K(+)-ATPase (NKA) and plasma membrane Ca(2+)-ATPase (PMCA) immunolabeled cells in the calicoblastic epithelium of both species, suggesting conserved roles in calcification. However, NKA was abundant in the apical membrane of the oral epithelium in A. yongei but not S. pistillata, while PMCA was abundant in the gastroderm of S. pistillata but not A. yongei. These differences indicate that these two coral species utilize distinct pathways to deliver ions to the sites of calcification and photosynthesis. Finally, antibodies against mammalian sodium bicarbonate cotransporters (NBC; SLC4 family) resulted in strong immunostaining in the apical membrane of oral epithelial cells and in calicoblastic cells in A. yongei, a pattern identical to NKA. Characterization of ion transport mechanisms is an essential step toward understanding the cellular mechanisms of coral physiology and will help predict how different coral species respond to environmental stress. Copyright © 2015 the American Physiological Society.

  12. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+ ion release.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2011-10-01

    Full Text Available Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na(+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs 1 and 6 are identified as the helices involved in the largest movements during transport.

  13. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  14. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Science.gov (United States)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  15. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications

    Science.gov (United States)

    Le Comte, Annaïg; Reynier, Yvan; Vincens, Christophe; Leys, Côme; Azaïs, Philippe

    2017-09-01

    Hybrid supercapacitors, combining capacitive carbon-based positive electrode with a Li-ion battery-type negative electrode have been developed in the pursuit of increasing the energy density of conventional supercapacitor without impacting the power density. However, lithium-ion capacitors yet hardly meet the specifications of automotive sector. Herein we report for the first time the development of new hybrid potassium-ion capacitor (KIC) technology. Compared to lithium-ion capacitor (LIC) all strategic materials (lithium and copper) have been replaced. Excellent electrochemical performance have been achieved at a pouch cell scale, with cyclability superior to 55 000 cycles at high charge/discharge regime. For the same cell scale, the energy density is doubled compared to conventional supercapacitor up to high power regime (>1.5 kW kg-1). Finally, the technology was successfully scaled up to 18650 format leading to very promising prospects for transportation applications.

  16. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    Science.gov (United States)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  17. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    Science.gov (United States)

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Philip J., E-mail: pgrif@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Holt, Adam P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Tsunashima, Katsuhiko [Department of Materials Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023 (Japan); Sangoro, Joshua R. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kremer, Friedrich [Institute of Experimental Physics I, University of Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Sokolov, Alexei P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States); Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37830 (United States)

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  19. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this talk, we show that this surface charge is dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. By refining the electrokinetic model of the nanochannel...... the surface reaction equilibrium constant for silica/hydronium reactions. The model describes our experimental data with aqueous potassium chloride solutions in 165-nm-high silica nanochannels well, and furthermore, by comparing model predictions with measurements in bulk and in nanochannels with hydrochloric...

  20. Alternative treatment for the energy-transfer and transport cross section in dressed electron-ion binary collisions

    Science.gov (United States)

    Grande, P. L.

    2016-10-01

    A formula for determining the electronic stopping power and the transport cross section in electron-ion binary collisions is derived from the induced density for spherically symmetric potentials using the partial-wave expansion. In contrast to the previous one found in many textbooks, the present formula converges to the Bethe and Bloch stopping-power formulas at high ion velocities and agrees rather well with experimental stopping-power data, as shown here for Al, C, and H2O targets. It can be employed in plasma physics and particularly in any application that requires electronic stopping-power values of quasifree electrons with high accuracy.

  1. Mass transport of heavy metal ions and radon in gels used as sealing agents in containment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Bauer, K.; Lakatos-Szabo, J. [Research Lab. for Mining Chemistry, Miskolc-Egyetemvaros (Hungary); Kretzschmar, H.J. [DBI Gas- und Umwelttechnik GmbH, Feiberg (Germany)

    1997-12-31

    The diffusion and hydrodynamic mass transport of multivalent cations, mostly Cr(III) and Cr(VI) ions and radon in polymer/silicate gels and Montanwax emulsions were studied. It was concluded that the self-conforming gels may decrease the hydrodynamic mass transport in porous and fractured media by 4-6 orders of magnitude. In water saturated systems, however, the diffusion transport can be restricted by hydrogels only to a moderate extent. On the other hand, the high and selective retention capacity of gels towards different diffusing species may open new vistas in the sealing technologies. Similar results were obtained for transport phenomena of radon. The almost perfect quenching process of radon and its nuclides in gels and emulsions further enhances the positive effects of the encapsulation methods. The laboratory experiments provided valuable new information to design the different containment technologies.

