WorldWideScience

Sample records for branched-chain fatty acid

  1. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from...... for 2-methylpropanoic acid production, revealing that the IlvE protein plays an important, but not essential role in the biosynthesis of branched-chain fatty acids and secondary metabolites in S. carnosus....

  2. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many li

  3. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  4. [Odd- and branched-chain fatty acids in milk fat--characteristic and health properties].

    Science.gov (United States)

    Adamska, Agata; Rutkowska, Jarosława

    2014-08-22

    This review analyzes the current state of knowledge on odd- and branched-chain fatty acids present in milk fat. Special attention is devoted to the characteristic, synthesis in ruminants, factors affecting their content in milk fat and pro-health properties of these compounds. The group of odd- and branched-chain fatty acids includes mainly saturated fatty acids with one or more methyl branches in the iso or anteiso position. These fatty acids are largely derived from ruminal bacteria and they have been transferred to ruminant tissue (milk and meat). For that reason they have been used as biomarkers of rumen fermentation. Odd- and branched-chain fatty acids are exogenous products for humans, and therefore have specific properties. The results of research from recent decades show that odd- and branched-chain fatty acids have anti-cancer activity. Branched-chain fatty acids may reduce the incidence of necrotizing enterocolitis. Additionally, these compounds have a beneficial effect on proper tissue function and on functioning and development of the infant gut, whereas odd-chain fatty acids are considered as biomarkers of milk fat intake by humans. So far, not all the mechanisms of activity of these compounds are known thoroughly. They should be more carefully studied for application of their biological effects in prevention and treatment.

  5. Milk Odd- and Branched-Chain Fatty Acids in Relation to the Rumen Fermentation Pattern

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Tamminga, S.; Dewhurst, R.J.; Vuuren, van A.M.; Brabander, de D.; Demeyer, D.

    2006-01-01

    The objectives of this study were 1) to determine whether a relationship exists between molar proportions of volatile fatty acids in the rumen and milk odd-and branched-chain fatty acid concentrations (i.e., iso C13:0, anteiso C13:0, iso C14:0, C15:0, iso C15:0, anteiso C15:0, iso C16:0, C17:0, iso

  6. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the correspo...... the corresponding amino acids and this paper intends to perspectivate these flavour compounds in the context of leucine metabolism....

  7. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.

  8. Inactivation of Gram-Positive Bacteria by Novel Phenolic Branched-Chain Fatty Acids.

    Science.gov (United States)

    Fan, Xuetong; Wagner, Karen; Sokorai, Kimberly J B; Ngo, Helen

    2017-01-01

    Novel phenolic branched-chain fatty acids (PBC-FAs) were evaluated for their antimicrobial properties against both gram-positive ( Listeria innocua , Bacillus subtilis , Enterococcus faecium ) and gram-negative ( Escherichia coli , Salmonella Typhimurium, and Pseudomonas tolaasii ) bacteria. In addition, PBC-FA derivatives, such as PBC-FA methyl ester mixture, methyl-branched fatty acid mixtures, and trimethylsilyl-PBC-FA methyl esters, were synthesized to study the structure activity relationship. Results showed that PBC-FAs were a potent antimicrobial against gram-positive bacteria with MICs of 1.8 to 3.6 μg/ml. The compounds were less effective against gram-negative bacteria. Derivatives of PBC-FAs and an equimolar mixture of oleic acid and phenol all had MICs above 233 μg/ml against both gram-positive and gram-negative bacteria. Comparison of antimicrobial activities of the PBC-FAs with those of the derivatives suggests that the carboxylic group in the fatty acid moiety and the hydroxyl group on the phenol moiety were responsible for the antimicrobial efficacy. Growth curves of L. innocua revealed that PBC-FAs prevented bacterial growth, while MBC-FAs only delayed the onset of rapid growth of L. innocua . Our results demonstrated that the novel PBC-FAs have potential for use as antimicrobials against gram-positive bacteria.

  9. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  10. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.

    Science.gov (United States)

    Baumann, E; Chouinard, P Y; Lebeuf, Y; Rico, D E; Gervais, R

    2016-08-01

    Eight ruminally fistulated, multiparous Holstein cows were arranged in a double 4×4 Latin square with 14-d periods to investigate the effects of lipid supplementation on performance, rumen parameters, the milk odd- and branched-chain fatty acid (OBCFA) profile, and the relationships between milk OBCFA and rumen parameters. Lipid supplementation is known to inhibit microbial growth in the rumen, decrease de novo microbial fatty acid synthesis, and increase the uptake of circulating fatty acids by the mammary gland; treatments were selected to isolate these effects on the milk OBCFA profile. The 4 treatments were (1) a lipid-free emulsion medium infused in the rumen (CTL), (2) soybean oil as a source of polyunsaturated fatty acids infused in the rumen (RSO), (3) saturated fatty acids (38% 16:0, 40% 18:0) infused in the rumen (RSF), and (4) saturated fatty acids infused in the abomasum (ASF). Fat supplements were provided continuously as emulsions at a rate of 450g/d. Preplanned contrasts compared CTL to RSO, RSO to RSF, and RSF to ASF. Infusing RSO slightly decreased ruminal pH, but did not affect volatile fatty acids profile and milk fat concentration as compared with CTL. The yields of energy-corrected milk, fat, and protein were greater with RSF compared with RSO. The concentration of odd-chain fatty acids was decreased by RSO, whereas even-chain iso fatty acids were not affected. Milk fat concentration of 17:0 + cis-9 17:1 was higher for RSF than for RSO, due to the saturated fatty acids supplement containing 2% 17:0 + cis-9 17:1. Limited differences were observed in the milk OBCFA profile between RSF and ASF. A multiple regression analysis yielded the following equation for predicting rumen pH based on milk fatty acids: pH=6.24 - (0.56×4:0) + (1.67 × iso 14:0) + (4.22 × iso 15:0) + (9.41×22:0). Rumen propionate concentration was negatively correlated with milk fat concentration of iso 14:0 and positively correlated with milk 15:0, whereas the acetate

  11. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.

  12. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

    Science.gov (United States)

    Yu, Ai-Qun; Juwono, Nina Kurniasih Pratomo; Foo, Jee Loon; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-03-01

    Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.

  13. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T.; Caroline M Williams; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  14. Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Laar, van H.; Demeyer, D.

    2004-01-01

    A first aim of this batch in vitro experiment (21 h) was to use changes in odd and branched chain fatty acid (OBCFA) patterns to suggest shifts in microbial populations, associated with four types of incubated whole dairy cow diets. Principal component analysis suggested higher dietary starch increa

  15. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.

    Directory of Open Access Journals (Sweden)

    Rencheng Wang

    Full Text Available The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.

  16. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  17. Direct determination of flavor relevant and further branched-chain fatty acids from sheep subcutaneous adipose tissue by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Kaffarnik, Stefanie; Preuß, Siegfried; Vetter, Walter

    2014-07-11

    4-Methyloctanoic acid, 4-ethyloctanoic acid and 4-methylnonanoic acid are key-flavor compounds of sheep and goat. Yet, the low amounts of these volatile branched-chain fatty acids (vBCFAs) in the fat of the ruminants hampered their determination on a routine basis. In this work we developed a gas chromatography/mass spectrometry selected ion monitoring (GC/MS-SIM) method for the direct determination of the vBCFAs as methyl esters, which were obtained after transesterification of subcutaneous adipose tissue of sheep. The excellent sensitivity of the GC/MS-SIM method (limit of quantification, LOQ, 3.6-4.8μg/g; limit of detection, LOD, 1.1-1.4μg/g for 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0) enabled us to determine the three vBCFAs without an enrichment step. Subcutaneous adipose sheep tissue of three different breeds contained 23-88μg/g 4-methyloctanoic acid, 13-26μg/g 4-ethyloctanoic acid and ∼2.9-18μg/g 4-methylnonanoic acid. Since all fatty acids were present in the FAME fraction, the samples could be screened for further branched-chain FAMEs. After elimination of unsaturated fatty acids by hydrogenation (the presence of some unsaturated fatty acids could be verified by this measure), additional measurements in SIM and full scan modes of methyl esters and picolinyl esters enabled the determination of further 97 saturated fatty acids in the samples with eight to 20 carbons. The method is suited for routine analysis and may be useful to investigate the reasons for the abundance/absence of 4-methyloctanoic acid, 4-ethyloctanoic acid and 4-methylnonanoic acid and further branched-chain fatty acids in sheep and goat.

  18. Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk.

    Science.gov (United States)

    Vlaeminck, B; Gervais, R; Rahman, M M; Gadeyne, F; Gorniak, M; Doreau, M; Fievez, V

    2015-07-01

    Milk odd- and branched-chain fatty acids (OBCFA) have been suggested as potential biomarkers for rumen function. The potential of milk OBCFA as a biomarker depends on whether their profile reflects the profile observed in the duodenum. The objective of this study was to evaluate whether the OBCFA profile in duodenum samples is reflected in plasma and milk. For this, 2 dairy cattle experiments were used. In experiment 1, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 4×4 Latin square design. The treatments consisted of 2 nitrogen levels (143 vs. 110g of crude protein/kg of dry matter for high and low N, respectively) combined with either 1 of the 2 energy sources (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). In experiment 2, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 3×3 Latin square design, with the treatments consisting of 3 diets: (1) RNB-, a diet with a crude protein content of 122g/kg of dry matter, predicted to provide protein digested in the small intestine according to the requirement of the animals, but with a shortage of rumen degradable protein; (2) RNB- to which 6g/d of niacin was added through inclusion in the mineral and vitamin premix, and (3) RNB- to which urea was added to balance rumen degradable N supply resulting in a CP content of 156g/kg of dry matter. In both experiments, samples of duodenal digesta, plasma, and milk were collected and analyzed for fatty acids. Additionally, lipids in plasma samples were separated in lipid classes and analyzed for fatty acids. The OBCFA profile in milk was enriched in 15:0, iso-17:0, anteiso-17:0, and cis-9-17:1 as compared with duodenal samples, and milk secretions even exceeded duodenal flows, which suggests occurrence of postruminal synthesis, such as de novo synthesis, desaturation, and elongation. The postruminal modification of the OBCFA profile might hamper the application of OBCFA

  19. Cistus ladanifer L. Shrub is Rich in Saturated and Branched Chain Fatty Acids and their Concentration Increases in the Mediterranean Dry Season.

    Science.gov (United States)

    Guerreiro, Olinda; Alves, Susana P; Duarte, Maria F; Bessa, Rui J B; Jerónimo, Eliana

    2015-05-01

    The Cistus ladanifer L. shrub is a widespread species of the Mediterranean region that is available as a feed source for ruminants all the year round, constituting a source of energy and nutrients when most of the vegetation is dry. However, there is no trustworthy information about the fatty acid composition of C. ladanifer, as well as no information about the seasonal and age related changes in their fatty acid composition. Thus, we collected the aerial parts of C. ladanifer plants of two age groups [young vs. older ones (2-6 years old)] during four consecutive seasons to characterize their fatty acid composition. The fatty acid composition of C. ladanifer is dominated by saturated fatty acids including the occurrence of two methyl branched chain fatty acids (BCFA), the iso-19:0 and iso-21:0, which as far as we know were detected for the first time in shrubs. Also, we demonstrated that several labdane type compounds might interfere with the fatty acid analysis of C. ladanifer. Marked seasonal changes in BCFA and polyunsaturated fatty acids (PUFA) were found, suggesting that BCFA can replace PUFA in plant lipids at high environmental temperatures.

  20. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  1. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  2. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.

    Science.gov (United States)

    Kruska, Nicol; Reiser, Georg

    2011-08-01

    The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.

  3. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes.

    Science.gov (United States)

    Kahlert, Stefan; Schönfeld, Peter; Reiser, Georg

    2005-02-01

    The saturated branched chain fatty acid, phytanic acid, a degradation product of chlorophyll, accumulates in Refsum disease, an inherited peroxisomal disorder with neurological clinical features. To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid on cellular physiology of rat hippocampal astrocytes. Phytanic acid (100 microM) induced an immediate transient increase in cytosolic Ca2+ concentration, followed by a plateau. The peak of this biphasic Ca2+ response was largely independent of extracellular Ca2+, indicating activation of cellular Ca2+ stores by phytanic acid. Phytanic acid depolarized mitochondria without causing in situ swelling of mitochondria. The slow decrease of mitochondrial potential is not consistent with fast and simultaneous opening of the mitochondrial permeability transition pore. However, phytanic acid induced substantial generation of reactive oxygen species. Phytanic acid caused astroglia cell death after a few hours of exposure. We suggest that the cytotoxic effect of phytanic acid seems to be due to a combined action on Ca2+ regulation, mitochondrial depolarization, and increased ROS generation in brain cells.

  4. Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment.

    Science.gov (United States)

    Reiser, Georg; Schönfeld, Peter; Kahlert, Stefan

    2006-01-01

    Phytanic acid is a saturated branched-chain fatty acid, which is formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. The methyl group in beta-position prevents degradation of phytanic acid by the beta-oxidation pathway. Therefore, degradation of phytanic acid is initiated by alpha-oxidation in peroxisomes. The inherited peroxisomal disorder Refsum disease is characterised by accumulation of phytanic acid. Unusually high concentrations of phytanic acid can be found in the plasma of Refsum disease patients, who suffer from neurodegeneration and muscle dystrophy. Phytanic acid has been suggested to be causally involved in the clinical symptoms. To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid in rat hippocampal astrocytes by monitoring the cytosolic Ca(2+) concentration, the mitochondrial membrane potential (Deltapsi(m)), the generation of reactive oxygen species as well as the cellular ATP level. In response to phytanic acid (100 microM) cytosolic Ca(2+) was quickly increased. The phytanic acid-evoked Ca(2+) response was transient and involved activation of intracellular Ca(2+) stores. In isolated rat brain mitochondria, phytanic acid dissipated Deltapsi(m) in a reversible and dose-dependent manner. Moreover, phytanic acid released cytochrome c from mitochondria. Depending on the mitochondrial activity state, phytanic acid either stimulated or inhibited the electron flux within the respiratory chain. In addition, phytanic acid induced substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. Phytanic acid caused cell death of astrocytes within a few hours of exposure. In conclusion, we suggest that phytanic acid initiates astrocyte cell death by activating the mitochondrial route of apoptosis.

  5. Evaluation of FT-NIR and ATR-FTIR spectroscopy techniques for determination of minor odd- and branched-chain saturated and trans unsaturated milk fatty acids.

    Science.gov (United States)

    Stefanov, Ivan; Baeten, Vincent; Abbas, Ouissam; Vlaeminck, Bruno; De Baets, Bernard; Fievez, Veerle

    2013-04-10

    Determination of nutritionally important trans MUFA, CLA, and OBCFA milk fatty acids (often present in amounts lower than 1.0 g/100 g of total fat) using fast and nondestructive analytical methods would enhance their use as diagnostic tools in dairy herd and human health management. Here, PLS regression using ATR/FTIR spectra indicated potential for determination of trans-11 C18:1 and trans-12 C18:1 (Rcv² ≥ 0.80), and trans-9 C18:1 in very minor concentration (Rcv² > 0.82), as well as anteiso C15:0 (Rcv² = 0.57) and iso C17:0 (Rcv² = 0.61). Furthermore, the main cis-9,trans-11 CLA isomer was predicted well despite the high trans MUFA concentration. Differentiation between the CLA and the trans MUFA signals was evident (based on specific cis/trans bands), and branched-chain saturated fatty acid methyl esters revealed specific iso and anteiso ATR/FTIR absorbance bands. None of the minor FA PLS results with FT-NIR showed interesting potential, except satisfactory predictions for trans-9 C18:1 and cis-9,trans-11 CLA. Overall, ATR/FTIR resulted in better calibrations and provided more specific information for determination of minor milk fatty acids.

  6. Branched-chain Amino Acid Metabolon: INTERACTION OF GLUTAMATE DEHYDROGENASE WITH THE MITOCHONDRIAL BRANCHED-CHAIN AMINOTRANSFERASE (BCATm)*

    OpenAIRE

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R. Max; Mobley, James A.; Chuang, David T.; Hutson, Susan M.

    2009-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain α-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain α-keto acids from BCATm to E1. The protein complex also contains glut...

  7. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes.

    Science.gov (United States)

    Rönicke, Sabine; Kruska, Nicol; Kahlert, Stefan; Reiser, Georg

    2009-11-01

    Pristanic acid and phytanic acid are branched-chain fatty acids, which play an important role in diseases with peroxisomal impairment, like Refsum disease (MIM 266500), Zellwegers syndrome and alpha-methylacyl-CoA racemase deficiency (MIM 604489). Several studies revealed that the toxic activity of phytanic acid is mediated by multiple mitochondrial dysfunctions. However, the action of pristanic acid on brain cells is still completely unknown. Here, we exposed astrocytes, oligodendrocytes and neurons in mixed culture to pristanic acid and phytanic acid to analyse cellular consequences. Pristanic acid exerts a strong cytotoxic activity on brain cells, displayed by dramatic Ca2+ deregulation, in situ mitochondrial depolarization and cell death. Interestingly, pristanic acid strongly induced generation of reactive oxygen species (ROS), whereas phytanic acid exerts weaker effects on ROS production. In conclusion, pristanic acid as well as phytanic acid induced a complex array of toxic activities with mitochondrial dysfunction and Ca2+ deregulation.

  8. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  9. Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm).

    Science.gov (United States)

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R Max; Mobley, James A; Chuang, David T; Hutson, Susan M

    2010-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain alpha-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain alpha-keto acids from BCATm to E1. The protein complex also contains glutamate dehydrogenase (GDH1), 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1, pyruvate carboxylase, and BCKDC kinase. GDH1 binds to the pyridoxamine 5'-phosphate (PMP) form of BCATm (PMP-BCATm) but not to the pyridoxal 5'-phosphate-BCATm and other metabolon proteins. Leucine activates GDH1, and oxidative deamination of glutamate is increased further by addition of PMP-BCATm. Isoleucine and valine are not allosteric activators of GDH1, but in the presence of 5'-phosphate-BCATm, they convert BCATm to PMP-BCATm, stimulating GDH1 activity. Sensitivity to ADP activation of GDH1 was unaffected by PMP-BCATm; however, addition of a 3 or higher molar ratio of PMP-BCATm to GDH1 protected GDH1 from GTP inhibition by 50%. Kinetic results suggest that GDH1 facilitates regeneration of the form of BCATm that binds to E1 decarboxylase of the BCKDC, promotes metabolon formation, branched-chain amino acid oxidation, and cycling of nitrogen through glutamate.

  10. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids.

    Science.gov (United States)

    Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun

    2017-03-22

    Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C16:0, iso-C15:0, and anteiso-C15:0, respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.

  11. Branched-chain amino acid ratios in low-protein diets regulate the free amino acid profile and the expression of hepatic fatty acid metabolism-related genes in growing pigs.

    Science.gov (United States)

    Duan, Y H; Li, F N; Wen, C Y; Wang, W L; Guo, Q P; Li, Y H; Yin, Y L

    2017-03-06

    Liver metabolism is affected by nutrients. The aim of this study was to explore the effects of low-protein diets (17% crude protein, CP) supplemented with branched-chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile) and valine (Val), on hepatic amino acid profile and lipid metabolism in growing pigs. The ratio of Leu : Ile : Val in all groups was 1 : 0.51 : 0.63 (20% crude protein, CP), 1 : 1 : 1 (17% CP), 1 : 0.75 : 0.75 (17% CP), 1 : 0.51 : 0.63 (17% CP) and 1 : 0.25 : 0.25 (17% CP) respectively. Results revealed that compared to the positive control group (1 : 0.51 : 0.63, 20% CP), the low-protein diets significantly augmented the concentrations of most essential amino acids and non-essential amino acids (p < .05), with the greatest values observed in the 1 : 0.25 : 0.25 group. Moreover, relative to the control, the low-protein diets with the Leu : Ile : Val ratio ranging from 1 : 0.75 : 0.75 to 1 : 0.25 : 0.25 markedly downregulated the mRNA abundance of acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP-4) (p < .05), and upregulated the mRNA expression of hormone-sensitive lipase (HSL), peroxisome proliferator-activated receptor-g coactivator-1α (PGC-1α), uncoupling protein 3 (UCP3) and liver carnitine palmitoyltransferase 1 (L-CPT-1) (p < .05). Therefore, our data suggest that protein-restricted diets supplemented with optimal BCAA ratio, that is, 1 : 0.75 : 0.75-1 : 0.25 : 0.25, induce a shift from fatty acid synthesis to fatty acid oxidation in the liver of growing pigs. These effects may be associated with increased mitochondrial biogenesis.

  12. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-06-01

    The origin of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threonine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from α-ketoisovaleric acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use of the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  13. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  14. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    Science.gov (United States)

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected.

  15. Early administration of branched-chain amino acid granules

    Institute of Scientific and Technical Information of China (English)

    Toru Ishikawa

    2012-01-01

    The effect of malnutrition on survival in patients with decompensated liver cirrhosis has not been well defined.Nutritional intervention with branched-chain amino acid (BCAA) can increase serum albumin concentration in patients with decompensated cirrhosis but its effects on survival are unclear.The BCAA to tyrosine ratio (BTR) is a surrogate marker (the normal range of BTR is between 4.41 and 10.05,and a Fischer's ratio of 1.8 corresponds to a BTR of 3.5) in patients with decompensated liver cirrhosis,and BCAA inhibits hepatic carcinogenesis in patients with compensated cirrhosis.This review discusses data regarding the effect of early administration of BCAA granules based on the ratio of BCAA to BTR on prognosis in patients with cirrhosis.

  16. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    according to the ideal protein profile that is compatible with the animal AA demand for normal body function. During the past decades, it has been tried to understand and characterize branched chain amino acids (BCAA) requirements, biological importance, and mode of actions. This is interesting for two...... reasons: first, BCAA share the same enzymes in their catabolic pathways, and there is an interaction among them in a way that excess Leu for example increases the catabolism of them all and changes the requirements. Second, BCAA are not only building blocks of protein biosynthesis, but are also involved...... in important regulatory mechanisms and biological functions, e.g. muscle protein synthesis, chronic diseases, neurotransmitter biosynthesis, and so on. Identifying biomarkers of the BCAA status may help to understand their biological effects. The objectives of the current study were first to estimate Ile, Val...

  17. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  18. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  19. Branched-chain amino acids for hepatic encephalopathy. Protocol for Cochrane Review

    DEFF Research Database (Denmark)

    Gluud, C; Koretz, RL

    2000-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  20. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    OpenAIRE

    Todorov K.; Georgiev T.; Ratkov A.

    2009-01-01

    This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rat...

  1. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  2. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  3. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans.

    Science.gov (United States)

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C; Quivey, Robert G

    2012-04-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353-1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638-641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007-4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414-419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F(1)-F(o) ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans.

  4. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.

  5. Oral branched-chain amino acids decrease whole-body proteolysis

    Science.gov (United States)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  6. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    OpenAIRE

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E.; Anderson, Ellen J.; Walford, Geoffrey A.

    2016-01-01

    Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fasti...

  7. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.

  8. Mathematical Modeling of the Process for Microbial Production of Branched Chained Amino Acids

    Directory of Open Access Journals (Sweden)

    Todorov K.

    2009-12-01

    Full Text Available This article deals with modelling of branched chained amino acids production. One of important branched chained amino acid is L-valine. The aim of the article is synthesis of dynamic unstructured model of fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  9. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.

    Science.gov (United States)

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J; Katzir, Nurit; Lewinsohn, Efraim

    2010-02-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

  10. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD

    Science.gov (United States)

    S. Sonnet, Davis; N. O’Leary, Monique; A. Gutierrez, Mark; M. Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P. Mitchell, Kylie; J. Lopez, Antonio; Vockley, Jerry; K. Kennedy, Brian; Ramanathan, Arvind

    2016-01-01

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production. PMID:27373929

  11. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  12. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway.

    Science.gov (United States)

    Wanders, Ronald J A; Duran, Marinus; Loupatty, Ference J

    2012-01-01

    Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.

  13. Branched-chain amino acids in metabolic signaling and insulin resistance

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  14. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo;

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...

  15. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...... randomised clinical trials including 827 participants with hepatic encephalopathy classed as overt (12 trials) or minimal (four trials). Eight trials assessed oral BCAA supplements and seven trials assessed intravenous BCAA. The control groups received placebo/no intervention (two trials), diets (10 trials...... between BCAA and controls (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.69 to 1.11; 760 participants; 15 trials; moderate quality of evidence). We found no evidence of small-study effects. Sensitivity analyses of trials with a low risk of bias found no beneficial or detrimental effect of BCAA...

  16. Dietary branched-chain amino acid (BCAA) and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  17. Branched chain amino acid transaminase and branched chain alpha-ketoacid dehydrogenase activity in the brain, liver and skele­tal muscle of acute hepatic failure rats

    Directory of Open Access Journals (Sweden)

    Takei,Nobuyuki

    1985-02-01

    Full Text Available Branched chain amino acid (BCAA transaminase activity increased in both the mitochondrial and supernatant fractions of brain from hepatic failure rats, in which a partial hepatectomy was performed 24h following carbon tetrachloride (CCl4 administration, although the activity of liver and skeletal muscle was the same as in control rats. The elevation of mitochondrial BCAA transaminase activity in liver-injured rats was partly due to increased activity of brain specific Type III isozyme. Branched chain alpha-ketoacid (BCKA dehydrogenase in the brain homogenates was not significantly altered in acute hepatic failure rats, while the liver enzyme activity was markedly diminished. BCKA dehydrogenase activity in the brain homogenates was inhibited by adding ATP to the assay system, and was activated in vitro by preincubating the brain homogenate at 37 degrees C for 15 min. These findings suggest that brain BCAA catabolism is accelerated in acute hepatic failure rats.

  18. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  19. Effects of Branched Chain Amino Acids or Fatty Acid Supplementation on in Vitro Fermentation of Corn Straw and Bacterial Diversity%添加支链氨基酸或支链脂肪酸对玉米秸秆体外瘤胃发酵和细菌多样性的影响

    Institute of Scientific and Technical Information of China (English)

    张慧玲; 李林; 陈勇; 许晓莉; 杨玉霞

    2012-01-01

    In vitro culture technique was adopted to study the effects of branched-chain amino acid (BCAA) or branched-chain volatile fatty acid (BCVFA) on fermentation of corn straw. Results showed that the concentration of total volatile fatty acid,acetic acid,propanoic acid,and butyric acid,and the degradation of dry matter (DM) and neutral detergent fiber (NDF) were not affected by 2 mmol/L BCAA or BCVFA supplementation. Compared with the BCVFA,BCAA supplementation tended to increase the concentrations of total volatile fatty acid (TVFA). Supplementation of valine (Val) and isobutyric acid increased the concentrations of isobutyric acid in the ruminal fluid by 2. 85 and 3. 12 fold ( P <0. 05). Addition of leucine (Leu) ,isovaleric acid,isoleucine (He) and 2-methylbutyric acid increased the concentration of isovaleric acid in the ruminal fluid by 2. 20 - 2. 50 fold ( P <0. 05). Compared with the BCVFA,supplementation of Val,Leu and He increased the concentration of valeric acid in ruminal fluid by 27. 69% ( P < 0. 05) ,25. 68% ( P <0. 05) and 39. 34% ( P <0. 05) respectively. Final pH decreased and degradation of DM and NDF of corn straw increased and the concentrations of TVFA,acetic acid,propanoic acid and butyric acid tended to increase by 4 mmol/L BCAA or BCVFA supplementation. Addition of isovaleric acid, He and 2-methylbutyric acid increased the concentrations of propanoic acid by 29. 94% ( P < 0. 05), 26. 31% ( P <0. 05) and 25. 00% ( P'<0. 05) respectively. Supplementation of Val and isobutyric acid increased the concentrations of isobutyric acid in the ruminal fluid by 5. 30 and 5. 45 fold ( P <0. 05). Addition of 4 mmol/L Leu,isovaleric acid,He and 2-methylbutyric acid increased the concentration of isovaleric acid in the ruminal fluid by 3. 76 — 4. 20 fold ( P <0. 05). Compared with the BCVFA, supplementation of 4 mmol/L Val,Leu and He increased the concentration of valeric acid in ruminal fluid by 22. 92% ( P < 0.05), 33. 33% (P<0. 05) and 55. 00% ( P <0. 05

  20. Plasma branched chain amino acid abnormalities in sake-treated rats.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1985-02-01

    Full Text Available Plasma amino acid abnormalities in rats treated with large doses of sake and whisky for 3 days were investigated under adequate nutritional conditions. A significant decrease in plasma branched-chain amino acid (BCAA levels was observed in sake- but not whisky-treated rats. However, known factors affecting BCAA levels, such as serum insulin and plasma glucagon levels ahd BCAA-metabolizing enzyme (BCAA transaminase and branched chain alpha-ketoacid dehydrogenase activities in the liver and skeletal muscle, were not significantly altered in the sake group. Furthermore, ethanol-metabolizing enzyme (alcohol and aldehyde dehydrogenases and the microsomal ethanol-oxidizing system activities in the liver were not altered in the sake group. Other mechanisms need to be considered for explaining the diminished levels of plasma BCAA in sake-treated rats.

  1. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate.

    Science.gov (United States)

    Karlsson, Magnus; Jensen, Pernille R; in 't Zandt, René; Gisselsson, Anna; Hansson, Georg; Duus, Jens Ø; Meier, Sebastian; Lerche, Mathilde H

    2010-08-01

    Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized (13)C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that alpha-ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto-oncogene c-myc. Very different fluxes through the BCAT-catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7-fold higher hyperpolarized (13)C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.

  2. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis

    OpenAIRE

    Radford Cynthia L; Knodel Marvin H; Venos Erik S; Berger Bradley J

    2004-01-01

    Abstract Background Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending...

  3. Sodium Phenylbutyrate Decreases Plasma Branched-Chain Amino Acids in Patients with Urea Cycle Disorders

    OpenAIRE

    Burrage, Lindsay C.; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H.; Nagamani, Sandesh CS

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle...

  4. Novel metabolic and physiological functions of branched chain amino acids: a review

    OpenAIRE

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining ...

  5. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  6. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice.

    Science.gov (United States)

    Lian, Kun; Du, Chaosheng; Liu, Yi; Zhu, Di; Yan, Wenjun; Zhang, Haifeng; Hong, Zhibo; Liu, Peilin; Zhang, Lijian; Pei, Haifeng; Zhang, Jinglong; Gao, Chao; Xin, Chao; Cheng, Hexiang; Xiong, Lize; Tao, Ling

    2015-01-01

    The branched-chain amino acids (BCAA) accumulated in type 2 diabetes are independent contributors to insulin resistance. The activity of branched-chain α-keto acid dehydrogenase (BCKD) complex, rate-limiting enzyme in BCAA catabolism, is reduced in diabetic states, which contributes to elevated BCAA concentrations. However, the mechanisms underlying decreased BCKD activity remain poorly understood. Here, we demonstrate that mitochondrial phosphatase 2C (PP2Cm), a newly identified BCKD phosphatase that increases BCKD activity, was significantly downregulated in ob/ob and type 2 diabetic mice. Interestingly, in adiponectin (APN) knockout (APN(-/-)) mice fed with a high-fat diet (HD), PP2Cm expression and BCKD activity were significantly decreased, whereas BCKD kinase (BDK), which inhibits BCKD activity, was markedly increased. Concurrently, plasma BCAA and branched-chain α-keto acids (BCKA) were significantly elevated. APN treatment markedly reverted PP2Cm, BDK, BCKD activity, and BCAA and BCKA levels in HD-fed APN(-/-) and diabetic animals. Additionally, increased BCKD activity caused by APN administration was partially but significantly inhibited in PP2Cm knockout mice. Finally, APN-mediated upregulation of PP2Cm expression and BCKD activity were abolished when AMPK was inhibited. Collectively, we have provided the first direct evidence that APN is a novel regulator of PP2Cm and systematic BCAA levels, suggesting that targeting APN may be a pharmacological approach to ameliorating BCAA catabolism in the diabetic state.

  7. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  8. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3 Intracellular chemical development in A. parasiticus is linked to morphological development. 4 Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products.

  9. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products. PMID:20735852

  10. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Radford Cynthia L

    2004-10-01

    Full Text Available Abstract Background Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending on the particular species examined. Results The gene encoding for branched-chain amino acid aminotransferase in Mycobacterium tuberculosis H37Rv has been cloned, expressed, and characterised. The enzyme was found to be a member of the aminotransferase IIIa subfamily, and closely related to the corresponding aminotransferase in Bacillus subtilis, but not to that found in B. anthracis or B. cereus. The amino donor preference for the formation of methionine from ketomethiobutyrate was for isoleucine, leucine, valine, glutamate, and phenylalanine. The enzyme catalysed branched-chain amino acid and ketomethiobutyrate transamination with a Km of 1.77 – 7.44 mM and a Vmax of 2.17 – 5.70 μmol/min/mg protein, and transamination of ketoglutarate with a Km of 5.79 – 6.95 mM and a Vmax of 11.82 – 14.35 μmol/min/mg protein. Aminooxy compounds were examined as potential enzyme inhibitors, with O-benzylhydroxylamine, O-t-butylhydroxylamine, carboxymethoxylamine, and O-allylhydroxylamine yielding mixed-type inhibition with Ki values of 8.20 – 21.61 μM. These same compounds were examined as antimycobacterial agents against M. tuberculosis and a lower biohazard M. marinum model system, and were found to completely prevent cell growth. O-Allylhydroxylamine was the most effective growth inhibitor with an MIC of 78 μM against M. marinum and one of 156 ��M against M. tuberculosis. Conclusion Methionine formation from ketomethiobutyrate is catalysed by a

  11. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  12. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  13. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS.

    Science.gov (United States)

    Yudkoff, Marc

    2017-01-01

    Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.

  14. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment.

    Science.gov (United States)

    Iwasa, Motoh; Ishihara, Tomoaki; Mifuji-Moroka, Rumi; Fujita, Naoki; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Iwata, Kazuko; Kaito, Masahiko; Takei, Yoshiyuki

    2015-01-01

    Diabetes mellitus (DM), non-alcoholic fatty liver (NAFL), and obesity are associated with elevated branched-chain amino acid (BCAA) levels, but the mechanism and significance of this has not been elucidated. Eighty-four subjects were enrolled including 43 with DM. Serum BCAA levels were positively correlated with waist-hip ratio and ALT. Serum BCAA levels in subjects with DM were higher than non-DM and those in subjects with NAFL were also higher than non-NAFL. Treatment with pioglitazone and alogliptin (19 of 43 DM subjects) improved serum haemoglobin A1c and decreased BCAA levels. The decrease in BCAAs with improved glucose metabolism suggests that abnormal glucose metabolism is also a factor in elevated BCAA levels.

  15. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  16. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    Directory of Open Access Journals (Sweden)

    Nicole Landa Cavallaro

    2016-01-01

    Full Text Available Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D. Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Design: Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]. All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Results: Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all. Fasting valine was significantly lower (p=0.02 and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Conclusion: Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.

  17. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  18. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    Science.gov (United States)

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions.

  19. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.;

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. Conclusions: The results suggest...