  2. [Fourth branchial cleft deformity with skin orifice: a series of 10 cases].

    Science.gov (United States)

    Huang, S L; Zhang, B; Chen, L S; Liang, L; Luo, X N; Lu, Z M; Zhang, S Y

    2016-10-07

    Objective: To report rare cases of congenital neck cutaneous sinus with an orifice near the sternoclavicular joint and to investigate their origins and managements. Methods: A total of ten patients with congenital neck cutaneous sinus having an orifice near the sternoclavicular joint treated in the Guangdong General Hospital from January 2010 to June 2015 were retrospectively analyzed. Results: There four boys and six girls, aging from 11 months to 96 months with an average of 33.4 months, and they had a common feature showing a congenital cutaneous sinus with an orifice near sternoclavicular joint. Discharge of pus from the orifice or abscess formation was commonly seen soon after infection. With bacteriological study, staphylococcus aureus was positive in five cases and klebsiella pneumonia in a case. Another orifice of fistula/sinus was not depicted in pyriform with barium swallow X-ray in five cases Ultrasound studies of three cases demonstrated anechoic (i.e., nearly black) and solid-cystic lesion near sternoclavicular joint with posterior acoustic enhancement. Magnetic resonance imaging (MRI) showed isointensity of the lesion on T1 and T2 weighted images with heterogeneous enhancement and a close relationship with sternoclavicular joint. All patients underwent laryngoscopic examination, which showed no orifice of sinus in pyriform at same side. Surgical resection of fistula/sinus was performed in all cases. The lengths of the fistula varied from 5 mm to 22 mm with an average of 11 mm. Postoperative pathological examination showed all specimens were accordance with fistula. No complications were noticed. Recurrence was not observed in the cases by following-up of 6 months to 70 months (median: 33 months). Conclusion: Congenital neck cutaneous sinus with orifice near the sternoclavicular joint maybe a special clinical phenotype of the fourth branchial cleft sinus with skin orifice in cervicothoracic junction. Differential diagnoses between low cervical diseases

  3. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Stefan Kragh; Pedersen, Morten Stejner;

    2016-01-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion device...

  4. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Stefan Kragh; Pedersen, Morten Stejner

    2016-01-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices...

  5. Propagation of heavy baryons in heavy-ion collisions. Part I: $\\Lambda_c$ and $\\Lambda_b$ transport coefficients

    CERN Document Server

    Tolos, Laura; Das, Santosh K

    2016-01-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons $\\Lambda_c$ and $\\Lambda_b$ in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain non-relativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation and we find a very good agreement between both calculations. The transport coefficients for $\\Lambda_c$ and $\\Lambda_b$ in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion ...

  6. FLUID AND ION SECRETION BY MALPIGHIAN TUBULES OF LARVAL CHIRONOMIDS, Chironomus riparius: EFFECTS OF REARING SALINITY, TRANSPORT INHIBITORS, AND SEROTONIN.

    Science.gov (United States)

    Zadeh-Tahmasebi, Melika; Bui, Phuong; Donini, Andrew

    2016-10-01

    Larvae of Chironomus riparius respond to ion-poor and brackish water (IPW, BW) conditions by activating ion uptake mechanisms in the anal papillae and reducing ion absorption at the rectum, respectively. The role that the Malpighian tubules play in ion and osmoregulation under these conditions is not known in this species. This study examines rates of fluid secretion and major cation composition of secreted fluid from tubules of C. riparius reared in IPW, freshwater (FW) and BW. Fluid secretion of tubules from FW and BW larvae was similar but tubules from IPW larvae secrete fluid at higher rates, are more sensitive to serotonin stimulation, and the secreted fluid contains less Na(+) . Therefore in IPW, tubules work in concert with anal papillae to eliminate excess water while conserving Na(+) in the hemolymph. Tubules do not appear to play a significant role in ion/osmoregulation under BW. Serotonin immunoreactivity in the nervous system and gastrointestinal tract of larval C. riparius was similar to that seen in mosquito larvae with the exception that the hindgut was devoid of staining. Hemolymph serotonin titer was similar in FW and IPW; hence, serotonin is not responsible for the observed high rates of fluid secretion in IPW. Instead, it is suggested that serotonin may work in a synergistic manner with an unidentified hormonal factor in IPW. Ion transport mechanisms in the tubules of C. riparius are pharmacologically similar to those of other insects.