  20. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  1. Fermentative production of branched chain amino acids: a focus on metabolic engineering.

    Science.gov (United States)

    Park, Jin Hwan; Lee, Sang Yup

    2010-01-01

    The branched chain amino acids (BCAAs), L-valine, L-leucine, and L-isoleucine, have recently been attracting much attention as their potential to be applied in various fields, including animal feed additive, cosmetics, and pharmaceuticals, increased. Strategies for developing microbial strains efficiently producing BCAAs are now in transition toward systems metabolic engineering from random mutagenesis. The metabolism and regulatory circuits of BCAA biosynthesis need to be thoroughly understood for designing system-wide metabolic engineering strategies. Here we review the current knowledge on BCAAs including their biosynthetic pathways, regulations, and export and transport systems. Recent advances in the development of BCAA production strains are also reviewed with a particular focus on L-valine production strain. At the end, the general strategies for developing BCAA overproducers by systems metabolic engineering are suggested.

  2. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels

    DEFF Research Database (Denmark)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T

    2017-01-01

    AIMS/HYPOTHESIS: Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic...... variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS: We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome...... variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. RESULTS: Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10(-7)). However...

  3. The dietary branched chain amino acid requirements of hybrid striped bass(Morone chrysops x M. saxatilis)

    Science.gov (United States)

    The requirements for branched chain amino acids (BCAAs) are unknown in hybrid striped bass and necessary for formulating efficient and nutritious diets. Moreover, the dietary balance among these three amino acids can substantially influence the performance of meat animals fed those diets. The diet...

  4. Associations between plasma branched-chain amino acids, β-aminoisobutyric acid and body composition.

    Science.gov (United States)

    Rietman, Annemarie; Stanley, Takara L; Clish, Clary; Mootha, Vamsi; Mensink, Marco; Grinspoon, Steven K; Makimura, Hideo

    2016-01-01

    Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with increased cardiometabolic risk. β-Aminoisobutyric acid (B-AIBA), a recently identified small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore, we investigated the association of BCAA and B-AIBA with each other and with detailed body composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A cross-sectional study was carried out with lean (n 15) and obese (n 33) men and women. Detailed metabolic evaluations, including measures of body composition, insulin sensitivity and plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08) (×10(7)) v. 1·3 (se 0·06) (×10(7)) arbitrary units; P = 0·005) in obese v. lean subjects. BCAA were positively associated with VAT (R 0·49; P = 0·0006) and trended to an association with SAT (R 0·29; P = 0·052). The association between BCAA and VAT, but not SAT, remained significant after controlling for age, sex and race on multivariate modelling (P BCAA were also associated with parameters of insulin sensitivity (Matsuda index: R -0·50, P = 0·0004; glucose AUC: R 0·53, P BCAA were not associated with B-AIBA (R -0·04; P = 0·79). B-AIBA was negatively associated with SAT (R -0·37; P = 0·01) but only trended to an association with VAT (R 0·27; P = 0·07). However, neither relationship remained significant after multivariate modelling (P > 0·05). Plasma B-AIBA was associated with parameters of insulin sensitivity (Matsuda index R 0·36, P = 0·01; glucose AUC: R -0·30, P = 0·04). Plasma BCAA levels were positively correlated with VAT and markers of insulin resistance. The results suggest a possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.

  5. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions.

    Science.gov (United States)

    Park, Yoon Mee; Lee, Hwa Jeong; Jeong, Jae-Ho; Kook, Joong-Ki; Choy, Hyon E; Hahn, Tae-Wook; Bang, Iel Soo

    2015-12-01

    Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.

  6. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  7. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya

    2017-03-21

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1(flox/flox):Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD.

  8. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications.

    Science.gov (United States)

    Holecek, Milan

    2013-10-01

    The rationale for recommendation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in treatment of liver failure is based on their unique pharmacologic properties, stimulatory effect on ammonia detoxification to glutamine (GLN), and decreased concentrations in liver cirrhosis. Multiple lines of evidence have shown that the main cause of the BCAA deficiency in liver cirrhosis is their consumption in skeletal muscle for synthesis of glutamate, which acts as a substrate for ammonia detoxification to GLN and that the BCAA administration to patients with liver failure may exert a number of positive effects that may be more pronounced in patients with marked depression of BCAA levels. On the other hand, due to the stimulatory effect of BCAA on GLN synthesis, BCAA supplementation may lead to enhanced ammonia production from GLN breakdown in the intestine and the kidneys and thus exert harmful effects on the development of hepatic encephalopathy. Therefore, to enhance therapeutic effectiveness of the BCAA in patients with liver injury, their detrimental effect on ammonia production, which is negligible in healthy people and/or patients with other disorders, should be avoided. In treatment of hepatic encephalopathy, simultaneous administration of the BCAA (to correct amino acid imbalance and promote ammonia detoxification to GLN) with α-ketoglutarate (to inhibit GLN breakdown to ammonia in enterocytes) and/or phenylbutyrate (to enhance GLN excretion by the kidneys) is suggested. Attention should be given to the type of liver injury, gastrointestinal bleeding, signs of inflammation, and the dose of BCAA.

  9. Novel metabolic and physiological functions of branched chain amino acids: a review.

    Science.gov (United States)

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  10. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.; Boden, G.

    1999-01-01

    Bed rest is generally accepted as being an appropriate ground-based model for human spaceflight. The objectives of this study were to test the hypothesis that increasing the amount of branched-chain amino acids (BCAAs) in the diet could attenuate the protein loss associated with bed rest. Nineteen healthy subjects were randomized into two groups according to diet. During the 6 d of bed rest, the diets were supplemented with either 30 mmol/d each of three non-essential amino acids, glycine, serine, and alanine (control group), or with 30 mmol/d each of the BCAAs, leucine, isoleucine, and valine (BCAA group). Nutrition was supplied as a commercially available defined formula diet at a rate of 1.3 x REE. Nitrogen (N) balance and urinary 3-MeH excretion were determined for the 6 d. In our results, the urine-based estimate of N balance was 22.2 +/- 14.4 (n = 9) mg N.kg-1.d-1 and 60.5 +/- 10.1 mg (n = 8) N.kg-1.d-1 for the control and BCAA-supplemented groups, respectively (P BCAA supplementation attenuates the N loss during short-term bed rest.

  11. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    Science.gov (United States)

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism.

  12. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  13. Attenuation of the protein wasting associated with bed rest by branched-chain amino acids

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.; Boden, G.

    1999-01-01

    Bed rest is generally accepted as being an appropriate ground-based model for human spaceflight. The objectives of this study were to test the hypothesis that increasing the amount of branched-chain amino acids (BCAAs) in the diet could attenuate the protein loss associated with bed rest. Nineteen healthy subjects were randomized into two groups according to diet. During the 6 d of bed rest, the diets were supplemented with either 30 mmol/d each of three non-essential amino acids, glycine, serine, and alanine (control group), or with 30 mmol/d each of the BCAAs, leucine, isoleucine, and valine (BCAA group). Nutrition was supplied as a commercially available defined formula diet at a rate of 1.3 x REE. Nitrogen (N) balance and urinary 3-MeH excretion were determined for the 6 d. In our results, the urine-based estimate of N balance was 22.2 +/- 14.4 (n = 9) mg N.kg-1.d-1 and 60.5 +/- 10.1 mg (n = 8) N.kg-1.d-1 for the control and BCAA-supplemented groups, respectively (P < 0.05). Urinary 3-MeH excretion was unchanged in both groups with bed rest. We conclude that BCAA supplementation attenuates the N loss during short-term bed rest.

  14. Branched-chain amino acid supplementation during bed rest: effect on recovery

    Science.gov (United States)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  15. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    Science.gov (United States)

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  16. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy

    Directory of Open Access Journals (Sweden)

    Fuyang Zhang

    2016-11-01

    Full Text Available The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD + BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR, inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA in the HFD + BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  17. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  18. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  19. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  20. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Science.gov (United States)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  1. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  2. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    Science.gov (United States)

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  3. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy

    OpenAIRE

    Fuyang Zhang; Shihao Zhao; Wenjun Yan; Yunlong Xia; Xiyao Chen; Wei Wang; Jinglong Zhang; Chao Gao; Cheng Peng; Feng Yan; Huishou Zhao; Kun Lian; Yan Lee; Ling Zhang; Wayne Bond Lau

    2016-01-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alco...

  4. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  5. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial

    Science.gov (United States)

    Ruiz-Canela, Miguel; Toledo, Estefania; Clish, Clary B.; Hruby, Adela; Liang, Liming; Salas-Salvadó, Jordi; Razquin, Cristina; Corella, Dolores; Estruch, Ramón; Ros, Emilio; Fitó, Montserrat; Gómez-Gracia, Enrique; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluis; Martínez-González, Miguel A.; Hu, Frank B.

    2016-01-01

    Background The role of branched-chain amino acids (BCAAs) in cardiovascular disease (CVD) remains poorly understood. We hypothesized that baseline BCAA concentrations predict future risk of CVD and that a Mediterranean Diet (MedDiet) intervention may counteract this effect. Methods We developed a case-cohort study within the “PREvención con DIeta MEDiterránea” (PREDIMED), with 226 incident CVD cases and 781 non-cases. We used LC-MS/MS to measure plasma BCAAs (leucine, isoleucine and valine), both at baseline and after 1-year follow-up. The primary outcome was a composite of incident stroke, myocardial infarction, or cardiovascular death. Results After adjustment for potential confounders, baseline leucine and isoleucine concentrations were associated with higher CVD risk: the hazard ratios (HRs) for the highest vs. lowest quartile were 1.70 (95% confidence interval, 1.05–2.76) and 2.09 (1.27–3.44), respectively. Stronger associations were found for stroke. For both CVD and stroke, we found higher HRs across successive quartiles of BCAAs in the control group than in the MedDiet groups. Using stroke as the outcome, a significant interaction (P=0.009) between the baseline BCAA score and the intervention with MedDiet was observed. No significant effect of the intervention on 1-yr changes in BCAAs nor any association between 1-year changes in BCAAs and CVD were observed. Conclusions Higher concentrations of baseline BCAAs were associated with increased risk of CVD, especially stroke, in a high cardiovascular risk population. A Mediterranean-style diet had a negligible effect on 1-year changes in BCAAs, but it may counteract the harmful effects of BCAAs on stroke. PMID:26888892

  6. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  7. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one......-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control...... and BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post...

  8. Is administrating branched-chain amino acid-enriched nutrition achieved symptom-free in malnourished cirrhotic patients?

    OpenAIRE

    Tsuda, Yasuhiro; Fukui, Hideo; Sujishi, Tetsuya; Ohama, Hideko; Tsuchimoto, Yusuke; Asai, Akira; Fukunisi, Shinya; Higuchi, Kazuhide

    2013-01-01

    Administration of branched-chain amino acids (BCAA) has been reported to improve liver function, quality of life (QOL). However, in some malnourished patients, serum albumin levels do not improve in response to BCAA granules. In this study, we examined the effects of BCAA-enriched enteral nutrition in patients unresponsive to BCAA granules. Thirty-two decompensated cirrhotic patients at Osaka Medical College were enrolled in this study. Since all patients showed no improvement in serum albumi...

  9. Branched-Chain Amino Acids Are Required for the Survival and Virulence of Actinobacillus pleuropneumoniae in Swine▿

    OpenAIRE

    Subashchandrabose, Sargurunathan; LeVeque, Rhiannon M.; Wagner, Trevor K.; Kirkwood, Roy N; Kiupel, Matti; Mulks, Martha H.

    2009-01-01

    In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and t...

  10. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.

    Science.gov (United States)

    Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2013-10-01

    Branched-chain amino acids (BCAAs) constituting of valine, leucine, and isoleucine act as both substrates of proteins and as key regulators for various nutrient metabolisms. Patients with liver cirrhosis frequently lack sufficient BCAAs and therefore suffer from various metabolic disorders. Hepatic encephalopathy (HE) is a severe metabolic disorder with neurologic manifestations such as flapping tremors and coma in patients with liver cirrhosis. In addition, a mild form of HE known as minimal HE (MHE) is an important social issue because it occurs in up to 80% of patients with chronic liver disease and affects prognosis and activities of daily living, possibly resulting in falls and motor vehicle accidents. Although HE/MHE can be caused by various pathological conditions, including in an accumulation of mercaptans, short-chain fatty acids, and alterations in the gut flora, hyperammonemia has also been implicated in an important pathogenesis of HE/MHE. Besides urea cycle of liver, ammonia can be detoxified in the skeletal muscles by the amidation process for glutamine synthesis using BCAAs. Thus, BCAA supplementation may enhance detoxification of ammonia in skeletal muscle and may be a possible therapeutic strategy for HE/MHE. In this review, we summarize the clinical impacts of BCAA supplementation on HE/MHE and discuss possible mechanisms for a BCAA-induced improvement of HE/MHE. Furthermore, we present some modifications of oral BCAA therapy for improvement of efficacy in HE treatment. We also briefly describe pleiotropic benefits of BCAAs on life-threatening events and overall prognosis in patients with liver cirrhosis.

  11. Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    Directory of Open Access Journals (Sweden)

    Jang Tsong-Rong

    2011-11-01

    Full Text Available Abstract Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial, 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial, or water (placebo trial. The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect.

  12. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Ppalmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all P<0.05) in the obese group. The postprandial metabolite of PA and BCAAs may play important role in the development and onset of insulin resistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity.

  13. Branched-chain amino acid treatment before transcatheter arterial chemoembolization for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hiroki Nishikawa; Yukio Osaki; Tadashi Inuzuka; Haruhiko Takeda; Jun Nakajima; Fumihiro Matsuda; Shin-ichiro Henmi

    2012-01-01

    AIM:To examine the significance of branched-chain amino acid (BCAA) treatment before transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC).METHODS:This study included 99 patients who underwent TACE therapy for HCC at our hospital and were followed up without treatment for at least 6 mo between January 2004 and January 2010.They were divided into 2 groups:those receiving BCAA granules (n =40) or regular diet (n =59,control).Data obtained were retrospectively analyzed (prior to TACE,and 1 wk,1,3,and 6 mo after TACE) in terms of nutritional condition and clinical laboratory parameters (serum albumin level and Child-Pugh score),both of which are determinants of hepatic functional reserve.RESULTS:The BCAA group comprised 27 males and 13 females with a mean age of 69.9 ± 8.8 years.The patients of the BCAA group were classified as follows:Child-Pugh A/B/C in 22/15/3 patients,and Stage Ⅱ/Ⅲ/IVA HCC in 12/23/5 patients,respectively.The control group comprised 32 males and 27 females with a mean age of 73.2 ± 10.1 years.In the control group,9 patients had chronic hepatitis,Child-Pugh A/B/C in 39/10/1 patients,and Stage I/Ⅱ /Ⅲ/IVA HCC in 1/11/35/12 patients,respectively.Overall,both serum albumin level and Child-Pugh score improved significantly in the BCAA group as compared with the control 3 and 6 mo after TACE (P < 0.05).Further analysis was performed by the following categorization:(1) child-Pugh classification; (2) liver cirrhosis subgroup with a serum albumin level > 3.5 g/dL; and (3) epirubicin dose.A similar trend indicating a significant improvement of all variables in the BCAA group was noted (P < 0.05).CONCLUSION:Treatment with BCAA granules in patients who have undergone TACE for HCC is considered useful to maintain their hepatic functional reserve.

  14. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men.

    Science.gov (United States)

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; Sato, Juichi; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10-90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrations of plasma isoleucine, valine and phenylalanine subsequently decreased after ingestion, and those of methionine and tyrosine tended to decrease. The effects of ingested leucine on other plasma amino acids were biphasic, being higher at lower doses (10-20 mg/kg body weight). Isoleucine or valine intake also caused corresponding plasma amino acid concentrations to rapidly elevate, and peaks at 30-40 min after ingestion were much higher than that of plasma leucine after leucine ingestion. However, the increase in plasma isoleucine and valine concentrations essentially did not affect those of other plasma amino acids. The rate of decline among peak plasma BCAA concentrations was the highest for leucine, followed by isoleucine and valine. Oral mixed BCAAs promoted the decline in plasma isoleucine and valine concentrations. These results suggest that plasma leucine is a regulator of the plasma concentrations of BCAAs, methionine and aromatic amino acids.

  15. Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players

    Science.gov (United States)

    Ermolao, Andrea; Zanotto, Tobia; Carraro, Nicolò; Fornasier, Tommaso; Zaccaria, Marco; Neunhaeuserer, Daniel; Bergamin, Marco

    2017-01-01

    The aim was to investigate the effect of a dietary supplementation on the repeated sprint ability (RSA) performance in recreationally trained team sports athletes. Twelve young men underwent a RSA exercise protocol in five trials, in which participants ingested carbohydrates (CHO) plus caffeine (Caf), CHO plus arginine (Arg), CHO plus branched-chain amino acids (BCAA), CHO plus Caf, Arg, and BCAA (ALL), and CHO only. Heart rate, oxygen saturation, hematic lactate, ratings of perceived exertion, average sprint time, total time, best sprint time, peak power, and average power were taken. Data revealed no significant effects neither on physiological nor performance parameters with any of the supplements. PMID:28349034

  16. The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast.

    Science.gov (United States)

    Darvishi, Emad; Omidi, Mansoor; Bushehri, Ali Akbar Shahnejat; Golshani, Ashkan; Smith, Myron L

    2013-01-01

    Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products.

  17. YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli.

    Science.gov (United States)

    Liu, Qian; Liang, Yong; Zhang, Yun; Shang, Xiuling; Liu, Shuwen; Wen, Jifu; Wen, Tingyi

    2015-11-01

    Amino acid efflux transport systems have important physiological functions and play vital roles in the fermentative production of amino acids. However, no methionine exporter has yet been identified in Escherichia coli. In this study, we identified a novel amino acid exporter, YjeH, in E. coli. The yjeH overexpression strain exhibited high tolerance to the structural analogues of l-methionine and branched-chain amino acids, decreased intracellular amino acid levels, and enhanced export rates in the presence of a Met-Met, Leu-Leu, Ile-Ile, or Val-Val dipeptide, suggesting that YjeH functions as an exporter of l-methionine and the three branched-chain amino acids. The export of the four amino acids in the yjeH overexpression strain was competitively inhibited in relation to each other. The expression of yjeH was strongly induced by increasing cytoplasmic concentrations of substrate amino acids. Green fluorescent protein (GFP)-tagged YjeH was visualized by total internal reflection fluorescence microscopy to confirm the plasma membrane localization of YjeH. Phylogenetic analysis of transporters indicated that YjeH belongs to the amino acid efflux family of the amino acid/polyamine/organocation (APC) superfamily. Structural modeling revealed that YjeH has the typical "5 + 5" transmembrane α-helical segment (TMS) inverted-repeat fold of APC superfamily transporters, and its binding sites are strictly conserved. The enhanced capacity of l-methionine export by the overexpression of yjeH in an l-methionine-producing strain resulted in a 70% improvement in titer. This study supplements the transporter classification and provides a substantial basis for the application of the methionine exporter in metabolic engineering.

  18. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids....... The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical...... to that of the corresponding enzyme in Staphylococcus aureus and that the ilvE gene was constitutively expressed as a monocistronic transcript. To study the influence of ilvE on BCAA catabolism, we constructed an ilvE deletion mutant by gene replacement. The IlvE protein from S. carnosus was shown mainly to catalyze...

  19. Biosynthesis of branched-chain amino acids in Schizosaccharomyces pombe: properties of acetohydroxy acid synthetase.

    Science.gov (United States)

    McDonald, R A; Satyanarayana, T; Kaplan, J G

    1973-04-01

    The regulatory properties of acetohydroxy acid synthetase (AHAS), the first enzyme in the biosynthetic pathway to valine and the second in the isoleucine pathway, were investigated in the fission yeast Schizosaccharomyces pombe. The enzyme was partially purified from crude extracts by protamine sulfate treatment, ammonium sulfate fractionation, and gel filtration through Sephadex G-25. AHAS from S. pombe is unique in that its activity shows a single peak around pH 6.5; high sensitivity to feedback inhibition by valine at this pH (K(i) = 0.1 mM) indicates that the enzyme is involved in valine biosynthesis. Pyruvate saturation kinetics of AHAS extracted from cells grown on glycerol as sole carbon and energy source were normal and hyperbolic. In contrast, the enzyme from glucose-grown cells exhibited sigmoidal saturation kinetics, an effect which disappeared when the synthetase from such cells was partially purified. This phenomenon was shown to be due to competition for pyruvate between AHAS and pyruvate decarboxylase; the latter enzyme is present in large amounts in cells fermenting glucose. Valine inhibition is noncompetitive in nature, and this effector exhibits homotropic cooperative effects; isoleucine is a less-potent inhibitor of AHAS activity. Mercurial treatment reversibly desensitized the enzyme to valine inhibition. On the basis of these data, the S. pombe AHAS appears to be an allosteric regulatory enzyme with the properties of a negative V system.

  20. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  1. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    Directory of Open Access Journals (Sweden)

    Darren G. Candow

    2012-11-01

    Full Text Available The loss of muscle mass and strength with aging (i.e., sarcopenia has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA, primarily leucine, increases the activation of pathways involved in muscle protein synthesis through insulin-dependent and independent mechanisms, which may help counteract the “anabolic resistance” to feeding in older adults. Leucine exhibits strong insulinotropic characteristics, which may increase amino acid availability for muscle protein synthesis, reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood glucose homeostasis.

  2. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1......) or (3) a high dose of BCAA (18 g l-1). 2. These treatments greatly increased the plasma concentration of the respective amino acids. Using the kinetic parameters of transport of human brain capillaries, BCAA supplements were estimated to reduce brain tryptophan uptake at exhaustion by 8-12%, while...

  3. Weight loss and weight maintenance obtained with or without GLP-1 analogue treatment decrease branched chain amino acid levels

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Iepsen, Eva Pers Winning; Galijatovic, Ehm Astrid Andersson

    2016-01-01

    Introduction Increased levels of circulating branched chain amino acids (BCAAs), as well as phenylalanine, and tyrosine have been suggested to be involved in the pathogenesis of insulin resistance and type 2 diabetes. However, it is unknown how these metabolites are affected by weight loss...... spectroscopy was used for quantification of metabolites. Results The weight loss was maintained in both groups and was associated with 9–20 % decreases in plasma concentrations of alanine, phenylalanine, histidine, tyrosine and the BCAAs leucine, isoleucine and valine (p ... is associated with marked changes in plasma concentrations of eight amino acids and glycolysis-related metabolites. Levels of the suggested type 2 diabetes risk markers (BCAAs) remain low during long-term weight maintenance....

  4. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  5. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  6. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km

    DEFF Research Database (Denmark)

    Madsen, Klavs; MacLean, David A; Kiens, Bente

    1996-01-01

    This study was undertaken to determine the effects of ingesting either glucose (trial G) or glucose plus branched-chain amino acids (BCAA: trial B), compared with placebo (trial P), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 +/- 1.5 ml O2. min-1.kg-1...... between the three trials (160.1 +/- 4.1, 157.2 +/- 4.5, and 159.8 +/- 3.7 min, respectively). In trial B, plasma BCAA levels increased from 339 +/- 28 microM at rest to 1,026 +/- 62 microM after exercise (P ... glucose plus BCAA ingestion during 100 km of cycling enhance performance in well-trained cyclists....

  7. Does Branched-Chain Amino Acids Supplementation Modulate Skeletal Muscle Remodeling through Inflammation Modulation? Possible Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs, especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.

  8. First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for L-amino acids and R-amines.

    Science.gov (United States)

    Boyko, Konstantin M; Stekhanova, Tatiana N; Nikolaeva, Alena Yu; Mardanov, Andrey V; Rakitin, Andrey L; Ravin, Nikolai V; Bezsudnova, Ekaterina Yu; Popov, Vladimir O

    2016-03-01

    The gene TUZN1299 from the genome of the hyperthermophilic archaeon Thermoproteus uzoniensis encoding a new 32.8 kDa branched-chain amino acid aminotransferase (BCAT) was expressed in Escherichia coli. The recombinant protein TUZN1299 was purified to homogeneity in the PLP-bound form. TUZN1299 was active towards branched-chain amino acids (L-Val, L-Leu, L-Ile) and showed low but detectable activity toward (R)-alpha-methylbenzylamine. The enzyme exhibits high-temperature optimum, thermal stability, and tolerance to organic solvents. The structure of an archaeal BCAT called TUZN1299 was solved for the first time (at 2.0 Å resolution). TUZN1299 has a typical BCAT type IV fold, and the organization of its active site is similar to that of bacterial BCATs. However, there are some differences in the amino acid composition of the active site.

  9. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis.

    Science.gov (United States)

    Pires, Marcel V; Pereira Júnior, Adilson A; Medeiros, David B; Daloso, Danilo M; Pham, Phuong Anh; Barros, Kallyne A; Engqvist, Martin K M; Florian, Alexandra; Krahnert, Ina; Maurino, Veronica G; Araújo, Wagner L; Fernie, Alisdair R

    2016-06-01

    During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.

  10. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  11. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    Science.gov (United States)

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  12. L-citrulline-malate influence over branched chain amino acid utilization during exercise.

    Science.gov (United States)

    Sureda, Antoni; Córdova, Alfredo; Ferrer, Miguel D; Pérez, Gerardo; Tur, Josep A; Pons, Antoni

    2010-09-01

    Exhaustive exercise induces disturbances in metabolic homeostasis which can result in amino acid catabolism and limited L-arginine availability. Oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling. Our aim was to evaluate the effects of diet supplementation with L-citrulline-malate prior to intense exercise on the metabolic handle of plasma amino acids and on the products of metabolism of arginine as creatinine, urea and nitrite and the possible effects on the hormonal levels. Seventeen voluntary male pre-professional cyclists were randomly assigned to one of two groups: control or supplemented (6 g L-citrulline-malate 2 h prior exercise) and participated in a 137-km cycling stage. Blood samples were taken in basal conditions, 15 min after the race and 3 h post race (recovery). Most essential amino acids significantly decreased their plasma concentration as a result of exercise; however, most non-essential amino acids tended to significantly increase their concentration. Citrulline-malate ingestion significantly increased the plasma concentration of citrulline, arginine, ornithine, urea, creatinine and nitrite (p urea.

  13. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma.

    Science.gov (United States)

    Ishikawa, Toru

    2012-05-07

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function. Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the Child-Pugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease, using serum albumin level to achieve accurate assessment of the status of protein metabolism. However, insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC. Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs: leucine, valine, isoleucine) to aromatic AAs (phenylalanine, tyrosine) and is important for assessing liver metabolism, hepatic functional reserve and the severity of liver dysfunction. Although this ratio is difficult to determine in clinical situations, BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute. BTR correlates with various liver function examinations, including markers of hepatic fibrosis, hepatic blood flow and hepatocyte function, and can thus be considered as reflecting the degree of hepatic impairment. This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  14. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Toru Ishikawa

    2012-01-01

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function.Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the ChildPugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease,using serum albumin level to achieve accurate assessment of the status of protein metabolism.However,insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC.Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs:leucine,valine,isoleucine) to aromatic AAs (phenylalanine,tyrosine) and is important for assessing liver metabolism,hepatic functional reserve and the severity of liver dysfunction.Although this ratio is difficult to determine in clinical situations,BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute.BTR correlates with various liver function examinations,including markers of hepatic fibrosis,hepatic blood flow and hepatocyte function,and can thus be considered as reflecting the degree of hepatic impairment.This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  15. Is administrating branched-chain amino acid-enriched nutrition achieved symptom-free in malnourished cirrhotic patients?

    Science.gov (United States)

    Tsuda, Yasuhiro; Fukui, Hideo; Sujishi, Tetsuya; Ohama, Hideko; Tsuchimoto, Yusuke; Asai, Akira; Fukunisi, Shinya; Higuchi, Kazuhide

    2014-01-01

    Administration of branched-chain amino acids (BCAA) has been reported to improve liver function, quality of life (QOL). However, in some malnourished patients, serum albumin levels do not improve in response to BCAA granules. In this study, we examined the effects of BCAA-enriched enteral nutrition in patients unresponsive to BCAA granules. Thirty-two decompensated cirrhotic patients at Osaka Medical College were enrolled in this study. Since all patients showed no improvement in serum albumin levels despite 3 months of BCAA granule administration, they were administered 50 g of a flavored BCAA-enriched enteral nutrient twice daily, i.e., during the daytime and late evening. Serum albumin levels and major cirrhotic symptoms were examined 1, 3, and 5 months after treatment initiation. Serum albumin levels improved significantly 3 months after treatment initiation (3.14 ± 0.32 g/dl vs 3.5 ± 0.31 g/dl, pBCAA-enriched nutrients improves QOL of cirrhotic patients unresponsive to BCAA granules.

  16. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  17. Effects of eccentric exercise on branched-chain amino acid profiles in rat serum and skeletal muscle.

    Science.gov (United States)

    Qun, Z; Xinkai, Y; Jing, W

    2014-04-01

    Supplementation of branched-chain amino acid (BCAA) is often used to attenuate exercise-induced skeletal muscle damage and promote adaptation, but no definitive conclusion on the benefits of BCAA on muscle recovery after injurious exercise can be drawn. Exploration of the systematic BCAA alteration in muscular injury-repair stage per se without any BCAA supplement should provide some useful information in favour of BCAA application in muscle regeneration after injury. One bout of 90-min downhill-running exercise was performed to cause rat skeletal muscle injury. After exercise, myofibrillar BCAA concentrations showed minor changes compared with exercise before, while serum concentrations of BCAA were lower after exercise. Especially, serum leucine, isoleucine and total BCAA concentrations 2 weeks post-run were significantly lower than normal values of exercise before (p = 0.008, p = 0.041, p = 0.015). The data demonstrate that a single eccentric exercise can significantly decrease the serum BCAA concentrations, which mean high utilization of BCAA for myogenesis after injurious exercise.

  18. NUTRITIONAL INTERACTIONS BETWEEN ZINC AND BRANCHED CHAIN AMINO ACID (BCAA SUPPLEMENT IN RATS: A MULTICOMPARTMENT MODELING APPROACH

    Directory of Open Access Journals (Sweden)

    JAIR RODRIGUES GARCIA-JÊNIOR

    2009-07-01

    Full Text Available

    The influence of supplementary-branched chain amino acids (BCAA on 65Zn metabolism in rats was investigated in this study. Nutritional indicators of Zn, as absorption, body retention and secretion, were estimated using a multicompartment model. Two groups of eight male rats were force-fed a zinc-adequate diet (control group and a zinc-adequate diet plus 0.52 9 BCAA/kg diet during 15 days. There was no significant difference for intake of Zn, absorption (34%, intestinal transit (tso and the leveI of Zn in the intravascular compartment (plasma. On the other hand the extravascular compartment (organs and specific concentration of Zn per 9 of tissue decreased after experimental period (p < 0.05 The rats supplememted with BCAA secreted Zn by urine twice faster than controls, but the secrotion of zinc by endogen feces were not decreased in this group. Thus, BCAA supplement changed the kinetic of Zn, increasing the urinary secretion and the loss of Zn from the body.

  19. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  20. The Supplementation of Branched-Chain Amino Acids, Arginine, and Citrulline Improves Endurance Exercise Performance in Two Consecutive Days

    Directory of Open Access Journals (Sweden)

    I-Shiung Cheng, Yi-Wen Wang, I-Fan Chen, Gi-Sheng Hsu, Chun-Fang Hsueh, Chen-Kang Chang

    2016-09-01

    Full Text Available The central nervous system plays a crucial role in fatigue during endurance exercise. Branched-chain amino acids (BCAA could reduce cerebral serotonin synthesis by competing with its precursor tryptophan for crossing the blood brain barrier. Arginine and citrulline could prevent excess hyperammonemia accompanied by BCAA supplementation. This study investigated the combination of BCAA, arginine, and citrulline on endurance performance in two consecutive days. Seven male and three female endurance runners ingested 0.17 g·kg-1 BCAA, 0.05 g·kg-1 arginine and 0.05 g·kg-1 citrulline (AA trial or placebo (PL trial in a randomized cross-over design. Each trial contained a 5000 m time trial on the first day, and a 10000 m time trial on the second day. The AA trial had significantly better performance in 5000 m (AA: 1065.7 ± 33.9 s; PL: 1100.5 ± 40.4 s and 10000 m (AA: 2292.0 ± 211.3 s; PL: 2375.6 ± 244.2 s. The two trials reported similar ratings of perceived exertion. After exercise, the AA trial had significantly lower tryptophan/BCAA ratio, similar NH3, and significantly higher urea concentrations. In conclusion, the supplementation could enhance time-trial performance in two consecutive days in endurance runners, possibly through the inhibition of cerebral serotonin synthesis by BCAA and the prevention of excess hyperammonemia by increased urea genesis.

  1. Influence of lysolecithin and Tween 80 on the colloidal stability of branched chain amino acids in a nanosuspension system.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2017-04-15

    This study examined the influence of stabilizers on the solubility and colloidal stability of branched chain amino acids (BCAAs) nanosuspended through high pressure homogenization at 70°C. Although homogenization increased the initial BCAA solubility, irrespective of pH (pH 3 or 6), homogenization alone was not sufficient to increase their long-term solubility. The incorporation of stabilizers into nanosuspensions increased the saturation concentration of BCAAs but the effect of stabilizers on the increase in the saturation concentration of BCAAs was more pronounced at pH 6.0. At pH 6, Tween 80 dramatically increased the colloidal stability of the BCAA nanosuspensions, independent of the BCAA:stabilizer ratio but not at pH 3. However, the effect of lysolecithin on the colloidal stability of nanosuspended BCAAs varied depending on pH and BCAA:lysolecithin ratio. In lysolecithin-related nanosuspensions, there was no clear relationship between the colloidal stability and nanosuspension conditions including pH and BCAA:lysolecithin ratio. This study could provide a useful information on stabilizer selection for the development of liquid or colloidal products with improved solubility and colloidal stability of nanosuspended BCAAs.

  2. Branched-Chain Amino Acids as Predictors for Individual Differences of Cisplatin Nephrotoxicity in Rats: A Pharmacometabonomics Study.

    Science.gov (United States)

    Zhang, Pei; Li, Wei; Chen, Jiaqing; Li, Ruiting; Zhang, Zunjian; Huang, Yin; Xu, Fengguo

    2017-03-17

    Nephrotoxicity is the dose-limiting adverse effect of cisplatin with large individual differences. Up to now, little has been done on how to recognize and predict the individual differences in either preclinical or clinical research. In the present study, important postdose indicators were screened out first and integrated into a grouping factor, according to which rats were recognized as lowly or highly sensitive individuals. Then, mass-spectrometry-based untargeted metabolomics approach was performed to dissect the metabolic differences in predose serum of the two groups. Eventually, branched-chain amino acids (BCAAs) were found to be most significant with the lowest p value of Mann-Whitney U test and the highest area under receiving operating characteristic curve (AUC-ROC). The findings were further confirmed by absolute quantitation of BCAAs using liquid chromatography-tandem mass spectrometry. Binary logistic regression showed that in the discovery set absolute BCAA contents in rat predose serum could predict cisplatin nephrotoxicity with accuracy of 85%. This result was validated by another two independent external validation sets with accuracy of 81.8 and 78.8%, respectively. This study could provide new insight into cisplatin nephrotoxicity and may help expedite personalized medicine of cisplatin or other antitumor drugs in future clinical studies.

  3. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  4. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    Directory of Open Access Journals (Sweden)

    Urho M Kujala

    2016-11-01

    Full Text Available Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed whether data from aged Finnish men are in line with our mechanistic hypothesis linking BCAA catabolism and metabolic disturbances. Methods Older Finnish men enriched with individuals having been athletes in young adulthood (n=593; mean age 72.6 ± 5.9 years responded to questionnaires, participated in a clinical examination including assessment of body composition with bioimpedance and gave fasting blood samples for various analytes as well as participated in a 2 hour 75 g oral glucose tolerance test. Metabolomics measurements from serum included BCAAs (isoleucine, leucine and valine.Results Out of the 593 participants 59 had previously known type 2 diabetes, further 67 had screen-detected type 2 diabetes, 127 IGT and 125 IFG while 214 had normal glucose regulation. There were group differences in all of the BCAA concentrations (p≤0.005 for all BCAAs, such that those with normal glucose tolerance had the lowest and those with diabetes mellitus had the highest BCAA concentrations. All BCAA levels correlated positively with body fat percentage (r=.29 - .34, p<.0001 for all. Expected associations with high BCAA concentrations and unfavorable metabolic profile indicators from metabolomics analysis were found. Except for glucose concentrations, the associations were stronger with isoleucine and leucine than with valine. Conclusions/interpretation The findings provided further support for our hypothesis by strengthening the idea that the efficiency of BCAA catabolism

  5. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model

    OpenAIRE

    Wessels, Anna G.; Holger Kluge; Frank Hirche; Andreas Kiowski; Alexandra Schutkowski; Etienne Corrent; Jörg Bartelt; Bettina König; Stangl, Gabriele I.

    2016-01-01

    In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four...

  6. Supplemental branched-chain amino acids improve performance and immune response of newly-received feedlot calves

    Science.gov (United States)

    Supplemental branched-chain AA (BCAA) improved N balance of steers during a simulated pathogen challenge. The objective of this study was to determine the effect of supplemental BCAA on growth and health of newly-received feedlot steers. Steers (n = 120; initial BW = 376 ± 5 kg) were blocked by BW a...

  7. Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of Mood Disorder

    Science.gov (United States)

    Baranyi, Andreas; Amouzadeh-Ghadikolai, Omid; von Lewinski, Dirk; Rothenhäusler, Hans-Bernd; Theokas, Simon; Robier, Christoph; Mangge, Harald; Reicht, Gerhard; Hlade, Peter; Meinitzer, Andreas

    2016-01-01

    Background The proteinogenic branched-chain amino acids (BCAAs) valine, leucine and isoleucine might play an unrecognised crucial role in the development of depression through their activation of the mammalian target of rapamycin (mTor) pathway. The aim of this research project is to evaluate whether BCAAs are altered in patients with major depression and might thus be appropriate biomarkers for major depression. Methods The concentrations of valine, leucine and isoleucine were determined in 71 in-patients with major depression and 48 healthy controls by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at the time of in-patient admittance. Results The BCAAs are significantly decreased in patients with major depression in comparison with healthy subjects (valine: Mann-Whitney-U: 968.0; p <0.0001, leucine: Mann-Whitney-U: 1246.5; p = 0.013, isoleucine: Mann-Whitney-U: 1252.5; p = 0.014). Furthermore, as shown by Spearman's rank correlation coefficients, there is a significant negative correlation between valine, leucine and isoleucine concentrations and the Hamilton Depression Rating Scale (HAMD-17) as well as Beck Depression Inventory (BDI-II) scores. Conclusions Our study results are strong evidence that in patients with major depression, BCAAs might be appropriate biomarkers for depression. Reduced activation of the mammalian target of rapamycin (mTor) due to a reduction of BCAAs might play a crucial unrecognised factor in the etiology of depression and may evoke depressive symptomatology and lower energy metabolism in patients with major depression. In the future, mTor and its up- and downstream signalling partners might be important targets for the development of novel antidepressants. PMID:27490818

  8. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis*

    Science.gov (United States)

    Levdikov, Vladimir M.; Blagova, Elena; Young, Vicki L.; Belitsky, Boris R.; Lebedev, Andrey; Sonenshein, Abraham L.

    2017-01-01

    CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19–36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed. PMID:28011634

  9. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin.

    Directory of Open Access Journals (Sweden)

    Shinobu Nishitani

    Full Text Available Differentiation of cancer stem cells (CSCs into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR leads to CSC survival, the effect of branched chain amino acids (BCAAs, an mTOR complex 1 (mTORC1 activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb. mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2 or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.

  10. The 1.9 A Structure of the Branched-Chain Amino-Acid Transaminase (IlvE) from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, L.; Blanchard, J

    2009-01-01

    Unlike mammals, bacteria encode enzymes that synthesize branched-chain amino acids. The pyridoxal 5'-phosphate-dependent transaminase performs the final biosynthetic step in these pathways, converting keto acid precursors into {alpha}-amino acids. The branched-chain amino-acid transaminase from Mycobacterium tuberculosis (MtIlvE) has been crystallized and its structure has been solved at 1.9 {angstrom} resolution. The MtIlvE monomer is composed of two domains that interact to form the active site. The biologically active form of IlvE is a homodimer in which each monomer contributes a substrate-specificity loop to the partner molecule. Additional substrate selectivity may be imparted by a conserved N-terminal Phe30 residue, which has previously been observed to shield the active site in the type IV fold homodimer. The active site of MtIlvE contains density corresponding to bound PMP, which is likely to be a consequence of the presence of tryptone in the crystallization medium. Additionally, two cysteine residues are positioned at the dimer interface for disulfide-bond formation under oxidative conditions. It is unknown whether they are involved in any regulatory activities analogous to those of the human mitochondrial branched-chain amino-acid transaminase.

  11. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice.

    Science.gov (United States)

    Awasthy, Disha; Gaonkar, Sheshagiri; Shandil, R K; Yadav, Reena; Bharath, Sowmya; Marcel, Nimi; Subbulakshmi, Venkita; Sharma, Umender

    2009-09-01

    Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.

  12. A novel branched chain amino acids responsive transcriptional regulator, BCARR, negatively acts on the proteolytic system in Lactobacillus helveticus.

    Directory of Open Access Journals (Sweden)

    Taketo Wakai

    Full Text Available Transcriptional negative regulation of the proteolytic system of Lactobacillus helveticus CM4 in response to amino acids seems to be very important for the control of antihypertensive peptide production; however, it remains poorly understood. A 26-kDa protein with N-terminal cystathionine β-synthase domains (CBS domain protein, which seems to be involved in the regulatory system, was purified by using a DNA-sepharose bound 300-bp DNA fragment corresponding to the upstream regions of the six proteolytic genes that are down-regulated by amino acids. The CBS domain protein bound to a DNA fragment corresponding to the region upstream of the pepV gene in response to branched chain amino acids (BCAAs. The expression of the pepV gene in Escherichia coli grown in BCAA-enriched medium was repressed when the CBS domain protein was co-expressed. These results reveal that the CBS domain protein acts as a novel type of BCAA-responsive transcriptional regulator (BCARR in L. helveticus. From comparative analysis of the promoter regions of the six proteolysis genes, a palindromic AT-rich motif, 5'-AAAAANNCTWTTATT-3', was predicted as the consensus DNA motif for the BCARR protein binding. Footprint analysis using the pepV promotor region and gel shift analyses with the corresponding short DNA fragments strongly suggested that the BCARR protein binds adjacent to the pepV promoter region and affects the transcription level of the pepV gene in the presence of BCAAs. Homology search analysis of the C-terminal region of the BCARR protein suggested the existence of a unique βαββαβ fold structure that has been reported in a variety of ACT (aspartate kinase-chorismate mutase-tyrA domain proteins for sensing amino acids. These results also suggest that the sensing of BCAAs by the ACT domain might promote the binding of the BCARR to DNA sequences upstream of proteolysis genes, which affects the gene expression of the proteolytic system in L. helveticus.

  13. Effects of Acute Exposure to Increased Plasma Branched-Chain Amino Acid Concentrations on Insulin-Mediated Plasma Glucose Turnover in Healthy Young Subjects

    OpenAIRE

    Sarah Everman; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2015-01-01

    Background Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. Objective To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Methods Ten healthy subjects were randomly assigned to...

  14. Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis.

    OpenAIRE

    Lawrence, D.; Heitefuss, S; Seifert, H S

    1991-01-01

    Three strains of Bacillus anthracis and seven strains of Bacillus cereus were grown on complex medium and on synthetic medium. Gas chromatographic analysis of whole-cell fatty acids of strains grown on complex medium gave nearly identical fatty acid patterns. Fatty acid patterns of strains grown on synthetic medium showed a high content of branched-chain fatty acids. Significant differences between the fatty acid patterns of the two species were found. Odd iso/anteiso fatty acid ratios were a...

  15. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Recent studies have determined that branched-chain (BCAAs and aromatic (AAAs amino acids are strongly correlated with obesity and atherogenic dyslipidemia and are strong predictors of diabetes. However, it is not clear if these amino acids are capable of identifying subjects with coronary artery disease (CAD, particularly with subclinical atherosclerosis who are at risk of developing CAD. METHODS: Four hundred and seventy two Chinese subjects (272 males and 200 females, 42-97 y of age undergoing physical exams were recruited at random for participation in the cross-sectional study. Serum BCAAs and AAAs were measured using our previously reported isotope dilution liquid chromatography tandem mass spectrometry method. Bilateral B-mode carotid artery images for carotid intima-media thickness (cIMT were acquired at end diastole and cIMT values more than 0.9 mm were categorized as increased. Correlations of BCAAs with cIMT and other CAD risk factors were analyzed. RESULTS: BCAAs and AAAs were significantly and positively associated with risk factors of CAD, e.g., cIMT, BMI, waist circumference, blood pressure, fasting blood glucose, TG, apoB, apoB/apoAI ratio, apoCII, apoCIII and hsCRP, and were significantly and negatively associated with HDL-C and apoAI. Stepwise multiple linear regression analysis revealed that age (β = 0.175, P<0.001, log BCAA (β = 0.147, P<0.001 and systolic blood pressure (β = 0.141, P = 0.012 were positively and independently associated with cIMT. In the logistic regression model, the most and only powerful laboratory factor correlated with increased cIMT was BCAA (the odds ratio of the fourth quartile compared to the first quartile was 2.679; P = 0.009. CONCLUSION: BCAAs are independently correlated with increased cIMT. This correlation would open a new field of research in the mechanistic understanding and risk assessment of CAD.

  16. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F;

    1990-01-01

    . In the glucose group ten died, three developed renal and two respiratory failure, and one remained encephalopathic. The coma score worsened in three of the patients who died in the amino acid group, but in all patients who died in the glucose group. The negative nitrogen balance on entry reversed in the amino...... acid group, but not in the glucose group. Thus, the branched chain enriched amino acid supplement did not change the prognosis for wake-up, but had other effects on the cerebral state and on nitrogen homeostasis....

  17. Emerging roles for specific fatty acids in developmental processes

    OpenAIRE

    Vrablik, Tracy L.; Watts, Jennifer L.

    2012-01-01

    Animals synthesize a vast range of fatty acids serving diverse cellular functions. The roles of specific fatty acids in early development are just beginning to be characterized. In this Perspective, a study by Kniazeva et al. (in the March 15, 2012, issue) that describes the particular combination of a branched chain fatty acid and an acyl-CoA synthetase required for critical cellular processes during early embryogenesis in C. elegans is discussed.

  18. Prevention of methionine and ammonia-induced coma by intravenous infusion of a branched chain amino acid solution to rats with liver injury.

    Directory of Open Access Journals (Sweden)

    Shiota,Tetsuya

    1984-10-01

    Full Text Available The prevention of hepatic encephalopathy by the intravenous infusion of a branched chain amino acid (BCAA-enriched solution was investigated in methionine and ammonium acetate-treated rats whose liver was already injured with carbon tetrachloride. A BCAA-enriched solution protected the rats from entering a coma. The brain BCAA contents became higher, and the brain methionine and tyrosine levels and the ratio of glutamine to glutamic acid in the brain diminished after administering the BCAA-enriched solution.

  19. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo......, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (PlaceboBCAA...6K1, being 18% higher with EAA than BCAA. However, after 180 min of recovery this difference between EAA and BCAA had disappeared, although with both these supplements the increases were still higher than with leucine (40%, P

  20. Effects of leucine supplementation and serum withdrawal on branched-chain amino acid pathway gene and protein expression in mouse adipocytes.

    Directory of Open Access Journals (Sweden)

    Abderrazak Kitsy

    Full Text Available The essential branched-chain amino acids (BCAA, leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2 and branched-chain alpha keto acid dehydrogenase (Bckdha was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4 compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our

  1. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.; An, Jie; Bain, James R.; Muehlbauer, Michael J.; Robert D. Stevens; Lien, Lillian F.; Haqq, Andrea M.; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A.; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Brett R. Wenner; Yancy, William E

    2009-01-01

    Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feed...

  2. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.

    Science.gov (United States)

    Lange, Christian; Mustafi, Nurije; Frunzke, Julia; Kennerknecht, Nicole; Wessel, Mirja; Bott, Michael; Wendisch, Volker F

    2012-04-30

    Corynebacterium glutamicum possesses export systems for various amino acids including BrnFE, a two-component export system for L-methionine and the branched-chain amino acids L-valine, L-isoleucine and L-leucine. A gene for a putative transcriptional regulator of the Lrp family is transcribed divergently to the brnFE operon and is required for L-isoleucine export. By comparing global gene expression changes due to L-isoleucine addition we revealed increased brnFE expression in response to L-isoleucine in C. glutamicum wild type but not in an lrp deletion mutant. ChIP-to-chip analysis, band shift experiments and DNAse footprint analysis demonstrated that Lrp binds to the intergenic region between lrp and brnF. Expression analysis of transcriptional fusions with the lrp and brnFE promoters indicated that branched-chain amino acids and L-methionine when added to the growth medium stimulated brnFE expression in the order L-leucine > L-methionine > L-isoleucine > L-valine and that Lrp was required for activation of brnFE expression. Thus, regulation of brnFE by Lrp ensures that BrnFE is synthesized only if its substrate amino acids accumulate in cells which is commensurate with its role to counteract such situations of metabolic imbalance.

  3. Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes.

    Science.gov (United States)

    Estrada-Alcalde, Isabela; Tenorio-Guzman, Miriam R; Tovar, Armando R; Salinas-Rubio, Daniela; Torre-Villalvazo, Ivan; Torres, Nimbe; Noriega, Lilia G

    2017-04-01

    Branched-chain amino acid (BCAA) catabolism is regulated by the branched-chain aminotransferase (BCAT2) and the branched-chain α-keto acid dehydrogenase complex (BCKDH). BCAT2 and BCKDH expression and activity are modified during adipogenesis and altered in adipose tissues of mice with genetic or diet-induced obesity. However, little is known about how these modifications and alterations affect the intracellular metabolic fate of BCAAs during adipogenesis, in adipocytes from mice fed a control or high-fat diet or in C2C12 myotubes. Here, we demonstrate that BCAAs are mainly incorporated into proteins during the early stages of adipocyte differentiation. However, they are oxidized and incorporated into lipids during the late days of differentiation. Conversely, 92% and 97% of BCAA were oxidized, 1.6% and 6% were used for protein synthesis and 1.2% and 1.5% were incorporated into lipids in adipocytes from epididymal and subcutaneous adipose tissue, respectively. All three pathways were decreased in adipocytes from mice fed a high-fat diet. In C2C12 myotubes, leucine is mainly used for protein synthesis and palmitate is incorporated into lipids. Interestingly, leucine decreased both palmitate oxidation and its incorporation to lipids and proteins; and palmitate increased leucine oxidation and decreased its incorporation to lipids and proteins in a dose-dependent manner. These results demonstrate that BCAA metabolic fate differs between the early and late stages of adipocyte differentiation and in adipocytes from mice fed a control or high-fat diet; and that leucine affects the metabolic fate of palmitate and vice versa in C2C12 myotubes. J. Cell. Biochem. 118: 808-818, 2017. © 2016 Wiley Periodicals, Inc.

  4. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity.

    Science.gov (United States)

    Lackey, Denise E; Lynch, Christopher J; Olson, Kristine C; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H; Dunn, Tamara N; Thomas, Anthony P; Oort, Pieter J; Kieffer, Dorothy A; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G; Permana, Paska; Anthony, Tracy G; Adams, Sean H

    2013-06-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.

  5. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise.

    Science.gov (United States)

    Moberg, Marcus; Apró, William; Ekblom, Björn; van Hall, Gerrit; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-06-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (PlaceboBCAABCAA. However, after 180 min of recovery this difference between EAA and BCAA had disappeared, although with both these supplements the increases were still higher than with leucine (40%, P BCAA.

  6. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked...... to the animal growth performance. Three dose–response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC–MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth...... metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA....

  7. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.

    Science.gov (United States)

    Chang, Perng-Kuang; Hua, Sui Sheng T; Sarreal, Siov Bouy L; Li, Robert W

    2015-09-24

    The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE), is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL) using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO) analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine) were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids OPEN ACCESS Toxins 2015, 7 3888 were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in

  8. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Perng-Kuang Chang

    2015-09-01

    Full Text Available The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE, is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in branched-chain amino

  9. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945.

  10. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase.

    Science.gov (United States)

    Akita, Hironaga; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2014-02-01

    D-Branched-chain amino acids (D-BCAAs) such as D-leucine, D-isoleucine, and D-valine are known to be peptide antibiotic intermediates and to exhibit a variety of bioactivities. Consequently, much effort is going into achieving simple stereospecific synthesis of D-BCAAs, especially analogs labeled with stable isotopes. Up to now, however, no effective method has been reported. Here, we report the establishment of an efficient system for enantioselective synthesis of D-BCAAs and production of D-BCAAs labeled with stable isotopes. This system is based on two thermostable enzymes: D-amino acid dehydrogenase, catalyzing NADPH-dependent enantioselective amination of 2-oxo acids to produce the corresponding D-amino acids, and glucose dehydrogenase, catalyzing NADPH regeneration from NADP(+) and D-glucose. After incubation with the enzymes for 2 h at 65°C and pH 10.5, 2-oxo-4-methylvaleric acid was converted to D-leucine with an excellent yield (>99 %) and optical purity (>99 %). Using this system, we produced five different D-BCAAs labeled with stable isotopes: D-[1-(13)C,(15)N]leucine, D-[1-(13)C]leucine, D-[(15)N]leucine, D-[(15)N]isoleucine, and D-[(15)N]valine. The structure of each labeled D-amino acid was confirmed using time-of-flight mass spectrometry and nuclear magnetic resonance analysis. These analyses confirmed that the developed system was highly useful for production of D-BCAAs labeled with stable isotopes, making this the first reported enzymatic production of D-BCAAs labeled with stable isotopes. Our findings facilitate tracer studies investigating D-BCAAs and their derivatives.

  11. [Usefulness of branched-chain amino acid (BCAA)-enriched nutrient mixture for nutritional treatment undergoing endoscopic treatment for esophageal varices].

    Science.gov (United States)

    Shibata, Naozumi; Matsui, Hidetaka; Takeshita, Eiji; Yokota, Tomoyuki; Higaki, Naoyuki; Murakami, Hidehiro; Ikeda, Yoshiou; Minami, Hisaka; Matsuura, Bunzo; Onji, Morikazu

    2005-07-01

    We investigated the alteration of nutritional status in 144 patients who were treated for the first time with endoscopic sclerotherapy or endoscopic variceal ligation during their therapies. The serum levels of albumin, cholinesterase and total cholesterol were compared before and after treatment. The serum level of cholinesterase declined significantly. To investigate the impact of aging on the changes of nutritional status we divided all patients into two groups: (1) under 65 years, and (2) over 65 years. The decline of serum albumin of elderly patients (n=65) was significantly greater than that of younger patients (n=79). A branched-chain amino acid (BCAA)-enriched nutrient mixture for nutritional treatment significantly suppressed the decline of serum albumin in elderly patients. Nutritional treatment with a BCAA-enriched nutrient mixture should be considered during endoscopic therapy for esophageal varices, especially in elderly patients.

  12. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2011-01-01

    Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle...... the metabolism of blood-supplied ammonia and the A-V measurements were used to measure the total ammonia metabolism across the thigh muscle. After intake of BCAA, blood ammonia increased more than 30% in both groups of subjects (both P ....05). BCAA intake led to a massive glutamine release from the muscle (cirrhotic patients, P BCAA enhanced the intrinsic muscle metabolism of ammonia but not the metabolism of blood-supplied ammonia in both the patients with cirrhosis and in the healthy...

  13. Influence of fatty acid precursors, including food preservatives, on the growth and fatty acid composition of Listeria monocytogenes at 37 and 10degreesC.

    Science.gov (United States)

    Julotok, Mudcharee; Singh, Atul K; Gatto, Craig; Wilkinson, Brian J

    2010-03-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C(15:0) fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37 degrees C and 10 degrees C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C(4), C(5), and C(6) branched-chain carboxylic acid, and C(3) and C(4) straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein.

  14. Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...

  15. Aspectos atuais sobre aminoácidos de cadeia ramificada e exercício físico Current aspects of branched chain amino acid and exercise

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Rogero

    2008-12-01

    Full Text Available Em humanos saudáveis, nove aminoácidos são considerados essenciais, uma vez que não podem ser sintetizados endogenamente e, portanto, devem ser ingeridos por meio da dieta. Dentre os aminoácidos essenciais, se incluem os três aminoácidos de cadeia ramificada, ou seja, leucina, valina e isoleucina. Esses aminoácidos participam da regulação do balanço protéico corporal além de serem fonte de nitrogênio para a síntese de alanina e glutamina. No tocante à regulação da síntese protéica muscular, verifica-se que a leucina age estimulando a fase de iniciação da tradução do RNA-mensageiro em proteína, por mecanismos tanto dependentes quanto independentes de insulina. No que concerne ao exercício físico, supõe-se que esses aminoácidos estejam envolvidos na fadiga central, no balanço protéico muscular, na secreção de insulina, na modulação da imunocompetência, no aumento da performance de indivíduos que se exercitam em ambientes quentes e na diminuição do grau de lesão muscular. Nesse contexto, essa revisão aborda os aspectos atuais do metabolismo e da suplementação de aminoácidos de cadeia ramificada no exercício físico.In healthy humans, nine amino acids are considered to be essential once they cannot be endogenously synthesised and must therefore be ingested in the diet. Amongst the essential amino acids are the three branched chain amino acids, namely, leucine, valine and isoleucine. These amino acids participate in the regulation of protein balance in addition to being nitrogen sources for the synthesis of alanine and glutamine. As to the regulation of muscle protein synthesis, leucine acts in the stimulation of initiation of mRNA translation into protein, both through mechanisms that are dependent and independent of insulin. In the physiology of physical exercise, these branched amino acids play a role in central fatigue hypothesis, in muscle protein balance, in the secretion of insulin, in the

  16. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. RESULTS: Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. CONCLUSION: A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  17. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs.

    Science.gov (United States)

    Zhang, Shihai; Qiao, Shiyan; Ren, Man; Zeng, Xiangfang; Ma, Xi; Wu, Zhenlong; Thacker, Philip; Wu, Guoyao

    2013-11-01

    This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na(+)-neutral AA exchanger-2, cationic AA transporter-1, b(0,+) AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.

  18. Effects of Combined Treatment with Branched-Chain Amino Acids, Citric Acid, L-Carnitine, Coenzyme Q10, Zinc, and Various Vitamins in Tumor-Bearing Mice.

    Science.gov (United States)

    Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki

    2017-03-01

    A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.

  19. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.

  20. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.

    Science.gov (United States)

    Mustafi, Nurije; Grünberger, Alexander; Kohlheyer, Dietrich; Bott, Michael; Frunzke, Julia

    2012-07-01

    The detection and quantification of specific metabolites in single bacterial cells is a major goal for industrial biotechnology. We have developed a biosensor based on the transcriptional regulator Lrp that detects intracellular l-methionine and branched-chain amino acids in Corynebacterium glutamicum. In assays, fluorescence output showed a linear relationship with cytoplasmic concentrations of the effector amino acids. In increasing order, the affinity of Lrp for the amino acids is l-valine, l-isoleucine, l-leucine and l-methionine. The sensor was applied for online monitoring and analysis of cell-to-cell variability of l-valine production by the pyruvate dehydrogenase-deficient C. glutamicum strain ΔaceE. Finally, the sensor system was successfully used in a high-throughput (HT) FACS screen for the isolation of amino acid-producing mutants after random mutagenesis of a non-producing wild type strain. These applications illustrate how one of nature's sensor devices - transcriptional regulators - can be used for the analysis, directed evolution and HT screening for microbial strain development.

  1. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model.

    Science.gov (United States)

    Wessels, Anna G; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I

    2016-01-01

    In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.

  2. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    detection (GC/FID). Main volatile catabolic products of leucine, isoleucine and valine were 3-methylbutanoic, 2-methylbutanoic and 2-methylpropanoic acids, respectively. The generation of branched flavour compounds was influenced significantly by most of the investigated environmental parameters...

  3. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates : effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids

    NARCIS (Netherlands)

    Jansen, Michael; Veurink, Janine H.; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert

    2003-01-01

    Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput scr

  4. Roux-en-Y Gastric Bypass Surgery, but Not Calorie Restriction, Reduces Plasma Branched-Chain Amino Acids in Obese Women Independent of Weight Loss or the Presence of Type 2 Diabetes

    NARCIS (Netherlands)

    Lips, M.A.; Klinken, J.B. van; Harmelen, V. van; Dharuri, H.K.; Hoen, P.A.C. 't; Laros, J.F.; Ommen, G.J.B. van; Janssen, I.M; Ramshorst, B. van; Wagensveld, B.A. van; Swank, D.J.; Dielen, F. Van; Dane, A.; Harms, A.; Vreeken, R.; Hankemeier, T.; Smit, J.W.A.; Pijl, H.; Dijk, K van

    2014-01-01

    OBJECTIVE: Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA lev

  5. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Science.gov (United States)

    Background: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence...

  6. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    Science.gov (United States)

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (pBCAA group improved ADG (pBCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (pBCAA supplementation significantly increased BCAA concentrations (pBCAA supplementation increased villous height in the duodenum (pBCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  7. Effect of a branched chain amino acid-enriched nutritional product on the pathophysiology of the liver and nutritional state of patients with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-08-01

    Full Text Available A new nutritional product (SF-1008C containing a high proportion of branched chain amino acids (BCAA and low proportion of aromatic amino acids (AAA and methionine was tested to see its effect on the impaired protein metabolism and abnormal nutritional state frequently observed in patients with advanced liver cirrhosis. A sharp increase in plasma BCAA levels and fall of AAA and methionine levels were found following the administration of an SF-1008C-supplemented diet to healthy controls and cirrhotic patients, which the BCAA levels increased only slightly following an isocaloric control diet. Blood ammonia levels increased within the normal range transiently following the diets. The SF-1008C-supplemented diet was given for 2 weeks to cirrhotic patients with histories of hepatic encephalopathy, who were taking a low-protein diet because of hyperammonemia. Serum prealbumin levels, nitrogen balance, molar ratio of plasma BCAA/phenylalanine and tyrosine, the number connection test and electroencephalograms improved during the period of the experimental diet. The results, therefore, indicate that a BCAA-supplemented diet is well tolerated by patients with advanced cirrhosis and useful for treatment of impaired protein metabolism. Furthermore, this product is beneficial in preventing hepatic encephalopathy in cirrhotics.

  8. Branched-chain amino acid requirements for enterally fed term neonates in the first month of life

    NARCIS (Netherlands)

    F. Maingay-de Groof (Femke); L. Huang; I. van Vliet (Ineke); G.J. Voortman (Gardi); H. Schierbeek (Henk); L.C.W. Roksnoer (Lodi); A. Vermes (Andras); C. Chen (Chao); Y. Huang (Ying); J.B. van Goudoever (Hans)

    2014-01-01

    textabstractBackground: Knowledge of essential amino acid requirements in infants is important because excessive intake of protein can lead to increased long-term morbidity such as obesity. A deficient intake may lead to suboptimal growth and impaired neurodevelopment. The current recommended branch

  9. Inhibition of in vitro cholesterol synthesis by fatty acids.

    Science.gov (United States)

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  10. Protective effects of branched-chain amino acids on hepatic ischemia-reperfusion-induced liver injury in rats: a direct attenuation of Kupffer cell activation.

    Science.gov (United States)

    Kitagawa, Tomomi; Yokoyama, Yukihiro; Kokuryo, Toshio; Nagino, Masato

    2013-02-15

    We determined whether there is a protective effect of branched-chain amino acid (BCAA) on hepatic ischemia-reperfusion (I/R)-induced acute liver injury. Wister rats were divided into the following four groups: simple laparotomy with vehicle; simple laparotomy with BCAA (1 g/kg body wt orally); I/R (30 min clamp) with vehicle; and I/R with BCAA. Serum liver function tests and the gene expression of adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule) and vasoconstrictor-related genes (endothelin-1) in the liver were examined. In the in vivo study, portal venous pressure, leukocyte adhesion, and hepatic microcirculation were evaluated. Furthermore, Kupffer cells were isolated and cultured with various concentrations of BCAA in the presence or absence of lipopolysaccharide (LPS). Increased levels of liver function tests following I/R were significantly attenuated by BCAA treatment. The increased expression of adhesion molecules and endothelin-1 was also significantly attenuated by BCAA treatment. Moreover, increased portal venous pressure, enhanced leukocyte adhesion, and deteriorated hepatic microcirculation following I/R were all improved by BCAA treatment. In the experiment using isolated Kupffer cells, the expression of interleukin-6, interleukin-1β, and endothelin-1 in response to LPS stimulation was attenuated by BCAA in a dose-dependent fashion. These results indicate that perioperative oral administration of BCAA has excellent therapeutic potential to reduce I/R-induced liver injury. These beneficial effects may result from the direct attenuation of Kupffer cell activation under stressful conditions.

  11. High incidence of lipid deposition in the liver of rats fed a diet supplemented with branched-chain amino acids under vitamin B6 deficiency.

    Science.gov (United States)

    Kaimoto, Tae; Shibuya, Mayumi; Nishikawa, Kazutaka; Maeda, Hideo

    2013-01-01

    Male Wistar rats were fed four diets composed of purified 20% vitamin-free casein diet with (+) or without (-) vitamin B(6) (7.0 mg of pyridoxine HCl/kg of diet) and with (+) or without (-) branched-chain amino acids (BCAAs) of valine, leucine, and isoleucine (4.75%): B(6)(+)BCAA(-); B(6)(+)BCAA(+); B(6)(-)BCAA(-); and B(6)(-)BCAA(+) for 21 d. Among rats fed the B(6)(-)BCAA(+) diet, about a half showed lipid deposition in the liver. On the other hand, serum triacylglycerol levels in the B(6)(-)BCAA(+) group tended to be decreased. Hepatic triacylglycerol and cholesterol levels tended to increase in the B(6)(-)BCAA(+) group compared with the other three groups. Serum apolipoprotein B and apolipoprotein E (apo E) levels in the B(6)(-)BCAA(+) group were the lowest among the three groups. In contrast, hepatic apo E levels in the B(6)(-)BCAA(+) group were the highest among the three groups. High-performance liquid chromatography of pooled serum of rats with lipid deposits revealed that triacylglycerol and cholesterol levels in very low-density lipoprotein (VLDL) were decreased compared with other diet groups. These results strongly suggest that one of the mechanisms of lipid deposition in rats fed a B(6)(-)BCAA(+) diet is due to impaired secretion of VLDL.

  12. Branched-Chain Amino Acid Plus Glucose Supplement Reduces Exercise-Induced Delayed Onset Muscle Soreness in College-Age Females

    Science.gov (United States)

    Leahy, Danielle T.; Pintauro, Stephen J.

    2013-01-01

    Supplementation with branched-chain amino acids (BCAAs) has been used to stimulate muscle protein synthesis following exercise. The purpose of this study was to determine if supplementation with BCAAs in combination with glucose would reduce exercise-induced delayed onset muscle soreness (DOMS). Using a double-blind crossover design, 20 subjects (11 females, 9 males) were randomly assigned to either BCAA (n = 10) or placebo (n = 10) groups. Subjects performed a squatting exercise to elicit DOMS and rated their muscle soreness every 24 hours for four days following exercise while continuing to consume the BCAA or placebo. Following a three-week recovery period, subjects returned and received the alternate BCAA or placebo treatment, repeating the same exercise and DOMS rating protocol for the next four days. BCAA supplementation in female subjects resulted in a significant decrease in DOMS versus placebo at 24 hours following exercise (P = 0.018). No significant effect of BCAA supplementation versus placebo was noted in male subjects nor when male and female results were analyzed together. This gender difference may be related to dose per body weight differences between male and female subjects. PMID:24967261

  13. Effects of Diets Supplemented with Branched-Chain Amino Acids on the Performance and Fatigue Mechanisms of Rats Submitted to Prolonged Physical Exercise

    Science.gov (United States)

    Falavigna, Gina; Junior, Jonas Alves de Araújo; Rogero, Marcelo Macedo; Pires, Ivanir Santana de Oliveira; Pedrosa, Rogério Graça; Junior, Eivor Martins; de Castro, Inar Alves; Tirapegui, Julio

    2012-01-01

    This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks). The animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) (n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance. PMID:23201847

  14. Valine, a Branched-Chain Amino Acid, Reduced HCV Viral Load and Led to Eradication of HCV by Interferon Therapy in a Decompensated Cirrhotic Patient

    Directory of Open Access Journals (Sweden)

    Takumi Kawaguchi

    2012-10-01

    Full Text Available A decreased serum level of branched-chain amino acid (BCAA is a distinctive metabolic disorder in patients with liver cirrhosis. Recently, BCAA has been reported to exert various pharmacological activities, and valine, which is a BCAA, has been shown to affect lipid metabolism and the immune system in in vivo experiments. However, the clinical impact of valine supplementation on viral hepatitis C virus (HCV load has never been reported. Here, we first describe a case of HCV-related advanced liver cirrhosis that was treated by an oral valine agent. The administration of valine resulted in an improvement of fatigue and a reduction in hepatic fibrosis indexes as well as serum α-fetoprotein level. Furthermore, a marked reduction in HCV RNA levels was seen after valine treatment. The patient was then treated by interferon β, resulting in the successful eradication of chronic HCV infection. Thus, valine may be involved in the reduction of HCV viral load and could support a sustained virologic response to interferon therapy.