  7. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  8. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  9. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  10. Plasma channel and Z-pinch dynamics for heavy ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Marquez, David [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 1017 cm-3 peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  11. Plasma channel and Z-pinch dynamics for heavy ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Marquez, David

    2002-07-09

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of {approx} 2 cm. Results also show that typical main bank discharge plasma densities reach 10{sup 17} cm{sup -3} peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  12. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery.

    Science.gov (United States)

    Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-09-01

    Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization.

  13. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  14. SYNTHESIS, CHARACTERIZATION AND ION TRANSPORT PROPERTIES OF HOT-PRESSED SOLID POLYMER ELECTROLYTES (1-x) PEO:x KI

    Institute of Scientific and Technical Information of China (English)

    Angesh Chandra; Archana Chandra; K.Thakur

    2013-01-01

    Synthesis and ion transport properties of hot-pressed solid polymer electrolytes (SPEs),(1-x) PEO:x KI,where x is the content of KI in wt%,are reported.A hot-press technique has been used for the formation of the polymeric membranes in place of the usual solution cast method.The composition (80 PEO:20 KI) was identified as the highest conducting polymer electrolyte on the basis of compositional dependent conductivity studies of PEO:KI films.A conductivity enhancement of more than two orders of magnitude from that of the pure PEO was achieved.Materials characterization and ion transport mechanism were explained by using various experimental techniques.

  15. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  16. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  17. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors.

    Science.gov (United States)

    Fichna, J; Schicho, R; Andrews, C N; Bashashati, M; Klompus, M; McKay, D M; Sharkey, K A; Zjawiony, J K; Janecka, A; Storr, M A

    2009-12-01

    The major active ingredient of the plant Salvia divinorum, salvinorin A (SA) has been used to treat gastrointestinal (GI) symptoms. As the action of SA on the regulation of colonic function is unknown, our aim was to examine the effects of SA on mouse colonic motility and secretion in vitro and in vivo. The effects of SA on GI motility were studied using isolated preparations of colon, which were compared with preparations from stomach and ileum. Colonic epithelial ion transport was evaluated using Ussing chambers. Additionally, we studied GI motility in vivo by measuring colonic propulsion, gastric emptying, and upper GI transit. Salvinorin A inhibited contractions of the mouse colon, stomach, and ileum in vitro, prolonged colonic propulsion and slowed upper GI transit in vivo. Salvinorin A had no effect on gastric emptying in vivo. Salvinorin A reduced veratridine-, but not forskolin-induced epithelial ion transport. The effects of SA on colonic motility in vitro were mediated by kappa-opioid receptors (KORs) and cannabinoid (CB) receptors, as they were inhibited by the antagonists nor-binaltorphimine (KOR), AM 251 (CB(1) receptor) and AM 630 (CB(2) receptor). However, in the colon in vivo, the effects were largely mediated by KORs. The effects of SA on veratridine-mediated epithelial ion transport were inhibited by nor-binaltorphimine and AM 630. Salvinorin A slows colonic motility in vitro and in vivo and influences neurogenic ion transport. Due to its specific regional action, SA or its derivatives may be useful drugs in the treatment of lower GI disorders associated with increased GI transit and diarrhoea.

  18. Functional characterization of the vertebrate primary ureter: Structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia)

    DEFF Research Database (Denmark)

    Haugan, Birgitte M; Halberg, Kenneth Agerlin; Jespersen, Åse;

    2010-01-01

    whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model. Results We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light...... duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations....

  19. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  20. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia.

    Science.gov (United States)

    Hasegawa, Isao; Niisato, Naomi; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2006-05-05

    Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.