  15. Eucalyptus ESTs associated with resistance to herbicide inhibitors of aromatic and branched-chain amino acid synthesis

    Directory of Open Access Journals (Sweden)

    Edivaldo Domingues Velini

    2005-01-01

    Full Text Available Herbicides inhibit enzymatic systems of plants. Acetolactate synthase (ALS, EC = 4.1.3.18 and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19 are key enzymes for herbicide action. Hundreds of compounds inhibit ALS. This enzyme is highly variable, enabling the selective control of weeds in a number of crops. Glyphosate, the only commercial herbicide inhibiting EPSPS is widely used for non-selective control of weeds in many crops. Recently, transgenic crops resistant to glyphosate were developed and have been used by farmers. The aim of this study was the data mining of eucalypt expressed sequence tags (ESTs in the FORESTs Genome Project database (https://forests.esalq.usp.br related to these enzymes. Representative amino acid sequences from the NCBI database associated with ALS and EPSPS were blasted with ESTs from the FORESTs database using the tBLASTx option of the blast tool. The best blasting reads and clusters from FORESTs, represented as nucleotide sequences, were blasted back with the NCBI database to evaluate the level of similarity with available sequences from different species. One and seven clusters were identified as showing high similarity with EPSPS and ALS sequences from the literature, respectively. The alignment of EPSPS sequences allowed the identification of conserved regions that can be used to design specific primers for additional sequencings.

  16. Improvement of regional cerebral blood flow after oral intake of branched-chain amino acids in patients with cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Mika Yamamoto; Motoh Iwasa; Kaname Matsumura; Yuri Nakagawa; Naoki Fujita; Yoshinao Kobayashi; Masahiko Kaito; Kan Takeda; Yukihiko Adachi

    2005-01-01

    AIM: To evaluate the effect of oral intake of branchedchain amino acids (BCAA) on brain perfusion in patients with liver cirrhosis.METHODS: Single photon emission computed tomography scans were performed in 43 patients with cirrhosis and in 15 age-matched healthy subjects.Twenty-nine out of forty-three patients were randomly treated with either BCAA granules or placebo, and single photon emission computed tomography was performed before and after the treatment. We measured the regional cerebral blood flow values using a threedimensional stereotaxic region of interest template.RESULTS: Cirrhotic patients had regions of significant hypoperfusion in the bilateral central (right P=0.039,P<0.05; left P = 0.006 P<0.01), parietal (right P=0.018, P<0.05;left P=0.009, P<0.01), angular (right P=0.039, P<0.05;left P = 0.008, P<0.01), and left pericallosal segments (P= 0.038 P<0.05) as compared with healthy subjects. A significant increase in cerebral perfusion was observed 70 min after the oral intake of BCAA in the angular (right P=0.012,P<0.05;left P=0.049, P<0.05), temporal (right P=0.012, P<0.05; left P=0.038, P<0.05), pericallosal segments (right P = 0.025,P<0.05; left P = 0.049, P<0.05) and left precentral (P=0.044, P<0.05), parietal (P=0.040, P<0.05) and thalamus (P=0.033, P<0.05). No significant change in perfusion was observed in the placebo group.CONCLUSION: Administration of BCAA rapidly improves cerebral perfusion.

  17. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Anna G Wessels

    Full Text Available In addition to its role as an essential protein component, leucine (Leu displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH. To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2 and four-fold (L4 higher Leu contents than the recommended amount (control. We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05, liver (1.8-fold, P < 0.05 and cardiac muscle (1.7-fold, P < 0.05, whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.

  18. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

    Directory of Open Access Journals (Sweden)

    Howatson Glyn

    2012-07-01

    Full Text Available Abstract Background It is well documented that exercise-induced muscle damage (EIMD decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers. Methods Twelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg were randomly assigned to a supplement (n = 6 or placebo (n = 6 group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK, maximal voluntary contraction (MVC, muscle soreness (DOMS, vertical jump (VJ, thigh circumference (TC and calf circumference (CC were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise. Results A significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P Conclusion The present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281.

  19. CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.

    Science.gov (United States)

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-03-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.

  20. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    Science.gov (United States)

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions.

  1. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice.

    Science.gov (United States)

    Terakura, Daishi; Shimizu, Masahito; Iwasa, Junpei; Baba, Atsushi; Kochi, Takahiro; Ohno, Tomohiko; Kubota, Masaya; Shirakami, Yohei; Shiraki, Makoto; Takai, Koji; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka

    2012-12-01

    Obesity and its associated disorders, such as non-alcoholic steatohepatitis, increase the risk of hepatocellular carcinoma. Branched-chain amino acids (BCAA), which improve protein malnutrition in patients with liver cirrhosis, reduce the risk of hepatocellular carcinoma in these patients with obesity. In the present study, the effects of BCAA supplementation on the spontaneous development of hepatic premalignant lesions, foci of cellular alteration, in db/db obese mice were examined. Male db/db mice were given a basal diet containing 3.0% of either BCAA or casein, a nitrogen-content-matched control of BCAA, for 36 weeks. On killing the mice, supplementation with BCAA significantly inhibited the development of foci of cellular alteration when compared with casein supplementation by inhibiting cell proliferation, but inducing apoptosis. BCAA supplementation increased the expression levels of peroxisome proliferator-activated receptor-γ, p21(CIP1) and p27(KIP1) messenger RNA and decreased the levels of c-fos and cyclin D1 mRNA in the liver. BCAA supplementation also reduced both the amount of hepatic triglyceride accumulation and the expression of interleukin (IL)-6, IL-1β, IL-18 and tumor necrosis factor-α mRNA in the liver. Increased macrophage infiltration was inhibited and the expression of IL-6, TNF-α, and monocyte chemoattractant protein-1 mRNA in the white adipose tissue were each decreased by BCAA supplementation. BCAA supplementation also reduced adipocyte size while increasing the expression of peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ and adiponectin mRNA in the white adipose tissue compared with casein supplementation. These findings indicate that BCAA supplementation inhibits the early phase of obesity-related liver tumorigenesis by attenuating chronic inflammation in both the liver and white adipose tissue. BCAA supplementation may be useful in the chemoprevention of liver tumorigenesis in obese

  2. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model.

    Science.gov (United States)

    Takegoshi, Kai; Honda, Masao; Okada, Hikari; Takabatake, Riuta; Matsuzawa-Nagata, Naoto; Campbell, Jean S; Nishikawa, Masashi; Shimakami, Tetsuro; Shirasaki, Takayoshi; Sakai, Yoshio; Yamashita, Taro; Takamura, Toshinari; Tanaka, Takuji; Kaneko, Shuichi

    2017-02-13

    Oral supplementation with branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in patients with liver cirrhosis potentially suppresses the incidence of hepatocellular carcinoma (HCC) and improves event-free survival. However, the detailed mechanisms of BCAA action have not been fully elucidated. BCAA were administered to atherogenic and high-fat (Ath+HF) diet-induced nonalcoholic steatohepatitis (NASH) model mice. Liver histology, tumor incidence, and gene expression profiles were evaluated. Ath+HF diet mice developed hepatic tumors at a high frequency at 68 weeks. BCAA supplementation significantly improved hepatic steatosis, inflammation, fibrosis, and tumors in Ath+HF mice at 68 weeks. GeneChip analysis demonstrated the significant resolution of pro-fibrotic gene expression by BCAA supplementation. The anti-fibrotic effect of BCAA was confirmed further using platelet-derived growth factor C transgenic mice, which develop hepatic fibrosis and tumors. In vitro, BCAA restored the transforming growth factor (TGF)-β1-stimulated expression of pro-fibrotic genes in hepatic stellate cells (HSC). In hepatocytes, BCAA restored TGF-β1-induced apoptosis, lipogenesis, and Wnt/β-Catenin signaling, and inhibited the transformation of WB-F344 rat liver epithelial stem-like cells. BCAA repressed the promoter activity of TGFβ1R1 by inhibiting the expression of the transcription factor NFY and histone acetyltransferase p300. Interestingly, the inhibitory effect of BCAA on TGF-β1 signaling was mTORC1 activity-dependent, suggesting the presence of negative feedback regulation from mTORC1 to TGF-β1 signaling. Thus, BCAA induce an anti-fibrotic effect in HSC, prevent apoptosis in hepatocytes, and decrease the incidence of HCC; therefore, BCAA supplementation would be beneficial for patients with advanced liver fibrosis with a high risk of HCC.

  3. Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles.

    Science.gov (United States)

    Morifuji, Masashi; Koga, Jinichiro; Kawanaka, Kentaro; Higuchi, Mitsuru

    2009-02-01

    In earlier studies we showed that dietary whey protein increased skeletal muscle and liver glycogen content in exercise-trained rats. However, little is known about whether ingredients of whey protein stimulate skeletal muscle glycogen accumulation. The aim of this study was to identify bioactive peptides in whey protein hydrolysates (WPH) which stimulated glucose uptake and glycogen synthesis rate in skeletal muscles. Branched-chain amino acid (BCAA)-containing dipeptides in WPH were identified using LC/MS/MS. L6 myotubes and isolated epitrochlearis muscles were used for the glucose uptake assays. The myotubes and muscles were incubated with or without 1 mM dipeptides, LY294002 a phosphoinositide 3-kinase (PI3-kinase) inhibitor, or GF102903X an atypical protein kinase C (aPKC) inhibitor, followed by measurement of 2-deoxyglucose uptake. Isolated muscles were incubated for 3 h with or without 1 mM Ile-Leu to determine glycogen synthesis rate. The BCAA-containing dipeptides, Ile-Val, Leu-Val, Val-Leu, Ile-Ile, Leu-Ile, Ile-Leu, and Leu-Leu were detected in the WPH by LC/MS/MS. These dipeptides caused significant stimulation in glucose uptake rate in the L6 myotubes. Ile-Leu, the main component in WPH, also stimulated glucose uptake in isolated skeletal muscles. Stimulation of glucose uptake by Ile-Leu was completely inhibited by treatment with either LY294002, or GF109203X in both L6 cells and isolated muscles. Ile-Leu increased glycogen contents in isolated muscles. These results suggest that BCAA-containing bioactive dipeptides in WPH stimulate glucose uptake in skeletal muscles via the PI3-kinase and aPKC pathways, resulting in increased skeletal muscle glycogen contents.

  4. Branched-chain amino acid supplements reduced ascites and increased the quality of life in a patient with liver cirrhosis: A case report.

    Science.gov (United States)

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Oku, Yuichiro; Fukushima, Nobuyoshi; Ando, Eiji; Oriishi, Tetsuharu; Uchida, Yuki; Otsuka, Momoka; Tanaka, Suiko; Iwasaki, Shoko; Torii, Mari; Yoshida, Kiyomi; Adachi, Yuko; Suga, Mariko; Yoshiyama, Manami; Ibi, Ryoko; Akiyama, Yoshiko; Takakura, Machiko; Mitsuyama, Keiichi; Tsuruta, Osamu; Sata, Michio

    2009-01-01

    Liver cirrhosis is frequently accompanied by malnutrition and hypoalbuminemia, which in turn commonly induces ascites in patients with liver cirrhosis. Ascites leads to abdominal distention and appetite loss, resulting in a deteriorated quality of life (QOL). Administration of branched-chain amino acid (BCAA)-rich supplements reduces hepatic encephalopathy and malnutrition. In addition, BCAAs by themselves up-regulate albumin synthesis through an increase in Fisher's ratio. Thus, in patients with liver cirrhosis, BCAA-rich supplements seem to be effective at reducing ascites and improving the QOL. Here, we report the case of a 58-year-old Japanese man with liver cirrhosis with severe ascites and peripheral edema. The hepatic function of the patient was classified as Child-Pugh grade C. To reduce protein-energy malnutrition, BCAA-rich supplements were administered as a late evening snack as part of a regimen including 2000 kcal/day (32.5 kcal/kg/day) of total energy and 83.5 g/day (1.3 g/kg/day) of total protein intake. Eight weeks after admission, ascites and edema had decreased. Nutritional status also improved from the time of admission to discharge; the serum BCAA level increased from 365.4 to 450.2 µmol/l. Furthermore, the ratio of BCAAs to tyrosine (BTR) increased from 1.70 to 3.65. We also evaluated the effects of nutritional therapy on the patient's QOL using the Medical Outcomes Study 36-Item Short-Form Health Survey upon admission and at discharge. All subscores showed marked improvement and reached a level greater than the Japanese norm with nutritional treatment. In conclusion, BCAA supplementation not only reduced ascites, but also improved the QOL in a patient with liver cirrhosis.

  5. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Jung Hoon Cha

    Full Text Available PURPOSE: Recent studies have revealed that branched-chain amino acids (BCAA reduce the development of hepatocellular carcinoma (HCC in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR. The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN-induced HCC and liver cirrhosis in a rat model. METHODS: Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. RESULTS: The mean area and number of dysplastic nodules (DNs and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. CONCLUSIONS: BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level.

  6. Branched-chain amino acids enhance premature senescence through mammalian target of rapamycin complex I-mediated upregulation of p21 protein.

    Directory of Open Access Journals (Sweden)

    Masayuki Nakano

    Full Text Available Branched-chain amino acids (BCAAs have been applied as an oral supplementation to patients with liver cirrhosis. BCAAs not only improve nutritional status of patients but also decrease the incidence of liver cancer. Mammalian target of rapamycin (mTOR links cellular metabolism with growth and proliferation in response to nutrients, energy, and growth factors. BCAAs, especially leucine, have been shown to regulate protein synthesis through mTOR activities. On the other hand, cellular senescence is suggested to function as tumor suppressor mechanisms, and induced by a variety of stimuli including DNA damage-inducing drugs. However, it is not clear how BCAA supplementation prevents the incidence of liver cancer in patients with cirrhosis. Here we showed that human cancer cells, HepG2 and U2OS, cultured in medium containing BCAAs with Fischer's ratio about 3, which was shown to have highest activities to synthesize and secrete of albumin, had higher activities to induce premature senescence and elevate mTORC1 activities. Furthermore, BCAAs themselves enhanced the execution of premature senescence induced by DNA damage-inducing drugs, which was effectively prevented by rapamycin. These results strongly suggested the contribution of the mTORC1 pathway to the regulation of premature senescence. Interestingly, the protein levels of p21, a p53 target and well-known gene essential for the execution of cellular senescence, were upregulated in the presence of BCAAs. These results suggested that BCAAs possibly contribute to tumor suppression by enhancing cellular senescence mediated through the mTOR signalling pathway.

  7. Effects of Diets Supplemented with Branched-Chain Amino Acids on the Performance and Fatigue Mechanisms of Rats Submitted to Prolonged Physical Exercise

    Directory of Open Access Journals (Sweden)

    Inar Alves de Castro

    2012-11-01

    Full Text Available This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks. The animals received a control diet (C (n = 12, a diet supplemented with 3.57% BCAA (S1 (n = 12, or a diet supplemented with 4.76% BCAA (S2 (n = 12. On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H, and the other half after a swimming exhaustion test (EX. Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05 and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05. The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance.

  8. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  9. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  10. Two randomized controlled studies comparing the nutritional benefits of branched-chain amino acid (BCAA) granules and a BCAA-enriched nutrient mixture for patients with esophageal varices after endoscopic treatment

    OpenAIRE

    Sakai, Yoshiyuki; Iwata, Yoshinori; Enomoto, Hirayuki; Saito, Masaki; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Aizawa, Nobuhiro; Ikeda, Naoto; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei

    2014-01-01

    Background The usefulness of branched-chain amino acid (BCAA) granules and BCAA-enriched nutrient mixtures for patients with liver cirrhosis is often reported. However, no randomized controlled studies have investigated the usefulness of these supplements in the nutritional intervention of cirrhotic patients receiving endoscopic treatment for esophageal varices. Methods Patients without BCAA before endoscopic treatment were divided into study 1, and those who received BCAA were divided into s...

  11. Total branched-chain amino acids requirement in patients with maple syrup urine disease by use of indicator amino acid oxidation with L-[1-13C]phenylalanine.

    Science.gov (United States)

    Riazi, Roya; Rafii, Mahroukh; Clarke, Joe T R; Wykes, Linda J; Ball, Ronald O; Pencharz, Paul B

    2004-07-01

    Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by defects in the mitochondrial multienzyme complex branched-chain alpha-keto acid dehydrogenase (BCKD; EC 1.2.4.4), responsible for the oxidative decarboxylation of the branched-chain ketoacids (BCKA) derived from the branched-chain amino acids (BCAA) leucine, valine, and isoleucine. Deficiency of the enzyme results in increased concentrations of the BCAA and BCKA in body cells and fluids. The treatment of the disease is aimed at keeping the concentration of BCAA below the toxic concentrations, primarily by dietary restriction of BCAA intake. The objective of this study was to determine the total BCAA requirements of patients with classical MSUD caused by marked deficiency of BCKD by use of the indicator amino acid oxidation (IAAO) technique. Five MSUD patients from the MSUD clinic of The Hospital for Sick Children participated in the study. Each was randomly assigned to different intakes of BCAA mixture (0, 20, 30, 50, 60, 70, 90, 110, and 130 mg.kg(-1).day(-1)), in which the relative proportion of BCAA was the same as that in egg protein. Total BCAA requirement was determined by measuring the oxidation of l-[1-(13)C]phenylalanine to (13)CO(2). The mean total BCAA requirement was estimated using a two-phase linear regression crossover analysis, which showed that the mean total BCAA requirement was 45 mg.kg(-1).day(-1), with the safe level of intake (upper 95% confidence interval) at 62 mg.kg(-1).day(-1). This is the first time BCAA requirements in patients with MSUD have been determined directly.

  12. Heating improves poor compliance with branched chain amino acid-rich supplementation in patients with liver cirrhosis: A before-after pilot study.

    Science.gov (United States)

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Shiraishi, Satomi; Ibi, Ryoko; Mutou, Michiko; Okada, Teruyo; Uchida, Yuki; Otsuka, Momoka; Oriishi, Tetsuharu; Tanaka, Suiko; Takakura, Machiko; Mitsuyama, Keiichi; Tsuruta, Osamu; Sata, Michio

    2009-01-01

    Although branched chain amino acid (BCAA) supplementation improves malnutrition in cirrhotic patients, patient compliance with the administration of BCAA-rich supplements is poor due to their bitter taste. Since temperature is an important factor affecting taste, we examined the effect of heating on the stability of BCAAs and on the compliance of patients with liver cirrhosis with BCAA-rich supplement administration. A thermal denaturation test was first conducted, in which the BCAA-rich supplement Aminoleban® EN was heated to 37, 60, or 80°C for 30 or 60 min. The concentration of three amino acids, L-valine, L-leucine and L-isoleucine, was subsequently measured. The nutritional status of the cirrhotic patients was also evaluted. Patients presenting liver failure with a Child-Pugh class of A (n=2), B (n=2) or C (n=2) were hospitalized at Kurume University Hospital. Six patients with liver cirrhosis (HCV, n=3; HBV, n=1; alcohol, n=2) were enrolled. Venous blood samples were drawn in the morning after a 12-h overnight fast. The BCAA-rich supplement was administered to patients at room temperature (25°C) or heat loaded at 60°C for 10 min, with the temperature maintained above 45°C. Each patient was interviewed by a nationally registered dietitian regarding food consumption and intake of the BCAA-rich supplement immediately after each meal. Nutritional status was evaluated according to serum albumin levels, blood hemoglobin, prothrombin time and total lymphocyte count. No significant decrease was noted in valine, leucine or isoleucine levels following the heating of the BCAAs to 80°C. The caloric intake of the BCAA-rich supplement was significantly higher with administration after heating to 60°C, compared to caloric intake with administration at 25°C. In addition, heating of the BCAA-rich supplement significantly increased blood lymphocyte counts. In conclusion, heating did not affect the stability of the BCAAs, and may improve compliance with BCAA

  13. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  14. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  15. Intermediate Levels of Bacillus subtilis CodY Activity Are Required for Derepression of the Branched-Chain Amino Acid Permease, BraB.

    Directory of Open Access Journals (Sweden)

    Boris R Belitsky

    2015-10-01

    Full Text Available The global transcriptional regulator, CodY, binds strongly to the regulatory region of the braB gene, which encodes a Bacillus subtilis branched-chain amino acid (BCAA permease. However, under conditions that maximize CodY activity, braB expression was similar in wild-type and codY null mutant cells. Nonetheless, expression from the braB promoter was significantly elevated in cells containing partially active mutant versions of CodY or in wild-type cells under growth conditions leading to intermediate levels of CodY activity. This novel pattern of regulation was shown to be due to two opposing mechanisms, negative and positive, by which CodY affects braB expression. A strong CodY-binding site located downstream of the transcription start point conferred negative regulation by direct interaction with CodY. Additionally, sequences upstream and downstream of the promoter were required for repression by a second pleiotropic B. subtilis regulator, ScoC, whose own expression is repressed by CodY. ScoC-mediated repression of braB in codY null mutants cells was as efficient as direct, CodY-mediated repression in wild-type cells under conditions of high CodY activity. However, under conditions of reduced CodY activity, CodY-mediated repression was relieved to a greater extent than ScoC-mediated repression was increased, leading to elevated braB expression. We conclude that restricting increased expression of braB to conditions of moderate nutrient limitation is the raison d'être of the feed-forward regulatory loop formed by CodY and ScoC at the braB promoter. The increase in BraB expression only at intermediate activities of CodY may facilitate the uptake of BCAA when they are not in excess but prevent unneeded BraB synthesis when other BCAA transporters are active.

  16. Effect of branched-chain amino acid-enriched nutritional supplementation on interferon therapy in Japanese patients with chronic hepatitis C virus infection: a retrospective study

    Directory of Open Access Journals (Sweden)

    Nagao Yumiko

    2012-11-01

    Full Text Available Abstract Background The aims of this study were to evaluate the effects of nutritional supplementation with branched-chain amino acids (BCAA with zinc component (Aminofeel® on adherence to and outcome of therapy in patients treated with interferon (IFN for chronic hepatitis C and cirrhosis and to determine whether to recommend the supplement. Methods In this retrospective study, 51 patients who received IFN therapy were investigated among 203 consecutive patients who visited our hospital and were advised regarding the potential benefit of taking Aminofeel®. Each patient was free to choose whether to purchase and take Aminofeel®. Results Twenty four patients (group 1-A took Aminofeel® during standard IFN therapy and 13 (group 1-B did not. Low-dose, long-term IFN (maintenance therapy, mainly peglated (Peg-IFN alpha 2a, was administered to 14 patients who were difficult to treat, because of no effect or harmful side effects with standard IFN therapy, and who had advanced liver fibrosis. Among the 14, 11 patients (group 2-A took Aminofeel® and 3 (group 2-B did not. The prevalence of obesity was significantly higher (P=0.04 in group 1-A than in group 1-B. The rate of adherence to IFN therapy was higher in group 1-A (83.3% than in group 1-B (53.8%, P=0.05. There were no significant differences between the two groups in the rates of sustained virological response (SVR to IFN therapy. According to multivariate analysis, two factors, SVR and intake of Aminofeel®, were associated with successful adherence to IFN therapy. The adjusted odds ratios for these two factors were 13.25 and 12.59, respectively, and each was statistically significant. The SVR rate of maintenance IFN therapy was in 18.2% group 2-A and 0% in group 2-B. Conclusion Our data show that BCAA intake is useful for adherence to and effect of IFN therapy for patients with chronic hepatitis C. Nutritional supplementation with BCAA seems to be useful for HCV-infected patients receiving

  17. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  18. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health

    OpenAIRE

    David eRios-Covian; Patricia eRuas-Madiedo; Abelardo eMargolles; Miguel eGueimonde; de los Reyes-Gavilan, Clara G.; Nuria eSalazar

    2016-01-01

    The colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pa...

  19. Comparative study of amino acid, ammonia and pancreatic hormone levels in the blood of cirrhotic patients following intragastric and intravenous administration of a branched-chain amino acid-enriched solution.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-10-01

    Full Text Available The blood levels of amino acids, ammonia and pancreatic hormones following the intragastric and intravenous administration of a branched-chain amino acid (BCAA-enriched solution were comparatively investigated in control subjects and patients with liver cirrhosis. There was no essential difference in the time course of serum amino acid and blood ammonia levels between the intragastric and intravenous infusions. Elevation of serum insulin concentrations in cirrhotic patients was significant only immediately after the administration through the enteral route. However, plasma glucagon levels increased similarly when the BCAA-enriched solution was administered through either route. The results indicate that both enteral and intravenous infusions will have similar therapeutic effects on the impaired protein metabolism in cirrhotic patients with protein-calorie malnutrition.

  20. Research Progress of Branched Chain Amino Acids Applied in Hepatic Encephalopathy%支链氨基酸在肝性脑病中应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 蔡东联

    2011-01-01

    肝性脑病作为肝脏疾病终末期常见的并发症之一,严重降低病人的生活质量,影响疾病预后.不合理的营养摄人是肝性脑病的诱因之一.支链氨基酸的应用不仅可预防肝病病人发生肝性脑病,还可以降低肝性脑病病人的意识障碍.本文简述肝性脑病的发生机制,并从理论基础、临床研究叙述支链氨基酸的治疗作用机制,且对常见支链氨基酸药物及已报道的不良反应进行综述,目的在于规范支链氨基酸在肝性脑病中的应用,提高医师对其不良反应的重视.%As one of the common complications in the liver disease end - stage,hepatic encephalopathy seriously lowers the quality of patient lives and affects disease prognosis. Unreasonable nutritional intake is one of the reasons that lead to hepatic encephalopathy. The use of branched chain amino acids not only can prevent patients from hepatic encephalopathy , but also can lower the disorder of consciousness. This paper briefly narrates the happening mechanism of hepatic encephalopathy and lists the common medicine containing branched chain zmino acids.Besides , it summarizes the adverse reactions reported , aiming to set standards to the use of branched chain amino acids.

  1. 运动中补充支链氨基酸对生理机能的有利效用%The Effects of Branched-Chain Amino Acid Supplements on Physiological Function during Exercises

    Institute of Scientific and Technical Information of China (English)

    俞璐; 丁树哲

    2009-01-01

    支链氨基酸(branched chain amino acid,BCAA)作为人体的必需氨基酸,与人体运动能力有着密切关系,能为长时间的耐力运动提供能量.从补充BCAA对抗中枢神经疲劳、对肌肉蛋白质代谢的作用及对线粒体功能的作用等几方面进行阐述诠释.

  2. Fats and fatty acids

    Science.gov (United States)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  3. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  4. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  5. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  6. Prediction of microbial protein supply in dairy cows based on odd and branched chain fatty acids in milk

    NARCIS (Netherlands)

    Vlaeminck, B.; Hindle, V.A.; Vuuren, van A.M.; Demeyer, D.; Fievez, V.

    2003-01-01

    Four Holstein-Friesian dairy cows (560-600 kg body weight, 67-92 days postpartum) were fed isoenergetic and isonitrogenous diets which differed in the amount of protected starch. Compared to the control ration (diet I), beet pulp was replaced by potato starch, maize meal or wheat meal (diets II, III

  7. Effect of dietary excess of branched-chain amino acids on performance and serum concentrations of amino acids in growing pigs.

    Science.gov (United States)

    Morales, A; Arce, N; Cota, M; Buenabad, L; Avelar, E; Htoo, J K; Cervantes, M

    2016-02-01

    Depressed performance and availability of some amino acids (AA) in pigs fed excess Leu diets appear to be related to lower feed intake. Surplus Ile and Val may help to overcome this effect. An experiment was conducted with 24 pigs (31.8 ± 1.2 kg initial BW) to evaluate the effect of dietary excess of either Leu alone or with surplus Ile and Val on performance and serum concentration (SC) of essential AA. Treatments were as follows: T1, basal diet; T2, basal plus 0.43% L-Leu (excess Leu); T3, basal added with 0.43% L-Leu, plus 0.20% L-Ile and 0.25% L-Val (excess LIV). The basal diet was formulated to contain 0.90% standardized ileal digestible Lys and added with crystalline L-Lys, L-Thr, DL-Met, L-Trp, L-Leu, L-Ile, L-His and L-Val to create essential AA:Lys ratios close to an ideal protein for growing pigs. All pigs were fed the same amount of feed twice a day (average, 3.42× the requirement of NEm). Blood samples were collected at 2.5 (absorptive) and 11.0 h (post-absorptive) post-prandial to analyse SC of AA. Excess of either Leu or LIV did not affect growth rate nor feed conversion. Excess Leu increased Leu SC and decreased Ile and Val SC (p pigs consuming excess Leu diets is attributed to a reduced absorption and increased cellular degradation rates of them.

  8. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  9. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  10. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  11. Branched-Chain Amino Acids as Pharmacological Nutrients in Chronic Liver Disease%支链氨基酸作为药理营养素在慢性肝病治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    王芃; 谢青

    2011-01-01

    Branched-chain amino acids (BCAAs) are a group of essential amino acids including valine, leucine and isoleucine. A low ratio of plasma BCAAs to aromatic amino acids is a physiological hallmark of liver cirrhosis. Recent studies on BCAAs have revealed that, in addition to their role as protein constituents, they may have a role as pharmacological nutrients for patients with chronic liver disease. This review summarizes the possible effects of BCAAs on albumin synthesis and insulin resistance from clinical and basic viewpoints. Meanwhile, the newly discovered clinical impact of BCAAs on the prognosis and quality of life of patients with hepatocellular carcinoma and liver cirrhosis are reviewed.%支链氨基酸是一组包括缬氨酸、亮氨酸和异亮氨酸等的人体必需氨基酸.支链氨基酸除了其蛋白质成分的作用,可能对慢性肝病患者具有药理营养素作用.本文从基础研究和临床角度对支链氨基酸在合成白蛋白和胰岛素抵抗作用上可能产生的影响,以及对肝癌和肝硬化患者的生活质量和预后的临床作用作一综述.

  12. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  13. Synthesis and aggregation behavior of 2-(4-butyloctyl) malonic acid in aqueous solution. The formation of physically and colloidally stable vesicles by a branched-chain malonate

    NARCIS (Netherlands)

    Groot, Rimke W. de; Wagenaar, Anno; Sein, Arjen; Engberts, Jan B.F.N.

    1995-01-01

    A new surfactant with a branched monoalkyl chain and a malonate headgroup has been synthesized: 2-(4-butyloctyl)malonic acid (BOMA). From the geometry of the surfactant, reflected in a packing parameter (P), it was anticipated that the surfactant would preferably aggregate in bilayers. This expectat

  14. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA)

    NARCIS (Netherlands)

    den Hengst, CD; Groeneveld, M; Kuipers, OP; Kok, J; Hengst, Chris D. den

    2006-01-01

    Transcriptome analyses have previously revealed that a gene encoding the putative amino acid transporter CtrA (YhdG) is one of the major targets of the pleiotropic regulator CodY in Lactococcus lactis and Bacillus subtilis. The role of ctrA in L. lactis was further investigated with respect to both

  15. Effects of Branched-Chain Amino Acid Supplements on Aerobic Exercise Stamina%补服支链氨基酸对有氧运动耐力的影响

    Institute of Scientific and Technical Information of China (English)

    邓杰

    2015-01-01

    为了研究补服支链氨基酸(branched-chain amino acid,BCAA)对有氧运动耐力的影响,给白鼠补服BCAA,检测其对白鼠的运动能力和血清游离氨基酸代谢的影响;另选择健康男性作为受试者,于测试前30 min分别口服氨基酸补剂及安慰剂,采取自身对照性分析法对比12 min跑成绩及最大吸氧量的变化.结果表明,白鼠补充BCAA后,有氧运动的衰竭推迟出现,血清中BCAA的含量显著提高;人体数据研究表明,补服BCAA后,12 min跑成绩和最大吸氧量均显著提高.表明补服BCAA能有效提高人体的有氧运动耐力.

  16. The Ratio of Dietary Branched-Chain Amino Acids is Associated with a Lower Prevalence of Obesity in Young Northern Chinese Adults: An Internet-Based Cross-Sectional Study.

    Science.gov (United States)

    Li, Yan-Chuan; Li, Ying; Liu, Li-Yan; Chen, Yang; Zi, Tian-Qi; Du, Shan-Shan; Jiang, Yong-Shuai; Feng, Ren-Nan; Sun, Chang-Hao

    2015-11-18

    This study aims to examine the association between the ratio of dietary branched chain amino acids (BCAA) and risk of obesity among young northern Chinese adults. A total of 948 randomly recruited participants were asked to finish our internet-based dietary questionnaire for the Chinese (IDQC). Associations between dietary BCAA ratio and prevalence of overweight/obesity and abdominal obesity were analyzed. Furthermore, 90 subjects were randomly selected to explore the possible mechanism. Dietary BCAA ratio in obese participants was significantly lower than non-obese participants. We found negative correlations between the ratio of dietary BCAA and body mass index (BMI) (r = -0.197, p BCAA ratio for overweight/obesity were 0.508 (0.265-0.972) and 0.389 (0.193-0.783), respectively (all p BCAA ratio were 0.351 (0.145-0.845) and 0.376 (0.161-0.876), respectively (all p BCAA ratio was inversely associated with 2-h postprandial glucose (2 h-PG) and status of inflammation. In conclusion, a higher ratio of dietary BCAA is inversely associated with prevalence of obesity, postprandial glucose and status of inflammation in young northern Chinese adults.

  17. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Conclusions: Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.

  18. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage.

    Science.gov (United States)

    Geda, F; Declercq, A; Decostere, A; Lauwaerts, A; Wuyts, B; Derave, W; Janssens, G P J

    2015-02-01

    This study was executed to investigate the effect of dietary β-alanine (BA) on amino acid (AA) metabolism and voluntary feed intake in carp (Cyprinus carpio) at mildly elevated temperature to exert AA catabolism. Twenty-four fish in 12 aquaria were randomly assigned to either a control diet or the same diet with 500 mg BA/kg. A 14-day period at an ideal temperature (23 °C) was followed by 15 days at chronic mildly elevated temperature (27 °C). After the 15 days, all fish were euthanised for muscle analysis on histidine-containing dipeptides (HCD), whole blood on free AA and carnitine esters. The carnosine and anserine analysis indicated that all analyses were below the detection limit of 5 µmol/L, confirming that carp belongs to a species that does not store HCD. The increases in free AA concentrations due to BA supplementation failed to reach the level of significance. The effects of dietary BA on selected whole blood carnitine esters and their ratios were also not significant. The supplementation of BA tended to increase body weight gain (P = 0.081) and feed intake (P = 0.092). The lack of differences in the selected nutrient metabolites in combination with tendencies of improved growth performance warrants further investigation to unravel the mechanism of BA affecting feed intake. This first trial on the effect of BA supplementation on AA catabolism showed that its metabolic effect in carp at chronic mildly elevated temperature was very limited. Further studies need to evaluate which conditions are able to exert an effect of BA on AA metabolism.

  19. A Rapid and Sensitive UPLC-MS/MS-Method for the Separation and Quantification of Branched-Chain Amino Acids from Dried Blood Samples of Patients with Maple Syrup Urine Disease (MSUD

    Directory of Open Access Journals (Sweden)

    Ralph Fingerhut

    2016-06-01

    Full Text Available Newborn screening for MSUD is a special challenge since patients with MSUD can metabolically decompensate rapidly without adequate treatment within the first two weeks of life. However, the screening method does not detect the actual marker metabolite (alloisoleucine specifically, but only as part of the group of the other isobaric amino acids leucine, isoleucine and hydroxyproline. We describe a sensitive and rapid second-tier UPLC-MS/MS method to determine branched-chain amino acids from the initial extraction of the screening sample. Quantification is based on a seven-point calibration curve. Reference ranges (mean ± SD in µmol/L were determined from 179 normal, not pre-selected samples from the newborn screening: leucine: 72 ± 27; isoleucine: 37 ± 19; valine: 98 ± 46; hydroxyproline: 23 ± 13. The concentration of alloisoleucine was below the detection limit in about 55% of the cases, and the highest concentration was 1.9 µmol/L. In all 30 retrospectively studied screening samples from patients with confirmed MSUD the concentration of alloisoleucine was significantly increased. In 238 samples with false-positive newborn screening due to a significant increase in the combined concentration of leucine + isoleucine + alloisoleucine + hydroxyproline (400 to >4000 µmol/L, alloisoleucine was below 6.5 µmol/L (n = 57 or not detectable (n = 181. The application of this assay markedly reduces the false-positive rate and the associated anxiety and costs. It is also suitable for routinely monitoring blood spots of patients with MSUD.

  20. 补充支链氨基酸对运动能力影响的研究进展%Research Development on Branched-Chain Amino Acid Supplement And Exercise Capacity

    Institute of Scientific and Technical Information of China (English)

    唐芳; 张蕴琨

    2012-01-01

    As necessary amino acids,Branched-chain amino acid(BCAA)is closely related to our exercise abilities.on the one hand,BCAA supplement can reduce protein catabolism,and promote gluconeogenesis,Therefore,the strength and anaerobic exercise capacity were improved.On the one hand,The ability of BCAA oxidation and decomposition in vivo to produce ATP is more efficiently than other amino acids.Branched-chain amino acid supplement can reduce the / ratio,and decrease the formation of 5-HT to provide energy reserving endurance exercise.However,some academics also suggested that the BCAA has no effect on exercise capacity and even have a negative impact,mainly because a large number of BCAA supplement may lead to blood ammonia elevated,thereby affecting exercise capacity,Therefore,scholars focus on the dose of BCAA during BCAA supplement.However,because of the complexity of the exercise test,the dose of BCAA supplement,the concentration of BCAA and the ratio of leucine,isoleucine and valine(Val) have no determine,how to supply BCAA reasonablly need further research Meanwhile,the mechanism of BCAA involved in glucose metabolism is not clear.In addition,during a long time,the effects of BCAA supplement on exercise capacity is still no conclusive.Following with application of micro-dialysis and other new technology,these problems will be solved.%支链氨基酸(BCAA)作为人体必需氨基酸,与人体的运动能力密切相关。一方面,补充BCAA能减少蛋白质的分解代谢,并促进糖异生,可以提高力量和无氧运动能力。另一方面,支链氨基酸在体内氧化分解产生ATP的效率高于其他氨基酸,补充BCAA可以降低[游离色氨酸(f-Trp)]/[BCAA]的比值,减少5-羟色胺(5-HT)形成,为机体长时间耐力运动提供能量。但是学术界也有人认为支链氨基酸对运动能力没有影响甚至会产生负面影响,主要原因是大量补充支链氨基酸会引起血氨升高,进而影响运动能力,故

  1. Effect on Nitrogen Balance, Thermogenesis, Body Composition, Satiety, and Circulating Branched Chain Amino Acid Levels up to One Year after Surgery: Protocol of a Randomized Controlled Trial on Dietary Protein During Surgical Weight Loss

    Science.gov (United States)

    Pi-Sunyer, Xavier; Vidal, Josep; Miner, Patricia; Boirie, Yves; Laferrère, Blandine

    2016-01-01

    Background Bariatric surgery (BS), the most effective treatment for severe obesity, typically results in 40-50 kg weight loss in the year following the surgery. Beyond its action on protein metabolism, dietary protein intake (PI) affects satiety, thermogenesis, energy efficiency, and body composition (BC). However, the required amount of PI after surgical weight loss is not known. The current daily PI recommendation for diet-induced weight loss is 0.8 g/kg ideal body weight (IBW) per day, but whether this amount is sufficient to preserve fat-free mass during active surgical weight loss is unknown. Objective To evaluate the effect of a 3-month dietary protein supplementation (PS) on nitrogen balance (NB), BC, energy expenditure, and satiety in women undergoing either gastric bypass or vertical sleeve gastrectomy. Methods In this randomized prospective study, participants will be randomized to a high protein supplementation group (1.2 g/kg IBW per day) or standard protein supplementation group (0.8 g/kg IBW per day) based on current guidelines. Outcome measures including NB, BC, circulating branched chain amino acids, and satiety, which will be assessed presurgery, and at 3-months and 12-months postsurgery. Results To date, no studies have examined the effect of dietary PS after BS. Current guidelines for PI after surgery are based on weak evidence. Conclusions The results of this study will contribute to the development of evidence-based data regarding the safe and optimal dietary PI and supplementation after BS. Trial Registration Clinicaltrials.gov NCT02269410; http://clinicaltrials.gov/ct2/show/NCT02269410 (Archived by WebCite at http://www.webcitation.org/6m2f2QLeg). PMID:27895003

  2. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model.

    Science.gov (United States)

    Zheng, Liufeng; Wei, Hongkui; He, Pingli; Zhao, Shengjun; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-12-28

    Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses-fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH(13)CO₃ for 2 h, followed by a 6-h infusion of [1-(13)C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in

  3. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-12-01

    Full Text Available Supplementation of branched-chain amino acids (BCAA has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1 and 28-day-old (Experiment 2 piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle

  4. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... acid, caprylic acid, lauric acid, myristic acid, oleic acid, palmitic acid, and stearic acid. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and...

  5. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters, evaluated by the JECFA (61st meeting) structurally related to branched- and straight-chain unsaturated carboxylic acids, esters of these and straight-chain aliphatic saturated alcohols evaluated by EFSA in FGE.05Rev2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz;

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 23 aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters, evaluated by the JECFA at their 61st meeting. This revision is made due...

  6. Omega-3 Fatty Acids during Pregnancy

    Science.gov (United States)

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your ... the foods you eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important ...

  7. 支链氨基酸对大鼠TPH mRNA表达的影响%Effects of branched-chain amino acids spplementation on expression of TPH mRNA in rats

    Institute of Scientific and Technical Information of China (English)

    欧阳儒颖; 季红光; 蔡懿灵; 阮芳铭; 王海明

    2005-01-01

    目的探讨补充支链氨基酸(branched-chain amino acids,BCAA)对睡眠剥夺(sleep deprivation,SD)大鼠脑干色氨酸羟化酶(Tryptophan hydroxylase,TPH)mRNA表达的影响.方法采用小站台水环境(flower-pot)睡眠剥夺模型对大鼠进行睡眠剥夺.将56只雄性成年Sprague-Dawley大鼠按体重随机分为C(对照组,自由睡眠)、24 hSD(剥夺睡眠24 h)、24 h SDB(睡眠剥夺24h,进食添加3%BCAA的饲料)、48hSD、48h SDB、72 hSD和72 hSDB组,每组8只.睡眠剥夺结束后,断头取脑,冰上分离出脑干,半定量RT-PCR法检测TPH mBNA的表达.结果24和48h睡眠剥夺未明显改变大鼠脑干TPHmRNA的表达,与对照组比较差异无统计学意义(P>0.05);而72h睡眠剥夺后TPH mRNA表达量大幅度增加,与其它各组相比差异有统计学意义(P<0.01).补充BCAA与未补充BCAA组比较,大鼠脑干TPHmRNA的表达水平末见明显变化.结论一定时间的睡眠剥夺可以引起大鼠脑干TPHmRNA的表达上调,但补充一定剂量的支链氨基酸并不能改变睡眠剥夺大鼠脑干TPHmRNA的表达.

  8. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect.

    Science.gov (United States)

    Zheng, Liufeng; Wei, Hongkui; Cheng, Chuanshang; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-06-01

    The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth

  9. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    Science.gov (United States)

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-02

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs.

  10. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  11. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    Science.gov (United States)

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  12. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  13. Consumo de aminoácidos de cadeia ramificada não afeta o desempenho de endurance Branched-chain amino acids ingestion does not affect endurance performance

    Directory of Open Access Journals (Sweden)

    Marco Carlos Uchida

    2008-02-01

    Full Text Available A suplementação com aminoácidos de cadeia ramificada (BCAA é uma das manipulações dietéticas mais populares entre atletas engajados em atividades de endurance. Entretanto, o papel ergogênico destes aminoácidos ainda não está totalmente estabelecido. Portanto, o objetivo do presente trabalho foi avaliar o efeito do consumo de BCAA sobre o exercício de endurance realizado até a exaustão. A fim de provocar redução do estoque de glicogênio muscular e, por conseguinte, maximizar a utilização dos BCAA, os sujeitos (n=17 foram submetidos a uma sessão prévia de exercício (corrida realizada a 75% do VO2max por 40 min seguida por 2 tiros a 90% do VO2max por 10 min cada um. Subseqüentemente, após o consumo aleatório de BCAA (77 mg.kg-1 ou placebo, seguindo modelo duplo cego cruzado, os participantes executaram um teste para determinação da capacidade de endurance (corrida a 90% do Limiar anaeróbio até a exaustão. Ambos os experimentos, BCAA e placebo, foram separados por uma semana. Com relação ao tempo até a exaustão e a distância percorrida, nenhuma diferença foi detectada entre as condições experimentais. (Placebo: 50,1±8,9 vs BCAA: 52,4±4,5 min, respectivamente (Placebo: 8,8±1,3 vs BCAA: 9,1±0,6 km, respectivamente. Além disto, também não foi evidenciada diferença na concentração plasmática de glicose, de lactato e de amônia entre ambas condições experimentais. Em conclusão, a suplementação de BCAA não afetou o desempenho de endurance em um teste de corrida até a exaustão.Branched-chain amino acids (BCAA supplementation is one of the most popular dietary manipulations used by endurance athletes. However, the ergogenic role of these amino acids in endurance exercise is not well established yet. Therefore, the aim of this study was to evaluate the effect of BCAA supplementation upon endurance exercise performed until exhaustion. In order to induce glycogen supply reduction, and thus maximize BCAA

  14. Association of increased serum branched-chain amino acid level with carotid plaque%血清支链氨基酸水平升高与颈动脉斑块的关系

    Institute of Scientific and Technical Information of China (English)

    隋小芳; 杨睿悦; 郭金发; 张磊艺; 黄佳滨; 费秀斌; 曾平; 朱玲

    2015-01-01

    目的:研究血清支链氨基酸(BCAA)水平与颈动脉斑块的关系。方法采用横断面调查方法,对收集的中老年体检人群472例[42~97岁,平均(70.1±6.6)岁,男性272例]进行问卷调查、体格检查、血液检查和颈动脉超声检测,同位素稀释液相色谱串联质谱法测定血清 BCAA 水平,分析其与颈动脉斑块的关系。结果血清 BCAA 浓度呈偏态和尖态分布,男性的 BCAA 水平[466.5(423.6~514.7)μmol/ L]显著高于女性[415.3(382.5~466.0)μmol/ L],P ﹤0.001。在校正年龄和性别后,血清 BCAA 水平与 BMI、SBP、DBP、FBG、TG 和 LDL-C 显著正相关(均为 P ﹤0.05),与 HDL-C 明显负相关(P ﹤0.001)。颈动脉斑块组的 BCAA 水平[450.0(405.9~492.1)]明显高于正常组[430.4(395.1~495.2)](P =0.039)。多因素 Logistic 回归分析发现,年龄、吸烟史、SBP 和 BCAA 水平升高是颈动脉斑块的独立危险因素,BCAA 次高四分位水平发生颈动脉斑块的风险是最低四分位水平的2.68倍(P =0.002,P趋势=0.018)。结论血清 BCAA 水平升高是颈动脉斑块的独立危险因素,可能影响动脉粥样硬化的发生发展。%Objective To investigate the association between serum branched chain amino acid (BCAA) and carotid plaque. Methods The cross-sectional study was undertaken on 472 middle-aged and elderly people [42-97 y, average (70. 1 ± 6. 6) y, 272 males] selected from the participants for health screen. The medical history of each participant was obtained by questionnaire. The samples of venous blood and the Bilateral B-mode carotid artery images were taken. Serum BCAA levels were determined by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry. The association of BCAA with carotid plaque was analyzed. Results The levels of BCAA showed skewed and leptokurtic distribution. Males [466. 5 (423. 6-514. 7 ) μmol/ L ] had significantly higher values of BCAA than females [ 415. 3 ( 382. 5-466. 0) μmol/ L] (P ﹤ 0. 001

  15. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids.

    Science.gov (United States)

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.

  16. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1985-04-01

    The phospholipid headgroup composition and fatty acid composition of a gram-positive halotolerant Planococcus sp. (strain A4a) were examined as a function of growth temperature (5 to 35 degrees C) and NaCl content (0 to 1.5 M) of the growth medium. When the growth temperature was decreased, the relative amount of mono-unsaturated branched-chain fatty acids increased. When Planococcus sp. strain A4a was grown in media containing high NaCl concentrations, the relative amount of the major fatty acid, Ca15:0, increased. The relative amount of anionic phospholipid also increased when the NaCl concentration of the growth medium was increased. The increase in anionic phospholipid content resulted from a decrease in the relative mole percent content of phosphatidylethanolamine and an increase in the relative mole percent content of cardiolipin.

  17. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  18. Effects of Branched-Chain Amino Acids on Growth Performance and Intestinal Development of Broilers%支链氨基酸对肉鸡生长性能及肠道发育的影响

    Institute of Scientific and Technical Information of China (English)

    常银莲; 刘国华; 常文环; 张姝; 郑爱娟; 蔡辉益

    2016-01-01

    This experiment was conducted to investigate the effects of branched-chain amino acids ( BCAAs) on the growth performance and intestinal development of broilers.Three hundred and eighty-four one-day-old Arbor Acres ( AA) healthy male broilers were randomly assigned into four groups with 6 replicates per group and 16 broilers per replicate.Each group was offered one of the following diets with different BCAAs levels:3.04%, 3.93%, 4.82%and 5.71%, respectively.The ratio of leucine (Leu), isoleucine (Ile) and valine ( Val) was 1.8∶1.0∶1.2.The experiment lasted for 21 days and all birds were free to feed and water.The re-sults showed that there was no significant difference in body weight or average daily gain among all groups ( P>0.05) , while the average daily feed intake in 5.71%group was significantly lower than that in 3.04%group ( P0.05) . At age of 10 and 21 days, the crypt depth of jejunum in 4.82%group was significantly higher than that in 3.93%group ( P0.05).The V/C of jejunum and ileum in 3.93%group was significantly higher than that in 5.71%group ( P<0.05) .In conclusion, under the situation of this experiment, with the in-crease of BCAAs level, the ratio of feed to gain can decrease;the addition of BCAAs with appropriate amount can promote intestinal development of broilers, while excessive addition can significantly decrease average daily feed intake and lead to the postponed development of the small intestine.%本试验旨在研究支链氨基酸( BCAAs)对肉鸡生长性能及肠道发育的影响。选取1日龄爱拔益加( AA)健康肉公鸡384只,随机分为4组,每组6个重复,每个重复16只。各组分别饲喂BCAAs水平为3.04%、3.93%、4.82%和5.71%的试验饲粮,各组饲粮中亮氨酸∶异亮氨酸∶缬氨酸均为1.8∶1.0∶1.2,自由采食和饮水,试验期21 d。结果表明:各组肉鸡体重及平均日增重均无显著差异(P>0.05),但5.71%组肉鸡

  19. Physiological functions of iso-type short-chain fatty acid and omega 3 polyunsaturated fatty acids containing oil in obese OLETF rats.

    Science.gov (United States)

    Shirouchi, Bungo; Nagao, Koji; Furuya, Kenta; Nagai, Toshiharu; Ichioka, Kenji; Tokairin, Shigeru; Iida, Yasuhiro; Yanagita, Teruyoshi

    2010-01-01

    It has been known that tissues of porpoise contain unique structured-lipids as combination of iso-valeric acid (iso-C5:0) and omega 3 polyunsaturated fatty acids (omega3 PUFAs). It is well known that omega3 PUFAs have lipid-lowering effects in animal and human studies. Although branched chain fatty acids have been interested in their unique functions, there is no data concerning the effect of iso-C5:0 on lipid metabolism. In this study we investigated the effect of structured-lipids from porpoise adipose tissue (porpoise oil) on lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. For 4 weeks, rats were fed semisynthetic diets containing either 10% corn oil or 5% corn oil plus 5% porpoise oil. After feeding period, the porpoise oil diet significantly alleviated hepatic triglyceride accumulation compared with the control diet in OLETF rats. Although serum triglyceride level increased, serum level of adiponectin that can protect liver function and alleviate abnormalities of lipid and glucose metabolism increased in rats fed porpoise oil diet. In conclusion, results from the present study suggest that porpoise oil feeding prevents the development of fatty liver disease through the enhancement of lipoprotein secretion and increase of adiponectin production in obese rats.

  20. Maastricht essential fatty acid birth cohort

    NARCIS (Netherlands)

    Van der Wurff, Inge; De Groot, Renate; Stratakis, Nikos; Gielen, Marij; Hornstra, Gerard; Zeegers, Maurice

    2016-01-01

    The Maastricht Essential Fatty Acid Birth cohort (MEFAB) was established in 1989 to study the changes in fatty acid concentration during pregnancy and how this related to the fatty acid concentrations of the neonate. The original sample contains data of 1203 subjects. Some participants whom particip

  1. Does the fat tailed Damara ovine breed have a distinct lipid metabolism leading to a high concentration of branched chain fatty acids in tissues?

    OpenAIRE

    Susana P Alves; Bessa, Rui J.B.; Quaresma, Mário A. G.; Tanya Kilminster; Tim Scanlon; Chris Oldham; John Milton; Johan Greeff; Almeida, André M.

    2013-01-01

    Articles in International Journals Fat tailed sheep breeds are known for their adaptation to nutritional stress, among other harsh production conditions. Damara sheep, native to Southern Africa, have recently been exported to other areas of the world, particularly Australia, aiming to produce lamb in semi-arid regions. Damaras have a unique hanging fat tail, a fat depot able to be mobilized under nutritional stress. In this article we perform an in-depth characterization of the fa...

  2. [Analysis of fatty acids in Gmnocypris przewalskii oil by gas chromatography/mass spectrometry with base-catalyzed transesterification].

    Science.gov (United States)

    Bo, Haibo; Wang, Xia; Zhai, Zongde; Li, Yongmin; Chen, Liren

    2006-03-01

    The composition of fatty acids (FA) in Gymnocypris przewalskii oil was identified and quantified by gas chromatography (GC)/electron impact (EI) mass spectrometry (MS). A base-catalyzed transesterification method was used to convert fatty acids to methyl esters. The lipids were extracted using petroleum ether and the total lipids in dried meat and skin of Gymnocypris przewalskii were about 25%. Forty-seven fatty acids were identified in the current study. Main types of fatty acids found in the oils were normal saturated, mono-branched, multi-branched, cyclopropane, furanoid, normal monounsaturated and polyunsaturated fatty acids. Saturated fatty acids were approximately 25. 7% of the total, and the main components were C(14:0) (3.4%), C(16:0) (19.4%) and C(18:0) (1.1%). Unsaturated fatty acids were totally 73.6%, and the major components of monounsaturated fatty acids were C(16:1 (9)) (19.8%), C(18:1) (9)) (18. 6%) and C(18:1 (11)) (7.3%); polyunsaturated fatty acids were mainly composed of C(18:2 (9,12)) (4.8%), C(18:3 (9, 12, 15)) (3.1%), C(20:4 (5, 8, 1, 14)) (1.2%), C(20:5 (5, 8, 11, 14, 17)) (EPA, 9.4%) and C(22:6 (4, 7, 10, 13, 16, 19)) (DHA, 6.7%). Especially, furyl-, cyclopropane- and several odd and branched chain fatty acids were found in Gymnocypris przewalskii oil. It is thus an important dietary resource of functional fatty acids.

  3. Polyunsaturated fatty acids and epilepsy.

    Science.gov (United States)

    Taha, Ameer Y; Burnham, W McIntyre; Auvin, Stéphane

    2010-08-01

    Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are dietary fatty acids that are involved in a myriad of physiologic processes in the brain. There is some evidence suggesting that PUFAs-and particularly omega-3 PUFAs-may have anticonvulsant effects, both in humans and in animals. In the present review, we assess the evidence related to the antiseizure properties of the n-3 PUFAs, discuss their possible mechanism(s) of action, and make recommendations for future clinical trials. In general, the available data from cell cultures and whole animal studies support the idea that the n-3 PUFAs have antiseizure properties. Future clinical trials involving the n-3 PUFAs should involve higher doses and longer periods of administration in order to definitively assess their possible antiseizure effects.

  4. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  5. Electrogenicity of hepatocellular fatty acid uptake.

    Science.gov (United States)

    Elsing, C; Kassner, A; Gajdzik, L; Graf, J; Stremmel, W

    1998-08-18

    Sensitivity of cellular fatty acids uptake to the membrane potential difference is still a matter of controversy. For direct evaluation of potential sensitivity the effect of changing membrane potential on uptake of a fluorescent long chain fatty acid derivative, 12-NBD-stearate, in isolated rat hepatocytes, was examined. Changes in membrane potential were achieved by patch clamp procedures. Fatty acid influx was simultaneously determined by recording of cell fluorescence. Hyperpolarization from -30 to -70 mV accelerated fatty acid influx whereas depolarization to +50 mV reduced uptake. After obtaining equilibrium hyperpolarization increased cell fluorescence, whereas depolarization pushed NBD-stearate out of cells. Potential sensitivity of uptake was dependent on the fatty acid concentrations in the medium with most prominent effects at low unbound concentrations. These data show that, at low fatty acid concentrations, uptake is, in part, driven by an intracellular negative electric membrane potential.

  6. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  7. Fatty acid content of selected seed oils.

    Science.gov (United States)

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  8. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.

    Science.gov (United States)

    Lindemann, Andrea; Pessi, Gabriella; Schaefer, Amy L; Mattmann, Margrith E; Christensen, Quin H; Kessler, Aline; Hennecke, Hauke; Blackwell, Helen E; Greenberg, E Peter; Harwood, Caroline S

    2011-10-01

    Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.

  9. Veal fatty acid composition of different breeds

    Directory of Open Access Journals (Sweden)

    Ivica Kos

    2010-01-01

    Full Text Available Veal fatty acid composition in M. Longissimus thoracis was investigated in different calf breeds (Simmental, Holstein, Simmental x Holstein. Calves were reared on the same farm under identical feeding and handling conditions. Simmental calves had higher polyunsaturated fatty acid (PUFA but lower saturated fatty acid (SFA and monounsaturated fatty acid (MUFA values than Holstein and crossbreed calves (P<0,05. The PUFA/SFA ratio was the highest in Simmental calves and the lowest in Holstein calves. Simmental calves also had the highest n-6/n-3 ratio while the crossbreed calves had the lowest n-6/n-3 ratio.

  10. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    Science.gov (United States)

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX.

  11. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    Science.gov (United States)

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  12. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    Science.gov (United States)

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  13. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    Science.gov (United States)

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    influence on the fatty acid profile of buffalo milk than that of cow milk, probably due to a shorter and less severe period of negative energy balance. Parity affected the profiles of a few traits and had the most significant effects on branched-chain fatty acids. This work provided a detailed overview of the fatty acid profile in buffalo milk including also those fatty acids present in small concentrations, which may have beneficial effects for human health. Our results contributed also to increase the knowledge about the effects of some of the major factors affecting buffalo production traits and fatty acid concentrations in milk, and consequently its technological and nutritional properties.

  14. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

    Directory of Open Access Journals (Sweden)

    Timo Friedrich

    2012-03-01

    Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt, a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD, a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD.

  15. Study of Thiosemicarbazone Derivative of Essential Fatty Acid

    OpenAIRE

    2014-01-01

    Essential fatty acids results in numerous health benefits. Only two fatty acids are known to be essential for human alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).The importance of omega-3 fatty acids for physical well-being has been recognised for several decades . Omega-3 fatty acids have anti-inflammatory, antithrombotic, antiarrhythmic and hypolipidaemic effects. Cannabis sativa (Hemp) is an angiosperm belonging to the cannabaceae family and cannabi...

  16. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of fa

  17. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  18. Effect of fatty acids on leukocyte function

    Directory of Open Access Journals (Sweden)

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  19. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116.

    Science.gov (United States)

    Song, Xiaojin; Tan, Yanzhen; Liu, Yajun; Zhang, Jingtao; Liu, Guanglei; Feng, Yingang; Cui, Qiu

    2013-10-16

    Aurantiochytrium is an important docosahexaenoic acid (DHA) producer containing two kinds of fatty acid synthesis pathways, that is, the fatty acid synthase pathway (FAS) for saturated fatty acid synthesis and the polyketide synthase pathway (PKS) for polyunsaturated fatty acid synthesis. To understand the regulation mechanism between the two pathways, the impacts of six short-chain fatty acids on the fatty acid synthesis of Aurantiochytrium sp. SD116 were studied. All short-chain fatty acids showed little effect on the cell growth, but some of them significantly affected lipid accumulation and fatty acid composition. Pentanoic acid and isovaleric acid greatly inhibited the synthesis of saturated fatty acids, whereas the polyunsaturated fatty acid synthesis was not affected. Analysis of malic enzyme activity, which supplied NADPH for saturated fatty acids biosynthesis, indicated that the two fatty acid synthesis pathways can utilize different substrates and possess independent sources of NADPH.

  20. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder

    2010-03-01

    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  1. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  2. The Laplace Functional and Moments for Markov Branching Chains in Random Environments

    Institute of Scientific and Technical Information of China (English)

    HU Di-he; ZHANG Shu-lin

    2005-01-01

    The concepts of random Markov matrix, Markov branching chain in random environment (MBCRE) and Laplace functional of Markov branching chain in random environment (LFMBCRE) are introduced. The properties of LFMBCRE and the explicit formulas of moments of MBCRE are given.

  3. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

    Science.gov (United States)

    Parsons, Joshua B; Frank, Matthew W; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O

    2014-04-01

    Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.

  4. Dioxygenation of polyunsaturated fatty acids in fungi

    NARCIS (Netherlands)

    Wadman, M.W.

    2007-01-01

    Polyunsaturated fatty acids play a central role in all biological systems. They are constituents of the plasma membrane and serve as precursors to signaling molecules generated in response to external events. The conversion of polyunsaturated fatty acids into signaling molecules starts by the hydrol

  5. Polyunsaturated fatty acids for multiple sclerosis treatment

    Directory of Open Access Journals (Sweden)

    Monserrat Kong-González

    2015-01-01

    Full Text Available INTRODUCTION Fatty acids have an important role in structure and function of the nervous system. Recently, epidemiologic studies on neurodegenerative disorders have evaluated the usefulness of polyunsaturated fatty acids on multiple sclerosis. OBJECTIVE To examine recent studies, clinical trials, and reviews on the therapeutic effect of polyunsaturated fatty acids in multiple sclerosis. METHODS We conducted a search in MEDLINE/PubMed and Cochrane Library with the terms "fatty acids", "omega-3" and "omega-6" in combination with "multiple sclerosis". Articles were selected according to their relevance on the topic. RESULTS Epidemiologic studies have shown benefits of dietary supplementation with polyunsaturated fatty acids -especially omega-3- in relation to inflammatory, autoimmune and neurodegenerative disorders. In contrast, the studies do not show a beneficial effect of polyunsaturated fatty acids in multiple sclerosis. However, there are limitations related to design and sample issues in these studies CONCLUSIONS There is some evidence of a protective effect of polyunsaturated fatty acids on the risk of multiple sclerosis. Despite this, to date controlled trials have not produced definite results on the benefits of supplementation with polyunsaturated fatty acids in patients with multiple sclerosis. Any potential benefit will have to be confirmed in the long term.

  6. Mechanisms of gene regulation by fatty acids

    NARCIS (Netherlands)

    Georgiadi, A.; Kersten, A.H.

    2012-01-01

    Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved consi

  7. Fatty acids in an estuarine mangrove ecosystem.

    Science.gov (United States)

    Alikunhi, Nabeel M; Narayanasamy, Rajendran; Kandasamy, Kathiresan

    2010-06-01

    Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus), prawns (Metapenaeus monoceros and Macrobrachium rosenbergii) and finfish (Mugil cephalus), that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of monounsaturated fatty acids. The branched fatty acids are absent in undecomposed mangrove leaves, but present significantly in the decomposed leaves and in prawns and finfish, representing an important source for them. This revealed that the microbes are dominant producers that contribute significantly to the fishes and prawns in the mangrove ecosystem. This work has proved the fatty acid biomarkers as an effective tool for identifying the trophic interactions among dominant producers and consumers in this mangrove.

  8. Historical perspectives on fatty acid chemistry

    Science.gov (United States)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  9. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  10. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Directory of Open Access Journals (Sweden)

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  11. Pectin-Lipid Self-Assembly: Influence on the Formation of Polyhydroxy Fatty Acids Nanoparticles

    Science.gov (United States)

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin. PMID:25915490

  12. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  13. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk.

    Science.gov (United States)

    Pegolo, S; Cecchinato, A; Mele, M; Conte, G; Schiavon, S; Bittante, G

    2016-06-01

    (with the exception of C6:0). Two additional genes on BTA19 (CCL2 and GH1) showed associations with saturated and branched-chain fatty acids. Our findings provide basic information on genes and SNP affecting the milk fatty acid composition of dairy cows. These results may support the possibility of using genetic selection to modify milk fatty acid profiles to promote beneficial health-related effects.

  14. Effects of saponins, quercetin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual-flow continuous culture fermenters.

    Science.gov (United States)

    Lourenço, M; Cardozo, P W; Calsamiglia, S; Fievez, V

    2008-11-01

    Four different plant secondary metabolites were screened for their effect on rumen biohydrogenation of forage long-chain fatty acids, using dual-flow continuous culture fermenters. Treatments were as follows: control (no additive), positive control (12 mg/L of monensin), and plant extracts (500 and 1,000 mg/L of triterpene saponin; 250 and 500 mg/L of quercetin; 250 mg/L of eugenol; 500 mg/L of cinnamaldehyde). Monensin increased propionate, decreased acetate and butyrate proportions, and inhibited the complete biohydrogenation of fatty acids resulting in the accumulation of intermediates of the biohydrogenation process (C18:2 trans-11, cis-15 rather than C18:1 trans-11). Cinnamaldehyde decreased total VFA concentration and proportions of odd and branched-chain fatty acids in total fat effluent. Apparent biohydrogenation of C18:2n-6 and C18:3n-3 was also less, and a shift from the major known biohydrogenation pathway to a secondary pathway of C18:2n-6 was observed, as evidenced by an accumulation of C18:1 trans-10 and trans-10, cis-12 CLA. Quercetin (500 mg/L) increased total VFA concentration, but no shifts in the pathways or extent of biohydrogenation were observed. Eugenol resulted in the accumulation of C18:1 trans-15 and C18:1 cis-15, end products of an alternative biohydrogenation pathway of C18:3n-3. Triterpene saponins did not affect the fermentation pattern, the biohydrogenation pathways, or the extent of biohydrogenation. At the doses tested in this study, we could only show a direct relation between changes in the rumen fatty acid metabolism and the presence of cinnamaldehyde but not for eugenol, quercetin, or triterpene saponins.

  15. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields.

    Science.gov (United States)

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Liu, Zhi-Wei

    2016-08-01

    Effects of growth temperature on cell membrane fatty acid composition, fluidity and lethal and sublethal injury by pulsed electric fields (PEF) in Staphylococcus aureus ATCC 43300 (S. aureus) in the stationary phase were investigated. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) revealed that branched chain fatty acids (iso C14:0, iso C15:0, anteiso C15:0 and anteiso C17:0) and straight chain fatty acids (C12:0, C14:0, C16:0, C17:0 and C18:0) were primary constituents in the membrane. The S. aureus changed its membrane fatty acid composition and its overall fluidity when exposed to different temperatures. The PEF lethal and sublethal effects were assessed, and results suggested that the degree of inactivation depended on the cell membrane structure, electric field strength and treatment time. The PEF inactivation kinetics including lethal and sublethal injury fractions were fitted with non-linear Weibull distribution, suggesting that inactivation of the first log cycle of S. aureus population was significantly affected by growth temperature, and the membrane of cells became more fluid, and easier to induce electroportion in low temperatures. Moreover, the morphology of S. aureus cells were investigated by electron microscopy, showing that various temperature-modified cells were distorted to differing extents and some even collapsed due to deep irreversible electroporation after PEF treatment.

  16. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  17. THE EXISTENCE AND MOMENTS OF CANONICAL BRANCHING CHAIN IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    胡迪鹤

    2004-01-01

    The concepts of branching chain in random environmnet and canonical branching chain in random environment axe introduced. Moreover the existence of these chains is proved. Finally the exact formulas of mathematical expectation and variance of branching chain in random environment axe also given.

  18. SYNTHESIS AND AGGREGATION BEHAVIOR OF 2-(4-BUTYLOCTYL) MALONIC-ACID IN AQUEOUS-SOLUTION - THE FORMATION OF PHYSICALLY AND COLLOIDALLY STABLE VESICLES BY A BRANCHED-CHAIN MALONATE

    NARCIS (Netherlands)

    de Groot, R.W.; Wagenaar, A.; Sein, A; Engberts, J.B.F.N.

    1995-01-01

    A new surfactant with a branched monoalkyl chain and a malonate headgroup has been synthesized: 2-(4-butyloctyl)malonic acid (BOMA). From the geometry of the surfactant, reflected in a packing parameter (P), it was anticipated that the surfactant would preferably aggregate in bilayers. This expectat

  19. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast.

    Science.gov (United States)

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-02-19

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast.

  20. Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A.M.; Lauritsen, F.R.

    2002-01-01

    The metabolite production of the gram positive bacterium Staphylococcus xylosus when cultivated in a defined medium containing 18 amino acids, 6 vitamins and 2 purines was characterised. Several compounds not previously reported as metabolites of this organism were identified including 2......,5-methylpyrazine, 2-phenylethylacetate, 2-methyltetrahydrothiophen-3-one, 3-(methylthio)-propanoic acid and 3-(methylthio)-propanal. The organoleptic metabolites derived from branched-chain amino acid catabolism; 2-methylpropanal from valine, 2-methylbutanal from isoleucine and 3-methylbutanal from leucine were...... detected at levels ranging from 0.4 to 2.0μM. The concentrations of the corresponding carboxy acids were 963, 858 and 1486μM respectively. We demonstrated that α-ketoisocaproic acid was biotransformed to 3-methylbutanal which immediately was oxidised into 3-methylbutanoic acid. Kinetic studies...

  1. Infinitely dimensional control Markov branching chains in random environments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    First of all we introduce the concepts of infinitely dimensional control Markov branching chains in random environments (β-MBCRE) and prove the existence of such chains, then we introduce the concepts of conditional generating functionals and random Markov transition functions of such chains and investigate their branching property. Base on these concepts we calculate the moments of the β-MBCRE and obtain the main results of this paper such as extinction probabilities, polarization and proliferation rate. Finally we discuss the classification ofβ-MBCRE according to the different standards.