  1. Interleukin-6 modulates colonic transepithelial ion transport in the stress-sensitive Wistar Kyoto rat.

    Directory of Open Access Journals (Sweden)

    Dervla eO'Malley

    2012-11-01

    Full Text Available Immunological challenge stimulates secretion of the pro-inflammatory cytokine interleukin (IL-6, resulting in variety of biological responses. In the gastrointestinal (GI tract, IL-6 modulates the excitability of sub-mucosal neurons and stimulates secretion into the colonic lumen. When considered in the context of the functional bowel disorder, irritable bowel syndrome (IBS, where plasma levels of IL-6 are elevated, this may reflect an important molecular mechanism contributing to symptom flares, particularly in the diarrhoea-predominant phenotype. In these studies, colonic ion transport, an indicator of absorption and secretion, was assessed in the stress-sensitive Wistar Kyoto (WKY rat model of IBS. Mucosa-submucosal colonic preparations from WKY and control Sprague Dawley (SD rats were mounted in Ussing chambers and the basal short circuit current (ISC was electrophysiologically recorded and compared between the strains. Exposure to IL-6 (1nM stimulated a secretory current of greater amplitude in WKY as compared to SD samples. Furthermore, the observed IL-6-mediated potentiation of secretory currents evoked by veratridine and capsaicin in SD rats was blunted in WKY rats. Exposure to IL-6 also stimulated an increase in trans-epithelial resistance in both SD and WKY colonic tissue. These studies demonstrate that the neuroexcitatory effects of IL-6 on submucosal plexi have functional consequences with alterations in both colonic secretory activity and permeability. The IL-6-induced increase in colonic secretory activity appears to neurally-mediated. Thus, local increases in IL-6 levels and subsequent activation of enteric neurons may underlie alterations in absorpto-secretory function in the WKY model of IBS.

  2. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium.

    Science.gov (United States)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen; Willumsen, Niels Johannes; Frederiksen, Ole

    2005-07-01

    We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions to 8 and 17% below control level, respectively. Serosal application of nucleotides had no effect. The ATP-induced response appeared to involve additional activation of apical adenosine (P1) and P2X receptors. The inhibitory effect of ATP and UTP on Isc was eliminated by pretreatment with amiloride (100 microM), while the stimulatory effect was potentiated, indicating that ATP and UTP inhibit Na+ and stimulate Cl- current. Ionomycin (1 microM) induced responses similar to UTP and ATP and desensitized the epithelium to the nucleotides, indicating involvement of intracellular Ca2+ (Ca2+ i. Furthermore, ATP, UTP and ionomycin induced 21, 24, and 21% decreases, respectively, in transepithelial conductance. Measurements of unidirectional isotope fluxes showed a 39% decrease in the dominant net Na+ absorption in response to ATP, while the smaller net Cl- secretion increased only insignificantly and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y receptor-dependent increase in Ca2+ i, while stimulation of Cl- secretion is of minor importance.

  3. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner......OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular......, purinergic receptors, and determine their effects on ion transport. METHODS: Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured...... in response to agonists. RESULTS: Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion...

  4. THE RELATIONSHIPS BETWEEN PLASMA CHOLESTEROL、TRIGLYCERIDE、HIGH DENSITY LIPOPROTEIN AND ION TRANSPORT ENZYMES IN ERYTHROCYTE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    符云峰; 王素敏; 卢振敏; 李红

    2002-01-01

    Objective To investigate the relationships between levels of plasma cholesterol (Ch), triglyceride (TG)、high density lipoprotein(HDL) and ion transport enzyme activities in red cell membranes of essential hypertensive patients.Methods Plasma Ch, TG, HDL-c, activites of Na+ -K+ -ATPase and Ca2+-ATPase, Ca2+-binding capacity of interior membrane surface, and membrane Ch, phospholipid(PL) were measured in 32 normotensive (NT) subjects and 55 essential hypertensive patients(HT).Results ①Mean artery pressure(MAP), plasma Ch、TG and membrane Ch levels, and membrane cholesterol/phospholipid(C/P) molar ratio were significantly increased compared with those in NT group, respectively; ②The plasma HDL-c level, the activities of Na+-K+-ATPase and Ca2+-ATPase, and the Ca2+-binding capacity of the interior membrane surface in HT group were significantly lower than those in NT group, respectively.Conclusion The depressed activities of Na+-K+-ATPase and Ca2+-ATPase, and Ca2+-binding capacity of the interior surface in cell membranes are the major evidence of ion transport abnormalities in essential hypertension. The plasma TG and membrance C/P molar ratio-dependent changes in membrane microviscosity seem to be responsible for the modulation of particular ion transport pathways.