  2. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.

    Science.gov (United States)

    Bates, Philip D; Johnson, Sean R; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G; Ohlrogge, John B; Browse, John

    2014-01-21

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.

  3. Omega-3 fatty acids and cardiovascular disease.

    Science.gov (United States)

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  4. Omega-3 fatty acid supplementation in horses

    OpenAIRE

    Tanja Hess; Trinette Ross-Jones

    2014-01-01

    Polyunsaturated omega-3 fatty acids (n-3 PUFA) are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are de...

  5. Periexercise coingestion of branched-chain amino acids and carbohydrate in men does not preferentially augment resistance exercise-induced increases in phosphatidylinositol 3 kinase/protein kinase B-mammalian target of rapamycin pathway markers indicative of muscle protein synthesis.

    Science.gov (United States)

    Ferreira, Maria Pontes; Li, Rui; Cooke, Matthew; Kreider, Richard B; Willoughby, Darryn S

    2014-03-01

    The effects of a single bout of resistance exercise (RE) in conjunction with periexercise branched-chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared with CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1 repetition maximum. Supplements were ingested 30 minutes and immediately before and after RE. Venous blood and muscle biopsy samples were obtained immediately before supplement ingestion and 0.5, 2, and 6 hours after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS-1), protein kinase B, mammalian target of rapamycin, phosphorylated 70S6 kinase, and 4E binding protein 1 were assessed. Data were analyzed by 2-way repeated-measures analysis of variance. Significant group × time interactions were observed for glucose and insulin (P protein kinase B (P = .031), mammalian target of rapamycin (P = .003), and phosphorylated 70S6 kinase (P = .001). Carbohydrate and CHO + BCAA supplementation significantly increased IRS-1 compared with PLC (P = .002). However, periexercise coingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of muscle protein synthesis when compared with CHO.

  6. 补充支链氨基酸对睡眠剥夺大鼠血清支链氨基酸/色氨酸比值的影响%Effects of branched-chain amino acids supplementation on serum BCAA/Trp ratio in rats subjected to sleep deprivation

    Institute of Scientific and Technical Information of China (English)

    欧阳儒颖; 季红光; 蔡懿灵; 阮芳铭; 王海明

    2004-01-01

    目的探讨补充支链氨基酸(branched-chain amino acids, BCAA)对睡眠剥夺(sleep deprivation, SD)大鼠血清支链氨基酸/色氨酸(Tryptophan, Trp)比值的影响.方法采用小站台水环境(flower-pot)睡眠剥夺模型对大鼠进行睡眠剥夺.结果与对照组(26.58±2.49,33.75±2.98)相比,睡眠剥夺大鼠血清游离Trp浓度随睡眠剥夺时间的延长而逐渐升高(28.52±2.50~33.44±1.91)(P0.05),BCAA/Trp比值显著降低(31.89±3.53~27.23±1.56)(P<0.05);补充BCAA,可增加睡眠剥夺大鼠血清BCAA水平,提高BCAA/Trp比值(P<0.05).结论补充支链氨基酸可以提高睡眠剥夺大鼠血清BCAA/Trp比值.

  7. Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions.

    Science.gov (United States)

    Yuan, Jifeng; Mishra, Pranjul; Ching, Chi Bun

    2016-12-10

    Medium branched-chain esters can be used not only as a biofuel but are also useful chemicals with various industrial applications. The development of economically feasible and environment friendly bio-based fuels requires efficient cell factories capable of producing desired products in high yield. Herein, we sought to use a number of strategies to engineer Saccharomyces cerevisiae for high-level production of branched-chain esters. Mitochondrion-based expression of ATF1 gene in a base strain with an overexpressed valine biosynthetic pathway together with expression of mitochondrion-relocalized α-ketoacid decarboxylase (encoded by ARO10) and alcohol dehydrogenase (encoded by ADH7) not only produced isobutyl acetate, but also 3-methyl-1-butyl acetate and 2-methyl-1-butyl acetate. Further segmentation of the downstream esterification step into the cytosol to utilize the cytosolic acetyl-CoA pool for acetyltransferase (ATF)-mediated condensation enabled an additional fold improvement of ester productions. The best titre attained in the present study is 260.2mg/L isobutyl acetate, 296.1mg/L 3-methyl-1-butyl acetate and 289.6mg/L 2-methyl-1-butyl acetate.

  8. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...... of trans fatty acids from ruminant meat is estimated at 0.2 g/d....

  9. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  10. Trans fatty acids and cardiovascular risk.

    Science.gov (United States)

    Wilson, T A; McIntyre, M; Nicolosi, R J

    2001-01-01

    Trans fatty acids are found in partially hydrogenated vegetable oil, in meats, and in dairy products. Their effect on blood cholesterol concentrations was examined decades ago, but recently there has been renewed interest in understanding how trans fatty acids affect blood lipids and lipoprotein cholesterol concentrations. Current advice to reduce cardiovascular disease (CVD) risk includes decreasing the consumption of saturated and total fat to help manage blood cholesterol concentrations. Saturated fat contributes significantly to total fat intake and markedly raises blood cholesterol concentrations. Trans fatty acids, which are consumed in much smaller quantities, have been shown to be modestly hypercholesterolemic in studies that have substituted hydrogenated vegetable oils for unhydrogenated oils. In contrast, when partially hydrogenated vegetable oils containing trans fatty acids are substituted for cholesterol-raising saturated fats, blood cholesterol levels are reduced. Partially hydrogenated vegetable oils are used in place of saturated fat in many food products. These foods can help consumers lower their saturated fat intake to achieve dietary recommendations. The following review critically examines the role of hydrogenated fats in the food supply, the metabolism of trans fatty acids, and the scientific literature surrounding the effects of partially hydrogenated vegetable oils and trans fatty acids on blood cholesterol concentrations and cardiovascular disease risk.

  11. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  12. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  13. Development of fatty acid biomarkers for the identification of wild and aquacultured sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Zadorozhnyj, P. A.; Pivnenko, T. N.; Kovalev, N. N.

    2016-02-01

    In this study, the fatty acids (FAs) of the organs and tissues of sea cucumber ( Apostichopus japonicus) were profiled in order to compare the FA composition of sea cucumber collected from natural habitat (wild) and cages (cultured). The differences in FA contents in dermomuscular tube, peripharyngeal annulus, gonad and intestine (with or without content) between the wild and the cultured were determined. The main fatty acids in all organs and tissues were 20:5n-3, 16:1n-7, 20:4n-6, 22:6n-3, 18:0, and 18:1n-7. The basically different FAs of body wall and digestive tube were 16:1n-7, 18:1n-9 and 20:1n-11. The ratio of saturated to mono- and polyunsaturated FAs in digestive tube was independent on inside content while there was a redistribution of the total amount of n-3 and n-6 fatty acids. The comparison of FA composition of the wild and the cultured sea cucumber showed that 20:5n-3, 16:1n-7 and 18:1n-7 predominated the wild while 20:4n-6 predominated the cultured. The content of branched-chain fatty acids in the wild was 3%-4% and about 9% in the cultured. The possible FAs for identifying the wild and the cultured sea cucumbers were selected. It was suggested that the indexes such as the ratio of either (n-3:n-6) to (n-7:n-6) or (n-3) + (n-7) to (n-6) may serve as the biomarkers distinguishing the wild and the cultured sea cucumber.

  14. Phytanic acid impairs mitochondrial respiration through protonophoric action.

    NARCIS (Netherlands)

    Komen, J.C.; Distelmaier, F.; Koopman, W.J.H.; Wanders, R.J.A.; Smeitink, J.A.M.; Willems, P.H.G.M.

    2007-01-01

    Refsum disease is a rare, inherited neurodegenerative disorder characterized by accumulation of the dietary branched-chain fatty acid phytanic acid in plasma and tissues caused by a defect in the alphaoxidation pathway. The accumulation of phytanic acid is believed to be the main pathophysiological

  15. Omega 3 fatty acids and the eye.

    Science.gov (United States)

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  16. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  17. Do branched chain amino acids improve hepatic encephalopathy in cirrhosis?

    OpenAIRE

    Maximiliano Vergara; Victoria Castro-Gutiérrez; Gabriel Rada

    2016-01-01

    Resumen Existe controversia sobre si los aminoácidos de cadena ramificada son efectivos para el tratamiento de la encefalopatía hepática. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples bases de datos, identificamos siete revisiones sistemáticas que en conjunto incluyen 32 estudios aleatorizados, de los cuales 30 responden la pregunta de este resumen. Extrajimos los resultados, realizamos un metanálisis y preparamos tablas de resumen de los r...

  18. Do branched chain amino acids improve hepatic encephalopathy in cirrhosis?

    Directory of Open Access Journals (Sweden)

    Maximiliano Vergara

    2016-12-01

    Full Text Available Resumen Existe controversia sobre si los aminoácidos de cadena ramificada son efectivos para el tratamiento de la encefalopatía hepática. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples bases de datos, identificamos siete revisiones sistemáticas que en conjunto incluyen 32 estudios aleatorizados, de los cuales 30 responden la pregunta de este resumen. Extrajimos los resultados, realizamos un metanálisis y preparamos tablas de resumen de los resultados utilizando el método GRADE. Concluimos que los aminoácidos de cadena ramificada podrían llevar a una mejoría sintomática en la encefalopatía hepática, pero probablemente tienen poco o nulo efecto sobre la mortalidad.

  19. [Omega-3 fatty acids in psychiatry].

    Science.gov (United States)

    Bourre, Jean-Marie

    2005-02-01

    The brain is one of the organs with the highest level of lipids (fats). Brain lipids, formed of fatty acids, participate in the structure of membranes, for instance 50 % fatty acids are polyunsaturated in the gray matter, 1/3 are of the omega-3 family, and are thus of dietary origin. The omega-3 fatty acids (mainly alpha-linolenic acid, ALA) participated in one of the first experimental demonstration of the effect of dietary substances (nutrients) on the structure and function of the brain. Experiments were first of all carried out on ex vivo cultured brain cells, then on in vivo brain cells (neurons, astrocytes and oligodendrocytes) from animals fed ALA deficient diet, finally on physicochemical (membrane fluidity), biochemical, physiological, neurosensory (vision an auditory responses), and behavioural or learning parameters. These findings indicated that the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for human infants determines to a certain extend the visual, neurological, and intellectual abilities. Thus, in view of these results and of the high polyunsaturated fatty acid content of the brain, it is normal to consider that they could be involved in psychiatric diseases and in the cognitive decline of ageing. Omega-3 fatty acids appear effective in the prevention of stress, however their role as regulator of mood is a matter for discussion. Indeed, they play a role in the prevention of some disorders including depression (especially post partum), as well as in dementia, particularly Alzheimer's disease. Their role in major depression and bipolar disorder (manic-depressive disease), only poorly documented, is not clearly demonstrated. The intervention of omega-3 in dyslexia, autism, and schizophrenia has been suggested, but it does not necessarily infer a nutritional problems. The respective importance of the vascular system (where the omega-3 are actually active) and the cerebral parenchyma itself, remain to be

  20. Production of unusual fatty acids in rapeseed

    Directory of Open Access Journals (Sweden)

    Roscoe Thomas

    2002-01-01

    Full Text Available Vegetable-derived oils are of interest for industrial applications partly because of the chemical similarity of plant oils to mineral oils but also because of the economic need to reduce overproduction of seed oils for nutritional use. Complex oils can be produced in seeds as a low cost agricultural product based on renewable solar energy that requires less refining and is biodegradable and thus produces less adverse effects on the environment. In addition, biotechnologies have accelerated selection programmes and increased the genetic diversity available for the development of new varieties of oilseeds with specific fatty acid compositions. In the developing oilseed, energy and carbon are stored as lipid under the form of triacylglycerol, that is, a glycerol molecule to which three fatty acids are esterified. Fatty acids comprise a linear chain of carbon atoms, the first of which carries an organic acid group. The chain length and the presence of double bonds determine the properties of the fatty acid which in turn determine the physical and chemical properties of the oil of storage lipids and hence their economic value. In addition to the common C16- and C18-saturated and unsaturated fatty acids of membrane lipids, the seed storage lipids of many plant species contain unusual fatty acids (UFAs which can vary in chain length, in the degree of unsaturation, possess double bonds in unusual positions, or can contain additional functional groups such as hydroxy, epoxy, cyclic and acetylenic groups [1]. These unusual fatty acids are of value as industrial feedstocks and their uses include the production of fuels and lubricants, soap and detergents, paints and varnishes, adhesives and plastics (Figure 1.

  1. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Pind, Peter Frode; Angelidaki, Irini

    2003-01-01

    parameter set occupied mutually exclusive parameter spaces, indicating that all were statistically different from each other. However, qualitatively, the influence on model outputs was similar, and the lumped set would be reasonable for mixed acid digestion. The main characteristic not represented by Monod......The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds...... with a significant or major fraction of COD as protein. This study assesses the validity of using a common kinetic parameter set and biological catalyst to represent butyrate, n-valerate, and i-valerate degradation in dynamic models. The i-valerate degradation stoichiometry in a continuous, mixed population system...

  2. Digestion and absorption of fatty acids in the ruminant

    OpenAIRE

    Cuvelier, Christine; Cabaraux, Jean-François; Dufrasne, Isabelle; Istasse, Louis; Hornick, Jean-Luc

    2005-01-01

    From a biochemical point of view, in ruminants, there are two major groups of fatty acids. They are firstly the volatile fatty acids from the rumen metabolism of dietary carbohydrates, and secondly the fatty acids from the rumen metabolism of lipids. This second group is made of the fatty acids synthesized by the microorganisms of the rumen and the fatty acids originating from the hydrolysis of dietary triacylglycerols, which are mostly hydrogenated by microorganisms in the rumen before intes...

  3. Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chung-Der; Huang, Tien-Feng [Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Lin, Chih-Hao [Institute of Biological Chemistry, National Taiwan University, Taipei 110,Taiwan (China); Guan, Hong-Hsiang; Hsieh, Yin-Cheng [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Lin, Yi-Hung; Huang, Yen-Chieh; Liu, Ming-Yih [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Chang, Wen-Chang, E-mail: wchang@ntu.edu.tw [Institute of Biological Chemistry, National Taiwan University, Taipei 110,Taiwan (China); Chen, Chun-Jung, E-mail: wchang@ntu.edu.tw [Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China)

    2007-06-01

    The crystallization of branched-chain aminotransferase from D. radiodurans is described. The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.

  4. Intestinal short chain fatty acids and their link with diet and human health

    Directory of Open Access Journals (Sweden)

    David eRios-Covian

    2016-02-01

    Full Text Available The colon is inhabited by a dense population of microorganisms, the so-called gut microbiota, able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA. These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signalling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health

  5. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Sulin Cheng

    Full Text Available Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49 and women (n = 52 with and without NAFLD.Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS. Serum samples were analyzed using a nuclear magnetic resonance (NMR metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.Increased branched-chain amino acid (BCAA, aromatic amino acid (AAA and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all. Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all, whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all.Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.

  6. A comparative study of fatty acid profile and formation of biofilm in Geobacillus gargensis exposed to variable abiotic stress.

    Science.gov (United States)

    Al-Beloshei, Noor Essa; Al-Awadhi, Husain; Al-Khalaf, Rania A; Afzal, Mohammad

    2015-01-01

    Understanding bacterial fatty acid (FA) profile has a great taxonomic significance as well as clinical importance for diagnosis issues. Both the composition and nature of membrane FAs change under different nutritional, biotic and (or) abiotic stresses, and environmental stress. Bacteria produce both odd-carbon as well as branched-chain fatty acids (BCFAs). This study was designed to examine the effect of abiotic pressure, including salinity, temperature, pH, and oxinic stress on the growth, development, and FA profile in thermophilic Geobacillus gargensis. Under these stresses, 3 parametric ratios, 2-methyl fatty acids/3-methyl fatty acids (iso-/anteiso-FAs), BCFAs/straight-chain saturated fatty acids (SCSFA), and SCSFAs/straight-chain unsaturated fatty acids (SCUFA), in addition to total lipids affected by variable stresses were measured. Our results indicate that the ratio of total iso-/anteiso-FAs increased at the acidic pH range of 4.1-5.2 and decreased with increasing pH. The reverse was true for salt stress when iso-/anteiso-FAs ratio increased with salt concentration. The BCFAs/SCSFAs and SCSFAs/SCUFAs ratios increased at neutral and alkaline pH and high salt concentration, reduced incubation time, and comparatively high temperature (55-65 °C) of the growth medium. The bacterial total lipid percentage deceased with increasing salt concentration, incubation period, but it increased with temperature. The formation of extracellular polymeric substances was observed under all stress conditions and with the addition of sodium dodecyl sulfate (2 and 5 mmol/L) to the growth medium. The membrane phospholipid composition of the bacterium was analyzed by thin-layer chromatography.

  7. Production of hydroxylated fatty acids in genetically modified plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  8. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  9. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  10. Therapeutic Benefits Of ?-3 Fatty Acids from Fish

    OpenAIRE

    Samanta S Khora

    2013-01-01

    Fatty acids play important roles in human nutrition and disease management. Fish are rich in Omega-3 Long Chain Polyunsaturated Fatty Acids (LC- PUFAs). Marine fish are the best source of these fatty acids. They typically include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The major health maintenance and prevention of diseases recognized in EPA and DHA. These forms of fatty acids have excellent body usability com...

  11. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  12. SLC27 fatty acid transport proteins.

    Science.gov (United States)

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  13. Fatty acids and coronary heart disease

    OpenAIRE

    Woodside, J.V.; Kromhout, D

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of dietary fatty acids on CHD risk is based on observational studies and controlled dietary experiments with intermediate end points (e.g. blood lipoprotein fractions). Information from high-quality rand...

  14. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation: t...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  15. Fatty acids, eicosanoids and PPAR gamma.

    Science.gov (United States)

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties.

  16. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    Science.gov (United States)

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  17. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review

    Directory of Open Access Journals (Sweden)

    Eugeniusz Milchert

    2015-12-01

    Full Text Available The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  18. Brain Lipotoxicity of Phytanic Acid and Very Long-chain Fatty Acids. Harmful Cellular/Mitochondrial Activities in Refsum Disease and X-Linked Adrenoleukodystrophy.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2016-03-01

    It is increasingly understood that in the aging brain, especially in the case of patients suffering from neurodegenerative diseases, some fatty acids at pathologically high concentrations exert detrimental activities. To study such activities, we here analyze genetic diseases, which are due to compromised metabolism of specific fatty acids, either the branched-chain phytanic acid or very long-chain fatty acids (VLCFAs). Micromolar concentrations of phytanic acid or of VLCFAs disturb the integrity of neural cells by impairing Ca(2+) homeostasis, enhancing oxidative stress or de-energizing mitochondria. Finally, these combined harmful activities accelerate cell death. Mitochondria are more severely targeted by phytanic acid than by VLCFAs. The insertion of VLCFAs into the inner membrane distorts the arrangement of membrane constituents and their functional interactions. Phytanic acid exerts specific protonophoric activity, induces reactive oxygen species (ROS) generation, and reduces ATP generation. A clear inhibition of the Na(+), K(+)-ATPase activity by phytanic acid has also been reported. In addition to the instantaneous effects, a chronic exposure of brain cells to low micromolar concentrations of phytanic acid may produce neuronal damage in Refsum disease by altering epigenetic transcriptional regulation. Myelin-producing oligodendrocytes respond with particular sensitivity to VLCFAs. Deleterious activity of VLCFAs on energy-dependent mitochondrial functions declines with increasing the hydrocarbon chain length (C22:0 > C24:0 > C26:0). In contrast, the reverse sequence holds true for cell death induction by VLCFAs (C22:0 fatty acid-mediated neurodegeneration and should help to provide possible therapeutic interventions.

  19. Comparison of two gas-liquid chromatograph columns for the analysis of fatty acids in ruminant meat.

    Science.gov (United States)

    Alves, Susana P; Bessa, Rui J B

    2009-06-26

    Two gas-liquid chromatograph capillary columns for the analysis of fatty acids (FA) in ruminant fat are compared. Those columns are the CP-Sil 88 of 100 m long with a highly polar stationary phase and the Omegawax 250 of 30 m long with a stationary phase of intermediate polarity. Fatty acid methyl ester (FAME) patterns of branched-chain, cis and trans octadecenoate isomers, as well as conjugated and non-conjugated 18:2 and 18:3 isomers are fairly different between columns, even though most of the FAME could be separated on either column. However, the CP-Sil 88 showed better resolution of 18:1 isomers than Omegawax 250. The analysis of 96 samples of ruminant meat fat in both chromatographic systems showed that averages obtained for total FA content and for most of the individual FA did not differ between columns. Moreover, regression analysis of Omegawax and CP-Sil 88 data is highly correlated. Quantitative differences between chromatographic systems were detected for samples containing more than 66 mg fatty acids per gram of muscle dry matter.

  20. Essential fatty acids and human brain.

    Science.gov (United States)

    Chang, Chia-Yu; Ke, Der-Shin; Chen, Jen-Yin

    2009-12-01

    The human brain is nearly 60 percent fat. We've learned in recent years that fatty acids are among the most crucial molecules that determine your brain's integrity and ability to perform. Essential fatty acids (EFAs) are required for maintenance of optimal health but they can not synthesized by the body and must be obtained from dietary sources. Clinical observation studies has related imbalance dietary intake of fatty acids to impaired brain performance and diseases. Most of the brain growth is completed by 5-6 years of age. The EFAs, particularly the omega-3 fatty acids, are important for brain development during both the fetal and postnatal period. Dietary decosahexaenoic acid (DHA) is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Beyond their important role in building the brain structure, EFAs, as messengers, are involved in the synthesis and functions of brain neurotransmitters, and in the molecules of the immune system. Neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. The goal of this review is to give a new understanding of how EFAs determine our brain's integrity and performance, and to recall the neuropsychiatric disorders that may be influenced by them. As we further unlock the mystery of how fatty acids affect the brain and better understand the brain's critical dependence on specific EFAs, correct intake of the appropriate diet or supplements becomes one of the tasks we undertake in pursuit of optimal wellness.

  1. Omega-3 fatty acid supplementation in horses

    Directory of Open Access Journals (Sweden)

    Tanja Hess

    2014-12-01

    Full Text Available Polyunsaturated omega-3 fatty acids (n-3 PUFA are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are desired these need to be supplemented directly in the diet. In different species some evidence indicates a potential effect on improving insulin sensitivity. Recently, a novel class of n-3 PUFA-derived anti-inflammatory mediators have been recognized, termed E-series and D-series resolvins, formed from EPA and DHA, respectively. N-3 PUFA derived resolvins and protectins are heavily involved in the resolution of inflammation. Supplementation with n-3 fatty acids in horses may help manage chronic inflammatory conditions such as osteoarthritis, equine metabolic syndrome, laminitis, and thereby help to improve longevity of sport horse.

  2. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world’s thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  3. Fatty acids and coronary heart disease

    NARCIS (Netherlands)

    Woodside, J.V.; Kromhout, D.

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of die

  4. Trans Fatty Acids and Cardiovascular Disease

    NARCIS (Netherlands)

    Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.

    2006-01-01

    Trans fats, unsaturated fatty acids with at least one double bond in the trans configuration (Figure 1), are formed during the partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats for use in margarines, commercial cooking, and manufacturing processes. F

  5. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  6. Polyunsaturated fatty acids in emerging psychosis.

    Science.gov (United States)

    Mossaheb, Nilufar; Schloegelhofer, Monika; Schaefer, Miriam R; Fusar-Poli, Paolo; Smesny, Stefan; McGorry, Pat; Berger, Gregor; Amminger, G Paul

    2012-01-01

    The role of polyunsaturated fatty acids and their metabolites for the cause and treatment of psychotic disorders are widely discussed. The efficacy as an augmenting agent in chronic schizophrenia seems to be small or not present, however epidemiological data, as well as some recent controlled studies in emerging psychosis point towards possible preventive effects of long-chain polyunsaturated fatty acids in early and very early stages of psychotic disorders and some potential secondary or tertiary beneficial long-term effects in later, more chronic stages, in particular for metabolic or extra-pyramidal side effects. In this comprehensive review, we describe the physiology and metabolism of polyunsaturated fatty acids, phospholipases, epidemiological evidence and the effect of these fatty acids on the brain and neurodevelopment. Furthermore, we examine the available evidence in indicated prevention in emerging psychosis, monotherapy, add-on therapy and tolerability. The neuroprotective potential of n-3 LC-PUFAs for indicated prevention, i.e. delaying transition to psychosis in high-risk populations needs to be further explored.

  7. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  8. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  9. 高支链氨基酸饮食对乙型肝炎肝硬化患者营养状态及预后的影响%Influence of enriched branched-chain amino acid diet on nutrition condition and prognosis in patients with hepatitis B cirrhosis

    Institute of Scientific and Technical Information of China (English)

    袁伟; 张宇一; 张正国; 邹颖; 王介非; 钱志平

    2014-01-01

    influence of enriched branched-chain amino acid on nutrition condition,liver function and prognosis in patients with hepatitis B cirrhosis.Methods Ninety-two patients with liver cirrhosis were enrolled.The patients were randomly divided into two groups,including 47 cases treated with branched-chain amino acid in treatment group and 45 cases treated with regular dieteric treatment in control group.Evaluations of liver function and nutrition condition were followed up to the 96th week in both groups,as well as observations of incidence of cirrhosis related complications.Results Compared to pre-treatment,Child-Pugh score(7.70±1 .65 vs.7.38±1 .72,t=3.591 , P <0.05)intreatment group was obviously promoted at week 12;Compared to control group at week 48,arm muscle circumference[(24.76±1 .04)cm vs.(24.02±1 .64)cm,t=-2.297,P <0.05],total protein [(63.01 ±3.62 g/L vs. (59.39±4.05 )g/L,t = -4.004,P < 0.01 ],pre-albumin [(123.68 ±34.45 )mg/L vs.(97.03 ±28.60 )mg/L,t =-3.611 ,P <0.05],albumin[(34.05±3.13)g/L vs.(32.44±3.53)g/L,t=-2.057,P <0.05]and prothrombin time activity [(99.70±9.07)% vs.(87.75 ±20.95 )%,t = -3.109,P <0.01 ]were significantly increased in treatment group.During a follow-up 96 weeks,incidences of hepatic encephalopathy and infection in treatment group lower than those in control group (χ2 =3.921 ,P <0.05;χ2 =4.458 P <0.05).There was no significant difference in incidences of hepatorenal syndrome and hemorrhage of digestive tract between two groups.Furthermore,control group showed a poor prognosis (P <0.05).Conclusion Enriched branched-chain amino acid can improve nutrition condition,liver function and prognosis in patients with liver cirrhosis.

  10. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  11. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  12. Trans Fatty Acids: Their Chemical Structures, Formation and Dietary Intake

    OpenAIRE

    O. Daglioglu; Tasan, M.

    2005-01-01

    Trans fatty acids are unsaturated fatty acids with at least a double bond in trans configuration or geometry.The double-bond angle of the trans fatty acids is smaller than the cis isomeric configuration and the acylchain is more linear, resulting in a more rigid molecule with different physical properties such as a highermelting point and greater thermodynamic stability. These appear in dairy fat because of ruminal activity, andin hydrogenated oils. Trans unsaturated fatty acids are solid fat...

  13. Distinct fatty acid profile of ten brown macroalgae

    OpenAIRE

    Graça Silva; Pereira, Renato B.; Patrícia Valentão; Andrade, Paula B.; Carla Sousa

    2013-01-01

    It is widely accepted that the consumption of ω-3 polyunsaturated fatty acids has beneficial effects on human health. In this work, ten brown macroalgae species collected along the Portuguese west coast were studied for their fatty acids composition by GC-MS after alkaline hydrolysis and derivatization. The results of this survey showed that different macroalgae from the same region display distinct fatty acids profile. Concerning ω-3 polyunsaturated fatty acids, eicosapentaenoic ac...

  14. BRANCHED-CHAIN AMINO ACIDS SUPPLEMENTATION ENHANCES SWIMMING PERFORMANCE OF TRAINED MICE: EVIDENCE FROM CHANGES OF PLASMA AMMONIA AND SEROTONIN%支链氨基酸增强小鼠的游泳能力对其血氨和5-羟色胺变化的研究

    Institute of Scientific and Technical Information of China (English)

    夏志; 汪清祥; 彭勇; 徐飞

    2012-01-01

    目的 探讨支链氨基酸(Branched-chain amino acids,BCAAs)对训练小鼠抗疲劳运动能力的影响.方法 50只小鼠随机分为实验组(B1、B2、B3、B4)和对照组(C).实验组分别灌胃补充BCAAs 0.45、1.25、3.75和10g/kg.d,对照组灌胃生理盐水.各组小鼠5周递增负荷游泳训练后进行力竭游泳并取材.观察BCAAs对小鼠脑组织5-羟色胺( 5-HT)、血氨(PA)和力竭游泳时间的影响.结果 实验组小鼠血氨含量升高,脑组织匀浆中5 -HT含量下降,但力竭运动游泳时间均显著延长.结果血氨浓度随剂量的增加而增大,C与B1组相比血氨水平无显著性差异,但明显低于B2、B3、B4组(P<0.01);C组小鼠5-羟色胺浓度显著高于实验组(P<0.01),实验组间随着补充剂量的增大5-羟色胺浓度减小;实验组小鼠力竭游泳能力明显强于对照组(P<0.01).实验组间,B2、B3组小鼠力竭时间明显长于B1组(分别为P<0.05,P<0.01),B4组力竭时间与B1、B2、B3组相比则下降.结论 BCAAs 能够对抗运动性疲劳的发生发展,增强运动能力,但具有量效关系.

  15. 支链氨基酸对划船运动员耐力运动后肌肉损伤的保护作用%Effects of branched- chain amino acid supplementation on training- induced muscle damage in rowing athletes

    Institute of Scientific and Technical Information of China (English)

    刘建红; 周志宏; 欧明毫; 王奎; 石幼琪

    2003-01-01

    目的:探讨支链氨基酸( branched- chain amino acid,BCAA)对运动后肌肉损伤的保护作用. 方法: 20名划船运动员用随机数字表法分为对照组( n=10)和实验组( n=10),实验组服用 BCAA,对照组不服用 BCAA,共 4周. 4周后运动员在划船测功仪上模拟 2 km和 5 km比赛训练,测定运动前、运动后即刻和运动后 30 min血肌酸激酶 (CK)、乳酸脱氢酶 (LDH)和谷丙转氨酶 (ALT)活性. 结果:对照组运动员血清 CK(μ mol/s)和 LDH(μ mol/s)活性在运动后即刻 (CK: 5.48± 2.27; LDH: 4.73± 0.93)和运动后 30 min(CK: 5.82± 1.87; LDH: 4.83± 2.38)均增加 , 差异有显著性意义( t=2.89,2.36;P均 < 0.05). BCAA组运动员血清 CK和 LDH活性在运动后即刻( CK: 4.42± 1.55; LDH: 4.00± 0.68)与运动前( CK: 3.85± 1.23; LDH: 3.77± 0.72)相比有增加,但没有显著性意义( t=2.24,2.31;P均 < 0.05),且明显低于对照组在运动后即刻的值,运动后 30 min( CK: 4.68± 2.05; LDH: 4.58± 1.10)与运动前比较则有十分显著性的增加,其中 CK活性也明显低于对照组在运动后 30 min的值. 结论:补充 BCAA能降低运动后血清中 CK和 LDH活性,有效保护肌肉组织,减轻肌肉组织的损伤.

  16. Extensive analysis of milk fatty acids in two fat-tailed sheep breeds during lactation.

    Science.gov (United States)

    Payandeh, S; Kafilzadeh, F; Juárez, M; de la Fuente, M A; Ghadimi, D; Marín, A L Martínez

    2016-12-01

    The profile of fatty acids (FA) in the milk fat of two Iranian fat-tailed sheep breeds, Sanjabi and Mehraban, was compared during lactation. Eight ewes of each breed, balanced in parity and carrying one foetus, were selected before parturition. Ewes were kept separated in individual pens during the experimental period, under the same management practices and fed the same diet, in order to eliminate any confounding effects on milk FA profile. Milk was sampled at biweekly intervals up to 10 weeks of lactation, starting 2 weeks after parturition. More than 100 FA were determined in milk fat by means of gas chromatography. The milk fat of Sanjabi ewes contained more cis-9 18:1, that of Mehraban ewes was richer in 10:0, 12:0 and 14:0, and no differences were found for 16:0 and 18:0. No breed differences were found for most branched-chain FA. Mehraban ewes showed a higher presence of vaccenic and rumenic acids in their milk fat. The milk fat of Sanjabi ewes had a lower atherogenicity index and n-6/n-3 FA ratio. The contents of several FA showed time-dependent changes, so breed differences were more apparent or disappeared as lactation progressed. The milk fat of Sanjabi ewes showed a better FA profile from the human health point of view.

  17. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the...

  18. Fatty acid supply of growing pigs in Central Vietnam

    NARCIS (Netherlands)

    Nguyen, Linh Quang

    2002-01-01

    This thesis concerns the influence of essential dietary fatty acids on the fatty acid composition of adipose tissue and growth performance of growing pigs kept on samll holdings in Central Vietnam. Essential fatty acids cannot be synthesized by the body and have to be ingested with the feed. There a

  19. Trans fatty acids and cardiovascular health: research completed?

    NARCIS (Netherlands)

    Brouwer, I.A.; Wanders, A.J.; Katan, M.B.

    2013-01-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The

  20. Relationship between fatty acids and the endocrine and neuroendocrine system.

    Science.gov (United States)

    Bhathena, Sam J

    2006-01-01

    Significant interactions exist between fatty acids and the endocrine system. Dietary fatty acids alter both hormone and neuropeptide concentrations and also their receptors. In addition, hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn leads to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are also involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids are also precursors for eicosanoids including prostaglandins, leucotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn affect the endocrine system. Saturated and trans fatty acids decrease insulin concentration leading to insulin resistance. In contrast, polyunsaturated fatty acids increase plasma insulin concentration and decrease insulin resistance. In humans, omega3 polyunsaturated fatty acids alter the levels of opioid peptides in plasma. Free fatty acids have been reported to inhibit glucagon release. Fatty acids also affect receptors for hormones and neuropeptides.

  1. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  2. Mitigating Sleep Loss: Assessment of Omega-3 Fatty Acids

    Science.gov (United States)

    2011-04-15

    for public release; distribution is unlimited Final Technical Report to ONR Mitigating Sleep Loss: Assessment of Omega -3 fatty acids ...5 2.2.1. Omega -3 fatty acids /Placebo...09-C-0583 to Advanced Brain Monitoring, Inc. Key contribution of this project was to assess the efficacy of Omega -3 fatty acids (EPA/DHA) in

  3. Naturally occurring fatty acids: source, chemistry and uses

    Science.gov (United States)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  4. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Science.gov (United States)

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... ethylene oxide or propylene oxide, also known as polyoxyalkylated glycerol fatty acid esters, when used...