  5. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    Science.gov (United States)

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  6. Parametric Dependence Of Fast-ion Transport Events On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Erik; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Lab., NJ (United States); Bortolon, A. [Univ. of Tennessee, Knoxville, TN (United States)

    2014-03-31

    Neutral-beam heated tokamak plasmas commonly have more than one third of the plasma kinetic energy in the non-thermal energetic beam ion population. This population of fast ions heats the plasma, provides some of the current drive, and can affect the stability (positively or negatively) of magnetohydrodynamic instabilities. This population of energetic ions is not in thermodynamic equilibrium, thus there is free-energy available to drive instabilities, which may lead to redistribution of the fast ion population. Understanding under what conditions beam-driven instabilities arise, and the extent of the resulting perturbation to the fast ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U, as well as the performance of future fusion plasma experiments such as ITER. This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities seen on NSTX.

  7. Response of branchial Na(+)/K(+) ATPase to changes in ambient temperature in Atlantic cod (Gadus morhua) and whiting (Merlangius merlangus).

    Science.gov (United States)

    Michael, Katharina; Koschnick, Nils; Pörtner, Hans-O; Lucassen, Magnus

    2016-05-01

    The maintenance of ion and pH homeostasis despite changes in ambient temperature is crucial for ectothermic organisms. Thermal sensitivity of Na(+)/K(+) ATPase mRNA expression, protein expression and activity was determined in gills of North Sea cod (NC) and Northeastern Arctic cod (NEAC), acclimated for 6 weeks at 4 and 10 °C and compared to field samples of North Sea cod (sNC), acclimatized to early spring (4 °C) and summer (18 °C) conditions. The same analyses were conducted in gills of the confamiliar whiting, acclimated at 4 and 10 °C. Branchial Na(+)/K(+) ATPase capacities remained uncompensated at functional and protein levels in NC and NEAC at both acclimation temperatures. Na(+)/K(+) ATPase mRNA expression in NEAC acclimated at 10 °C was about twofold higher compared to NC, indicating some population-specific differentiation at this level. Lower Na(+)/K(+) ATPase capacities in gills of warm-acclimatized sNC at common assay temperatures indicate thermal compensation between seasonal extremes, and post-translational modifications contributed to this mitigation at high assay temperature. Together, cod compensates Na(+)/K(+) ATPase capacities on the warm edge of the thermal window and below 4 °C, respectively. In contrast, whiting Na(+)/K(+) ATPase capacities were cold compensated at 4 °C, supported by 1.5-fold higher mRNA and protein expression. Besides, capacities were lower in whiting compared to NC and NEAC at optimum temperature, which may be advantageous in terms of reduced maintenance cost, but at temperatures ≤4 °C, compensation may represent an energy trade-off to maintain homeostasis. The species-specific response of gadid Na(+)/K(+) ATPase indicates certain threshold temperatures beyond which compensation of the pump is elicited, possibly related to the different biogeography of these species.

  8. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae.

    Science.gov (United States)

    Martin, Julia E; Giedroc, David P

    2016-01-19

    Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory

  9. Effects of ferroelectric nanoparticles on ion-transport in a liquid crystal

    Science.gov (United States)

    Garvey, Alfred; Basu, Rajratan

    2015-03-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC +FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  10. Effects of ferroelectric nanoparticles on ion transport in a liquid crystal

    Science.gov (United States)

    Basu, Rajratan; Garvey, Alfred

    2014-10-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNPs) of 50 nm diameter was doped in a nematic liquid crystal (LC), and the free ion concentration was found to be significantly reduced in the LC + FNP hybrid compared to that of the pure LC. The strong electric fields, due to the permanent dipole moment of the FNPs, trapped some mobile ions, reducing the free ion concentration in the LC media. The reduction of free ions was found to have coherent impacts on the LC's conductivity, rotational viscosity, and electric field-induced nematic switching.

  11. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  12. Comparison of experimental data and 3D simulations of ion beam neutralization from the neutralized transport experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, C.; Welch, D.R.; Yu, S.S.; Henestroza, E.; Roy, P.K.; Eylon, S.; Gilson, E.P.

    2004-09-22

    The Neutralized Transport Experiment (NTX) at Lawrence Berkeley National Laboratory has been designed to study the final focus and neutralization of high perveance ion beams for applications in heavy ion fusion (HIF) and high energy density physics (HEDP) experiments. Pre-formed plasmas in the last meter before the target of the scaled experiment provide a source of electrons which neutralize the ion current and prevent the space-charge induced spreading of the beam spot. NTX physics issues are discussed and experimental data is analyzed and compared with 3D particle-in-cell simulations. Along with detailed target images, 4D phase-space data of the NTX at the entrance of the neutralization region has been acquired. This data is used to provide a more accurate beam distribution with which to initialize the simulation. Previous treatments have used various idealized beam distributions which lack the detailed features of the experimental ion beam images. Simulation results are compared with NTX experimental measurements for 250 keV K{sup +} ion beams with dimensionless perveance of 1-7 x 10{sup -4}. In both simulation and experiment, the deduced beam charge neutralization is close to the predicted maximum value.

  13. Evaluation of impacted Brazilian estuaries using the native oyster Crassostrea rhizophorae: Branchial carbonic anhydrase as a biomarker.

    Science.gov (United States)

    Azevedo-Linhares, Maristela; Freire, Carolina A

    2015-12-01

    In this study, we investigated the use of branchial carbonic anhydrase activity in a sessile filter feeding species, the oyster Crassostrea rhizophorae, as a biomarker. The oysters were collected in three human impacted Brazilian estuaries, following a crescent latitudinal gradient: in Pernambuco state (Itamaracá), in Espírito Santo state (Piraquê), and in Paraná state (Paranaguá), in August/2003 (Winter in the southern hemisphere) and February/2004 (Summer). Three sites were chosen in each estuary for oyster sampling: Reference (R), Contaminated 1 (C1, close to industrial/harbor contamination), and Contaminated 2 (C2, near to sewage discharges). Comparing to values in oysters sampled in reference sites, there was apparent inhibition in carbonic anhydrase activity (CAA) in gills of oysters from C1 of Itamaracá and from C2 of Piraquê, both cases in Summer. On the other hand, increased CAA was noted in C2 oysters of Itamaracá in winter, and of Paranaguá, in both seasons. Branchial CAA in C. rhizophorae was thus very responsive to coastal contamination. Data are consistent with its usefulness as a supporting biomarker for inexpensive and rapid analysis in the assessment of estuaries using a sessile osmoconformer species, but preferably allied to other biomarkers and with knowledge on the suite of contaminants present. Copyright © 2015. Published by Elsevier Inc.

  14. Pituitary control of branchial NCC, NKCC and Na(+), K (+)-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Breves, Jason P; Seale, Andre P; Moorman, Benjamin P; Lerner, Darren T; Moriyama, Shunsuke; Hopkins, Kevin D; Grau, E Gordon

    2014-05-01

    This study investigated endocrine control of branchial ionoregulatory function in Nile tilapia (Oreochromis niloticus) by prolactin (Prl188 and Prl177), growth hormone (Gh) and cortisol. Branchial expression of Na(+)/Cl(-) cotransporter (ncc) and Na(+)/K(+)/2Cl(-) cotransporter (nkcc) genes were employed as specific markers for freshwater- and seawater-type ionocytes, respectively. We further investigated whether Prl, Gh and cortisol direct expression of two Na(+), K(+)-ATPase (nka)-α1 subunit genes, denoted nka-α1a and nka-α1b. Tilapia transferred to fresh water following hypophysectomy failed to adequately activate gill ncc expression; ncc expression was subsequently restored by Prl replacement. Prl188 and Prl177 stimulated ncc expression in cultured gill filaments in a concentration-related manner, suggesting that ncc is regulated by Prl in a gill-autonomous fashion. Tilapia transferred to brackish water (23 ‰) following hypophysectomy exhibited a reduced capacity to up-regulate nka-α1b expression. However, Gh and cortisol failed to affect nka-α1b expression in vivo. Similarly, we found no clear effects of Gh or cortisol on nkcc expression both in vivo and in vitro. When considered with patterns previously described in euryhaline Mozambique tilapia (O. mossambicus), the current study suggests that ncc is a conserved target of Prl in tilapiine cichlids. In addition, we revealed contrasting dependencies upon the pituitary to direct nka-α1b expression in hyperosmotic environments between Nile and Mozambique tilapia.