  5. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food...

  6. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... Human studies have shown that the relative bioavailability of omega-3 fatty acids from fish oil (triglyceride formulation) was similar to that from fish, whereas lower relative bioavailability was observed from fatty acid ethyl ester (FAEE) formulation in comparison with other lipid formulations...

  7. The Observation on Clinical Application of Sugar, Whey Protein, and Branched- Chain Amino Acids Supplement for Athletes%运动员补糖、支链氨基酸和乳清蛋白的临床应用观察

    Institute of Scientific and Technical Information of China (English)

    胡斌; 侯菊花; 张立新

    2012-01-01

    Objective: To observe the supplement of sugar drinks, whey protein, bran6hed - chain amino acids and other substances on the stage of the heavy load training to maintain or improve physical function and fatigue recovery. Methods : Arranged 10 athletes in the 30d Sanda physical training phase of the winter training stage, ac- cording to the nutritional supplement program for energy supplement, Selected the indexes of the output of the total body anaerobic power, maximum power, fatigue index, a ability to pull oxygen paddle time, power, paddle fre- quency, biochemical indicators of blood lactate (LA) blood urea nitrogen (BUN), glucose (GL), creatine ki- nase (CK) as the observation, Alternative 10 teammates as the control group, and observed the different before and after the training. Results: The total output power, maximum power after the training had significantly in- creased (P 〈 0.01 ) than before added of the observed team. Compared with the control group after added the ath- letes fatigue index and the paddle frequency was also improved significantly (P 〈 O. 05), and after -school train- ing blood glucose levels also had significantly increased (P 〈 0.05). The blood BUN and the recovery had signif- icant improvement (P 〈0. 001 ) more than the control groups after added whey protein, branched- chain amino acids. Conclusion: The training period added sugar, whey protein, branched -chain amino acids and substances such as energy, could significantly improve the athlete's aerobic capacity and anaerobic exercise performance, could significantly delayed the occurrence of exercise - induced fatigue and accelerate recovery of the exercise - induced fatigue.%目的:观察补充糖饮料、支链氨基酸和乳清蛋白等能量物质对阶段性大运动量训练维持或提高运动员身体机能和疲劳恢复的影响。方法:根据冬训阶段性训练计划安排,对10名散打运动员在30d的体能训

  8. 内蒙古地区牛乳及其制品中脂肪酸成分的气相色谱-质谱法分析%Analysis of Fatty Acid Compositions in Milk and Its Products in Inner Mongolia Region by Gas Chromatography-Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    潘国卿; 郭铁筝; 白国涛; 张春艳; 杨永生; 卢华卫

    2012-01-01

    The compositions and relative content of fatty acid of milk and its products in inner Mongolia region was analyzed by GC-MS. The results show that milk and its products in Inner Mongolia region mainly contained 21 kinds of fatty acid, which were 4 kinds of saturation fatty acid (C4:0-C10:0) ,13 kinds of long chain saturation fatty acid and un-saturation fatty acid (C12:0-C18:0),3 kinds of branched chain fatty acid and a kind of trans-fatty acid (C18:l). The main content was short and branched chain fatty acid,which was important to milks taste,and was 7.5% in total of fatty acid of milk.%用气相色谱-质谱联用仪(GC-MS)分析了内蒙古地区牛乳及其制品中的脂肪酸成分(包括空间异构体及位置异构体)和相对百分含量.结果表明,内蒙古地区牛乳及其制品中主要含有21种脂肪酸成分,其中短链饱和脂肪酸(C4∶0-C10∶0)4种,长链饱和脂肪酸及不饱和脂肪酸(C12-C18) 13种,支链脂肪酸(C15∶0-C17∶0)3种及反式脂肪酸(C18∶1)1种;对牛乳香味、风味有重要影响的短链脂肪酸、支链脂肪酸含量较高,占牛乳脂肪酸总量的7.5%左右.

  9. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  10. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  11. Essential fatty acid requirements of cats: pathology of essential fatty acid deficiency.

    Science.gov (United States)

    MacDonald, M L; Anderson, B C; Rogers, Q R; Buffington, C A; Morris, J G

    1984-07-01

    The pathologic changes of essential fatty acid (EFA) deficiency were studied in specific-pathogen-free, domestic shorthair cats which were fed purified diets for 1.5 to 2.5 years. Cats fed an EFA-deficient diet exhibited signs of deficiency: severe fatty degeneration of the liver, excessive fat in the kidneys, dystrophic mineralization of the adrenal glands, degeneration of the testes, and hyperkeratosis of the skin. Minor clinical pathologic changes were consistent with liver damage. Fatty acid analyses of plasma lipids revealed low concentrations of linoleate and other n6-fatty acids, and high concentrations of n7- and n9-fatty acids, consistent with EFA deficiency. These signs of deficiency were prevented by including safflower seed oil in the diet at a concentration to supply linoleate at 6.7% of dietary energy. Therefore, linoleate is an EFA for the cat, despite negligible conversion of linoleate to arachidonate in cat liver. However, in cats fed a diet containing linoleate, but lacking arachidonate, there was mild mineralization of the kidneys, and the neutral fat content of the liver was slightly higher than that of cats fed a diet containing arachidonate and other long-chain polyunsaturated fatty acids. Also, 2 of the 19 cats fed arachidonate-deficient diets developed unusual inflammatory skin lesions. In cats fed a diet containing hydrogenated coconut oil, safflower seed oil, and chicken fat, fatty livers developed despite the presence of high levels of linoleate. The fatty livers appeared to result from a specific deleterious effect of the medium-chain triglycerides in hydrogenated coconut oil. Most of the organ pathologic changes of EFA deficiency in the cat can be prevented by feeding dietary linoleate. Linoleate meets the EFA requirement for functions which depend on proper membrane structure: growth, lipid transport, normal skin and coat condition, and maintenance of the epidermal permeability barrier. However, dietary arachidonate is required by the

  12. Laser signals' nonlinear change in fatty acids

    CERN Document Server

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  13. Polyunsaturated fatty acid metabolism in prostate cancer.

    Science.gov (United States)

    Berquin, Isabelle M; Edwards, Iris J; Kridel, Steven J; Chen, Yong Q

    2011-12-01

    Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

  14. Fatty acids composition of 10 microalgal species

    Directory of Open Access Journals (Sweden)

    Thidarat Noiraksar

    2005-11-01

    Full Text Available Fatty acids composition of 10 species of microalgae was determined at the exponential phase and the stationary phase. The microalgae consist of two species of diatoms, Bacillariophyceae, (Nitzschia cf. ovalis, Thalassiosira sp. five species of green microalgae, Prasinophyceae (Tetraselmis sp. and Chlorophyceae, (Dictyosphaerium pulchellum, Stichococcus sp., Chlorella sp., Scenedesmus falcatus and three species of blue green microalgae, Cyanophyceae (Anacystis sp., Synechococcus sp., Synechocystis sp..Medium for culture diatoms and green microalgae was F/2, and BG-11 media was used for Cyanophyceae. The microalgae were cultured beneath light intensity 143 μEm-2s-1, light: dark illustration 12:12 hrs., temperature 28ºC, and salinities 8-30 psu. The microalgae were harvested for analyzing fatty acid by centrivugal machine at 3500 rpm. for 5 min. at temperature 20ºC and stored at -80ºC prior to analysis.Fatty acids composition of microalgae differed from species to species. The majority fatty acids composition of diatoms at the exponential phase and the stationary phase were C16:1n-7 (17.12-31.47% and 28.22-42.02%, C16:0 (13.25-19.61% and 18.83-20.67%, C20:5 n-3 (16.65-26.67% and 11.32-23.68% respectively. The principle fatty acids composition of green microalgae, Prasinophyceae, Tetraselmis sp. were C18:3n-3 (16.17-16.67%, C16:0 (15.33-17.45%, C18:1n-9 (12.25-15.43%, C18:2n-6 (9.66-19.97%. The fatty acids composition of green microalgae, Chlorophyceae, were C18:3 n-3 (20.02-26.49% and 15.35- 30.63%, C16:0 (5.76-17.61% and 11.41-20.03%, C18:2n-6 (4.67-17.54% and 7.48-20.61% respectively. The major amounts of fatty acids content of blue green microalgae were C16:1n-7 (9.28-34.91% and 34.48- 35.04%, C14:0 (13.34-25.96% and 26.69-28.24%, C16:0 (5.89-29.15% and 5.70-16.81% except for Anacystis sp.which had a high amount of C18:3 n-3 (23.18-27.98% but low amount of C14:0 (3.66-4.98%.Bacillariophyceae contained the highest amount of highly unsaturated

  15. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  16. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  17. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids....

  18. Unsaturated fatty acids, desaturases, and human health.

    Science.gov (United States)

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  19. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

    OpenAIRE

    Xiaoying Sun; Go Hirai; Masashi Ueki; Hiroshi Hirota; Qianqian Wang; Yayoi Hongo; Takemichi Nakamura; Yuki Hitora; Hidekazu Takahashi; Mikiko Sodeoka; Hiroyuki Osada; Makiko Hamamoto; Minoru Yoshida; Yoko Yashiroda

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4 + and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies...

  20. 支链氨基酸强化的肠内肠外营养对肝硬化大鼠术后肝功能及血浆氨基酸谱的影响%Effects of branched-chain amino acids-enriched early parenteral and enteral nutrition on the liver function and serum aminograms in cirrhotic rats after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    赖佳明; 胡文杰; 王恕同; 华赟鹏; 郝元涛; 罗时敏; 赖英荣; 梁力建

    2010-01-01

    amino acids-enriched early parenteral and enteral nutrition on the liver function and serum aminograms in cirrhotic rats after partial hepatectomy. Methods In this prospective randomized controlled study, 24 cirrhotic rats, induced by thioacetamide, were randomized into three groups: enteral nutrition (EN) group, EN + branched-chain amino acid (BCAA) group, and parenteral nutrition (PN) + BCAA group. After receiving partial hepatectomy, rats in all three groups were nutritionally supported with equal amount of calorie and nitrogen contents from the 1st postoperative day ( PO day 1 ) to PO day 5. On PO day 6, parameters including body weight, liver functions, prealbumin, transferring, and serum aminograms were measured or determined, and the level of liver albumin mRNA was detected by reversal transcription-polymerase chain reaction and morphological examinations such as HE staining and immunohistochemical staining, which were assessed by index of Ki67 protein index. Results Body weight was significantly decreased in all three groups on PO day 6 (P <0.05 ). Compared with EN + BCAA group, serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase after partial hepatectomy were significantly higher in PN + BCAA group (P <0.05 ). Serum alkaline phosphatase level was significantly higher in PN + BCAA group than in EN group ( P <0. 05). The level of prealbumin was significantly lower in PN + BCAA group when compared with EN group or EN +BCAA group ( both P < 0. 05 ), although no such significant difference was noted in terms of transferrin ( P >0. 05 ). The levels of leucine and isoleucine elevated while those of tyrosine, phenylalanine, arginine and tryptophan declined in PN + BCAA group or EN + BCAA group when compared with EN group ( P < 0. 05 ). Aminograms were not significantly different between EN + BCAA group and PN + BCAA group ( P > 0. 05 ). Levels of total amino acid and aromatic amino acid (AAA) were significantly lower while

  1. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  2. The efficacy and safety of a branched-chain amino acids granules in the treatment of cirrhotic hypoproteinemia--A multicenter, randomised, control study%复方支链氨基酸颗粒剂治疗肝硬化低蛋白血症多中心临床观察

    Institute of Scientific and Technical Information of China (English)

    袁耀宗

    2001-01-01

    Objective To investigate the efficacy and safety of a branched-chain oral amino acids granules (BCAA-G) on the cirrhotic hypoproteinemia. Methods 172 patients with cirrhotic hypoproteinemia from 6 hospitals in Shanghai area were studied. BCAA-G and control drug (amino acids capsule) were used respectively for 9 weeks. Symptoms、plasma protein、albumin and Fisher score were evaluated at 4 and 9 weeks to assess the efficacy and safety of BACC-G. Results After 4 and 9 weeks' therapy, symptoms of two groups improved (P< 0.05). Compared with the control group, fatigue was significantly improved (P = 0.03) in BCAA-G group. Plasma protein and albumin increased in BCAA-G group (P = 0.0001). The Fisher score in BCAA-G group improved after 4 weeks ( P = 0. 0005 ) and 9 weeks ( P = 0. 0001 ), while no marked change was found in the control group. The side effect rate was 7.50 % in the BCAA-G group and 3.85 % in the control group, respectively. Conclusion BCAA-G is effective and safe in the treatment of cirrhotic hypoproteinemia.%目的观察口服复方支链氨基酸颗粒剂(商品名力维特,Livact)对肝硬化低蛋白血症的疗效和安全性。方法上海地区6家医院共选择有低蛋白血症的肝硬化患者172例,其中治疗组120例,对照组52例,分别给予复方支链氨基酸颗粒剂和对照药物复合氨基酸胶囊,治疗4周和9周后观察其临床症状、血清总蛋白和白蛋白及Fisher比值的变化,评估其有效性和安全性。结果复方支链氨基酸颗粒剂治疗组和对照组各项症状在治疗后均有显著改善(P<0.05),其中复方支链氨基酸颗粒剂对疲劳感的改善情况优于对照组(P=0.03)。复方支链氨基酸颗粒剂组在治疗4周和9周后,血清总蛋白和白蛋白均显著升高(P均为0.0001)。Fisher比值复方支链氨基酸颗粒剂组治疗4周和9周后较前有显著改变(P分别为0.0005和0.0001),对照组则无明显变化(P=0.75)。治疗过程中,复

  3. 支链氨基酸和相关拮抗剂降低大鼠中枢5-羟色胺合成减轻术后疲劳综合征的研究%Synthesis reduction of central neurotransmitter 5-hydroxytryptamine by branched chain amino acid and associated antagonists improves postoperative fatigue syndrome

    Institute of Scientific and Technical Information of China (English)

    董千铜; 章晓东; 余震; 闫竞一; 陈笑雷

    2014-01-01

    ;纹状体中5-HT水平比较,假手术组最低,模型组与干预组差异无统计学意义(P>0.05);模型组下丘脑5-HIAA含量高于氟西汀组(P<0.05),但与BCH组和BCAA组比较,差异无统计学意义(P>0.05)。结论 BCAA以及相关拮抗剂BCH和氟西汀,能降低大鼠神经中枢对色氨酸的摄取,减少大脑5-HT合成,改善大鼠POFS。%Objective To observe the change of postoperative fatigue in rats after the effect of branched chain amino acid (BCAA) and associated antagonists on central neurotransmitter 5-HT metabolic pathway, and to investigate the role of 5-HT in the development of postoperative fatigue syndrome (POFS). Methods Fifty SD rats were randomly divided into sham operation group (C group, n=10), model group (M group, n=10), L-type amino acid transporter inhibitor group (L group, n=10), 5-HT uptake inhibitor group (F group, n=10) and branched chain amino acids (B group, n=10). The rats in the C group and the M group were injected with normal saline, while other three groups were respectively injected with BCH, fluoxetine, BCAA(val∶leucine∶isoleucine=5∶3∶2), on preoperative 1 h, postoperative day 1, 2, 3, 4. The rats, except for those in the C group, underwent resection of 70% of the middle small intestine with end-to-end anastomosis. General status of the rats was observed before and after surgery. Morris water maze test, including the hidden platform test and search space test (detecting the learning ability of rats) and tail suspension test (detecting physical endurance of rats) were used to evaluate the degree of POFS from postoperative day 1 to day 7. Concentration of tryptophan (TRP), 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) in different position of brain (hippocampus, striatum, hypothalamus) of rats were measured by high performance liquid chromatography(HPLC) at postoperative day 8. Results As compared to the M group, other four groups showed better general condition and less fatigue

  4. Separation of cis-fatty acids from saturated and trans-fatty acids by nanoporous polydicyclopentadiene membranes.

    Science.gov (United States)

    Gupta, Abhinaba; Bowden, Ned B

    2013-02-01

    This article describes the separation of mixtures of fatty acid salts using a new organic solvent nanofiltration membrane based on polydicyclopentadiene (PDCPD). Mixtures of free fatty acids could not be separated by the membranes because they permeated at similar rates. When triisobutylamine was added to the fatty acids, the cis-fatty acid salts (oleic, petroselinic, vaccenic, linoleic, and linolenic acid) had slower permeation though the membranes than saturated (stearic acid) and trans-fatty acid (elaidic acid) salts. The reason for the difference in permeation was due to the formation of stable salt pairs between the amine and fatty acids that increased their cross-sectional areas. The fatty acid salts derived from saturated and trans-fatty acids were smaller than the critical area cutoff for the PDCPD membranes, so they readily permeated. In contrast, the fatty acid salts derived from the cis-fatty acids had critical areas larger than critical area cutoff of the PDPCD membranes and had slowed permeation. The partitioning coefficients of fatty acids and fatty acid salts were investigated to demonstrate that they were not responsible for the difference in permeation. The use of pressure was investigated to greatly accelerate the permeation through the membranes. For a solvent mixture of 35/65 (v/v) toluene/hexanes, the permeation of solvent was approximately 39 L m(-2) h(-1). This value is similar to values reported for permeation through membranes used in industry. The separation of a mixture of fatty acids based on the composition of soybean oil was investigated using pressure. The saturated fatty acid salts were almost completely removed from the cis-fatty acid salts when iBu(3)N was used as the amine to form the salt pairs. The separation of the cis-fatty acids found in soybean oil was investigated with Pr(3)N as the amine. The oleic acid salt (oleic acid has one cis double bond) preferentially permeated the membrane while the linoleic (two cis double bonds

  5. A study of petroleum fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, I.V.; Kulachenko, V.I.

    1980-01-01

    The results of a study conducted through a method of gas liquid chromatography of n-fatty acids, separated from the oils of a number of deposits of Western Siberia, are discussed. In particular, the molecular mass distribution of n-acids and paraffins, as well as the free acids and the thermodestruction acids in the oil of the Fedorovsk deposit, were studied. The existence of a predominance of acids of even structure in the range of C/sub 16/-C/sub 20/ is common for the free and bound acids. At the same time, it is noted that for the time being, it is difficult to provide an unambiguous explanation for the obtained results. But one fact is certain: the free, in the form of complex ethers, as well as the form of the compounds which liberate the acids after precise thermal action. The individual composition of the acids of all three forms is different. A specific regularity is traced in the distribution of the n-acids in the oil fractions. It is explained that the molecular mass distribution of the acids in the fractions and in the initial oil is identical.

  6. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.

    Science.gov (United States)

    Clark-Taylor, Tonya; Clark-Taylor, Benjamin E

    2004-01-01

    Long chain acyl-CoA dehydrogenase (LCAD) has recently been shown to be the mitochondrial enzyme responsible for the beta-oxidation of branched chain and unsaturated fatty acids [Biochim. Biophys. Acta 1393 (1998) 35; Biochim. Biophys. Acta 1485 (2000) 121]. Whilst disorders of short, medium and very long chain acyl dehydrogenases are known, there is no known disorder of LCAD deficiency in humans. Experimental LCAD deficiency in mice shows an acyl-carnitine profile with prominent elevations of unsaturated fatty acid metabolites C14:1 and C14:2 [Hum. Mol. Genet. 10 (2001) 2069]. A child with autism whose acyl-carnitine profile also shows these abnormalities is presented, and it is hypothesized that the child may have LCAD deficiency. Additional metabolic abnormalities seen in this patient include alterations of TCA energy production, ammonia detoxification, reduced synthesis of omega-3 DHA, and abnormal cholesterol metabolism. These metabolic changes are also seen as secondary abnormalities in dysfunction of fatty acid beta-oxidation, and have also been reported in autism. It is hypothesized that LCAD deficiency may be a cause of autism. Similarities between metabolic disturbances in autism, and those of disorders of fatty acid beta-oxidation are discussed.

  7. Trans fatty acids and cardiovascular health: research completed?

    Science.gov (United States)

    Brouwer, I A; Wanders, A J; Katan, M B

    2013-05-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The results show that the effect of industrially produced trans fatty acids on heart health seen in observational studies is larger than predicted from changes in lipoprotein concentrations. There is debate on the effect of ruminant trans fatty acids and cardiovascular disease. Of special interest is conjugated linoleic acid (CLA), which is produced industrially for sale as supplements. Observational studies do not show higher risks of cardiovascular disease with higher intakes of ruminant trans fatty acids. However, CLA, industrial and ruminant trans fatty acids all raise plasma low-density lipoprotein and the total to high-density lipoprotein ratio. Gram for gram, all trans fatty acids have largely the same effect on blood lipoproteins. In conclusion, the detrimental effects of industrial trans fatty acids on heart health are beyond dispute. The exact size of effect will remain hard to determine. Further research is warranted on the effects of ruminant trans fatty acids and CLA on cardiovascular disease and its risk factors.

  8. Bioavailability of long-chain omega-3 fatty acids.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  9. ANALYSIS OF FATTY ACID CONTENT OF RAW MIANALYSIS OF FATTY ACID CONTENT OF RAW MILK

    Directory of Open Access Journals (Sweden)

    Juraj Čuboň

    2013-02-01

    Full Text Available In this work was analysedquality of raw cow’s milkof dairy cows which was fed with winter food ration of feed. Milk was observed in terms of the composition of milk fat and fatty acids during the months of August, October, December and February. The proportion of saturated fatty acids in milk fat was 63.22 % and it was found the highest proportion of palmitic acid 34.85%myristic acid accounted for 11.44 % and 10.86 % stearic acid. Linoleic acid, which is given special attention in view of the favourable effect on cholesterol, consisted of 3.48 % milk fat. The average proportion of unsaturated fatty acids in milk fat was 36.76 % of which 32.77 % were monounsaturated and polyunsaturated 4.0 %. A high proportion of milk fat formed monounsaturated oleic acid 30.92 %. The proportion of linoleic acid in milk fat was 3.48 % and 0.31 % linoleic acid.

  10. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  11. TECHNOLOGY FOR OIL ENRICHED BY POLYUNSATURATED FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    K. Leshukov

    2012-03-01

    Full Text Available The technology of butter with the "OmegaTrin" complex with the balanced content of polynonsaturated fat acids is developed. Studied the fatty acid composition of milk - raw materials, optimal amount of insertion of polyunsaturated fatty acids, organoleptic characteristics of enriched butter; studied physico-chemical properties and biological value (biological effectiveness of the final product, fatty acid composition of a new product, set the shelf life and developed an oil recipe.

  12. 补充支链氨基酸对失眠老年大鼠行为和糖代谢的影响%Effects of branched-chain amino acids supplementation on behaviour and glucose metabolism in aged rats subjected to in- somnia(

    Institute of Scientific and Technical Information of China (English)

    欧阳儒颖; 张济生; 蔡懿灵

    2014-01-01

    Objectives To explore the effects of branched-chain amino acids( BCAA) supplementation on behaviour and glucose metabolism in aged rats subjected to isomnia.Methods Experimental model of isomnia was established by use of sleep deprivation method(flower pot),thirty aged male rats were divided into five groups randomly:C(control)group, 6h(6 hours sleep per day) group, 6hB(6 hours sleep per day and fed fodder enriched with BCAA)group,4h(4 hours sleep per day)group and 4hB group.Re-sults Time of resting on the center lattic,number of make-up and number of excrete were significantly increased in experimental groups compared with C group(PC group>4h group(P0.05).Conpared with C group,the level of FPG in experimential groups were increased apparently (P4h (P<0.05).Conclusions supplementation of BCAA may ameliorates behavior and glucose metabolism in aged rats subjected to isomnia.%目的:探讨补充支链氨基酸( branched-chain amino acids,BCAA)对失眠老年大鼠行为和糖代谢的影响。方法采用小平台水环境的睡眠剥夺方法建立动物失眠模型,30只雄性老年大鼠随机分为对照组( C组)、6h组(每天6小时睡眠组)、6hB组(每天睡眠6小时,进食添加BCAA的饲料),4h组(每天睡眠4小时),4hB组(每天睡眠4小时,进食添加BCAA的饲料)。结果实验组大鼠的修饰行为次数、中央格停留时间、粪便颗粒数均高于C组,差异具有显著性( P<0.05)。且修饰行为次数、中央格停留时间4hB组<4h组(P<0.05);旷场实验得分6h组>C组>4h组,差异具有显著性(P<0.05)。但旷场实验得分、粪便颗粒数6h组与6hB组,4h组与4hB组比较无差异(P>0.05)。与C组比较,实验组的FPG水平显著升高(P<0.05);但4hB组<4h组(P<0.05)。与C组比较4h组和4hB组的血清INS水平显著升高(P<0.05),且4hB组<4h组(P<0.05)。与C组比较,

  13. 长期口服支链氨基酸改善肝硬化预后及其安全性的Meta分析%Prognosis and safety of long-term oral branched-chain amino acids for cirrhosis: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    吕彩霞; 刘春亮; 王琦

    2014-01-01

    Objective To evaluate the prognosis and safety of long-term oral Branched-Chain Amino Acids (BCAAs) for patients with cirrhosis.Methods Randomized controlled trials (RCTs) were identified from CBM (between January 1978 and September 2013),CNKI (between January 1979 and September 2013),PubMed (between January 1970 and September 2013),EMBASE (between January 1970 and September 2013),and Cochrane Library (issue 4,2013).Publications of the RCTs on the treatment of cirrhosis with oral BCAAS were included and analyzed according to the criteria of Cocbrane handbook.Results Six RCTs involving 1 047 patients were included.The results showed that oral BCAAs improved the event-free survival when compared with the control group [RR =1.13,95% CI =(1.05,1.23),P =0.001].BCAAs supplements had no effect on mortality or had no definite effect on the deteriorative rate of minimal hepatic encephalopathy (MHE) or quality of life (QOL).As reported in some trials,the main side effects of BCAAs were gastrointestinal symptoms.Conclusions Long-term oral BCAAs may improve event-free survival in cirrhotic patients.However,no definite conclusion can be made without evidences from larger,randomized,double-blind,placebo-controlled,and multicenter trials.%目的 评价长期口服支链氨基酸改善肝硬化预后及其安全性.方法 计算机检索PubMed、CNKI等多个中英文数据库,收集以口服支链氨基酸(BCAAs)为干预措施治疗肝硬化的随机对照试验(RCT),按照Cochrane系统评价方法,由两位研究者独立地对符合纳入标准的试验进行资料提取,并对纳入文献进行质量评价和对提取的有效数据进行Meta分析.结果 有6个RCT,共计1 047例肝硬化患者符合纳入标准.Meta分析结果显示口服BCAAs组的无事件生存率略高于对照组[RR=1.13,95% CI=(1.05,1.23),P=0.001],不能降低肝硬化患者的病死率(P=0.40).BCAAs对于降低轻微肝性脑病患者的恶化率及改善生命质量没有明确结果.口

  14. Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans.

    Science.gov (United States)

    Deline, Marshall L; Vrablik, Tracy L; Watts, Jennifer L

    2013-11-29

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acid sodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.

  15. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  16. Cold Flow Properties of Fatty Esters

    Directory of Open Access Journals (Sweden)

    Andrea Kleinová

    2007-09-01

    Full Text Available The article is devoted to the study of cold fl ow properties of neat esters of branched chain alcohols with fatty acids and blends of these esters with fossil diesel fuel. According to the determined CFPP values, the influence of alcohol branching on the fuel filterability is negligible and was detected only in the case of 2-ethyl hexanol. Fossil fuel blending with fatty esters up to 10 % vol. does not substantially change the cold flow properties of fossil fuel. DSC cooling scan parameters should be employed to predict CFPP of blended diesel fuel.

  17. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  18. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    Science.gov (United States)

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-10-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.

  19. 谷氨酰胺、EPA、支链氨基酸对食管癌同步放化疗及胃癌术后辅助化疗患者的影响%Impact of glutamine, eicosapntemacnioc acid, branched-chain amino acid supplements on nutritional status and treatment compliance of esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy

    Institute of Scientific and Technical Information of China (English)

    丛明华; 宋晨鑫; 邹宝华; 邓颖冰; 李淑娈; 刘雪辉; 刘微微; 刘金英; 于雷

    2015-01-01

    Objective To explore the effects of glutamine,eicosapntemacnioc acid (EPA) and branched-chain amino acids supplements in esophageal cancer patients on concurrent chemoradiotherapy and gastric cancer patients on chemotherapy.Methods From April 2013 to April 2014,a total of 104 esophageal and gastric carcinoma patients on chemotherapy or concurrent chemoradiotherapy were recruited and randomly divided into experimental and control groups.Both groups received dietary counseling and routine nutritional supports while only experimental group received supplements of glutamine (20 g/d),EPA (3.3 g/d) and branched-chain amino acids (8 g/d).And body compositions,blood indicators,incidence of complications and completion rates of therapy were compared between two groups.Results After treatment,free fat mass and muscle weight increased significantly in experiment group while decreased in control group (P < 0.05).And albumin,red blood cell count,white blood cell count and blood platelet count remained stable in experiment group while declined significantly in control group.During treatment,compared to control group,the incidences of infection-associated complication were lower (6% vs 19%,P < 0.05) and the completion rates of therapy were significantly higher in experiment group (96% vs 83%,P < 0.05).Conclusion Supplements of glutamine,EPA and branched-chain amino acids can help maintain nutrition status,decrease the complications and improve compliance for esophageal cancer patients on concurrent chemo-radiotherapy and gastric cancer patients on postoperative adjuvant chemotherapy.%目的 观察补充谷氨酰胺、二十碳五烯酸(EPA)、支链氨基酸对食管癌同步放化疗及胃癌术后辅助化疗患者的作用.方法 2013年4月至2014年4月因食管癌、胃癌在中国医学科学院肿瘤医院和北京桓兴病区拟行化疗或同步化放疗患者104例入组,数字随机分为试验组和对照组进行营养干预,两组均进行

  20. Fatty acids, inflammation and intestinal health in pigs.

    Science.gov (United States)

    Liu, Yulan

    2015-01-01

    The intestine is not only critical for nutrient digestion and absorption, but also is the largest immune organ in the body. However, in pig production, inflammation induced by numerous factors, such as pathogen infection and stresses (e.g., weaning), results in intestinal mucosal injury and dysfunction, and consequently results in poor growth of pigs. Dietary fatty acids not only play critical roles in energy homeostasis and cellular membrane composition, but also exert potent effects on intestinal development, immune function, and inflammatory response. Recent studies support potential therapeutic roles for specific fatty acids (short chain and medium chain fatty acids and long chain polyunsaturated fatty acids) in intestinal inflammation of pigs. Results of these new lines of work indicate trophic and cytoprotective effects of fatty acids on intestinal integrity in pigs. In this article, we review the effect of inflammation on intestinal structure and function, and the role of specific fatty acids on intestinal health of pigs, especially under inflammatory conditions.

  1. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  2. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    Science.gov (United States)

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  3. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    OpenAIRE

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui; Jensen, Michael D

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate in...

  4. Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans

    OpenAIRE

    Deline, Marshall L.; Vrablik, Tracy L.; Watts, Jennifer L.

    2013-01-01

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways...

  5. Important bioactive properties of omega-3 fatty acids

    OpenAIRE

    Rui Xu

    2015-01-01

    Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of ...

  6. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    Science.gov (United States)

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  7. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.;

    1999-01-01

    and from clusters of fatty acids was less. Only in Finland, Italy, Norway and Portugal total fat did provide on average less than 35% of energy intake. Saturated fatty acids (SFA) provided on average between 10% and 19% of total energy intake, with the lowest contribution in most Mediterranean countries....... TFA intake ranged from 0.5% (Greece, Italy) to 2.1% (Iceland) of energy intake among men and from 0.8% (Greece) to 1.9% among women (Iceland) (1.2-6.7 g/d and 1.7-4.1 g/d, respectively). The TFA intake was lowest in Mediterranean countries (0.5-0.8 en%) but was also below 1% of energy in Finland...... and Germany. Moderate intakes were seen in Belgium, The Netherlands, Norway and UK and highest intake in Iceland. Trans isomers of C-18:1 were the most TFA in the diet. Monounsaturated fatty acids contributed 9-12% of mean daily energy intake (except for Greece, nearly 18%) and polyunsaturated fatty acids 3...

  8. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  9. 银环蛇蛇蜕的化学成分研究Ⅱ . 脂肪酸和氨基酸组分%Study on Chemical Components of Snake Slough of Bungarus MulticinctusMulticinctus Ⅱ . Components of Fatty Acids and Amino Acids

    Institute of Scientific and Technical Information of China (English)

    陈红红; 李考铮

    2001-01-01

    The components of fatty acids in snake slough of Bungarus multicinctus multicinctus were ana-lyzed by GC-MS. Thirty -six fatty acids including twenty -eight saturated acids and eight unsaturated acids were identified. There are fourteen fatty acids with odd carbon atoms and two branched chain fatty acids in the snake slough. These fatty acids were seldom found in nature. Thirteen free amino acids in water extracts and seventeen amino acids in acid hydrolysis product from the snake slough were determined by amino acid autoanalyzer. Relative abundant taurine was also found in the snake slough.%用色谱-质谱( GC- MS)联用技术分析了银环蛇蛇蜕的脂肪酸成分,鉴定出 36种脂肪酸(饱和酸 28种、不饱和酸 8种),在蛇蜕中发现 16种饱和二元酸,并发现了自然界中少见的奇数碳脂肪酸 14种及支链酸 2种。用氨基酸自动分析仪测定了蛇蜕水提取液中的 13种游离氨基酸,酸性水解液中 17种氨基酸,在蛇蜕中发现存在牛磺酸。

  10. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  11. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  12. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    Science.gov (United States)

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  13. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette;

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P ... a minimal role, as the influence of dietary intake is similar on both legs. Regular exercise training per se influences the phospholipid fatty acid composition of muscle membranes but has no effect on the composition of fatty acids stored in triacylglycerols within the muscle....

  14. [Raman spectrometry of several saturated fatty acids and their salts].

    Science.gov (United States)

    Luo, Man; Guan, Ping; Liu, Wen-hui; Liu, Yan

    2006-11-01

    Saturated fatty acids and their salts widely exist in the nature, and they are well known as important chemical materials. Their infrared spectra have been studied in detail. Nevertheless, few works on the Raman spectra characteristics of saturated fatty acids and their salts have been published before. Man-made crystals of acetic acid, stearic acid, calcium acetate, magnesium acetate, calcium stearate and magnesium stearate were investigated by means of Fourier transform Raman spectrometry for purpose of realizing their Raman spectra. Positive ions can cause the distinctions between the spectra of saturated fatty acids and their salts. The differences in mass and configuration between Ca2+ and Mg2+ result in the Raman spectra's diversity between calcium and magnesium salts of saturated fatty acids. Meanwhile, it is considered that the long carbon chain weakened the influence of different positive ions on the salts of saturated fatty acids.

  15. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    Science.gov (United States)

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  16. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    Science.gov (United States)

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  17. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  18. Antineoplastic unsaturated fatty acids from Fijian macroalgae.