  15. Ion beam transport: modelling and experimental measurements on a large negative ion source in view of the ITER heating neutral beam

    Science.gov (United States)

    Veltri, P.; Sartori, E.; Agostinetti, P.; Aprile, D.; Brombin, M.; Chitarin, G.; Fonnesu, N.; Ikeda, K.; Kisaki, M.; Nakano, H.; Pimazzoni, A.; Tsumori, K.; Serianni, G.

    2017-01-01

    Neutral beam injectors are among the most important methods of plasma heating in magnetic confinement fusion devices. The propagation of the negative ions, prior to their conversion into neutrals, is of fundamental importance in determining the properties of the beam, such as its aiming and focusing at long-distances, so as to deposit the beam power in the proper position inside the confined plasma, as well as to avoid interaction with the material surfaces along the beam path. The final design of the ITER Heating Neutral Beam prototype has been completed at Consorzio RFX (Padova, Italy), in the framework of a close collaboration with European, Japanese and Indian fusion research institutes. The physical and technical rationales on which the design is based were essentially driven by numerical modelling of the relevant physical processes, and the same models and codes will be useful to design the DEMO neutral beam injector in the near future. This contribution presents a benchmark study of the codes used for this purpose, by comparing their results against the measures performed in an existing large-power device, hosted at the National Institute for Fusion Science, Japan. In particular, the negative ion formation and acceleration are investigated. A satisfactory agreement was found between codes and experiments, leading to an improved understanding of beam transport dynamics. The interpretation of the discrepancies identified in previous works, possibly related to the non-uniformity of the extracted negative ion current, is also presented.

  16. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  17. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  18. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size

  19. Physiological and molecular analysis of the interactive effects of feeding and high environmental ammonia on branchial ammonia excretion and Na+ uptake in freshwater rainbow trout.

    Science.gov (United States)

    Zimmer, Alex M; Nawata, C Michele; Wood, Chris M

    2010-11-01

    Recently, a "Na(+)/NH(4)(+) exchange complex" model has been proposed for ammonia excretion in freshwater fish. The model suggests that ammonia transport occurs via Rhesus (Rh) glycoproteins and is facilitated by gill boundary layer acidification attributable to the hydration of CO(2) and H(+) efflux by Na(+)/H(+) exchanger (NHE-2) and H(+)-ATPase. The latter two mechanisms of boundary layer acidification would occur in conjunction with Na(+) influx (through a Na(+) channel energized by H(+)-ATPase and directly via NHE-2). Here, we show that natural ammonia loading via feeding increases branchial mRNA expression of Rh genes, NHE-2, and H(+)-ATPase, as well as H(+)-ATPase activity in juvenile trout, similar to previous findings with ammonium salt infusions and high environmental ammonia (HEA) exposure. The associated increase in ammonia excretion occurs in conjunction with a fourfold increase in Na(+) influx after a meal. When exposed to HEA (1.5 mmol/l NH(4)HCO(3) at pH 8.0), both unfed and fed trout showed differential increases in mRNA expression of Rhcg2, NHE-2, and H(+)-ATPase, but H(+)-ATPase activity remained at control levels. Unfed fish exposed to HEA displayed a characteristic reversal of ammonia excretion, initially uptaking ammonia, whereas fed fish (4 h after the meal) did not show this reversal, being able to immediately excrete ammonia against the gradient imposed by HEA. Exposure to HEA also led to a depression of Na(+) influx, demonstrating that ammonia excretion can be uncoupled from Na(+) influx. We suggest that the efflux of H(+), rather than Na(+) influx itself, is critical to the facilitation of ammonia excretion.

  20. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    Science.gov (United States)

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  1. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    Science.gov (United States)

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  2. Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    Institute of Scientific and Technical Information of China (English)

    Ehsan Salehi; Leila Bakhtiari; Mahdi Askari

    2016-01-01

    Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematical y investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination (0.1﹤R2﹤0.65). Well-behaved polynomial and exponential functions were used to describe time-dependency of the inlet-concentration in the first extension of the model with a little improvement in the model adjustment (0.4﹤R2﹤0.69). Similar time-dependent functions were employed for tracking the ion diffusivity and then applied in combination with the optimized functions of inlet-concentration in the second extension of the model. A sensible enhancement was obtained in the adjustment of the second extended models as a result of this combination (0.73﹤R2﹤0.93). APRE, AAPRE, RSME, RMSE, STD and R-square statistical analyses were per-formed to verify the agreement of the models with the experimental results. Concentration distribution versus time and location (inside the membrane) was obtained as 3D plots with the help of the optimized models. Modeling results emphasized on the transiency of diffusivity and feed-side concentration in dialysis permeation through chitosan membranes.

  3. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Science.gov (United States)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  4. Superthermal Ion Transport and Acceleration in Multiple Contracting and Reconnecting Inertial-scale Flux Ropes in the Solar Wind

    Science.gov (United States)

    Le Roux, Jakobus; Zank, Gary; Webb, Gary

    2014-10-01

    MHD turbulence simulations with a strong large-scale magnetic field show that the turbulence is filled with quasi-2D inertial-scale flux ropes that intermittently reconnect. Solar wind observations indicate that the statistical properties of the turbulence agree well with the MHD turbulence simulations, while particle simulations stress how ions can be efficiently accelerated to produce power law spectra when traversing multiple flux ropes. Recent observations show the presence of different size inertial-scale magnetic islands in the slow solar wind near the heliospheric current sheet, evidence of island merging, and of heating of ions and electrons in the vicinity. We will present a new statistical transport theory designed to model the acceleration and transport of superthermal ions traversing multiple contracting and reconnecting inertial-scale quasi-2D flux ropes in the supersonic slow solar wind. A steady-state solution for the accelerated particle spectrum in a radially expanding solar wind will discussed, showing that the theory potentially can explain naturally the existence of superthermal power-law spectra observed during quiet solar wind conditions.

  5. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    Science.gov (United States)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  6. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    Science.gov (United States)

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel

  7. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Science.gov (United States)

    2010-01-01

    Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells), as in vitro blood-placental barrier (BPB) model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC) activator in TR-TBT cells. Also, calcium ion (Ca2+) was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α), lipopolysaccharide (LPS) and diethyl maleate (DEM) significantly increased taurine uptake, but H2O2 and nitric oxide (NO) donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus. PMID:20804613

  8. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  9. Charge transport and glassy dynamics of poly(ethylene oxide)-based single-ion conductors under geometrical confinement

    Science.gov (United States)

    Runt, James; Iacob, Ciprian

    2015-03-01

    Segmental and local dynamics as well as charge transport are investigated in a series of poly(ethylene oxide)-based single-ion conductors (ionomers) with varying counterions (Li +, Na +) confined in uni-directional nanoporous silica membranes. The dynamics are explored over a wide frequency and temperature range by broadband dielectric relaxation spectroscopy. Slowing of segmental dynamics and a decrease in dc conductivity (strongly coupled with segmental relaxation) of the confined ionomers are associated with surface effects - resulting from interfacial hydrogen bonding between the host nanoporous silica membrane and the guest ionomers. These effects are significantly reduced or eliminated upon pore surface modification through silanization. The primary transport properties for the confined ionomers decrease by about one decade compared to the bulk ionomer. A model assuming reduced mobility of an adsorbed layer at the pore wall/ionomer interface is shown to provide a quantitative explanation for the decrease in effective transport quantities in non-silanized porous silica membranes. Additionally, the effect of confinement on ion aggregation in ionomers by using X-ray scattering will also be discussed. Supported by the National Science Foundation, Polymers Program.

  10. Volume regulation of intestinal cells of echinoderms: Putative role of ion transporters (Na(+)/K(+)-ATPase and NKCC).

    Science.gov (United States)

    Castellano, Giovanna C; Souza, Marta M; Freire, Carolina A

    2016-11-01

    Echinoderms are exclusively marine osmoconformer invertebrates. Some species occupy the challenging intertidal region. Upon salinity changes, the extracellular osmotic concentration of these animals also varies, exposing tissues and cells to osmotic challenges. Cells and tissues may then respond with volume regulation mechanisms, which involve transport of ions and water into and/or out of the cells, through ion transporters, such as the Na(+)/K(+)-ATPase and NKCC. The goal of this study was to relate the cell volume regulation capacity of echinoderm intestinal cells Na(+)/K(+)-ATPase and NKCC activities, in three echinoderm species: Holothuria grisea, Arbacia lixula, and Echinometra lucunter. Isolated cells of these species displayed some control of their cell volume upon exposure to anisosmotic media (isolated intestinal cells, calcein fluorescence as indicator of volume change), with a distinct higher capacity shown by H. grisea, which d