    Science.gov (United States)

    Jiang, Ren-Wang; Hay, Mark E; Fairchild, Craig R; Prudhomme, Jacques; Roch, Karine Le; Aalbersberg, William; Kubanek, Julia

    2008-10-01

    Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(zeta)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(zeta)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(zeta)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, beta-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC(50) values ranging from 1.3 to 14.4 microM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.

  19. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible.

  20. Fatty acids composition in fruits of wild rose species

    Directory of Open Access Journals (Sweden)

    Renata Nowak

    2011-01-01

    Full Text Available The oil content and fatty acids profile of a number of Polish wild species of rose fruits were examined by GC. The total fatty acid contents ranged from 6.5% to 12.9% of dry mass in fruits. The composition of oils was similar in the investigated species. 17 components were identified. An average composition was estimated as follows: linoleic acid (44.4-55.7%, a-linolenic acid (18.6-31.4%, oleic acid (13.5-20.3%, palmitic acid (2.3-3.3%, stearic acid (1-2.5%, octadecenoic acid (0.38-0.72%, eicosenoic acid (0.3-0.7%, eicosadienoic acid (0-0.16%, erucic acid (0.03-0.17% and minor fatty acids. The results indicate that rose fruits are a rich source of unsaturated fatty acids, especially in R. rubiginosa, R. rugosa and R. dumalis. There were statistically significant (p<0.05 differences in fatty acid compositions of some species. Fatty acids were suggested to have a potential chemotaxonomic value in this genus.

  1. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  2. Genetic variability of fatty acids in bovine milk

    Directory of Open Access Journals (Sweden)

    Soyeurt H.

    2008-01-01

    Full Text Available Fatty acids composition of bovine milk influences the technological properties of butterfat and also presents some potential benefits for human health. Impact of feeding on fat composition is well described in the literature; less information is available about the impact of genetics. Based on few studies, essentially conducted to isolate some feeding effect, the breed seemed to influence the fatty acids composition. The variation in the activity of δ-9 desaturase, key enzyme in the production of monounsaturated fatty acids and conjugated linoleic acids in milk, could explain these differences. Very few studies have been focussing on the estimation of genetic parameters of fatty acids composition. However, the moderate heritability estimates observed by these studies for the major fatty acids could suggest a potential genetic effect.

  3. [Possible route for thiamine participation in fatty acid synthesis].

    Science.gov (United States)

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  4. Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA

    Science.gov (United States)

    Muramatsu, Akira; Shimizu, Yuta; Yoshikawa, Yuko; Fukuda, Wakao; Umezawa, Naoki; Horai, Yuhei; Higuchi, Tsunehiko; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yoshikawa, Kenichi

    2016-12-01

    We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.

  5. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Krych, Lukasz; Roytio, Henna

    2014-01-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n=18) were enrolled i...... pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P...

  6. Influence of branched-chain fatty acid supplementation on voluntary intake, site and extent of digestion, ruminal fermentation, digesta kinetics and microbial protein synthesis in beef heifers consuming grass hay.

    Science.gov (United States)

    Gunter, S A; Krysl, L J; Judkins, M B; Broesder, J T; Barton, R K

    1990-09-01

    Four heifers (British x British; average BW 372 kg) cannulated at the rumen and duodenum and consuming a grass hay (fescue-orchardgrass) diet were used in a 4 x 4 Latin square and supplemented with four levels (0, 20, 40, and 60 g.head-1.d-1) of supplemental four- and five-carbon VFA (BCFA). Forage OM, ADF, NDF and N intakes and digestibilities were not affected (P greater than .10) by BCFA supplementation. Likewise, duodenal N (microbial, feed and ammonia) flows and microbial efficiency were not altered (P greater than .10) by BCFA supplementation. Neither particulate and fluid passage rate nor in situ rate of NDF digestion was affected (P greater than .10) by treatment. Ruminal pH, ammonia concentrations and total VFA concentrations were similar (P greater than .10) among treatments. Ruminal proportions of acetate and propionate were not affected (P greater than .10) by treatment; however, butyrate responded in a cubic (P less than .05) fashion to BCFA, with the lowest proportion of butyrate at the 40 g BCFA feeding level. A time x treatment interaction (P less than .05) was noted for isobutyrate, isovalerate and valerate proportions; they were increased as a function of BCFA dosage at 2 to 8 h postdosing. Supplemental four- and five-carbon VFA had no effect on digestion and fermentation of grass hay. Supplementation of low-quality roughages with BCFA is not justified.

  7. Polyunsaturated fatty acids and inflammatory diseases.

    Science.gov (United States)

    Gil, A

    2002-10-01

    Inflammation is overall a protective response, whose main goal is to liberate the human being of cellular lesions caused by micro-organisms, toxins, allergens, etc., as well as its consequences, and of death cells and necrotic tissues. Chronic inflammation, which is detrimental to tissues, is the basic pathogenic mechanism of hypersensitivity reactions against xenobiotics. Other frequent pathologies, for instance atherosclerosis, chronic hepatitis, inflammatory bowel disease (IBD), liver cirrhosis, lung fibrosis, psoriasis, and rheumatoid arthritis are also chronic inflammatory diseases. Chemical mediators of inflammation are derived from blood plasma or different cell-type activity. Biogenic amines, eicosanoids and cytokines are within the most important mediators of inflammatory processes. The different activities of eicosanoids derived from arachidonic acid (20:4 n-6) versus those derived from eicosapentaenoic acid (20:5 n-3) are one of the most important mechanisms to explain why n-3, or omega-3, polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory properties in many inflammatory diseases. Dietary supplements ranging 1-8 g per day of n-3 PUFA have been reportedly beneficial in the treatment of IBD, eczema, psoriasis and rheumatoid arthritis. In addition, recent experimental studies in rats with experimental ulcerative colitis, induced by intrarectal injection of trinitrobenzene sulphonic acid, have documented that treatment with n-3 long-chain PUFA reduces mucosal damage as assessed by biochemical and histological markers of inflammation. Moreover, the defence antioxidant system in this model is enhanced in treated animals, provided that the n-3 PUFA supply is adequately preserved from oxidation.

  8. 高支链氨基酸营养支持对肝脏手术患者肝功能保护作用的Meta分析%Meta-analysis of branched chain amino acid-enriched nutrition to improve hepatic function in patients undergoing hepatic operation

    Institute of Scientific and Technical Information of China (English)

    舒晓亮; 康凯; 钟静霞; 姬舒荣; 张勇胜; 胡怀东; 张大志

    2014-01-01

    Objective To perform a meta-analysis of randomized controlled trials (RCTs) assessing the benefit of providing branched chain amino acid (BCAA)-enriched nutrition to improve hepatic function in patients undergoing hepatic operation.Methods The electronic databases of PubMed,Springerlink,the Chinese Biomedical Database (CBM),the Cochrane Library,and the China National Knowledge Infrastructure (CNKI) were searched for relevant RCTs using the following search terms:nutritional support,enteral nutrition,parenteral nutrition,hepatic/liver surgery,liver cirrhosis,cancer,hepatectomy,and liver transplantation.The quality of the retrieved RCTs was assessed according to the scale developed by the Cochrane Collaboration.The meta-analysis was conducted using RevMan software,version 5.2.Results A total of 11 relevant RCTs,representing 510 patients,were included in the meta-analysis.Compared to patients in the control (normal nutrition) group,the patients in the BCAA group experienced an effective improvement in hepatic function,as evidenced by significant decreases in total bilirubin (by 0.07 μmol/L; 95% confidence interval (CI):-0.18 ~ 0.05,P > 0.05].In addition,the BCAA group showed improvements in plasma levels of albumin (weighted mean difference (WMD) =0.07; 95% CI:0.06,0.24,P < 0.05) and alanine aminotransferase (WMD =+5.61; 95% CI:-8.63 ~ 19.86,P > 0.05] but neither of the changes reached the threshold of a statistically significant improvement.The BCAA group did however show significantly lower complication rate after operation (65%,95% CI:0.48,0.87,P < 0.01] and mean duration of hospital stay (4.61 days; 95% CI:-6.61,-2.61,P < 0.01].Conclusion BCAA-enriched nutrition improves hepatic function in patients undergoing hepatic operation,thereby helping to reduce the complication risk,duration of hospital stay,and financial burden.BCAA-enriched nutrition is a safe and effective therapy and further clinical application may be beneficial.%目的

  9. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    Science.gov (United States)

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  10. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  11. Omega-3 Fatty Acids in the Management of Epilepsy.

    Science.gov (United States)

    Tejada, Silvia; Martorell, Miquel; Capó, Xavier; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-01-01

    Omega-3 and omega-6 fatty acids are polyunsaturated fatty acids (PUFAs) with multiple double bonds. Linolenic and alpha-linolenic acids are omega-6 and omega-3 PUFAs, precursors for the synthesis of long-chain PUFAs (LC-PUFAs), such as arachidonic acid (omega-6 PUFA), and eicosapentaenoic and docosahexaenoic acids (omega-3 PUFAs). The three most important omega-3 fatty acids are alpha-linolenic, eicosapentaenoic and docosahexaenoic acids, which cannot be synthesized in enough amounts by the body, and therefore they must be supplied by the diet. Omega-3 fatty acids are essential for the correct functioning of the organism and participate in many physiological processes in the brain. Epilepsy is a common and heterogeneous chronic brain disorder characterized by recurrent epileptic seizures leading to neuropsychiatric disabilities. The prevalence of epilepsy is high achieving about 1% of the general population. There is evidence suggesting that omega-3 fatty acids may have neuroprotective and anticonvulsant effects and, accordingly, may have a potential use in the treatment of epilepsy. In the present review, the potential use of omega-3 fatty acids in the treatment of epilepsy, and the possible proposed mechanisms of action are discussed. The present article summarizes the recent knowledge of the potential protective role of dietary omega-3 fatty acids in epilepsy.

  12. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  13. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  14. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  15. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid der

  16. An overview of the properties of fatty acid alkyl esters

    Science.gov (United States)

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...

  17. Fatty acid profile of 25 alternative lipid feedstocks

    Science.gov (United States)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  18. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  19. Alternative origins for omega-3 fatty acids in the diet

    NARCIS (Netherlands)

    Lenihan-Geels, Georgia; Bishop, Karen S.

    2016-01-01

    Fish and seafood are important sources for LC PUFAs, EPA and DHA. These fatty acids may be synthesised in the body from short-chain fatty acids, including ALA; however, the enzymes involved in this pathway are considered inefficient. This means direct EPA and DHA sources are an important part of

  20. Interaction between fatty acid salts and the elastin network.

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the formation of a

  1. Distillation of natural fatty acids and their chemical derivatives

    Science.gov (United States)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  2. DETERGENCY OF THE 12 TO 18 CARBON SATURATED FATTY ACIDS

    Science.gov (United States)

    saturated fatty acids ) were explored to determine the relationship of the detergencies of such systems to the physico-chemical nature (HLB, hydrophile...suggested that in such systems the chief action is van der Waals adsorption between hydr oxide mole ratio adducts of tridecyl alcohol are poor detergents of the saturated fatty acids .

  3. Syntrophic degradation of fatty acids by methanogenic communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Worm, P.; Sousa, D.Z.; Alves, M.M.; Plugge, C.M.

    2012-01-01

    In methanogenic environments degradation of fatty acids is a key process in the conversion of organic matter to methane and carbon dioxide. For degradation of fatty acids with three or more carbon atoms syntrophic communities are required. This chapter describes the general features of syntrophic de

  4. Why do polyunsaturated fatty acids lower serum cholesterol?

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.

    1985-01-01

    Replacement of saturated by polyunsaturated fatty acids in the diet may lower serum very low-density and low-density lipoprotein concentrations because the liver preferentially converts polyunsaturated fatty acids into ketone bodies instead of into very low-density lipoprotein triglycerides. Thus un

  5. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  6. New phenstatin-fatty acid conjugates: synthesis and evaluation.

    Science.gov (United States)

    Chen, Jinhui; Brown, David P; Wang, Yi-Jun; Chen, Zhe-Sheng

    2013-09-15

    New phenstatin-fatty acid conjugates have been synthesized and tested against the KB-3-1, H460, MCF-7 and HEK293 cell lines, with an increase in anti-proliferative activity being observed at the micro-molar level paralleling an increase in un-saturation in the fatty acid component.

  7. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Science.gov (United States)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  8. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  9. Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women

    NARCIS (Netherlands)

    Roos, de N.M.; Bots, M.L.; Katan, M.B.

    2001-01-01

    We tested whether trans fatty acids and saturated fatty acids had different effects on flow-mediated vasodilation (FMD), a risk marker of coronary heart disease (CHD). Consumption of trans fatty acids is related to increased risk of CHD, probably through effects on lipoproteins. Trans fatty acids di

  10. THE CONSTRUCTION OF MULTITYPE CANONICAL MARKOV BRANCHING CHAINS IN RANDOM ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introduces the concepts of the multitype canonical Markov branching chain in random environment (CMBCRE) and multitype Markov branching chain in random environment (MBCRE) and proved that CMBCRE must be MBCRE, and any MBCRE must be equivalent to another CMBCRE in distribution. The main results of this article are the construction of CMBCRE and some of its probability properties.

  11. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  12. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2016-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  13. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers.

  14. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... between PUFAs and prostate cancer risk. METHODS: We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used...... to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS: No overall association was observed between the genetically-predicted PUFAs evaluated in this study...

  15. Omega 3 fatty acids in psychiatry

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2013-01-01

    Full Text Available Omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs are thought to be important for normal dopaminergic, glutamatergic and serotonergic neurotransmission. Depression is less prevalent in societies with high fish consumption, and depressed patients have significantly lower red blood cell ω-3 levels. Studies with ω-3 supplementation have led to controversial results. A significantly longer remission of bipolar symptomatology has been confirmed from a high-dose DHA and EPA mixture. Greater seafood consumption per capita has been connected with a lower prevalence of bipolar spectrum disorders. Reduced levels of ω-6 and ω-3 PUFAs were found in patients with schizophrenia. [Projekat Ministarstva nauke Republike Srbije, br. 175033 i br. 175022

  16. Fatty acids as modulators of neutrophil recruitment, function and survival.

    Science.gov (United States)

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  17. Important bioactive properties of omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-06-01

    Full Text Available Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of n-3 fatty acids to various tissues is of major importance to health and depends on dietary intake for both normal development and in the prevention and management of chronic diseases.In this review we will summarize the biological properties of omega-3 fatty acids.

  18. Trans-fatty acids and cardiovascular risk: does origin matter?

    Science.gov (United States)

    Dawczynski, Christine; Lorkowski, Stefan

    2016-09-01

    Several studies have aimed to unravel the contribution of different types of dietary fatty acids to human health and disease. Investigations have consistently shown that high consumption of industrially produced trans-fatty acids from partially hydrogenated vegetable oils is harmful to human health, in particular cardiovascular health. Therefore, the U.S. Food and Drug Administration announced that partially hydrogenated oils are no longer 'generally recognized as safe', and trans-fatty acids are not permitted in the U.S. food supply. On the other hand, recent studies analyzing the association between circulating trans-fatty acids and disease have revealed that some ruminant-specific trans-fatty acids are associated with a reduction in incidence of disease. In this special report, we highlight recent findings and point out perspectives for future studies on this topic.

  19. Essential fatty acids as functional components of foods- a review.

    Science.gov (United States)

    Kaur, Narinder; Chugh, Vishal; Gupta, Anil K

    2014-10-01

    During the recent decades, awareness towards the role of essential fatty acids in human health and disease prevention has been unremittingly increasing among people. Fish, fish oils and some vegetable oils are rich sources of essential fatty acids. Many studies have positively correlated essential fatty acids with reduction of cardiovascular morbidity and mortality, infant development, cancer prevention, optimal brain and vision functioning, arthritis, hypertension, diabetes mellitus and neurological/neuropsychiatric disorders. Beneficial effects may be mediated through several different mechanisms, including alteration in cell membrane composition, gene expression or eicosanoid production. However, the mechanisms whereby essential fatty acids affect gene expression are complex and involve multiple processes. Further understanding of the molecular aspects of essential fatty acids will be the key to devising novel approaches to the treatment and prevention of many diseases.

  20. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  1. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  2. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    OpenAIRE

    Sieswerda Lee E; Seguin Jennifer; Ross Brian M

    2007-01-01

    Abstract Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA). This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determi...

  3. Modification of diet fatty acid composition change the fatty acid composition of rabbit meat:

    OpenAIRE

    Tatjana PIRMAN; Trebušak, Tina; Levart, Alenka

    2012-01-01

    The objective of the study was to determine the effect of linseed oil supplementation on the performance and fatty acid composition of rabbit leg muscle and adipose tissue. Two experiments were done. First experiment: twelvemale SIKA rabbits, divided in two groups, control (n = 4; commercial diet) and the linseed (n = 8; commercial diet with 9% of linseed oil sprayed onto the pellets). Second experiment: twenty-four (12 male and 12 female) SIKArabbits, divided in two groups, palm fat (n = 12;...

  4. Fatty acids, lipid mediators, and T-cell function.

    Science.gov (United States)

    de Jong, Anja J; Kloppenburg, Margreet; Toes, René E M; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research.

  5. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    Science.gov (United States)

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  6. Regulation of hepatic gene expression by saturated fatty acids.

    Science.gov (United States)

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  7. Three new branched chain equations of state based on Wertheim's perturbation theory.

    Science.gov (United States)

    Marshall, Bennett D; Chapman, Walter G

    2013-05-07

    In this work, we present three new branched chain equations of state (EOS) based on Wertheim's perturbation theory. The first represents a slightly approximate general branched chain solution of Wertheim's second order perturbation theory (TPT2) for athermal hard chains, and the second represents the extension of first order perturbation theory with a dimer reference fluid (TPT1-D) to branched athermal hard chain molecules. Each athermal branched chain EOS was shown to give improved results over their linear counterparts when compared to simulation data for branched chain molecules with the branched TPT1-D EOS being the most accurate. Further, it is shown that the branched TPT1-D EOS can be extended to a Lennard-Jones dimer reference system to obtain an equation of state for branched Lennard-Jones chains. The theory is shown to accurately predict the change in phase diagram and vapor pressure which results from branching as compared to experimental data for n-octane and corresponding branched isomers.

  8. [Treatment of hypertriglyceridemia with omega-3 fatty acids].

    Science.gov (United States)

    Miyoshi, Toru; Ito, Hiroshi

    2013-09-01

    Omega-3 fatty acids such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have important biologic functions, including effects on membranes, eicosanoid metabolism, and gene transcription. Studies indicate that the use of EPA and DHA lowered triglyceride levels, which is accomplished by decreasing the production of hepatic triglycerides and increasing the clearance of plasma triglycerides. Recent clinical studies showed that intake of omega-3 fatty acids reduced cardiovascular events. In addition, combination therapy with omega-3 fatty acids and a statin is a safe and effective way to improve lipid levels and cardiovascular prognosis beyond the benefits provided by statin therapy alone. Our focus is to review the potential mechanisms by which these fatty acids reduce cardiovascular disease risk.

  9. [Fatty acid content of sausages manufactured in Venezuela].

    Science.gov (United States)

    Araujo de Vizcarrondo, C; Martín, E

    1997-06-01

    The moisture and lipid content as well as the fatty acid composition of sausages were determined. Lipids were extracted and purified with a mixture of cloroform/methanol 2:1. Fatty acids in the lipid extract were methylated with 4% sulfuric acid/methanol solution and later were separated as methyl esters by gas liquid cromatography (GLC). Sausages presented a lipid content between 7.10% for canned sausages and 35.23% for the cocktail type. Most of the fatty acids were monounsatured with oleic acid as the major component with values between 42.54% for ham sausage and 48.83% for francfort type. Satured fatty acids followed, with palmitic acid as the major component in a range between 21.46% and 26.59% for bologna and Polaca sausage respectively. Polyunsaturated fatty acids were present in less quantities with concentration of linoleic acid between 8.5% (cotto salami type) and 12.60% (cocktail type). Turkey and poultry sausages presented a higher content of polyunsaturated and less saturated fatty acids than the other types of sausages studied.

  10. Plasma concentrations of trans fatty acids in persons with type 2 diabetes between September 2002 and April 200412345

    OpenAIRE

    Schwenke, Dawn C.; Foreyt, John P.; Edgar R Miller; Reeves, Rebecca S.; Vitolins, Mara Z.

    2013-01-01

    Background: transFatty acids (TFAs) increase cardiovascular disease risk. TFAs and polyunsaturated fatty acids (PUFAs) in the food supply may be declining with reciprocal increases in cis-monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs).

  11. Survey on the fatty acids profile of fluid goat milk

    Directory of Open Access Journals (Sweden)

    Daniela Pittau

    2013-10-01

    Full Text Available Fluid goat milk submitted to thermal treatment has interesting nutritional properties and a potential expanding market. The present study was aimed to conduct fatty acids profile characterisation of goat milk placed on market. Forty-nine fluid milk samples were collected: 12 pasteurised, 12 pasteurised at high temperature, 11 ultrahigh temperature (UHT whole milk and 14 UHT semi-skimmed milk. Milk samples were collected at retail level from 7 different companies and from different production batches. After extraction and methilation, fatty acids (FAs profile was determined on each sample using a gas chromatograph with flame ionisation detector (GC-FID with high-polarity capillary column. The concentration (g/100mL of saturated fatty acids (SFAs, monounsaturated fatty acids (MUFAs, polyunsaturated fatty acids (PUFAs, trans fatty acids (t-FAs, and isomers of conjugated linoleic acid (CLA was determined. N-6/n-3 ratio, atherogenic index (AI and thrombogenic index (TI were also assessed. Fluid goat milk lipid profile was characterised by SFAs (68.4% of total FAs, PUFAs (5.3%, MUFAs (21.3%, t-FAs (3.6% and CLA (0.8%. The most represented fatty acids were: 16:0 (24.5%, 9cis-18:1 (18.2%, 18:0 (9.6%, 14:0 (9.5%, 10:0 (9.3% and 12:0 (4.5%. Nutritional indices were 2.8-6.8 for n-6/n-3 ratio; 2.3-2.9 for AI; and 2.7-3.2 for TI. Milk produced by small scale plants, with no milk fat standardisation, showed greater differences in fatty acid profile as compared to industrial plants milk. Large scale production is characterised by commingled bulk tank milk of different origins and then is more homogeneous. The whole goat milk supply chain should be controlled to obtain milk with fatty acids of high nutritional value.

  12. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    Science.gov (United States)

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84

  13. The role and mechanism of fatty acids in gallstones

    Institute of Scientific and Technical Information of China (English)

    Shuo-Dong Wu; Kazuhisa Uchiyama; Ying Fan

    2007-01-01

    BACKGROUND: Cholelithiasis is a common entity in China, but its etiology and pathogenesis have not been fully elucidated. Pigment stones of the intrahepatic and extrahepatic bile duct still form a high proportion in China, while they are rare in Europeans. To date, reports on fatty acids in stones remain few. We analyzed the quantity of fatty acids in different stones from Chinese and Japanese cases and discussed the role and mechanism of fatty acids in the formation of pigment stones. METHODS: Clinical data from 18 Chinese and 37 Japanese patients with different types of stones were analyzed using the procedure for extracting fatty acids from gallstones and high performance liquid chromatography. RESULTS: The total fatty acid and free fatty acid contents of pigment stones were markedly higher than those in black or cholesterol stones. The ratio of free saturated to free unsaturated fatty acids was highest in intrahepatic and less in extrahepatic pigment stones, which were signiifcantly different from the other two kinds of stones. CONCLUSIONS: This indicates that phospholipase participates in the course of pigment stone formation. The action of phospholipase A1 is more important than phospholipase A2.

  14. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    Directory of Open Access Journals (Sweden)

    Brian L. Lindshield

    2013-09-01

    Full Text Available Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH. Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate and phytosterols (campesterol, stigmasterol, β-sitosterol in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05 concentrations of total fatty acids (908.5 mg/g, individual fatty acids, total phytosterols (2.04 mg/g, and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05 concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g and phytosterols (0.10 mg/g. Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  15. Fatty acids in cardiovascular health and disease: a comprehensive update.

    Science.gov (United States)

    Baum, Seth J; Kris-Etherton, Penny M; Willett, Walter C; Lichtenstein, Alice H; Rudel, Lawrence L; Maki, Kevin C; Whelan, Jay; Ramsden, Christopher E; Block, Robert C

    2012-01-01

    Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotein cholesterol (LDL-C), whereas carbohydrates, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) do not. High-density lipoprotein (HDL)-C increases with SFA intake. Among individuals who are insulin resistant, a low-fat, high-carbohydrate diet typically has an adverse effect on lipid profiles (in addition to decreasing HDL-C, it also increases triglyceride and LDL particle concentrations). Consequently, a moderate fat diet in which unsaturated fatty acids replace SFAs and carbohydrates are not augmented is advised to lower LDL-C; compared with a low-fat diet, a moderate-fat diet will lower triglycerides and increase HDL-C. Now, there is some new evidence that is questioning the health benefits of even MUFAs and PUFAs. In addition, in a few recent studies investigators have also failed to demonstrate expected cardiovascular benefits of marine-derived omega-3 fatty acids. To clarify the clinical pros and cons of dietary fats, the National Lipid Association held a fatty acid symposium at the 2011 National Lipid Association Scientific Sessions. During these sessions, the science regarding the effects of different fatty acid classes on coronary heart disease risk was reviewed.

  16. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    Science.gov (United States)

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  17. Structural Equation Modeling for Analyzing Erythrocyte Fatty Acids in Framingham

    Directory of Open Access Journals (Sweden)

    James V. Pottala

    2014-01-01

    Full Text Available Research has shown that several types of erythrocyte fatty acids (i.e., omega-3, omega-6, and trans are associated with risk for cardiovascular diseases. However, there are complex metabolic and dietary relations among fatty acids, which induce correlations that are typically ignored when using them as risk predictors. A latent variable approach could summarize these complex relations into a few latent variable scores for use in statistical models. Twenty-two red blood cell (RBC fatty acids were measured in Framingham (N = 3196. The correlation matrix of the fatty acids was modeled using structural equation modeling; the model was tested for goodness-of-fit and gender invariance. Thirteen fatty acids were summarized by three latent variables, and gender invariance was rejected so separate models were developed for men and women. A score was developed for the polyunsaturated fatty acid (PUFA latent variable, which explained about 30% of the variance in the data. The PUFA score included loadings in opposing directions among three omega-3 and three omega-6 fatty acids, and incorporated the biosynthetic and dietary relations among them. Whether the PUFA factor score can improve the performance of risk prediction in cardiovascular diseases remains to be tested.

  18. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans.

    Science.gov (United States)

    Nelson, Robert H; Mundi, Manpreet S; Vlazny, Danielle T; Smailovic, Almira; Muthusamy, Kalpana; Almandoz, Jaime P; Singh, Ekta; Jensen, Michael D; Miles, John M

    2013-03-01

    Plasma free fatty acid (FFA) kinetics in humans are often measured with only one tracer. In study 1, healthy volunteers received infusions of [U-¹³C]linoleate, [U-¹³C]oleate, and [U-¹³C]palmitate during continuous feeding with liquid meals low (n = 12) and high (n = 5) in palmitate and containing three labeled fatty acids to measure FFA appearance and fractional spillover of lipoprotein lipase-generated fatty acids. Study 2 used an intravenous lipid emulsion to increase FFA concentrations during infusion of linoleate and palmitate tracers. In study 1, there were no differences in spillover of the three fatty acids for the low-palmitate meal, but linoleate spillover was greater than oleate or palmitate for the high-palmitate meal. In studies 1 and 2, clearance was significantly greater for linoleate than for the other FFAs. There was a negative correlation between clearance and concentration for each fatty acid in the two studies. In study 1, concentration and spillover correlated positively for oleate and palmitate but negatively for linoleate. In conclusion, linoleate spillover is greater than that of other fatty acids under some circumstances. Linoleate clearance is greater than that of palmitate or oleate, indicating a need for caution when using a single FFA to infer the behavior of all fatty acids.

  19. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS.

    Science.gov (United States)

    Madl, Tobias; Mittelbach, Martin

    2005-04-01

    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  20. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  1. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    Science.gov (United States)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  2. Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study.

    Science.gov (United States)

    Porenta, Shannon R; Ko, Yi-An; Gruber, Stephen B; Mukherjee, Bhramar; Baylin, Ana; Ren, Jianwei; Djuric, Zora

    2013-11-01

    A Mediterranean diet increases intakes of n-3 and n-9 fatty acids and lowers intake of n-6 fatty acids. This can impact colon cancer risk as n-6 fatty acids are metabolized to proinflammatory eicosanoids. The purpose of this study was to evaluate interactions of polymorphisms in the fatty acid desaturase (FADS) genes, FADS1 and FADS2, and changes in diet on fatty acid concentrations in serum and colon. A total of 108 individuals at increased risk of colon cancer were randomized to either a Mediterranean or a Healthy Eating diet. Fatty acids were measured in both serum and colonic mucosa at baseline and after six months. Each individual was genotyped for four single-nucleotide polymorphisms in the FADS gene cluster. Linear regression was used to evaluate the effects of diet, genotype, and the diet by genotype interaction on fatty acid concentrations in serum and colon. Genetic variation in the FADS genes was strongly associated with baseline serum arachidonic acid (n-6) but serum eicosapentaenoic acid (n-3) and colonic fatty acid concentrations were not significantly associated with genotype. After intervention, there was a significant diet by genotype interaction for arachidonic acid concentrations in colon. Subjects who had all major alleles for FADS1/2 and were following a Mediterranean diet had 16% lower arachidonic acid concentrations in the colon after six months of intervention than subjects following the Healthy Eating diet. These results indicate that FADS genotype could modify the effects of changes in dietary fat intakes on arachidonic acid concentrations in the colon.

  3. Glycogen depletion and acute branched-chain aminoacids supplementation on submaximal exercise in trained rats : implications on anaplerotic reactions

    OpenAIRE

    2005-01-01

    Resumo: Durante o exercício sub-máximo, a utilização de estoques de glicogênio muscular é de suma importância para possibilitar a continuidade do mesmo. A suplementação de Aminoácidos de Cadeia Ramificada (AACR ou BCAA, do inglês Branched Chain Amino Acids) tem sido experimentada como forma de gerar energia para o músculo nessas condições. Através da utilização dos seus esqueletos de carbono, podem ser gerados intermediários do ciclo dos ácidos tricarboxílicos (CAT ou TCA, do inglês Tricarbox...

  4. Transgenic Mice Convert Carbohydrates to Essential Fatty Acids

    OpenAIRE

    Pai, Victor J.; Bin Wang; Xiangyong Li; Lin Wu; Kang, Jing X.

    2014-01-01

    Transgenic mice (named “Omega mice”) were engineered to carry both optimized fat-1 and fat-2 genes from the roundworm Caenorhabditis elegans and are capable of producing essential omega-6 and omega-3 fatty acids from saturated fats or carbohydrates. When maintained on a high-saturated fat diet lacking essential fatty acids or a high-carbohydrate, no-fat diet, the Omega mice exhibit high tissue levels of both omega-6 and omega-3 fatty acids, with a ratio of ∼1∶1. This study thus presents an in...

  5. Capillary Electrophoresis in the Analysis of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gabriel Hancu

    2015-12-01

    Full Text Available The aim of this study to inventory the main electrophoretic methods for identification and quantitative determination of fatty acids from different biological matrices. Critical analysis of electrophoretic methods reported in the literature show that the determination of polyunsaturated fatty acids can be made by: capillary zone electrophoresis, micellar electrokinetic chromatography and microemulsion electrokinetic chromatography using different detection systems such as ultraviolet diode array detection, laser induced fluorescence or mass – spectrometry. Capillary electrophoresis is a fast, low-cost technique used for polyunsaturated fatty acids analysis although their determination is mostly based on gas chromatography.

  6. Omega-3 polyunsaturated fatty acids and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Ştefan C. Vesa

    2008-12-01

    Full Text Available The article presents some general facts about omega-3 fatty acids and their role in the treatment and prevention of cardiovascular diseases. Omega-3 fatty acids are essential for the human body. Their beneficial effects in the prevention of cardiovascular disease have been known for decades. Since then, several epidemiological and interventional trials showed the value of omega-3 acids in the treatment of certain diseases. Most of them revealed the protective role of omega-3 fatty acids on heart and cardiac functions. However, some of these studies couldn?t demonstrate a positive association between fish oils and preventing cardiac events. The major cardiologic societies from European Union and United States of America recommend omega-3 fatty acids as supplements for primary and secondary prophylaxis of cardiovascular diseases.

  7. Trans fatty acids in a range of UK processed foods.

    Science.gov (United States)

    Roe, Mark; Pinchen, Hannah; Church, Susan; Elahi, Selvarani; Walker, Margaret; Farron-Wilson, Melanie; Buttriss, Judith; Finglas, Paul

    2013-10-01

    A survey to determine the trans fatty acid content of a range of processed foods was carried out in response to recent reformulation work by the food industry to lower the artificial trans fatty acid content of processed products. Sixty two composite samples, made up of between 5 and 12 sub-samples, were collected in 2010 and were analysed for fatty acids, and a range of nutrients. The foods analysed included pizza, garlic bread, breakfast cereals, quiche, fat spreads, a range of fish and meat products, chips, savoury snacks, confectionery and ice cream. Levels of trans fatty acids were reduced considerably compared with previous UK analyses of similar foods where comparisons are possible. Concentrations of trans elaidic acid (t9-C18:1) from hydrogenated oils in all samples were food. These results confirm information provided by the food industry in 2007 on the levels of trans fats in key processed food sectors.

  8. Breast milk: Fatty acid composition and maternal diet

    Directory of Open Access Journals (Sweden)

    Mihela Dujmović

    2013-08-01

    Full Text Available Breast milk from healthy and well-nourished mothers is the preferred form of infants´ feeding in the first six months after parturition, and breastfeeding in this period supports the normal growth and development of new-born infants. During the first month postpartum, breast milk changes through three stages: colostrum, transitional milk and mature milk. Mature milk, which is excreted after the 16th day postpartum, contains on average 3.4-4.5 % lipids. Breast milk lipids fulfill 40-55 % of an infant´s daily energy needs and provide a supply of fat-soluble vitamins and fatty acids. The characteristics of milk lipids are largely determined by their fatty acid composition. In this work the general characteristics of breast milk and milk lipids, as well as the influence of maternal diet on composition of fatty acids in breast milk, are discussed. Breast milk provides all dietary essential fatty acids, linoleic acid (C18:2n-6 and α-linolenic acid (C18:3n-3, as well as their longer-chain more-unsaturated metabolites, including arachidonic acid (C20:4n-6 and docosahexaenoic acid (C22:6n-3. Long-chain polyunsaturated fatty acids are of particular importance in visual and neural development, and their content in milk is a reflection of the mother´s current and long-term dietary intake. A positive association has been established between the maternal intake of fish and seafood and the content of polyunsaturated fatty acids (especially docosahexaenoic acid in milk. Numerous researches have been shown that supplementation with docosahexaenoic acids during the last trimester of pregnancy and during lactation significantly increases the content of polyunsaturated fatty acids in breast milk.

  9. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R; Li, Lihua; Freeman, Bruce A; Schopfer, Francisco J

    2015-10-01

    Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.

  10. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic