WorldWideScience

Sample records for branch agb star

  1. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  2. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  3. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  4. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  5. Winds of AGB stars: does size matter?

    International Nuclear Information System (INIS)

    Hoefner, S

    2008-01-01

    Asymptotic giant branch (AGB) stars are showing clear signs of significant mass loss through cool stellar winds. These outflows are attributed to the combined effects of pulsation-induced shocks and radiation pressure on dust grains formed in the outer atmospheric layers. This paper gives an overview of the current status of radiation-hydrodynamical modelling of these processes, and presents a toy model that allows analysis of certain features of detailed models, such as the influence of grain size dependent opacities and basic differences in winds of C- and M-type AGB stars.

  6. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  7. Current Mysteries of AGB Stars

    Science.gov (United States)

    Tout, Christopher A.

    We pay tribute to the memory of Manuel Forestini by recalling his contributions to astronomy and in particular to our understanding of AGB stars. We critically examine the current status of this understanding amongst the community and deduce that major uncertainties arise in the physics of convection, any form of extra mixing beyond convection and the mass loss from the stellar surface. Coupled with these are numerical difficulties associated with the short and similar timescales for structural changes, nuclear burning and convective mixing. We hope that workshops such as this will promote familiarity amongst our diverse international community young and old and so promote effective dialogue that will ultimately lead to solutions to our problems along with the creation of new ones for the future!

  8. Gas and dust from solar metallicity AGB stars

    Science.gov (United States)

    Ventura, P.; Karakas, A.; Dell'Agli, F.; García-Hernández, D. A.; Guzman-Ramirez, L.

    2018-04-01

    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M⊙and8.5 M⊙. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass ≥3.5 M⊙ experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than ˜3 × 105 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low-mass stars with 1.5 M⊙ ≤ M ≤ 3 M⊙ become carbon stars. During the final phases, the C/O ratio grows to ˜3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.

  9. Luminosity Variations in Post-AGB Stars

    Science.gov (United States)

    Mesler, Robert; Henson, G.

    2007-12-01

    Although much is known about AGB stars and planetary nebulae, relatively little is known about the phase of a star's life in which it transitions between those two states. We have measured the variations in luminosity of a sample of known Post-AGB stars (as well as several candidates) relative to nearby, non-variable stars in order to compare them with theoretical models. The typical behavior of the observed variations is described and an attempt is made to discern whether any periodicity might be present. Luminosity variations were found to be on the order of a few hundredths to a few tenths of a magnitude for the stars that were surveyed, with occasional fluctuations of up to a magnitude. This agrees with current models of Post-AGB stars. Each star fell into one of three categories, which were termed groups 1, 2, and 3. Group 1 stars showed long term, non-periodic luminosity variations on the scale of weeks or longer and were most likely to display some sort of short term, coherent luminosity oscillation (each of which lasted for only a few cycles). Group 2 stars showed erratic, short-term magnitude variations occurring on scales of several days. Group 3 stars showed little or no variation in magnitude. Of the 27 Post-AGB stars that were sampled, five fell into group 1, fifteen fell into group 2, and seven fell into group 3. The luminosity variations tended to be color-independent, and occurred on timescales ranging nearly continuously from a few days to more than a year. No clear periodic behavior was found in any star in our sample. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  10. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    OpenAIRE

    McDonald, Iain; Zijlstra, Albert A.; Lagadec, Eric; Sloan, Gregory C.; Boyer, Martha L.; Matsuura, Mikako; Smith, Rowan J.; Smith, Christina L.; Yates, Jeremy A.; van Loon, Jacco Th.; Jones, Olivia C.; Ramstedt, Sofia; Avison, Adam; Justtanont, Kay; Olofsson, Hans

    2015-01-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be similar to 1.2-3.5x10(-7) M-circle dot yr(-1). We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 4...

  11. Fluorine Abundances of AGB Stars in Stellar Clusters

    Science.gov (United States)

    Hren, A.; Lebzelter, T.; Aringer, B.; Hinkle, K. H.; Nowotny, W.

    2015-08-01

    We have measured the abundance of fluorine, [F/Fe], in a number of AGB stars in stellar clusters have correlated the results with their C/O ratios. This allows us to investigate the change in the fluorine abundance along the evolution on the giant branch. The target list includes primarily O-rich stars in three LMC globular clusters - NGC 1806, NGC 1846 and NGC 1978 - as well as Rup 106 and 47 Tuc in our Galaxy. The observational data were obtained with the PHOENIX spectrograph, and the COMA code was used for modelling the synthetic spectra. Within individual clusters, we find consistent [F/Fe] values at similar C/O for most of our target stars.

  12. An independent distance estimate to the AGB star R Sculptoris

    Science.gov (United States)

    Maercker, M.; Brunner, M.; Mecina, M.; De Beck, E.

    2018-04-01

    Context. Distance measurements to astronomical objects are essential for understanding their intrinsic properties. For asymptotic giant branch (AGB) stars it is particularly difficult to derive accurate distance estimates. Period-luminosity relationships rely on the correlation of different physical properties of the stars, while the angular sizes and variability of AGB stars make parallax measurements inherently inaccurate. For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observations regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. Aim. We aim to provide a new, independent measurement of the distance to R Sculptoris, reducing the absolute uncertainty of the distance estimate to this source. Methods: R Scl is a semi-regular pulsating star, surrounded by a thin shell of dust and gas created during a thermal pulse ≈2000 years ago. The stellar light is scattered by the dust particles in the shell at a radius of ≈19″. The variation in the stellar light affects the amount of dust-scattered light with the same period and amplitude ratio, but with a phase lag that depends on the absolute size of the shell. We measured this phase lag by observing the star R Scl and the dust-scattered stellar light from the shell at five epochs between June-December 2016. By observing in polarised light, we imaged the shell in the plane of the sky, removing any uncertainty due to geometrical effects. The phase lag gives the absolute size of the shell, and together with the angular size of the shell directly gives the absolute distance to R Sculptoris. Results: We measured a phase lag between the stellar variations and the variation in the shell of 40.0 ± 4.0 days. The angular size of the shell is measured to be 19.″1 ± 0.″7. Combined, this gives an absolute distance to R Sculptoris of 361 ± 44 pc. Conclusions: We independently determined the absolute distance to R Scl with

  13. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    Science.gov (United States)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  14. Aspherical Dust Envelopes Around Oxygen-Rich AGB Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-12-01

    Full Text Available We model the aspherical dust envelopes around O-rich AGB stars. We perform the radiative transfer model calculations for axisymmetric dust distributions. We simulate what could be observed from the aspherical dust envelopes around O-rich AGB stars by presenting the model spectral energy distributions and images at various wavelengths for different optical depths and viewing angles. The model results are very different from the ones with spherically symmetric geometry.

  15. Circumstellar grain extinction properties of recently discovered post AGB stars

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Lamers, H.J.G.L.M.; Snow, T.P. Jr.

    1989-01-01

    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985

  16. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    NARCIS (Netherlands)

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  17. INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2007-09-01

    Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

  18. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  19. CONSTRAINTS OF THE PHYSICS OF LOW-MASS AGB STARS FROM CH AND CEMP STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Piersanti, L.; Gobrecht, D. [INAF—Osservatorio Astronomico di Teramo, I-64100 (Italy); Karinkuzhi, D.; Goswami, A. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2016-12-20

    We analyze a set of published elemental abundances from a sample of CH stars which are based on high resolution spectral analysis of ELODIE and SUBARU/HDS spectra. All the elemental abundances were derived from local thermodynamic equilibrium analysis using model atmospheres, and thus they represent the largest homogeneous abundance data available for CH stars to date. For this reason, we can use the set to constrain the physics and the nucleosynthesis occurring in low mass asymptotic giant branch (AGB) s.tars. CH stars have been polluted in the past from an already extinct AGB companion and thus show s-process enriched surfaces. We discuss the effects induced on the surface AGB s-process distributions by different prescriptions for convection and rotation. Our reference theoretical FRUITY set fits only part of the observations. Moreover, the s-process observational spread for a fixed metallicity cannot be reproduced. At [Fe/H] > −1, a good fit is found when rotation and a different treatment of the inner border of the convective envelope are simultaneously taken into account. In order to increase the statistics at low metallicities, we include in our analysis a selected number of CEMP stars and, therefore, we compute additional AGB models down to [Fe/H] = −2.85. Our theoretical models are unable to attain the large [hs/ls] ratios characterizing the surfaces of those objects. We speculate on the reasons for such a discrepancy, discussing the possibility that the observed distribution is a result of a proton mixing episode leading to a very high neutron density (the so-called i-process).

  20. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    Science.gov (United States)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  1. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu [Observatories of the Carnegie Institution of Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  2. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-01-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  3. Tracing dust in old stellar populations : the mid-infrared spectrum of globular cluster AGB stars

    International Nuclear Information System (INIS)

    Richter, H.

    2010-01-01

    Asymptotic Giant Branch (AGB) stars are considered to be the main stellar dust producers in the universe. Their dusty circumstellar shells leave fingerprints in the mid-infrared (MIR) spectra of AGB stars and in unresolved old stellar populations. Bressan et al. (2007) showed that co-added MIR-spectra of AGB stars of known luminosity, metallicity and age (like those found in the Galactic globular cluster NGC104) can be used to model the dust excess in early-type galaxies. This work aims to improve our understanding of the MIR-spectra of old stellar populations with respect to their metallicities by studying a large sample of AGB stars in Galactic globular clusters. A sample of AGB stars (taken from Lebzelter et al. 2006 and Sloan et al. 2010) is used to produce co-added MIR-spectra of globular cluster combinations for three metallicity groups. Each group consists of several globular clusters with similar age and metallicity. Combining the clusters leads to a higher number of AGB stars with available Spitzer spectra in each group. The low metallicity group (Z=0.0038) consists of five globular clusters with 18 AGB star spectra, the intermediate (Z=0.0058) and high (Z=0.01) metallicity groups both include three clusters with eight and seven available MIR-spectra, respectively. Stars within the 90% mass radius of each globular cluster are used to generate 2MASS Color- Magnitude diagrams (CMDs) of each cluster combination. Binning the stars in the CMDs with respect to their MK-values results in Luminosity Functions (LFs) for the cluster combinations. The LFs based on 2MASS data are compared to LFs obtained using theoretical isochrones from the Padova group (Bertelli et al. 2008, Marigo et al. 2008). Using the 2MASS LFs integrated MIR-spectra of the three globular cluster combinations are derived by weighting the existing spectra with the total number of AGB stars within each MK-bin of the LFs along the upper giant branch. This relies on the assumption that stars that

  4. Influence of the Outer Boundary Condition on models of AGB stars

    Science.gov (United States)

    Wagstaff, G.; Weiss, A.

    2018-04-01

    Current implementations of the stellar atmosphere typically derive boundary conditions for the interior model from either grey plane-parallel atmospheres or scaled solar atmospheres, neither of which can be considered to have appropriate underlying assumptions for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB). This paper discusses the treatment and influence of the outer boundary condition within stellar evolution codes, and the resulting effects on the AGB evolution. The complex interaction of processes, such as the third dredge up and mass loss, governing the TP-AGB can be affected by varying the treatment of this boundary condition. Presented here are the results from altering the geometry, opacities and the implementation of a grid of MARCS/COMARCS model atmospheres in order to improve this treatment. Although there are changes in the TP-AGB evolution, observable quantities, such as the final core mass, are not significantly altered as a result of the change of atmospheric treatment. During the course of the investigation, a previously unseen phenomena in the AGB models was observed and further investigated. This is believed to be physical, although arising from specific conditions which make its presence unlikely. If it were present in stars, this phenomenon would increase the carbon-star lifetime above 10Myr and increase the final core mass by ˜0.1M⊙ in the narrow initial-mass range where it was observed (˜2 - 2.3M⊙).

  5. The FRUITY database on AGB stars: past, present and future

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    2016-01-01

    We present and show the features of the FRUITY database, an interactive web- based interface devoted to the nucleosynthesis in AGB stars. We describe the current available set of AGB models (largely expanded with respect to the original one) with masses in the range 1.3≤M/M⊙≤3.0 and metallicities -2.15 ≤[Fe/H]≤+0.15. We illustrate the details of our s-process surface distributions and we compare our results to observations. Moreover, we introduce a new set of models where the effects of rotation are taken into account. Finally, we shortly describe next planned upgrades.

  6. AGB stars as tracers to IC 1613 evolution.

    Science.gov (United States)

    Hashemi, S. A.; Javadi, A.; van Loon, J. Th.

    We are going to apply AGB stars to find star formation history for IC 1613 galaxy; this a new and simple method that works well for nearby galaxies. IC 1613 is a Local Group dwarf irregular galaxy that is located at distance of 750 kpc, a gas rich and isolated dwarf galaxy that has a low foreground extinction. We use the long period variable stars (LPVs) that represent the very final stage of evolution of stars with low and intermediate mass at the AGB phase and are very luminous and cool so that they emit maximum brightness in near-infrared bands. Thus near-infrared photometry with using stellar evolutionary models help us to convert brightness to birth mass and age and from this drive star formation history of the galaxy. We will use the luminosity distribution of the LPVs to reconstruct the star formation history-a method we have successfully applied in other Local Group galaxies. Our analysis shows that the IC 1613 has had a nearly constant star formation rate, without any dominant star formation episode.

  7. AGB stellar evolution and symbiotic stars

    International Nuclear Information System (INIS)

    Schild, H.

    1989-01-01

    Published data on the mass loss rates and periods of Miras and OH/IR stars have been compiled. There is a good correlation between mass loss rate and period and a smooth transition from Miras to OH/IR sources. At periods below 600 d. the mass loss increases exponentially but at longer periods it remains constant. As a Mira evolves from short to longer periods, its mass loss rate increases dramatically. Phenomenologically, the object evolves from a classical Mira into a variable OH/IR source. Symbiotic stars cluster in the transition zone where Miras transform into OH/IR stars and mass loss increase is at its steepest. The red star in these symbiotic systems is in the same evolutionary status as short periodic OH/IR stars. (author)

  8. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  9. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  10. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  11. The Case of the Missing Cyanogen-rich AGB Stars in Galactic Globular Clusters

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.

    2012-01-01

    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars (eg. Norris et al. 1981; Sneden et al. 2000). This contrasts strongly with the distributions on the RGB (and other) populations, which generall...

  12. Detection of CI line emission towards the oxygen-rich AGB star omi Ceti

    Science.gov (United States)

    Saberi, M.; Vlemmings, W. H. T.; De Beck, E.; Montez, R.; Ramstedt, S.

    2018-05-01

    We present the detection of neutral atomic carbon CI(3P1-3P0) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of 2.4 × 10-5 predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by 4 km s-1 from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be 1.1 × 1019 cm-2. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.

  13. FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED

    International Nuclear Information System (INIS)

    Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.

    2009-01-01

    A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.

  14. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, D.; Winckel, H. Van [Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D bus 2401, B-3001 Leuven (Belgium); Wood, P. R.; Asplund, M.; Karakas, A. I. [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lattanzio, J. C. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia)

    2017-02-10

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type ( T {sub eff} = 8250 ± 250 K) luminous (8200 ± 700 L {sub ⊙}) metal-poor ([Fe/H] = −1.18 ± 0.10) low-mass ( M {sub initial} ≈ 1.5–2.0 M {sub ⊙}) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s -process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  15. Luminosities and mass-loss rates of Local Group AGB stars and red supergiants

    Science.gov (United States)

    Groenewegen, M. A. T.; Sloan, G. C.

    2018-01-01

    Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking. Aims: We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies (dSphs). Methods: Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. Results: New deep K-band photometry from the VMC survey and multi-epoch data from IRAC (at 4.5 μm) and AllWISE and NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 ± 1.6 M⊙, suggesting an initial mass well above 8 M⊙ in agreement with estimates based on its large Rubidium abundance. Using synthetic photometry, we present and discuss colour-colour and

  16. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  17. New reaction rate for 16O( p, γ )17F and its influence on the oxygen isotopic ratios in massive AGB stars

    NARCIS (Netherlands)

    Iliadis, C.; Angulo, C.; Descouvement, P.; Lugaro, M.A.|info:eu-repo/dai/nl/304833975; Mohr, P.

    2008-01-01

    The 16O(p, γ )17F reaction rate is revisited with special emphasis on the stellar temperature range of T=60-100 MK, important for hot bottom burning in asymptotic giant branch (AGB) stars. We evaluate existing cross-section data that were obtained since 1958 and, if appropriate, correct published

  18. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model - Mass-loss history unravelled in VYCMa

    NARCIS (Netherlands)

    Decin, L.; Hony, S.; de Koter, A.; Justtanont, K.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    Context. Mass loss plays a dominant role in the evolution of low mass stars while they are on the Asymptotic Giant Branch (AGB). The gas and dust ejected during this phase are a major source in the mass budget of the interstellar medium. Recent studies have pointed towards the importance of

  19. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  20. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  1. Third dredge-up in cluster AGB stars : observational constraints and improved opacity data for models

    International Nuclear Information System (INIS)

    Lederer, M. T.

    2009-01-01

    The extant stellar evolution models largely agree on the theoretical picture of a low- or intermediate-mass star that has evolved towards the end of the asymptotic giant branch (AGB). During this evolutionary phase, chemical elements (mainly carbon, helium and products of the s-process) are synthesised in a series of recurring shell burning episodes. The burning products are then transported to the outer layers of the star by convective mixing events. This mechanism is usually condensed in the term third dredge-up (TDU). Subsequently, the chemically enriched matter is ejected into the interstellar medium by means of strong stellar winds that develop in the late stages of stellar evolution. As low- and intermediate-mass stars appear in a large number, it is crucial to assess their role within the cosmic matter cycle which requires detailed knowledge of the TDU onset and efficiency as a function of the stellar mass and metallicity. The material presented in this thesis intends to contribute to the improvement of AGB star models in two ways. The first approach is to constrain the models with results from observations. I present high-resolution near-infrared spectra of AGB stars that belong to intermediate-age globular clusters (GC) in the Large Magellanic Cloud (LMC). A sample of GC stars has the advantage that fundamental stellar parameters like mass, metallicity, and age are usually well-defined and that the sample is 'more or less' homogeneous in this respect, contrary to the situation that we find for a sample of field stars. The analysis of the observed spectra is done by a comparison with synthetic spectra based on hydrostatic atmosphere models computed with the MARCS code. We use features of the molecules CO and OH comprised in our observed wavelength range to derive the number ratio of carbon to oxygen atoms (C/O) and the carbon isotopic ratio 12 C/ 13 C together with the stellar parameters of each target. Eventually, we confront the outcomes of stellar

  2. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  3. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  4. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    Science.gov (United States)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  5. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Frebel, Anna [Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Karakas, Amanda I.; Kennedy, Catherine R. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  6. Spiral branches and star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.

    1974-01-01

    Origin of spiral branches of galaxies and formation of stars in them are considered from the point of view of the theory of the gravitational gas condensation, one of comparatively young theories. Arguments are presented in favour of the stellar condensation theory. The concept of the star formation of gas is no longer a speculative hypothesis. This is a theory which assumes quantitative verification and explains qualitatively many facts observed. And still our knowledge on the nature of spiral branches is very poor. It still remains vague what processes give origin to spiral branches, why some galaxies have spirals and others have none. And shapes of spiral branches are diverse. Some cases are known when spiral branches spread outside boundaries of galaxies themselves. Such spirals arise exclusively in the region where there are two or some interacting galaxies. Only first steps have been made in the explanation of the galaxy spiral branches, and it is necessary to carry out new observations and new theoretical calculations

  7. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  8. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  9. A PILOT DEEP SURVEY FOR X-RAY EMISSION FROM fuvAGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sanz-Forcada, J.; Sánchez Contreras, C. [Astrobiology Center (CSIC-INTA), ESAC campus, E-28691 Villanueva de la Canada, Madrid (Spain); Stute, M. [Institute for Astronomy and Astrophysics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen (Germany)

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ∼(0.002–0.2) L{sub ⊙} and the X-ray-emitting plasma temperatures are ∼(35–160) × 10{sup 6} K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  10. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano [Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy); Bromley, Stefan T. [Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)

    2017-05-10

    Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.

  11. Obscured asymptotic giant branch stars in the Magellanic Clouds .2. Near-infrared and mid-infrared counterparts

    NARCIS (Netherlands)

    Zijlstra, AA; Loup, C; Waters, LBFM; Whitelock, PA; vanLoon, JT; Guglielmo, F

    1996-01-01

    We have carried out an infrared search for obscured asymptotic giant branch (AGB) stars in the Magellanic Clouds. Fields were observed in the vicinity of IRAS sources with colours and flux densities consistent with such a classification. The survey uncovered a number of obscured AGE stars as well as

  12. Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Wood, P.; Bessell, M.S.; Fox, M.W.

    1983-01-01

    Infrared JHK magnitudes and low-dispersion red spectra have been obtained for 90 long-period variables (LPVs) in the Small and Large Magellanic Clouds. The LPVs fall into two distinct groups, core helium (or carbon) burning supergiants and stars on the asymptotic giant branch (AGB). The supergiants have small pulsation amplitudes in K ( or approx. =5 M/sub sun/ produce supernovae while less massive stars produce planetary nebulae with nebula masses from approx.0.1--2.1 M/sub sun/. The coreburning red supergiants appear highly overluminous for their pulsation mass, indicating that they have lost up to half their mass since the main-sequence phase

  13. New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

    Science.gov (United States)

    Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A.

    2015-09-01

    Context. Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. Aims: We present new Herschel/HIFI and IRAM 30 m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the J = 1 → 0 line to the J = 9 → 8 line, and even the J = 14 → 13 line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. Methods: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. Results: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates (~10-8 to 2 × 10-5 M⊙ yr-1) and gas expansion velocities (2 to 21.5 km s-1) , and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40%, on average. We also present "bonus" lines detected during our CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based on observations carried out with the IRAM 30 m Telescope. IRAM is

  14. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    Science.gov (United States)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  15. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    Science.gov (United States)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  16. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  17. THE INCIDENCE OF NON-SPHERICAL CIRCUMSTELLAR ENVELOPES IN ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Politano, Michael; Taam, Ronald E.

    2011-01-01

    The relative occurrence of asymmetric structures in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars in detached binary star systems is studied based on a population synthesis method. The effects of envelope shaping by the gravitational interaction of the companion on an outflowing stellar wind are incorporated using previously derived empirical fits to numerical simulations. It is shown that significant asymmetries in the CSE, characterized by a ratio of the density in the equatorial direction relative to the polar direction, can exceed 10 for AGB stars characterized by luminosities in the range of 1000-10, 000 L sun in systems with orbital separations of 3-30 AU and mass ratios of 0.25-1. The incidence of such systems relative to a present-day field population of AGB stars (single + binary) is estimated to be 1%-6%, depending upon input parameter choices. For more modest density contrasts exceeding a factor of two, the incidence increases to 4%-15%. With the advent of future high-resolution molecular line studies of CSEs with the Atacama Large Millimeter Array, it is anticipated that the number of AGB stars exhibiting detectable asymmetries will significantly increase.

  18. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E.; Schinnerer, Eva [Max-Planck-Institut fuer Astronomie/Koenigstuhl 17, D-69117 Heidelberg (Germany); Munoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory, Charlottesville, VA (United States); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Knapen, Johan H. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Bosma, Albert; Athanassoula, E. [Laboratoire d' Astrophysique de Marseille (LAM), Marseille (France); Hinz, Joannah L. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Regan, Michael [Space Telescope Science Institute, Baltimore, MD (United States); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense Madrid, Madrid (Spain); Mizusawa, Trisha [Spitzer Science Center, Pasadena, CA (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physical Sciences, University of Oulu, Oulu (Finland); and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  19. THE S4G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Holwerda, Benne; Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menéndez-Delmestre, Karín; Seibert, Mark; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Hinz, Joannah L.; Regan, Michael; De Paz, Armando Gil; Mizusawa, Trisha; Gadotti, Dimitri A.; Laurikainen, Eija; Salo, Heikki

    2012-01-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters—each the analogue of a ∼1 Gyr old post-starburst galaxy—has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average ∼0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from ∼70%, as predicted in the latest generation of synthesis models, to ∼35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  20. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  1. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    Science.gov (United States)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  2. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. [INAF-Osservatorio Astronomico di Collurania, I-64100 Teramo (Italy)

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  3. THE CONTRIBUTION OF TP-AGB AND RHeB STARS TO THE NEAR-IR LUMINOSITY OF LOCAL GALAXIES: IMPLICATIONS FOR STELLAR MASS MEASUREMENTS OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, Benjamin F.; Dalcanton, Julianne J.; Rosenfield, Philip; Weisz, D.

    2012-01-01

    Using high spatial resolution Hubble Space Telescope WFC3 and Advanced Camera for Surveys imaging of resolved stellar populations, we constrain the contribution of thermally pulsing asymptotic giant branch (TP-AGB) stars and red helium burning (RHeB) stars to the 1.6 μm near-infrared (NIR) luminosities of 23 nearby galaxies, including dwarfs and spirals. The TP-AGB phase contributes as much as 17% of the integrated F160W flux, even when the red giant branch is well populated. The RHeB population contribution can match or even exceed the TP-AGB contribution, providing as much as 21% (18% after a statistical correction for foreground) of the integrated F160W light. We estimate that these two short-lived phases may account for up to 70% of the rest-frame NIR flux at higher redshift. The NIR mass-to-light (M/L) ratio should therefore be expected to vary significantly due to fluctuations in the star formation rate (SFR) over timescales from 25 Myr to several Gyr, an effect that may be responsible for some of the lingering scatter in NIR galaxy scaling relations such as the Tully-Fisher and metallicity-luminosity relations. We compare our observational results to predictions based on optically derived star formation histories and stellar population synthesis (SPS) models, including models based on the 2008 Padova isochrones (used in popular SPS programs) and the updated 2010 Padova isochrones, which shorten the lifetimes of low-mass (old) low-metallicity TP-AGB populations. The updated (2010) SPS models generally reproduce the expected numbers of TP-AGB stars in the sample; indeed, for 65% of the galaxies, the discrepancy between modeled and observed numbers is smaller than the measurement uncertainties. The weighted mean model/data number ratio for TP-AGB stars is 1.5 (1.4 with outliers removed) with a standard deviation of 0.5. The same SPS models, however, give a larger discrepancy in the F160W flux contribution from the TP-AGB stars, overpredicting the flux by a

  4. Annealed star-branched polyelectrolytes in solution

    NARCIS (Netherlands)

    Klein Wolterink, J.; Male, van J.; Cohen Stuart, M.A.; Koopal, L.K.; Zhulina, E.B.; Borisov, O.V.

    2002-01-01

    Equilibrium conformations of annealed star-branched polyelectrolytes (polyacids) are calculated with a numerical self-consistent-field (SCF) model. From the calculations we obtain also the size and charge of annealed polyelectrolyte stars as a function of the number of arms, pH, and the ionic

  5. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  6. Radiation-pressure-driven sub-Keplerian rotation of the disc around the AGB star L2 Pup

    Science.gov (United States)

    Haworth, Thomas J.; Booth, Richard A.; Homan, Ward; Decin, Leen; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-01-01

    We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L2 Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of ∼10-3 and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However, grains larger than ∼ 0.5 μm are driven outwards radially by radiation pressure at velocities ∼5 km s-1, which implies a dust replenishment rate of ∼3 × 10-9 M⊙ yr-1. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall, we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L2 Pup, and offers other additional constraints on the dust properties.

  7. S-process nucleosynthesis in low mass AGB Stars: do we really need an improved determination of the 13C(α, n)16O reaction rate?

    International Nuclear Information System (INIS)

    Cristallo, S.; Straniero, O.; Gallino, R.

    2005-01-01

    Thermally pulsing Asymptotic Giant Branch stars are responsible for the nucleosynthesis of the main component of the cosmic s-elements. The most important neutron source is the 13 C(α, n) 16 O reaction. Owing to the presence of a subthreshold resonance, the low energy extrapolation is a rather complex task. The rate quoted in the literature differ up to a factor of 4 at typical stellar energies. The latest improvements in computer power allows us to calculate the evolution of TP-AGB stars coupled with a full nuclear network, extending from hydrogen to lead. Here we discuss the effects of the variation of the 13 C(α, n) 16 O rate on the predicted neutron capture nucleosynthesis

  8. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    Science.gov (United States)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED {sup 13}C PRODUCTION THROUGH MHD-INDUCED MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E. [Department of Physics, University of Perugia, and INFN, Section of Perugia, via A. Pascoli, I-06123 Perugia (Italy); Nucci, M. C., E-mail: oscar.trippella@fisica.unipg.it [Department of Mathematics and Informatics, University of Perugia, via Vanvitelli, I-06123 Perugia and INFN, Section of Perugia, via A. Pascoli, I-06123 Perugia (Italy)

    2016-02-20

    Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M{sub ⊙} ≲ 3), where the main neutron source is the {sup 13}C(α, n){sup 16}O reaction. This last reaction is activated from locally produced {sup 13}C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the {sup 13}C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing {sup 13}C reservoirs of several 10{sup −3} M{sub ⊙}. The ensuing {sup 13}C-enriched zone has an almost flat profile, while only a limited production of {sup 14}N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large {sup 13}C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.

  10. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M. J.; Roberts, D. A. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy and Research Center for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Cotton, W.; Kunneriath, D. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Schödel, R. [Instituto de Astfisica de Andalucia (CSIC), Glorieta de la Astronomia S/N, E-18008 Granada (Spain)

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μ m Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 10{sup 4} au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μ m and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  11. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  12. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    Science.gov (United States)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  13. Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-rich Asymptotic Giant Branch Star

    NARCIS (Netherlands)

    Neufeld, D. A.; González-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; de Koter, A.; Schöier, F. L.; Cernicharo, J.

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch

  14. IRC +10 216 in 3D: morphology of a TP-AGB star envelope

    Science.gov (United States)

    Guélin, M.; Patel, N. A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J. P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.

    2018-02-01

    During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the

  15. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  16. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  17. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  18. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  19. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10 -4 M sun yr -1 ) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  20. Conformations and solution properties of star-branched polyelectrolytes

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Ballauff, M.; Muller, A.H.E.

    2011-01-01

    Aqueous solutions of star-like polyelectrolytes (PEs) exhibit distinctive features that originate from the topological complexity of branched macromolecules. In a salt-free solution of branched PEs, mobile counterions preferentially localize in the intramolecular volume of branched macroions.

  1. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  2. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, H.; Ryde, N. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Harper, G. M. [School of Physics, Trinity College, Dublin 2 (Ireland); Richter, M. J. [Physics Department, University of California, Davis, CA 95616 (United States); Hinkle, K. H., E-mail: henrikj@astro.lu.se [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  3. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    International Nuclear Information System (INIS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Richter, M. J.; Hinkle, K. H.

    2014-01-01

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic

  4. Si and C isotopic ratios in AGB stars: SiC grain data, models, and the galactic evolution of the Si Isotopes

    NARCIS (Netherlands)

    Zinner, E.; Nittler, L.R.; Gallino, R.; Karakas, A.I.; Lugaro, M.A.; Straniero, O.; Lattanzio, J.C.

    2006-01-01

    Presolar grains of the mainstream, Y and Z type are believed to have an origin in carbon stars. We compared the C and Si isotopic ratios of these grains [1] with the results of theoretical models for the envelope compositions of AGB stars. Two sets of models (FRANEC, Monash) use a range of stellar

  5. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    International Nuclear Information System (INIS)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-01-01

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 μm excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) × 10 –7 M ☉ yr –1 of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least ( –3 M ☉ of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  6. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); McDonald, Iain; Zijlstra, Albert A., E-mail: cjohnson@cfa.harvard.edu, E-mail: iain.mcdonald-2@manchester.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk [Jodrell Bank Centre for Astrophysics, Alan Turing Building, Manchester M13 9PL (United Kingdom); and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  7. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  8. The AGB bump: a calibrator for core mixing

    Directory of Open Access Journals (Sweden)

    Bossini Diego

    2015-01-01

    Full Text Available The efficiency of convection in stars affects many aspects of their evolution and remains one of the key-open questions in stellar modelling. In particular, the size of the mixed core in core-He-burning low-mass stars is still uncertain and impacts the lifetime of this evolutionary phase and, e.g., the C/O profile in white dwarfs. One of the known observables related to the Horizontal Branch (HB and Asymptotic Giant Branch (AGB evolution is the AGB bump. Its luminosity depends on the position in mass of the helium-burning shell at its first ignition, that is affected by the extension of the central mixed region. In this preliminary work we show how various assumptions on near-core mixing and on the thermal stratification in the overshooting region affect the luminosity of the AGB bump, as well as the period spacing of gravity modes in core-He-burning models.

  9. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  10. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  11. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    Science.gov (United States)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other

  12. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania (Italy); Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Catania, Italy and Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania (Italy)

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  13. AGB nucleosynthesis in the Large Magellanic Cloud. Detailed abundance analysis of the RV Tauri star MACHO 47.2496.8

    NARCIS (Netherlands)

    Reyniers, M.; Abia, C.; van Winckel, H.; Lloyd Evans, T.; Decin, L.K.E.; Eriksson, K.; Pollard, K.R.

    2007-01-01

    Context: .Abundance analysis of post-AGB objects as probes of AGB nucleosynthesis. Aims: .A detailed photospheric abundance study is performed on the carbon-rich post-AGB candidate MACHO 47.2496.8 in the LMC. Methods: .High-resolution, high signal-to-noise ESO VLT-UVES spectra of MACHO 47.2496.8 are

  14. Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae

    Science.gov (United States)

    Nordhaus, J.

    2017-10-01

    Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.

  15. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    International Nuclear Information System (INIS)

    Cristallo, S.; Domínguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-01-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10 –3 ≤ Z ≤ 2 × 10 –2 , is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  16. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  17. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  18. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  19. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  20. Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA

    Science.gov (United States)

    Wong, Ka Tat

    2018-04-01

    Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.

  1. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  2. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  3. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  4. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    Science.gov (United States)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  5. AGB mass-loss variations: What can we learn from (sub)millimetre observations?

    NARCIS (Netherlands)

    Dehaes, S.; Groenewegen, M.A.T.; Decin, L.; Hony, S.; Raskin, G.; Blommaert, J.A.D.L.

    2008-01-01

    It is generally acknowledged that the mass loss of Asymptotic Giant Branch (AGB) stars undergoes variations on different time scales. We address here the question of the influence of these variations on the spectral energy distribution (SED) of these sources. We therefore constructed models for the

  6. ALMA Long Baseline Observations of the Dynamical Atmospheres of AGB Stars

    Science.gov (United States)

    Vlemmings, Wouter

    2018-04-01

    I will present the current status of ALMA long baseline observations of W Hya, R Leo, R Dor and Mira. We have recently obtained band 4, 6 and 7 observations of the line and continuum emission tracing the temperature and dynamics in their extended atmosphere. Our preliminary analysis confirms our previous detection of a hotspot on W Hya, and reveals unexpected lines in most of the sources, as well as possible fast rotation in the atmopshere of one of the stars. The observations show the unique power of ALMA in observing the extended stellar atmospheres.

  7. The magnetic strip(s) in the advanced phases of stellar evolution. Theoretical convective turnover timescale and Rossby number for low- and intermediate-mass stars up to the AGB at various metallicities

    Science.gov (United States)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Aurière, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2017-09-01

    Context. Recent spectropolarimetric observations of otherwise ordinary (in terms e.g. of surface rotation and chemical properties) G, K, and M giants have revealed localized magnetic strips in the Hertzsprung-Russell diagram coincident with the regions where the first dredge-up and core helium burning occur. Aims: We seek to understand the origin of magnetic fields in such late-type giant stars, which is currently unexplained. In analogy with late-type dwarf stars, we focus primarily on parameters known to influence the generation of magnetic fields in the outer convective envelope. Methods: We compute the classical dynamo parameters along the evolutionary tracks of low- and intermediate-mass stars at various metallicities using stellar models that have been extensively tested by spectroscopic and asteroseismic observations. Specifically, these include convective turnover timescales and convective Rossby numbers, computed from the pre-main sequence (PMS) to the tip of the red giant branch (RGB) or the early asymptotic giant branch (AGB) phase. To investigate the effects of the very extended outer convective envelope, we compute these parameters both for the entire convective envelope and locally, that is, at different depths within the envelope. We also compute the turnover timescales and corresponding Rossby numbers for the convective cores of intermediate-mass stars on the main sequence. Results: Our models show that the Rossby number of the convective envelope becomes lower than unity in the well-delimited locations of the Hertzsprung-Russell diagram where magnetic fields have indeed been detected. Conclusions: We show that α - Ω dynamo processes might not be continuously operating, but that they are favored in the stellar convective envelope at two specific moments along the evolution tracks, that is, during the first dredge-up at the base of the RGB and during central helium burning in the helium-burning phase and early-AGB. This general behavior can explain

  8. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Paolo; D' Antona, Francesca; Carini, Roberta [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy); Di Criscienzo, Marcella [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); D' Ercole, Annibale [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Vesperini, Enrico, E-mail: paolo.ventura@oa-roma.inaf.it [Department of Astronomy, Indiana University, Bloomington (United States)

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  9. First detection of rotational CO line emission in a red giant branch star

    Science.gov (United States)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama

  10. Indirect Measurement of 15N(p,α)12C and 18O(p,α)15N. Applications to the AGB Star Nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Tribble, R.; Al-Abdullah, T.; Banu, A.; Fu, C.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method has been recently applied to the study of reactions involved in fluorine nucleosynthesis inside AGB stars. Fluorine abundance is important since it allows to constrain mixing models from the comparison of the observed fluorine abundances with the ones predicted by models. Anyway direct measurements of the cross section do not extend down to the Gamow peak, which is the astrophysically relevant energy region. In particular the study focuses on the 15 N(p,α) 12 C and the 18 O(p,α) 15 N reactions which can influence fluorine yield as they are part of 19 F production/destruction network

  11. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  12. The evolution of high-metallicity horizontal-branch stars and the origin of the ultraviolet light in elliptical galaxies

    Science.gov (United States)

    Horch, E.; Demarque, P.; Pinsonneault, M.

    1992-01-01

    Evolutionary calculations of high-metallicity horizontal-branch stars show that for the relevant masses and helium abundances, post-HB evolution in the HR diagram does not proceed toward and along the AGB, but rather toward a 'slow blue phase' in the vicinity of the helium-burning main sequence, following the extinction of the hydrogen shell energy source. For solar and twice solar metallicity, the blue phase begins during the helium shell-burning phase (in agreement with the work of Brocato and Castellani and Tornambe); for 3 times solar metallicity, it begins earlier, during the helium core-burning phase. This behavior differs from what takes place at lower metallicities. The implications for high-metallicity old stellar populations in the Galactic bulge and for the integrated colors of elliptical galaxies are discussed.

  13. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  14. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  15. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  16. IDENTIFYING BLUE HORIZONTAL BRANCH STARS USING THE z FILTER

    International Nuclear Information System (INIS)

    Vickers, John J.; Grebel, Eva K.; Huxor, Avon P.

    2012-01-01

    In this paper we present a new method for selecting blue horizontal branch (BHB) candidates based on color-color photometry. We make use of the Sloan Digital Sky Survey z band as a surface gravity indicator and show its value for selecting BHB stars from quasars, white dwarfs, and main-sequence A-type stars. Using the g, r, i, and z bands, we demonstrate that extraction accuracies on a par with more traditional u, g, and r photometric selection methods may be achieved. We also show that the completeness necessary to probe major Galactic structure may be maintained. Our new method allows us to efficiently select BHB stars from photometric sky surveys that do not include a u-band filter such as the Panoramic Survey Telescope and Rapid Response System.

  17. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  18. A Spectroscopic Survey of Field Red Horizontal-branch Stars

    Science.gov (United States)

    Afşar, Melike; Bozkurt, Zeynep; Böcek Topcu, Gamze; Casetti-Dinescu, Dana I.; Sneden, Christopher; Şehitog̅lu, Gizem

    2018-06-01

    A metallicity, chemical composition, and kinematic survey has been conducted for a sample of 340 candidate field red horizontal-branch (RHB) stars. Spectra with high resolution and high signal-to-noise ratio were gathered with the McDonald Observatory 2.7 m Tull and the Hobby–Eberly Telescope echelle spectrographs, and were used to determine effective temperatures, surface gravities, microturbulent velocities, [Fe/H] metallicities, and abundance ratios [X/Fe] for seven α and Fe-group species. The derived temperatures and gravities confirm that at least half of the candidates are true RHB stars, with (average) parameters T eff ∼ 5000 K and log g ∼ 2.5. From the α abundances alone, the thin and thick Galactic populations are apparent in our sample. Space motions for 90% of the program stars were computed from Hipparcos and Gaia parallaxes and proper motions. Correlations between chemical compositions and Galactic kinematics clearly indicate the existence of both thin-disk and thick-disk RHB stars.

  19. A view of the H-band light-element chemical patterns in globular clusters under the AGB self-enrichment scenario

    Science.gov (United States)

    Dell'Agli, F.; García-Hernández, D. A.; Ventura, P.; Mészáros, Sz; Masseron, T.; Fernández-Trincado, J. G.; Tang, B.; Shetrone, M.; Zamora, O.; Lucatello, S.

    2018-04-01

    We discuss the self-enrichment scenario by asymptotic giant branch (AGB) stars for the formation of multiple populations in globular clusters (GCs) by analysing data set of giant stars observed in nine Galactic GCs, covering a wide range of metallicities and for which the simultaneous measurements of C, N, O, Mg, Al, and Si are available. To this aim, we calculated six sets of AGB models, with the same chemical composition as the stars belonging to the first generation of each GC. We find that the AGB yields can reproduce the set of observations available, not only in terms of the degree of contamination shown by stars in each GC but, more important, also the observed trend with metallicity, which agrees well with the predictions from AGB evolution modelling. While further observational evidences are required to definitively fix the main actors in the pollution of the interstellar medium from which new generation of stars formed in GCs, the present results confirm that the gas ejected by stars of mass in the range 4 M_{⊙} ≤ M ≤ 8 M_{⊙} during the AGB phase share the same chemical patterns traced by stars in GCs.

  20. A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

    International Nuclear Information System (INIS)

    Marigo, Paola; Aringer, Bernhard; Chen, Yang; Dussin, Marco; Nanni, Ambra; Pastorelli, Giada; Rodrigues, Thaíse S.; Trabucchi, Michele; Bladh, Sara; Montalbán, Josefina; Girardi, Léo; Bressan, Alessandro; Rosenfield, Philip; Dalcanton, Julianne; Groenewegen, Martin A. T.; Wood, Peter R.

    2017-01-01

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z i < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

  1. A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Marigo, Paola; Aringer, Bernhard; Chen, Yang; Dussin, Marco; Nanni, Ambra; Pastorelli, Giada; Rodrigues, Thaíse S.; Trabucchi, Michele; Bladh, Sara; Montalbán, Josefina [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, via Bonomea 365, I-34136 Trieste (Italy); Rosenfield, Philip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dalcanton, Julianne [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Groenewegen, Martin A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, Peter R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2017-01-20

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z {sub i} < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

  2. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  3. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  4. Improving the distances of post-AGB objects in the Milky Way

    International Nuclear Information System (INIS)

    Vickers, Shane B; Owers, Matt S; Frew, David J; Parker, Quentin A; Bojičič, Ivan S

    2016-01-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment. (paper)

  5. Stroemgren and BV photometry of potential halo blue horizontal branch field stars

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, C; Sommer-Larsen, J

    1988-11-01

    Stroemgren four-colour and broadband BV photoelectric photometry has been obtained for a sample of potential halo blue horizontal branch stars in two high galactic latitude fields. The large majority of the stars observed are classified as blue horizontal branch stars on the basis of two different surface gravity indicators. Measurements of Ca K-line equivalent widths from medium-dispersion spectra of the stars confirm that most are Population II objects. No metal-rich A-stars were found beyond a few kpc from the galactic disc in the study of faint blue stars.

  6. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  7. Models of the Hydrodynamic Histories of Post-AGB Stars. I. Multiflow Shaping of OH 231.8+04.2

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Frank, Adam; Liu, Baowei [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Huarte-Espinosa, Martín, E-mail: balick@uw.edu, E-mail: afrank@pas.rochester.edu, E-mail: baowei.liu@rochester.edu, E-mail: mhuartee@central.uh.edu [Center for Advanced Comp and Data Systems, University of Houston, 4718 Calhoun Rd., Houston, TX 77204-3058 (United States)

    2017-07-10

    We present a detailed hydrodynamic model that matches the present structure of the well-observed preplanetary nebula (“pPN”) OH 231.8+04.2 (“OH231”). The purpose of the model is to present a physically justified and coherent picture of its evolutionary history from about 100 years from the start of the formation of its complex outer structures to the present. We have adopted a set of initial conditions that are heavily constrained by high-quality observations of its present structure and kinematics. The shaping of the nebula occurs while the densities of the flows are “light,” i.e., less than the surrounding AGB-wind environment. The simulations show that pairs of essentially coeval clumps and sprays of the same extent and density, but different outflow speeds, sculpted both the pair of thin axial flow “or spine” and the bulbs. The total ejected mass and momentum in the best-fit model are surprisingly large—3 M {sub ⊙} and 2.2 × 10{sup 41} gm cm s{sup −1}, respectively—however, these values are reduced by up to a factor of 10 in other models that fit the data almost as well. Our ultimate goal is to combine the present model results of masses, momenta, flow speeds, and flow geometries for OH231 with those of other models to be published in the future in order to find common attributes of their ejection histories.

  8. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    Science.gov (United States)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    2018-01-01

    Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims: Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods: We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results: We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline

  9. Elemental abundances of the field horizontal-branch stars HD 86986, 130095 and 202759

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1990-01-01

    Fine analyses of limited spectral regions of the field horizontal-branch A Stars HD86986, 130095 and 202759 confirm that these stars have abundances typical of Population II stars. HD 86986 has a metallicity of about 1/200 solar while HD 130095 and 202759 are even more metal poor. (author)

  10. Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Using experimental evidence that under highly oxidizing conditions gamma-Fe2O3 (maghemite) and Fe3O4 display refractory behavior, it is proposed that very low C/O ratios, that could be unique to evolving AGB stars, induce nonequilibrium formation of ferromagnetic iron oxide grains along with chondritic dust. The oxides are preferentially fractionated from chondritic dust in the stellar magnetic field which could account for the observed extreme iron underabundance in their photosphere. A search for the 1-2.5-micron IR absorption feature, or for diagnostic magnetite and maghemite IR absorption features, could show the validity of the model proposed.

  11. Building Blocks of Dust and Large Organic Molecules: a Coordinated Laboratory and Astronomical Study of AGB Stars

    Science.gov (United States)

    McCarthy, Michael C.; Gottlieb, Carl A.; Cernicharo, Jose

    2017-06-01

    The increased sensitivity and angular resolution of high-altitude ground-based interferometers in the sub-millimeter band has enabled the physics and chemistry of carbon- and oxygen-rich evolved stars to be re-examined at an unprecedented level of detail. Observations of rotational lines in the inner envelope - the region within a few stellar radii of the central star where the molecular seeds of dust are formed - allows one to critically assess models of dust growth. Interferometric observations of the outer envelope provide stringent tests of neutral and ionized molecule formation. All of the astronomical studies are crucially dependent on precise laboratory measurements of the rotational spectra of new species and of vibrationally excited levels of known molecules and their rare isotopic species. By means of a closely coordinated laboratory and astronomical program, a number of exotic species including the disilicon carbide SiCSi, titanium oxides TiO and TiO_2, and carbon chain anions ranging from CN^- to C_8H^- have recently been observed in evolved stars. This talk will provide overview of these findings, and how they impact current models of the ``chemical laboratories'' of evolved stars. Ongoing laboratory studies of small silicon-bearing molecules such as H_2SiO_2 and vibrationally excited SiC_2 will be highlighted.

  12. A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS point source catalogue

    NARCIS (Netherlands)

    Suarez, O.; Garcia-Lario, P.; Manchado, A.; Manteiga, M.; Ulla, A.; Pottasch, S. R.

    2006-01-01

    Aims. We study the optical spectral properties of a sample of stars showing far infrared colours similar to those of well-known planetary nebulae. The large majority of them were unidentified sources or poorly known in the literature at the time when this spectroscopic survey started, some 15 years

  13. Observational evidence for composite grains in an AGB outflow: MgS in the extreme carbon star LL Pegasi

    NARCIS (Netherlands)

    Lombaert, R.; de Vries, B.L.; de Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L.B.F.M.

    2012-01-01

    The broad 30 μm feature in carbon stars is commonly attributed to MgS dust particles. However, reproducing the 30 μm feature with homogeneous MgS grains would require much more sulfur relative to the solar abundance. Direct gas-phase condensation of MgS occurs at a low efficiency. Precipitation of

  14. EVIDENCE OF AGB POLLUTION IN GALACTIC GLOBULAR CLUSTERS FROM THE Mg–Al ANTICORRELATIONS OBSERVED BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, P.; Dell’Agli, F.; D’Antona, F.; Di Criscienzo, M.; Tailo, M. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00077 Monteporzio (Italy); García-Hernández, D. A.; Zamora, O. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Mészáros, Sz. [ELTE Gothard Astrophysical Observatory, H-9704 Szombat-hely, Szent Imre Herceg st. 112 (Hungary); Lucatello, S. [INAF–Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Austin, TX (United States); Tang, Baitian [Departamento de Astronomía, Casilla, 160-C, Universidad de Concepción, Concepción (Chile)

    2016-11-10

    We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed so far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.

  15. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  16. Chemical composition of the horizontal-branch stars of globular clusters in the galactic field

    International Nuclear Information System (INIS)

    Klochkova, V.G.; Panchuk, V.E.

    1987-01-01

    Chemical abundance is calculated for 6 field stars: HD 2857, 64488, 93329, 105262, HDE 281679, BD+20 deg 5009, using 12 spectra with a reciprocal dispersion of 9 A/mm, obtained on the 6-m telescope. Fundamental characteristics for 7 stars of the horizontal branch are found

  17. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    International Nuclear Information System (INIS)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Girardi, Léo; Bressan, Alessandro; Lang, Dustin; Guhathakurta, Puragra; Dorman, Claire E.; Howley, Kirsten M.; Lauer, Tod R.; Olsen, Knut A. G.; Bell, Eric F.; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Kalirai, Jason; Larsen, Søren S.; Rix, Hans-Walter

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' × 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of ∼4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manqué stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqué (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or α abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  18. Properties of Confined Star-Branched and Linear Chains. A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Romiszowski, P.; Sikorski, A.

    2004-01-01

    A model of linear and star-branched polymer chains confined between two parallel and impenetrable surfaces was built. The polymer chains were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and star branched (consisted of f = 3 branches of equal length) were studied. The excluded volume was the only potential introduced into the model (the athermal system). Monte Carlo simulations were carried out using a sampling algorithm based on chain's local changes of conformation. The simulations were carried out at different confinement conditions: from light to high chain's compression. The scaling of chain's size with the chain length was studied and discussed. The influence of the confinement and the macromolecular architecture on the shape of a chain was studied. The differences in the shape of linear and star-branched chains were pointed out. (author)

  19. ON IRON MONOXIDE NANOPARTICLES AS A CARRIER OF THE MYSTERIOUS 21 μm EMISSION FEATURE IN POST-ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Li, Aigen; Jiang, B. W.; Liu, J. M.

    2013-01-01

    A prominent mysterious emission feature peaking at ∼20.1 μm—historically known as the '21 μm' feature—is seen in over two dozen Galactic and Magellanic Cloud carbon-rich, post-asymptotic giant branch (post-AGB) stars. The nature of its carrier remains unknown since the first detection of the 21 μm feature in 1989. Over a dozen materials have been suggested as possible carrier candidates. However, none of them has been accepted: they either require too much material (compared to what is available in the circumstellar shells around these post-AGB stars), or exhibit additional emission features that are not seen in these 21 μm sources. Recently, iron monoxide (FeO) nanoparticles seem to be a promising carrier candidate as Fe is an abundant element and FeO emits exclusively at ∼21 μm. In this work, using the proto-typical protoplanetary nebula HD 56126 as a test case, we examine FeO nanoparticles as a carrier for the 21 μm feature by modeling their infrared emission, with FeO being stochastically heated by single stellar photons. We find that FeO emits too broad a 21 μm feature to explain that observed and the Fe abundance required to be locked up in FeO exceeds what is available in HD 56126. We therefore conclude that FeO nanoparticles are not likely to be responsible for the 21 μm feature

  20. Mass loss by stars at the stage of the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Y.L.

    1986-01-01

    For a given initial stellar mass function, star formation function, and initial chemical composition, distributions have been constructed for stars of the asymptotic giant branch by luminosity, and for white dwarfs by mass, by calculating the approximate evolution of a large number of stars. Variants are calculated with different assumptions about the mass loss in the asymptotic branch. Theory can be reconciled with observation only if it is assumed that at this stage there is also a still large mass loss in addition to the stellar wind and the ejection of a planetary nebula shell. This provides the explanation for the absence in the Magellanic clouds of carbon stars with M /sub bol/ 1.0M /sub ./. The degenerate carbon-oxygen nuclei of stars evolving along the asymptotic giant branch cannot attain the Chandrasekhar limit on account of the great mass loss by the stars. The luminosity of stars of the asymptotic giant branch in the globular clusters of the Magellanic Clouds is a good indicator of the age of the clusters

  1. Long-period variables in the Large Magellanic Cloud. II. Infrared photometry, spectral classification, AGB evolution, and spatial distribution

    International Nuclear Information System (INIS)

    Hughes, S.M.G.; Wood, P.R.

    1990-01-01

    Infrared JHK photometry and visual spectra have been obtained for a large sample of long-period variables (LPVs) in the Large Magellanic Cloud (LMC). Various aspects of the asymptotic giant branch (AGB) evolution of LPVs are discussed using these data. The birth/death rate of LPVs of different ages in the LMC is compared with the birth rates of appropriate samples of planetary nebulas, clump stars, Cepheids, and OH/IR stars. It appears that there are much fewer large-amplitude LPVs per unit galactic stellar mass in the LMC than in the Galaxy. It is suggested that this may be due to the fact that the evolved intermediate-age AGB stars in the LMC often turn into carbon stars, which tend to have smaller pulsation amplitudes than M stars. There is also a major discrepancy between the number of LPVs in the LMC (and in the Galaxy) and the number predicted by the theories of AGB evolution, pulsation, and mass loss. A distance modulus to the LMC of 18.66 + or - 0.05 is derived by comparing the LMC LPVs with P about 200 days with the 47 Tucanae Mira variables in the (K, log P) plane. 64 refs

  2. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  3. INFRARED PERIOD-LUMINOSITY RELATIONS OF EVOLVED VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Riebel, David; Meixner, Margaret; Fraser, Oliver; Srinivasan, Sundar; Cook, Kem; Vijh, Uma

    2010-01-01

    We combine variability information from the MAssive Compact Halo Objects survey of the Large Magellanic Cloud with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution survey to create a data set of ∼30,000 variable red sources. We photometrically classify these sources as being on the first ascent of the red giant branch, or as being in one of three stages along the asymptotic giant branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry ('extreme' AGB candidates). We present linear period-luminosity (P-L) relationships for these sources using eight separate infrared bands (J, H, K s , 3.6, 4.5, 5.8, 8.0, and 24 μm) as proxies for the luminosity. We find that the wavelength dependence of the slope of the P-L relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 ± 0.04 when magnitude is measured in the 3.6 μm band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 ± 0.05.

  4. a Study of the AGB in Local Group Bulge Populations

    Science.gov (United States)

    Rich, R.

    1994-01-01

    We propose to survey the bolometric luminosities, colors, and space distribution of the most luminous asymptotic giant branch (AGB) stars in the bulges of M31, M32, and M33. We seek to discover whether the bulges of these galaxies are relatively young, of order 10 Gyr rather than 15 Gyr. We will use WFPC2 and the R, I, and F1042M (1 micron) filters. Knowing that F1042M falls on the first continuum point of M giants, we have shown that we can use 1.04 micron fluxes to reliably calculate bolometric magnitudes for these very red stars. Color information from R and I will permit (1) comparison with Galactic bulge M giants, (2) an estimate of the spread of abundance and (3) increase the accuracy of the bolometric magnitudes. Frames with the damaged HST show signs of resolution to within 3" of the M31 nucleus; Red images with the aberrated HST show a red star cluster associated with the nucleus. Ground-based studies of M32 find an intermediate-age population from spectroscopy and infrared photometry. The repaired HST should resolve stars close to the nuclei of these galaxies. We will measure bolometric luminosity functions to determine if the populations are intermediate age, and attempt to measure the abundance range for stars near the nuclei of these galaxies. If metals have been lost due to winds, theory predicts that we should see a substantial spread of abundances even near the nucleus.

  5. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  6. IRAS 17423-1755 (HEN 3-1475) REVISITED: AN O-RICH HIGH-MASS POST-ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Manteiga, M.; GarcIa-Hernandez, D. A.; Manchado, A.; Ulla, A.; GarcIa-Lario, P.

    2011-01-01

    The high-resolution (R ∼ 600) Spitzer/IRS spectrum of the bipolar protoplanetary nebula (PN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high-quality Spitzer/IRS spectrum shows weak 9.7 μm absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 μm absorption feature seen in the Infrared Space Observatory spectrum as due to acetylene (C 2 H 2 ). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 μm C 2 H 2 , 14.0 μm HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 μm absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, an [Ne II] nebular emission line at 12.8 μm is clearly detected, indicating that the ionization of its central region may be already started. The spectral energy distribution in the infrared (∼2-200 μm) and other observational properties of IRAS 17423-1755 are discussed in comparison with the similar post-asymptotic giant branch (AGB) objects IRAS 19343+2926 and IRAS 17393-2727. We conclude that IRAS 17423-1755 is an O-rich high-mass post-AGB object that represents a link between OH/IR stars with extreme outflows and highly bipolar PN.

  7. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  8. Ultraviolet spectra of field horizontal-branch A-type stars. II

    International Nuclear Information System (INIS)

    Philip, A.G.D.; Hayes, D.S.; Adelman, S.J.

    1990-01-01

    The spectra of six additional A-type stars have been obtained at low resolution between 1200 and 1900 A with the IUE. The energy distributions of four of the stars match that of the field horizontal branch (FHB) distribution in Huenemoerder et al. (1984) while those of the other two do not. Three of the FHB stars fall above a line in the C(19 - V)0 vs. (b-y)0 diagram; however, HD 60825 is anomalously blue for its C(19 - V) color. 7 refs

  9. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Erin M.; Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03784 (United States); Knaizev, Alexei [South African Astronomical Observatory, Cape Town (South Africa); McWilliam, Andrew [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-09-01

    We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s{sup −1} and find a mean [Fe/H] = −1.63 ± 0.07 dex and [ α /Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na–O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.

  10. 1969 - 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    Science.gov (United States)

    Philip, A. G. Davis

    2010-05-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch stars. I started by making Stromgren four-color observations at Kitt Peak National Observatory and then Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c1 indices, caused by their greater (u-b) colors. Later four new filters were added ( U V B S ). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope.We plan follow-up observations of the new FHB stars found.

  11. 1969 to 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    Science.gov (United States)

    Philip, A. G. D.

    2011-04-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch Stars and published several papers on this topic in BOTT from 1967 thru 1972. I started by making Strömgren four-color observations at Kitt Peak National Observatory and then at Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c indices, caused by their greater (u-b) colors. Later four new filters were added (U, V, B, S). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope. We are making follow-up observations of the new FHB stars found.

  12. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  13. Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

    DEFF Research Database (Denmark)

    Fishlock, Cherie K.; Yong, D.; Karakas, Amanda I.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with -1.5 stars separate into three populations (low-and high-a halo and thick-disc stars) based......-alpha stars have a lower abundance compared to the high-alpha stars. The low-alpha stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-alpha stars. These distinct...... chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-alpha population. By comparing the low-alpha population with AGB stellar models, we place constraints...

  14. THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Chronopoulos, Christopher K.

    2010-01-01

    We have discovered a very extended shock structure (i.e., with a diameter of about 24') surrounding the well-known carbon star IRC+10216 in ultraviolet images taken with the Galaxy Evolution Explorer satellite. We conclude that this structure results from the interaction of IRC+10216's molecular wind with the interstellar medium (ISM), as it moves through the latter. All important structural features expected from theoretical models of such interactions are identified: the termination shock, the astrosheath, the astropause, the bow shock, and an astrotail (with vortices). The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 M sun , for a mass-loss rate of 2 x 10 -5 M sun yr -1 ). From the termination-shock standoff distance, we find that IRC+10216 is moving at a speed of about ∼>91 km s -1 (1 cm -3 /n ISM ) 1/2 through the surrounding ISM.

  15. CHEMICAL COMPOSITIONS OF THIN-DISK, HIGH-METALLICITY RED HORIZONTAL-BRANCH FIELD STARS

    International Nuclear Information System (INIS)

    Afşar, M.; Sneden, C.; For, B.-Q.

    2012-01-01

    We present a detailed abundance analysis and atmospheric parameters of 76 stars from a survey to identify field Galactic red horizontal-branch (RHB) stars. High-resolution echelle spectra (R ≅ 60,000, S/N ≥ 100) were obtained with the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The target stars were selected only by color and parallax information. Overall metallicities and relative abundances of proton-capture elements (C, N, O, Li), α-elements (Ca and Si), and neutron-capture elements (Eu and La) were determined by either equivalent width or synthetic spectrum analyses. We used CN features at the λλ7995-8040 region in order to determine the 12 C/ 13 C ratios of our targets. Investigation of the evolutionary stages, using spectroscopic T eff and log g values along with derived 12 C/ 13 C ratios, revealed the presence of 18 probable RHB stars in our sample. We also derived kinematics of the stars with available distance information. Taking into account both the kinematics and probable evolutionary stages, we conclude that our sample contains 5 thick-disk and 13 thin-disk RHB stars. Up until now, RHB stars have been considered as members of the thick disk, and were expected to have large space velocities and sub-solar metallicities. However, our sample is dominated by low-velocity solar-metallicity RHB stars; their existence cannot be easily explained with standard stellar evolution.

  16. The astrosphere of the asymptotic giant branch star CIT 6

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Mack-Crane, Galen P., E-mail: sahai@jpl.nasa.gov [Department of Physics, Occidental College, Los Angeles, CA 90041 (United States)

    2014-10-01

    We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of ∼15' (∼18'). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the warm interstellar medium (ISM), as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ∼20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 M {sub ☉} or larger, assuming a constant mass-loss rate of 3.2 × 10{sup –6} M {sub ☉} yr{sup –1}. Assuming that the shock front has reached a steady state and CIT 6's motion relative to the ISM is in the sky plane, we measure the termination-shock standoff distance directly from the image and find that CIT 6 is moving at a speed of about ≳39 (0.17 cm{sup –3}/n {sub ISM}){sup 1/2} km s{sup –1} through the ISM around it. However, comparisons with published numerical simulations and analytical modeling shows that CIT 6's forward shock (the northern ring) departs from the parabolic shape expected in steady state. We discuss several possible explanations for this departureþ.

  17. Disorder effects on the static scattering function of star branched polymers

    Directory of Open Access Journals (Sweden)

    V. Blavatska

    2012-10-01

    Full Text Available We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law ~r-a. In particular, we are interested in the ratio g(f of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double ϵ = 4 - d, δ = 4 - a-expansion. We find an increase of g(f with an increasing δ. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.

  18. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  19. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  20. Horizontal branch stars as a probe of non baryonic dark matter

    International Nuclear Information System (INIS)

    Salati, P.; Bouquet, A.; Raffelt, G.; Silk, J.; Grenoble-1 Univ., 74 - Annecy; California Univ., Berkeley, CA

    1989-01-01

    The solar neutrino problem can be interpreted as a signature for the existence and properties of certain dark matter candidate particles (''cosmions''). We investigate the breaking of convection by neutrino-like cosmions in horizontal branch (HB) stars. These particles may affect globular clusters in the inner galaxy or in dwarf spheroidals where the dark matter density is larger than in the solar neighborhood, leading to an observable reduction of the HB lifetime. 10 refs., 1 fig

  1. What Happens in the Atmospheres of Hot Horizontal Branch Stars Near 20, 000K?

    Science.gov (United States)

    Brown, Thomas

    2016-10-01

    In the color-magnitude diagrams (CMDs) of many globular clusters, the horizontal branch (HB) exhibits a long blue tail extending to high effective temperatures. In such clusters, two discontinuities appear within the HB locus. The first discontinuity occurs at 12,000K, and was discovered by Grundahl et al. (1998). It is associated with the radiative levitation of metals and the gravitational settling of helium in the atmospheres of HB stars hotter than 12,000K. The hot subdwarf stars of the Galactic field population exhibit the same phenomenon. The second discontinuity occurs at 20,000K, and was discovered by Momany et al. (2002). Its origin is unknown, but it appears at the same effective temperature in all globular clusters hosting HB stars near 20,000K, regardless of cluster properties (age, chemical composition, mass, etc.). We propose STIS long-slit spectroscopy of 6 HB stars that straddle this feature in the HB distribution of omega Cen, the nearest globular cluster where the feature is well populated. With this approach, we can efficiently obtain high-quality UV and blue spectra that span the full wavelength range of the photometric bands where this CMD feature is most prominent - a range this is only accessible by HST. The resulting spectra will unambiguously reveal the nature of this phenomenon - one that is universal in the atmospheres of hot evolved stars - and will yield new insight into the role of diffusion and radiative levitation in these stars.

  2. Mass and age of red giant branch stars observed with LAMOST and Kepler

    Science.gov (United States)

    Wu, Yaqian; Xiang, Maosheng; Bi, Shaolan; Liu, Xiaowei; Yu, Jie; Hon, Marc; Sharma, Sanjib; Li, Tanda; Huang, Yang; Liu, Kang; Zhang, Xianfei; Li, Yaguang; Ge, Zhishuai; Tian, Zhijia; Zhang, Jinghua; Zhang, Jianwei

    2018-04-01

    Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ˜20 per cent. The sample stars reveal two separate sequences in the age-[α/Fe] relation - a high-α sequence with stars older than ˜8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ˜24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.

  3. A New Formation Mechanism for the Hottest Horizontal-Branch Stars

    Science.gov (United States)

    Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet color-magnitude diagrams (CMDs) of both omega Cen and NGC 2808. In order to investigate the origin of these subluminous stars, we have constructed a detailed set of evolutionary sequences that follow the evolution of low-mass stars continuously from the zero-age main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the high temperature gap along the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the main helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the envelope during a late helium-core flash greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous increase in the HB effective temperature. We argue that the hot HB gap observed in NGC 2808 is associated with this theoretically predicted dichotomy in the RB properties. Using new helium- and carbon-rich stellar atmospheres, we show that the changes in the envelope abundances due to flash mixing will suppress the ultraviolet flux in the spectra of hot EHB stars. We suggest that such changes in the emergent spectral energy distribution are primarily responsible for explaining the hot subluminous EHB stars in omega Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing

  4. SYNTHETIC AGB EVOLUTION .3. THE INFLUENCE OF DIFFERENT MASS-LOSS LAWS

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    In Paper I of this series we presented a model to calculate in a synthetic way the evolution of thermal-pulsing AGB stars. The model was applied to the LMC and values were derived for the minimum core mass for third dredge-up and the dredge-up efficiency. In Paper I mass loss on the AGB was

  5. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  6. Molecular processes from the AGB to the PN stage

    Science.gov (United States)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  7. THE RGB AND AGB STAR NUCLEOSYNTHESIS IN LIGHT OF THE RECENT {sup 17}O(p, {alpha}){sup 14}N AND {sup 18}O(p, {alpha}){sup 15}N REACTION-RATE DETERMINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy)

    2013-02-20

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on A = 17 and A = 18 oxygen isotopes, overcoming extrapolation procedures and enhancement effects due to electron screening. In particular, the strengths of the 20 keV and 65 keV resonances in the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N reactions, respectively, have been extracted, as well as the contribution of the tail of the broad 656 keV resonance in the {sup 18}O(p, {alpha}){sup 15}N reaction inside the Gamow window. The strength of the 65 keV resonance in the {sup 17}O(p, {alpha}){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O + p radiative capture channel. As a result, more accurate reaction rates for the {sup 18}O(p, {alpha}){sup 15}N, {sup 17}O(p, {alpha}){sup 14}N, and {sup 17}O(p, {gamma}){sup 18}F processes have been deduced, devoid of systematic errors due to extrapolation or the electron screening effect. Such rates have been introduced into state-of-the-art red giant branch and asymptotic giant branch (AGB) models for proton-capture nucleosynthesis coupled with extra-mixing episodes. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis. The low {sup 14}N/{sup 15}N found in SiC grains cannot be explained by the revised nuclear reaction rates and remains a serious problem that has not been satisfactorily addressed.

  8. Helium-burning evolutionary phases in population II stars. I Breathing pulses in horizontal branch stars

    International Nuclear Information System (INIS)

    Castellani, V.; Chieffi, A.; Tornambe, A.; Pulone, L.; Roma Universita, Italy; CNR, Istituto Astrofisica Spaziale, Frascati, Italy)

    1985-01-01

    The result of an investigation into the evolutionary characteristics of a typical horizontal-branch (HB) model are presented. A new treatment of semiconvection has been used which overlaps Robertson and Faulkner's prescription in the major phase of central He burning and which allows a meaningful treatment of the last phases of He exhaustion at the center. The occurrence of convective instabilities near the He exhaustion in the central core is confirmed, finding that three major convection pulses occur before the exhaustion of He. Consequences regarding HB lifetimes and post-HB evolution are briefly discussed. 19 references

  9. Four-branch Star Hybrid Power Filter for Three-phase Four-wire Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    and derives fundamental concepts about the control of the resulting hybrid power filter. From this analysis, a specifc implementation of a three-phase four-wire hybrid power filter is presented as an illustrative application of the filtering topology. An extensive evaluation using simulation and experimental......This paper presents a new concept for filtering current harmonics in three-phase four-wire networks. The four-branch star (FBS) filtering topology presented in this work is characterized by a particular layout consisting of single-phase inductances and capacitors. Via this layout, a power filter...

  10. H2O Formation in C-rich AGB Winds

    NARCIS (Netherlands)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N.L.J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J.A.D.L.; Gernicharo, J.; González-Alfonso, E.; Groenewegen, M.A.T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.

    2015-01-01

    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar

  11. Level of helium enhancement among M3's horizontal branch stars

    Science.gov (United States)

    Valcarce, A. A. R.; Catelan, M.; Alonso-García, J.; Contreras Ramos, R.; Alves, S.

    2016-05-01

    Context. The color and luminosity distribution of horizontal branch (HB) stars in globular clusters (GCs) are sensitive probes of the original helium abundances of those clusters. In this sense, recently the distributions of HB stars in GC color-magnitude diagrams (CMDs) have been extensively used as indicators of possible variations in the helium content Y among the different generations of stars within individual GCs. However, recent analyses based on visual and near-ultraviolet (UV) CMDs have provided conflicting results. Aims: To clarify the situation, we address the optimum ranges of applicability (in terms of the Teff range covered by the HB stars) for visual and near-UV CMDs, as far as application of this "HB Y test" goes. Methods: We considered both Strömgren and Hubble Space Telescope (HST) bandpasses. In particular, we focus on the F336W filter of the HST, but also discuss several bluer UV bandpasses, such as F160BW, F255W, and F300W. Using the Princeton-Goddard-PUC (PGPUC) code, we computed a large set of zero-age HB (ZAHB) loci and HB evolutionary models for masses ranging from MHB = 0.582 to 0.800 M⊙, assuming an initial helium abundance Y = 0.246, 0.256, and 0.266, with a global metallicity Z = 0.001. The results of these calculations were compared against the observations of M3 (NGC 5272), with special attention on the y vs. (b - y) and F336W vs. (F336W-F555W) CMDs. Results: Our results indicate that, from an evolutionary perspective, the distributions of HB stars in the y vs. (b - y) plane can be a reliable indicator of the He content in cool blue HB (BHB) stars, particularly when a differential comparison between blue and red HB stars is carried out in the range Teff ≲ 8300 K. Conversely, we demonstrate that CMDs using the F336W filter have a much less straightforward interpretation at the cool end of the BHB because the distributions of HB stars in the F336W vs. (F336W-F555W) plane, for instance, are affected by a triple degeneracy effect. In

  12. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  13. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-01-01

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 μm). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ∼20% of the global SMC flux (extended + point-source) at 3.6 μm, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  14. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Science.gov (United States)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  15. The {sup 13}C(α,n){sup 16}O reaction as a neutron source for the s-process in AGB low-mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Trippella, O.; Busso, M. [INFN and University of Perugia, Perugia (Italy); La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R. [INFN and University of Catania, Catania (Italy); Kiss, G. G. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D. [Department of Physics, Florida State University, Tallahassee, Florida (United States); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Maiorca, E. [INAF - Arcetri Astrophysical Observatory, Firenze (Italy); Palmerini, S. [Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada,Granada (Spain)

    2014-05-09

    The {sup 13}C(α,n){sup 16}O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the {sup 13}C(α,n){sup 16}O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the {sup 13}C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  16. The 13C(α,n)16O reaction as a neutron source for the s-process in AGB low-mass stars

    International Nuclear Information System (INIS)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R.; Kiss, G. G.; Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A. M.; Maiorca, E.; Palmerini, S.

    2014-01-01

    The 13 C(α,n) 16 O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the 13 C(α,n) 16 O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the 13 C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements

  17. Rotational broadening and conservation of angular momentum in post-extreme horizontal branch stars

    Science.gov (United States)

    Fontaine, G.; Latour, M.

    2018-06-01

    We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s-1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of 7.7 km s-1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor 3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.

  18. Carbon stars in lmc clusters revisited

    OpenAIRE

    Marigo, Paola; Girardi, Leo Alberto; Chiosi, Cesare

    1996-01-01

    Examining the available data for AGB stars in the Large Magellanic Cloud (LMC) clusters, we address the question about the mass interval of low- and intermediate-mass stars which eventually evolve into carbon stars (C stars) during the TP-AGB phase. We combine the data compiled by Frogel, Mould & Blanco (1990) - near infrared photometry and spectral classification for luminous AGB stars in clusters - with the ages for individual clusters derived from independent methods. The resulting distrib...

  19. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lugaro, Maria, E-mail: cherie.fishlock@anu.edu.au, E-mail: amanda.karakas@anu.edu.au, E-mail: david.yong@anu.edu.au, E-mail: maria.lugaro@monash.edu [Monash Centre for Astrophysics, Monash University, Clayton VIC 3800 (Australia)

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  20. Cancellation of neutral current harmonics by using a four-branch star hybrid filter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Rodriguez, Pedro; Candela, I.

    2008-01-01

    filtering topology to a three-phase four-wire system. An extensive evaluation using simulation and experimental results are conducted in this work to validate the good performance of the proposed solution for canceling current harmonics flowing through the neutral conductor.......This paper presents a new technique for filtering current harmonics in three-phase four-wire networks based on the usage of a four-branch star (FBS) filter topology. Based on single-phase inductors and capacitors, the specific layout of the FBS filter topology allows achieving a power filter...... is improved by integrating a power converter into its structure. This paper analyzes the FBS topology and presents fundamental concepts regarding the control of a generic FBS hybrid power filter. A neutral current hybrid power filter and var compensator is presented as an illustrative example applying the FBS...

  1. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco 28049 Madrid (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38200 La Laguna, Tenerife (Spain); Garcia-Segura, Guillermo, E-mail: eva.villaver@uam.es, E-mail: amt@ll.iac.es, E-mail: ggs@astrosen.unam.mx [Instituto de Astronomia-UNAM, Apartado postal 877, Ensenada, 22800 Baja California (Mexico)

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  2. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  3. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  4. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    Science.gov (United States)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  5. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  6. Mass loss on the Asymptotic Giant Branch

    OpenAIRE

    Zijlstra, Albert

    2006-01-01

    Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...

  7. The Hot Horizontal-Branch Stars in NGC288 - Effects of Diffusion and Stratification on Their Atmospheric Parameters*

    Science.gov (United States)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.

    2014-01-01

    Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.

  8. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    International Nuclear Information System (INIS)

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-01-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ∼30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10 –5 M ☉ yr –1 , equivalent to a total mass injection rate (including the gas) into the ISM of ∼6 × 10 –3 M ☉ yr –1 . Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J – K s color, BC K s = -0.40(J-K s ) 2 + 1.83(J-K s ) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot d ) from C-rich AGB stars, such as log M-dot d = (-18.90/((K s -[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  9. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-01-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims.

  10. THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm

    International Nuclear Information System (INIS)

    Srinivasan, Sundar; Meixner, Margaret; Leitherer, Claus; Vijh, Uma; Gordon, Karl D.; Sewilo, Marta; Volk, Kevin; Blum, Robert D.; Harris, Jason; Babler, Brian L.; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl A.; Cohen, Martin; Hora, Joseph L.; Indebetouw, Remy; Markwick-Kemper, Francisca

    2009-01-01

    We present empirical relations describing excess emission from evolved stars in the Large Magellanic Cloud (LMC) using data from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) survey which includes the Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and Multiband Imaging Photometer (MIPS) 24, 70, and 160 μm bands. We combine the SAGE data with the Two Micron All Sky Survey (2MASS; J, H, and K s ) and the optical Magellanic Cloud Photometric Survey (MCPS; U, B, V, and I) point source catalogs in order to create complete spectral energy distributions (SEDs) of the asymptotic giant branch (AGB) star candidates in the LMC. AGB star outflows are among the main producers of dust in a galaxy, and this mass loss results in an excess in the fluxes observed in the 8 and 24 μm bands. The aim of this work is to investigate the mass loss return by AGB stars to the interstellar medium of the LMC by studying the dependence of the infrared excess flux on the total luminosity. We identify oxygen-rich, carbon-rich, and extreme AGB star populations in our sample based on their 2MASS and IRAC colors. The SEDs of oxygen- and carbon-rich AGB stars are compared with appropriate stellar photosphere models to obtain the excess flux in all the IRAC bands and the MIPS 24 μm band. Extreme AGB stars are dominated by circumstellar emission at 8 and 24 μm; thus we approximate their excesses with the flux observed in these bands. We find about 16,000 O-rich, 6300 C-rich, and 1000 extreme sources with reliable 8 μm excesses, and about 4500 O-rich, 5300 C-rich, and 960 extreme sources with reliable 24 μm excesses. The excesses are in the range 0.1 mJy to 5 Jy. The 8 and 24 μm excesses for all three types of AGB candidates show a general increasing trend with luminosity. The color temperature of the circumstellar dust derived from the ratio of the 8 and 24 μm excesses decreases with an increase in excess, while the 24 μm optical depth increases with

  11. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    Energy Technology Data Exchange (ETDEWEB)

    Polsdofer, Elizabeth; Marengo, M. [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, Iowa 50011 (United States); Seale, J.; Sewiło, M. [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Vijh, U. P.; Terrazas, M. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606 (United States); Meixner, M., E-mail: empolsdofer@gmail.com [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  12. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    International Nuclear Information System (INIS)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-01-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S 3 MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  13. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  14. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities

    Science.gov (United States)

    Busso, Maurizio; Vescovi, Diego; Trippella, Oscar; Palmerini, Sara; Cristallo, Sergio; Piersanti, Luciano

    2018-01-01

    Noticeable improvements were recently introduced in the modelling of n-capture nucleosynthesis in the advanced evolutionary stages of giant stars (Asymptotic Giant Branch, or AGB, stars). Two such improvements are closely linked together and concern the introduction of non-parameterized, physical models for extended mixing processes and the adoption of accurate reaction rates for H- and He-burning reactions, including the one for the main neutron source 13C(α,n)16O. These improvements profited of a longstanding collaboration between stellar physicists and C. Spitaleri's team and of his seminal work both as a leader in the Nuclear Astrophysics scenario and as a talent-scout in the recruitment of young researchers in the field. We present an example of the innovative results that can be obtained thanks to the novelties introduced, by estimating the contributions from a nearby AGB star to the synthesis of short-lived (t1/2 ≤ 10 Myr) radioactive nuclei which were alive in early Solar System condensates. We find that the scenario indicating an AGB star as the source of such radioactivities, discussed for many years by researchers in this field, appears now to be no longer viable, when the mentioned improvements of AGB models and nuclear parameters are considered.

  15. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.

    2000-01-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the ∼1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  16. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C. (and others)

    2000-05-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different-age and -metallicity stellar populations, with important stellar evolutionary phases occurring over 3 orders of magnitude in number density. First, we count the nonvariable red and blue supergiants and the associated Cepheid variables and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which we interpret as discrete old populations ((greater-or-similar sign)1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal-branch (HB) stars in the 9M CMD with those of clusters, we identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB bump is very red, and the ratio of AGB bump stars to RR Lyrae variables is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the {approx}1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyrae stars and the AGB bump. In this case, compared with the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyrae stars and AGB bump. Last, we show that the surface density profile of RR Lyrae variables is fitted by an exponential

  17. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  18. Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars

    Science.gov (United States)

    Trippella, O.; La Cognata, M.

    2017-03-01

    The {}13{{C}}{(α ,n)}16{{O}} reaction is considered to be the main neutron source responsible for the production of heavy nuclides (from {Sr} to {Bi}) through slow n-capture nucleosynthesis (s-process) at low temperatures during the asymptotic giant branch phase of low-mass stars (≲ 3{--}4 {M}⊙ , or LMSs). In recent years, several direct and indirect measurements have been carried out to determine the cross section at the energies of astrophysical interest (around 190+/- 40 {keV}). However, they yield inconsistent results that cause a highly uncertain reaction rate and affect the neutron release in LMSs. In this work we have combined two indirect approaches, the asymptotic normalization coefficient and the Trojan horse method, to unambiguously determine the absolute value of the {}13{{C}}{(α ,n)}16{{O}} astrophysical factor. With these, we have determined a very accurate reaction rate to be introduced into astrophysical models of s-process nucleosynthesis in LMSs. Calculations using this recommended rate have shown limited variations in the production of those neutron-rich nuclei (with 86≤slant A≤slant 209) that receive contribution only by slow neutron captures.

  19. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  20. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Suda, Takuma [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Stancliffe, Richard J., E-mail: yslee@nmsu.edu [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  1. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    International Nuclear Information System (INIS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (√(T eff )∼g p R q ) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν max (frequency of maximum oscillation power). The Δν and ν max values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν max , with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν max relation for red giant branch stars.

  2. First evidence of multiple populations along the AGB from Strömgren photometry

    Science.gov (United States)

    Gruyters, Pieter; Casagrande, Luca; Milone, Antonino P.; Hodgkin, Simon T.; Serenelli, Aldo; Feltzing, Sofia

    2017-07-01

    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Strömgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Strömgren photometry is also very efficient at identifying multiple populations along the AGB, and demonstrate that the AGB of M 3, M 92, NGC 362, NGC 1851, and NGC 6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies. We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC 6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A37

  3. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    International Nuclear Information System (INIS)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-01-01

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10 −3 yr −1 ) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains

  4. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  5. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  6. Current Harmonics Cancellation in Three-Phase Four-Wire Systems by Using a Four-Branch Star Filtering Topology

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Candela, J. I.; Luna, A.

    2009-01-01

    This paper presents a new solution for filtering current harmonics in three-phase four-wire networks. The original four-branch star (FBS) filter topology presented in this paper is characterized by a particular layout of single-phase inductances and capacitors, without using any transformer......, a specific implementation of a three-phase four-wire hybrid power filter is presented as an illustrative application of the filtering topology. An extensive evaluation using simulation and experimental results from a DSP-based laboratory prototype is conducted in order to verify and validate the good...... only passive components are employed, or as a hybrid filter, when its behavior is improved by integrating a power converter into the filter structure. The paper analyzes the proposed topology, and derives fundamental concepts about the control of the resulting hybrid power filter. From this analysis...

  7. Evolved Stars, Masers And Polarization Submm/mm/cm QUESO Workshop 2017 (QUESO2017), Centimetre-Sub-Millimetre Q&U (and V) European Southern Observatory Workshop, held 25-27 October, 2017 at ESO, Garching bei München, Germany. Online at https://www.eso.org/sci/meetings/2017/QUESO2017.html, id.35

    Science.gov (United States)

    Humphreys, Elizabeth

    2017-11-01

    Cool evolved stars on the Asymptotic Giant Branch (AGB) and Red Supergiants (RSG) often host strong masers, for example from SiO, water and OH. The maser emission can display high degrees of circular and linear polarization, potentially revealing information on magnetic field strength and morphology at different radii in the circumstellar envelopes. In this review, I will describe maser polarization theory and discuss was has been learnt so far from maser observations. I will also discuss dust polarization at (sub)mm wavelengths and the role that full polarization observations using ALMA is going to play in better characterizing evolved stars. Finally, I will talk about the potential impact of magnetic fields in the evolution of the stars, for example the shaping of AGB stars to often highly axisymmetric/aspherical Planetary Nebulae.queso2017queso2017

  8. Neutron capture at the s-process branching points $^{171}$Tm and $^{204}$Tl

    CERN Multimedia

    Branching points in the s-process are very special isotopes for which there is a competition between the neutron capture and the subsequent b-decay chain producing the heavy elements beyond Fe. Typically, the knowledge on the associated capture cross sections is very poor due to the difficulty in obtaining enough material of these radioactive isotopes and to measure the cross section of a sample with an intrinsic activity; indeed only 2 out o the 21 ${s}$-process branching points have ever been measured by using the time-of-flight method. In this experiment we aim at measuring for the first time the capture cross sections of $^{171}$Tm and $^{204}$Tl, both of crucial importance for understanding the nucleosynthesis of heavy elements in AGB stars. The combination of both (n,$\\gamma$) measurements on $^{171}$Tm and $^{204}$Tl will allow one to accurately constrain neutron density and the strength of the 13C(α,n) source in low mass AGB stars. Additionally, the cross section of $^{204}$Tl is also of cosmo-chrono...

  9. The fluorine destruction in stars: First experimental study of the 19F(p,α)16O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.

    2012-01-01

    The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E cm ∼ 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the 2 H( 19 F,α 16 O)n reaction. The TH measurement of the α 0 channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  10. The Audit Committee. AGB Effective Committee Series

    Science.gov (United States)

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  11. Structure of the Milky Way stellar halo out to its outer boundary with blue horizontal-branch stars

    Science.gov (United States)

    Fukushima, Tetsuya; Chiba, Masashi; Homma, Daisuke; Okamoto, Sakurako; Komiyama, Yutaka; Tanaka, Masayuki; Tanaka, Mikito; Arimoto, Nobuo; Matsuno, Tadafumi

    2018-06-01

    We present the structure of the Milky Way stellar halo beyond Galactocentric distances of r = 50 kpc traced by blue horizontal-branch (BHB) stars, which are extracted from the survey data in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We select BHB candidates based on (g, r, i, z) photometry, where the z-band is on the Paschen series and the colors that involve the z-band are sensitive to surface gravity. About 450 BHB candidates are identified between r = 50 kpc and 300 kpc, most of which are beyond the reach of previous large surveys, including the Sloan Digital Sky Survey. We find that the global structure of the stellar halo in this range has substructures, which are especially remarkable in the GAMA15H and XMM-LSS fields in the HSC-SSP. We find that the stellar halo can be fitted to a single power-law density profile with an index of α ≃ 3.3 (3.5) with (without) these fields and its global axial ratio is q ≃ 2.2 (1.3). Thus, the stellar halo may be significantly disturbed and be made in a prolate form by halo substructures, perhaps associated with the Sagittarius stream in its extension beyond r ˜ 100 kpc. For a broken power-law model allowing different power-law indices inside/outside a break radius, we obtain a steep power-law slope of α ≃ 5 outside a break radius of ˜100 kpc (200 kpc) for the case with (without) GAMA15H and XMM-LSS. This radius of 200 kpc might be as close as a halo boundary if there is any, although a larger BHB sample is required from further HSC-SSP surveys to increase its statistical significance.

  12. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  13. NEW CHEMICAL PROFILES FOR THE ASTEROSEISMOLOGY OF ZZ CETI STARS

    International Nuclear Information System (INIS)

    Althaus, L. G.; Corsico, A. H.; Romero, A. D.; Miller Bertolami, M. M.; Bischoff-Kim, A.; Renedo, I.; Garcia-Berro, E.

    2010-01-01

    We compute new chemical profiles for the core and envelope of white dwarfs appropriate for pulsational studies of ZZ Ceti stars. These profiles are extracted from the complete evolution of progenitor stars, evolved through the main sequence and the thermally pulsing asymptotic giant branch (AGB) stages, and from time-dependent element diffusion during white dwarf evolution. We discuss the importance of the initial-final mass relationship for the white dwarf carbon-oxygen composition. In particular, we find that the central oxygen abundance may be underestimated by about 15% if the white dwarf mass is assumed to be the hydrogen-free core mass before the first thermal pulse. We also discuss the importance for the chemical profiles expected in the outermost layers of ZZ Ceti stars of the computation of the thermally pulsing AGB phase and of the phase in which element diffusion is relevant. We find a strong dependence of the outer layer chemical stratification on the stellar mass. In particular, in the less massive models, the double-layered structure in the helium layer built up during the thermally pulsing AGB phase is not removed by diffusion by the time the ZZ Ceti stage is reached. Finally, we perform adiabatic pulsation calculations and discuss the implications of our new chemical profiles for the pulsational properties of ZZ Ceti stars. We find that the whole g-mode period spectrum and the mode-trapping properties of these pulsating white dwarfs as derived from our new chemical profiles are substantially different from those based on chemical profiles widely used in existing asteroseismological studies. Thus, we expect the asteroseismological models derived from our chemical profiles to be significantly different from those found thus far.

  14. Fluorine and Sodium in C-rich Low-metallicity Stars

    Science.gov (United States)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  15. SALT reveals the barium central star of the planetary nebula Hen 2-39

    Science.gov (United States)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the

  16. Clues on the hot star content and the ultraviolet output of elliptical galaxies

    International Nuclear Information System (INIS)

    Greggio, L.; Renzini, A.

    1990-01-01

    Purely energetic arguments are used here to investigate the conditions under which old, low-mass stars could be responsible for the UV rising branch of elliptical galaxies. It is argued that presently available observational data are insufficient to unambiguously decide which of various candidates provide the dominant contribution. It is found that the possibility for metal-rich, low-mass stars to evolve through sufficiently hot stages, provide enough UV photons, and produce the observed UV-metallicity correlation is primarily controlled by two poorly known trends with increasing metallicity: helium enrichment and mass-loss rate during the red giant phases. The classical hydrogen-burning post-AGB stars do not appear able to burn enough fuel to account for the most UV-powerful galaxies. Other hot star candidates which appear more promising are identified. It is shown that a very important role is played by the actual metallicity distribution within individual galaxies. 154 refs

  17. A RE-EVALUATION OF THE EVOLVED STARS IN THE GLOBULAR CLUSTER M13

    International Nuclear Information System (INIS)

    Sandquist, Eric L.; Gordon, Mark; Levine, Daniel; Bolte, Michael

    2010-01-01

    We have analyzed photometry from space- and ground-based cameras to identify all bright red giant branch (RGB), horizontal branch (HB), and asymptotic giant branch (AGB) stars within 10' of the center of the globular cluster M13. We identify a modest (7%) population of HB stars redder than the primary peak (including RR Lyrae variables at the blue end of the instability strip) that is somewhat more concentrated to the cluster core than the rest of the evolved stars. We find support for the idea that they are noticeably evolved and in the late stages of depleting helium in their cores. This resolves a disagreement between distance moduli derived from the tip of the RGB and from stars in or near the RR Lyrae instability strip. We identified disagreements between HB model sets on whether stars with T eff ∼ eff ∼ eff ∼ 22, 000 K) as previously suggested. These stars are brighter than other stars of similar color (either redder or bluer), and may be examples of 'early hot flashers' that ignite core helium fusion shortly after leaving the RGB. We used ultraviolet photometry to identify hot post-HB stars, and based on their numbers (relative to canonical AGB stars) we estimate the position on the HB where the morphology of the post-HB tracks change to I ∼ 17.3, between the two peaks in the HB distribution. Concerning the possibility of helium enrichment in M13, we revisited the helium-sensitive R ratio, applying a new method for correcting star counts for larger lifetimes of hot HB stars. We find that M13's R ratio is in agreement with theoretical values for primordial helium abundance Y P = 0.245 and inconsistent with a helium enhancement ΔY = 0.04. The brightness of the HB (both in comparison to the end of the canonical HB and to the tip of the RGB) also appears to rule out the idea that the envelopes of the reddest HB stars have been significantly enriched in helium. The absolute colors of the turnoffs of M3 and M13 potentially may be used to look for

  18. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    Science.gov (United States)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  19. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  20. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  1. Distances of Dwarf Carbon Stars

    Science.gov (United States)

    Harris, Hugh C.; Dahn, Conard C.; Subasavage, John P.; Munn, Jeffrey A.; Canzian, Blaise J.; Levine, Stephen E.; Monet, Alice B.; Pier, Jeffrey R.; Stone, Ronald C.; Tilleman, Trudy M.; Hartkopf, William I.

    2018-06-01

    Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1–3 au, consistent with the size of an AGB mass-transfer donor star.

  2. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    the interstellar medium and was present in the cloud of dust and gas from which the Solar System and hence our Earth was formed. More information The research described in this Press Release is reported in a scientific article ("Discovery of three Lead stars" by S. Van Eck, S. Goriely, A. Jorissen and B. Plez) that appears in the August 23, 2001 issue of the science journal "Nature". Notes [1]: The team consists of Sophie Van Eck , Stéphane Goriely , Alain Jorissen (all Institut d'Astronomie et d'Astrophysique de l'Université Libre de Bruxelles, Belgium) and Bertrand Plez (Groupe de Recherche en Astronomie et Astrophysique en Languedoc, Université de Montpellier II - GRAAL), France). Sophie Van Eck was an ESO fellow (1999-2000). [2] The "atomic mass" of a chemical element is the total mass of the positively charged protons and neutral neutrons in the atomic nucleus. The "atomic number" of a chemical element is equal to the number of protons in the nucleus. Different isotopes of a chemical element all have the same number of protons in the nuclei, but a different number of neutrons. For the principal (most abundant) isotopes of the elements mentioned in this text, the "atomic mass" (expressed in "atomic mass units" (amu)) is approximately: Hydrogen : 1 atomic mass unit (with 1 proton in the nucleus); Helium : 4 atomic mass units (2 protons + 2 neutrons); Lithium : 7 atomic mass units (3 protons + 4 neutrons); Carbon : 12 atomic mass units (6 protons + 6 neutrons); Oxygen : 16 atomic mass units (8 protons + 8 neutrons); Iron : 56 atomic mass units (26 protons + 30 neutrons); Zirconium : 90 atomic mass units (40 protons + 50 neutrons); Barium : 138 atomic mass units (56 protons + 82 neutrons); Tungsten : 184 atomic mass units (74 protons + 110 neutrons); Lead : 208 atomic mass units (82 protons + 126 neutrons); Bismuth : 209 atomic mass units (83 protons + 126 neutrons) [3] "AGB" stands for "Asymptotic Giant Branch"; a location in the HR-diagramme (a plot of stellar

  3. The first spectroscopically confirmed Mira star in M33

    Czech Academy of Sciences Publication Activity Database

    Barsukova, E.A.; Goranskij, V.P.; Hornoch, Kamil; Fabrika, S.; Pietsch, W.; Sholukhova, O.; Valeev, A.F.

    2011-01-01

    Roč. 413, č. 3 (2011), s. 1797-1802 ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : AGB and post AGB * variables stars * general galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011

  4. Gradients in giant branch morphology in the core of 47 Tucanae

    Science.gov (United States)

    Bailyn, Charles D.

    1994-01-01

    I describe an algorithm which uses the high spatial resolution of the Hubble Space Telescope to complement the high spatial-to-noise, approximately symmetric point response function, relatively large spatial coverage, and standard filters available from ground based images of crowded fields. Applying this technique to the central regions of the globular cluster 47 Tucanae, I find that the morphology of the giant branch in the core is significantly different from that in more distant regions (r approximately equals 5 to 10 core radii) of the cluster. In particular, there appear to be fewer bright giants in the core, along with an enhanced `asymptotic giant branch' (AGB) sequence. Depletion of giants has been observed in the cores of other dense clusters, and may be due to `stripping' of large stars by stellar encounters and/or mass transfer in binary systems. Central concentrations of true asymptotic giant branch stars are not expected to result from dynamical processes; possibly some of these stars may be evolved blue stragglers.

  5. THE A-X INFRARED BANDS OF ALUMINUM OXIDE IN STARS: SEARCH AND NEW DETECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D. P. K.; Mathew, Blesson; Ashok, N. M. [Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 380009 (India); Varricatt, W. P. [Joint Astronomy Centre, 660 N. Aohoku Place, University Park, Hilo, Hawaii, HI 96720 (United States); Launila, O., E-mail: orion@prl.res.in [KTH-AlbaNova, Applied Physics, Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2012-07-01

    We describe a search for the A-X infrared bands of AlO with a view toward better understanding the characteristics of this radical. These bands are infrequently encountered in astronomical sources but surprisingly were very prominent in the spectra of two well-known, novalike variables (V838 Mon and V4332 Sgr) thereby motivating us to explore the physical conditions necessary for their excitation. In this study, we present the detection of A-X bands in the spectra of 13 out of 17 stars, selected on the basis of their J - K colors as potential candidates for detection of these bands. The majority of the AlO detections are in asymptotic giant branch (AGB) stars, viz., nine OH/IR stars, two Mira variables, and two bright infrared sources. Our study shows that the A-X bands are fairly prevalent in sources with low temperature and O-rich environments. Interesting variation in the strength of the AlO bands in one of the sources (IRAS 18530+0817) is reported and the cause for this is examined. Possible applications of the present study are discussed in terms of the role of AlO in alumina dust formation, the scope for estimating the radioactive {sup 26}Al content in AGB stars from the A-X bands, and providing possible targets for further mm/radio studies of AlO which has recently been discovered at millimeter wavelengths.

  6. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Stephan, Thomas; Boehnke, Patrick; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J., E-mail: nliu@carnegiescience.edu [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States)

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  7. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  8. NITROGEN ISOTOPES IN ASYMPTOTIC GIANT BRANCH CARBON STARS AND PRESOLAR SiC GRAINS: A CHALLENGE FOR STELLAR NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    Hedrosa, R. P.; Abia, C.; Domínguez, I.; Palmerini, S.; Busso, M.; Cristallo, S.; Straniero, O.; Plez, B.

    2013-01-01

    Isotopic ratios of C, N, Si, and trace heavy elements in presolar SiC grains from meteorites provide crucial constraints to nucleosynthesis. A long-debated issue is the origin of the so-called A+B grains, as of yet no stellar progenitor thus far has been clearly identified on observational grounds. We report the first spectroscopic measurements of 14 N/ 15 N ratios in Galactic carbon stars of different spectral types and show that J- and some SC-type stars might produce A+B grains, even for 15 N enrichments previously attributed to novae. We also show that most mainstream grains are compatible with the composition of N-type stars, but in some cases might also descend from SC stars. From a theoretical point of view, no astrophysical scenario can explain the C and N isotopic ratios of SC-, J-, and N-type carbon stars together, as well as those of many grains produced by them. This poses urgent questions to stellar physics.

  9. The 2014 AGB Survey of Higher Education Governance

    Science.gov (United States)

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  10. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS

    2001-01-01

    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  11. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  12. Astrophysical reaction rate for the neutron-generator reaction 13C(alpha,n)16O in asymptotic giant branch stars.

    Science.gov (United States)

    Johnson, E D; Rogachev, G V; Mukhamedzhanov, A M; Baby, L T; Brown, S; Cluff, W T; Crisp, A M; Diffenderfer, E; Goldberg, V Z; Green, B W; Hinners, T; Hoffman, C R; Kemper, K W; Momotyuk, O; Peplowski, P; Pipidis, A; Reynolds, R; Roeder, B T

    2006-11-10

    The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

  13. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    Science.gov (United States)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. OPACOS: OVRO POST-AGB CO (1-0) EMISSION SURVEY. I. DATA AND DERIVED NEBULAR PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Contreras, C. [Centro de Astrobiologia, INTA-CSIC, E-28691 Villanueva de la Canada, Madrid (Spain); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-11-15

    We have performed interferometric observations of the {sup 12}CO (J = 1-0) emission in a sample of 27 objects spanning different evolutionary stages from the late asymptotic giant branch (late-AGB), through the post-AGB (pAGB) phase, and to the planetary nebula (PN) stage, but dominated by pAGB objects and young PNs ({>=}81%). In this paper (the first in a series) we present our maps and main nebular properties derived for the whole sample. Observations were performed with the Caltech Millimeter Array at the Owens Valley Radio Observatory. The angular resolution obtained in our survey ranges between 2.''3 and 10.''7. The {sup 13}CO and C{sup 18}O (J = 1-0) transitions as well as the 2.6 mm continuum emission have also been observed in several objects. The detection statistics in the {sup 12}CO, {sup 13}CO, C{sup 18}O transitions and 2.6 mm continuum are 89%, 83%, 0%, and 37%, respectively. We report first detections of {sup 12}CO (J = 1-0) emission in 13 targets and confirm emission from several previous marginal detections. The molecular envelope probed by {sup 12}CO (J = 1-0) emission is extended for 18 (out of 24) sources; envelope asymmetries and/or velocity gradients are found in most extended objects. Our data have been used to derive accurate target coordinates and systemic velocities and to characterize the envelope size, morphology, and kinematics. We also provide an estimate of the total molecular mass and the fraction of it contained in fast flows, lower limits to the linear momentum and to the isotopic {sup 12}C/{sup 13}C ratio, as well as the AGB mass-loss rate and timescale for sources with extended CO emission.

  15. An interferometric study of the post-AGB binary 89 Herculis. I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    Science.gov (United States)

    Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.

    2013-11-01

    Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the

  16. On the introduction of {sup 17}O+p reaction rates evaluated through the THM in AGB nucleosynthesis calculations

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G. [I.N.F.N. Laboratori Nazionali del Sud, via Santa Sofia 62, Catania (Italy); Lamia, L.; Spitaleri, C. [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania (Italy)

    2014-05-09

    The rates for the {sup 17}O(p,αα{sup 14}N, {sup 17}O(p,α){sup 18}F and {sup 18}O(p,α){sup 15}N reactions deduced trough the Trojan Horse Method (THM) have been introduced into a state-of-the-art asymptotic giant branch (AGB) models for proton-capture nucleosynthesis and cool bottom process. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis.

  17. A search for hot post-AGE stars in the IRAS Point Source Catalog

    NARCIS (Netherlands)

    Oudmaijer, RD

    In this paper a first step is made to search for hot post-AGB stars in the IRAS Point Source Catalog. In order to find objects that evolved off the AGE a longer time ago than post-AGB objects discussed in the literature, objects that were not detected at 12 mu m by IRAS were selected. The selection

  18. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2016-01-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  19. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2016-05-20

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  20. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the

  1. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  2. Peculiarities and Variations in the Optical Spectrum of the RV Tauri-type Star R Sct

    Directory of Open Access Journals (Sweden)

    Kipper Tõnu

    2013-06-01

    Full Text Available We analyzed some new high resolution optical spectra of the semiregular RV Tauri-type star R Sct. Fundamental parameters were found to be Teff = 4500 K, log g = 0.0 and ξt = 4.0 km s−1. The results of chemical analysis show that R Sct is a metal-poor star with [Fe/H]≈ −0.5. The carbon content with respect to iron is significantly larger than in the Sun, [C/Fe]=0.84, but there is an evident deficiency of heavy elements. We found no tight correlation of the chemical abundances on the condensation temperatures of elements. This means that in R Sct the depletion by condensation into dust does not work, with possible exception of Ca and Sc. The luminosity derived from the Hipparcos parallax corresponds to a tip of the red-giant branch or slightly above it. Thus it is possible that R Sct evolved off the early-AGB when it has not yet experienced the third dredge-up in thermal pulses, or it is still located on AGB. The peculiarities of spectral features (emissions, line-splitting and the complicated time-variable radial velocities were also studied.

  3. New Circumstellar Sources of PO and PN: The Increasing Role of Phosphorus Chemistry in Oxygen-rich Stars

    Science.gov (United States)

    Ziurys, L. M.; Schmidt, D. R.; Bernal, J. J.

    2018-04-01

    PO and PN have been newly identified in several oxygen-rich circumstellar envelopes, using the Submillimeter Telescope of the Arizona Radio Observatory. The J = 5 → 4 and J = 6 → 5 transitions of PN near 235 and 282 GHz, and the lambda doublets originating in the J = 5.5 → 4.5 and J = 6.5 → 5.5 lines of PO at 240 and 284 GHz, have been detected toward the shells of asymptotic giant branch (AGB) stars TX Cam and R Cas. A similar set of lines has been observed toward the supergiant NML Cyg, and new transitions of these two molecules were also measured toward the AGB star IK Tau. Along with the previous data from VY Canis Majoris (VY CMa), these spectral lines were analyzed using the non-local thermodynamic equilibrium (non-LTE) circumstellar modeling code, ESCAPADE. For the AGB stars, peak abundances found for PN and PO were f ∼ (1–2) × 10‑8 and (0.5–1) × 10‑7, respectively, while those for the supergiants were f(PN) ∼ (0.3–0.7) × 10‑8 and f(PO) ∼ (5–7) × 10‑8. PN was well modeled with a spherical radial distribution, suggesting formation near the stellar photosphere, perhaps enhanced by shocks. PO was best reproduced by a shell model, indicating a photochemical origin, except for VY CMa. Overall, the abundance of PO is a factor of 5–20 greater than that of PN. This study suggests that phosphorus-bearing molecules are common in O-rich envelopes, and that a significant amount of phosphorus (>20%) remains in the gas phase.

  4. AN EXPANDED VERY LARGE ARRAY AND CARMA STUDY OF DUSTY DISKS AND TORII WITH LARGE GRAINS IN DYING STARS

    International Nuclear Information System (INIS)

    Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sanchez Contreras, C.

    2011-01-01

    We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is ν β , with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β ≤ 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.

  5. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    Energy Technology Data Exchange (ETDEWEB)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 106 Pleasant Street S.E., Minneapolis, MN 55455 (United States); Helton, L. A. [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Evans, A. [Astrophysics Group, Lennard Jones Laboratory, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Keller, L. D. [Department of Physics and Astronomy, 264 Center for Natural Sciences, Ithaca College, Ithaca, NY 14850 (United States); Hinkle, K. H. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Jura, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Lebzelter, T. [Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lisse, C. M. [Solar System Exploration Branch, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Rushton, M. T. [Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest, 040557 (Romania); Mizrachi, J., E-mail: arneson@astro.umn.edu [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  6. Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Long, Li-xia [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Jin, E-mail: zhaojin@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Li, Ke; He, Li-gang; Qian, Xiao-ming; Liu, Chao-yong; Wang, Li-mei; Yang, Xin-qi [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Sun, Jinjin [Department of General Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211 (China); Ren, Yu [Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070 (China); Kang, Chun-sheng, E-mail: kang97061@yahoo.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Yuan, Xu-bo, E-mail: xbyuan@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-01

    Star-branched amphiphilic copolymer nanocarriers with high-density zwitterionic shell show great promise in drug delivery due to their controllable small size and excellent anti-biofouling properties. This gives the hydrophobic cargo with high stability and long blood circulation in vivo. In the present study, star-branched polylactic acid and poly(2-methacryloyloxyethyl phosphorylcholine) copolymers with (AB{sub 3}){sub 3}–type architecture (PLA-b-PMPC{sub 3}){sub 3} were conceived as drug vectors, and the copolymers were synthesized by an “arm-first” approach via the combination of ring opening polymerization (ROP), atom transfer radical polymerization (ATRP) and the click reaction. The self-assembled star-branched copolymer micelles (sCPM) had an average diameter of about 64.5 nm and exhibited an ultra-hydrophilic surface with an ultralow water contact angle of about 12.7°, which efficiently suppressed the adhesion of serum proteins. In vivo experiments showed that the sCPM loading strongly enhanced the blood circulation time of DiI and the plasma half-life of DiI in sCPM was 19.3 h. The relative accumulation concentration in tumor of DiI delivered by sCPM was 2.37-fold higher than that of PLA-PEG, at 4 h after intravenous injection. These results demonstrated that the star-branched copolymer (PLA-b-PMPC{sub 3}){sub 3} is a promising alternative carrier material for intravenous delivery versus classic PEG-modified strategies. - Highlights: • Star-branched amphiphilic copolymer micelles (sCPM) with zwitterionic shells were prepared. • sCPM possess an ultra-hydrophilic surface and thus inhibited the protein absorption. • sCPM can effectively prolong the cargo’s plasma circulation time. • sCPM can enhance the cargo’s passive tumor-targeted delivery.

  7. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    NARCIS (Netherlands)

    Marigo, P; Bernard-Salas, J; Pottasch, S. R.; Tielens, A. G. G. M.; Wesselius, P. R.

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. The accuracy on the observed abundances is essential in order to make a reliable comparison with the models.

  8. Fundamental problems and basic tests of stellar evolution theory - the case of carbon stars

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helim in shells above an electron-degenerate carbon-oxygen (CO) core. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved. (Auth.)

  9. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  10. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  11. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    Science.gov (United States)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  12. VizieR Online Data Catalog: Water maser emission toward post-AGB and PN (Gomez+, 2015)

    Science.gov (United States)

    Gomez, J. F.; Rizzo, J. R.; Suarez, O.; Palau, A.; Miranda, L. F.; Guerrero, M. A.; Ramos-Larios, G.; Torrelles, J. M.

    2015-09-01

    The observed sources are listed in Table 1. They comprise most of the sources in Ramos-Larios et al. (2009A&A...501.1207R). They are post-AGB stars and PN candidates with the IRAS color criteria of Suarez et al. (2006A&A...458..173S) and with signs of strong optical obscuration. We have also included some optically visible post-AGB stars from Suarez et al. (2006A&A...458..173S) that were not included in our previous water maser observations of Suarez et al. (2007A&A...467.1085S, 2009A&A...505..217S) or for which those observations had poor sensitivity. We observed the 616-523 transition of H2O (rest frequency = 22235.08MHz) using three different telescopes: the DSS-63 antenna (70m diameter) at the Madrid Deep Space Communications Complex (MDSCC) near Robledo de Chavela (Spain), the 64m antenna at the Parkes Observatory of the Australia Telescope National Facility (ATNF), and the 100m Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory. The observed positions, rms noise per spectral channel, and observing dates are listed in Table 1. (3 data files).

  13. Nuclear reactions in AGB nucleosynthesis: the 19F(α, p22Ne at energies of astrophysical relevance

    Directory of Open Access Journals (Sweden)

    D’Agata G.

    2017-01-01

    Full Text Available The abundance of 19F in the universe is strictly related to standard and extra-mixing processes taking place inside AGB-stars, that are considered to be the most important sites for its production. Nevertheless the way in which it is destroyed is far from being well understood. For this reason we studied the 19F(α,p22Ne reaction, that is supposed to be the main destruction channel in the Helium-rich part of the star. In this experiment, the reaction has been studied in the energy range of relevance for astrophysics (0÷1 MeV via the Trojan Horse Method (THM, using the three-body reaction 6Li(19F,p22Ned.

  14. The 13C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    International Nuclear Information System (INIS)

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-01-01

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different 13 C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar 92 Zr/ 94 Zr ratios can be predicted by adopting a 13 C-pocket with a flat 13 C profile, instead of the previous decreasing-with-depth 13 C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat 13 C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  15. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  16. The circumstellar environment of evolved stars as traced by molecules and dust. The diagnostic power of Herschel

    Science.gov (United States)

    Lombaert, Robin

    2013-12-01

    Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but

  17. The barium-to-iron enrichment versus age relation of ancient disc stars

    Science.gov (United States)

    Fuhrmann, K.; Chini, R.; Kaderhandt, L.; Chen, Z.; Lachaume, R.

    2017-11-01

    We report an intrinsically precise relation of the barium-to-iron enrichment as a function of age for a local, volume-complete (N = 30) sample of ancient Population II (τ ≥ 12 Gyr) and intermediate-disc stars (τ ≃ 10 Gyr), which suggests a common, r-process-dominated nucleosynthesis site for both elements in the early stages of the Milky Way. Deviants from this empirical relation are to a large extent identified as formerly known or new blue straggler stars. We report in particular the striking case of the Population II star HD 159062, whose barium overabundance is difficult to explain without wind accretion of s-process material from a former asymptotic giant branch (AGB) primary that very likely survived as a white dwarf companion. The weak but significant barium enhancement that we measure for HR 3578 and 104 Tau also suggests that both may be accompanied by faint degenerate companions. If confirmed through precision astrometry or direct imaging observations, this would mean a very efficient method to uncover ancient stellar remnant companions around solar-type stars.

  18. FROM THE COLOR-MAGNITUDE DIAGRAM OF {omega} CENTAURI AND (SUPER-)ASYMPTOTIC GIANT BRANCH STELLAR MODELS TO A GALACTIC PLANE PASSAGE GAS PURGING CHEMICAL EVOLUTION SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Herwig, Falk; VandenBerg, Don A.; Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Ferguson, Jason [Department of Physics, Wichita State University Wichita, KS 67260 (United States); Paxton, Bill, E-mail: fherwig@uvic.ca, E-mail: vandenbe@uvic.ca, E-mail: jason.ferguson@wichita.edu, E-mail: paxton@kitp.ucsb.edu [KITP/UC Santa Barbara, Santa Barbara, CA 93106 (United States)

    2012-10-01

    We have investigated the color-magnitude diagram of {omega} Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a helium abundance in the range Y = 0.35-0.40. To explain the faint subgiant branch of the reddest stars ('MS-a/RG-a' sequence), isochrones for the observed metallicity ([Fe/H] Almost-Equal-To -0.7) appear to require both a high age ({approx}13 Gyr) and enhanced CNO abundances ([CNO/Fe] Almost-Equal-To 0.9). Y Almost-Equal-To 0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggests a short chemical evolution period of time (<1 Gyr) for {omega} Cen. Our intermediate-mass (super-)asymptotic giant branch (AGB) models are able to reproduce the high helium abundances, along with [N/Fe] {approx}2 and substantial O depletions if uncertainties in the treatment of convection are fully taken into account. These abundance features distinguish the bMS stars from the dominant [Fe/H] Almost-Equal-To -1.7 population. The most massive super-AGB stellar models (M{sub ZAMS} {>=} 6.8 M{sub Sun }, M{sub He,core} {>=} 1.245 M{sub Sun }) predict too large N enhancements, which limit their role in contributing to the extreme populations. In order to address the observed central concentration of stars with He-rich abundance, we show here quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of {omega} Cen with respect to the Milky Way, we propose the Galactic plane passage gas purging scenario for the chemical evolution of this cluster. The bMS population formed shortly after the purging of most of the cluster gas as a result of the passage of {omega} Cen through the Galactic disk (which occurs today every {approx}40 Myr for {omega} Cen) when the initial mass function of the

  19. Chemical Compositions of RV Tauri Stars and Related Objects

    Science.gov (United States)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  20. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  1. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C. B.; Drake, N. A.; Roig, F. [Observatório Nacional/MCTIC, Rua Gen. José Cristino 77, Rio de Janeiro, 20921-400 (Brazil); Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Miranda, L. F., E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br, E-mail: nobar.baella@gmail.com, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía - CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2017-05-20

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  2. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    International Nuclear Information System (INIS)

    Pereira, C. B.; Drake, N. A.; Roig, F.; Baella, N. O.; Miranda, L. F.

    2017-01-01

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their

  3. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  4. Jet creation in post-AGB binaries: the circum-companion accretion disk around BD+46°442

    Science.gov (United States)

    Bollen, Dylan; Van Winckel, Hans; Kamath, Devika

    2017-11-01

    Aims: We aim at describing and understanding binary interaction processes in systems with very evolved companions. Here, we focus on understanding the origin and determining the properties of the high-velocity outflow observed in one such system. Methods: We present a quantitative analysis of BD+46°442, a post-AGB binary that shows active mass transfer that leads to the creation of a disk-driven outflow or jet. We obtained high-resolution optical spectra from the HERMES spectrograph, mounted on the 1.2 m Flemish Mercator Telescope. By performing a time-series analysis of the Hα profile, we identified the different components of the system. We deduced the jet geometry by comparing the orbital phased data with our jet model. In order to image the accretion disk around the companion of BD+46°442, we applied the technique of Doppler tomography. Results: The orbital phase-dependent variations in the Hα profile can be related to an accretion disk around the companion, from which a high-velocity outflow or jet is launched. Our model shows that there is a clear correlation between the inclination angle and the jet opening angle. The latitudinally dependent velocity structure of our jet model shows a good correspondence to the data, with outflow velocities higher than at least 400 km s-1. The intensity peak in the Doppler map might be partly caused by a hot spot in the disk, or by a larger asymmetrical structure in the disk. Conclusions: We show that BD+46°442 is a result of a binary interaction channel. The origin of the fast outflow in this system might be to a gaseous disk around the secondary component, which is most likely a main-sequence star. Our analysis suggests that the outflow has a rather wide opening angle and is not strongly collimated. Our time-resolved spectral monitoring reveals the launching site of the jet in the binary BD+46°442. Similar orbital phase-dependent Hα profiles are commonly observed in post-AGB binaries. Post-AGB binaries provide ideal

  5. Widespread HCN maser emission in carbon-rich evolved stars

    Science.gov (United States)

    Menten, K. M.; Wyrowski, F.; Keller, D.; Kamiński, T.

    2018-05-01

    Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J = 2 → 1 line in the l-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims: To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods: We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J = 2 → 1 HCN rotational transitions, the (0, 11c, 0) and (0, 11d, 0) l-doublet components, and the line from the (0,0,0) ground state. Results: The (0, 11c, 0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0, 11c, 0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0, 11c, 0) line covers a smaller velocity range than the (0,0,0) line. The (0, 11d, 0) line, which is detected in four of the sources, is much weaker than the other two lines and covers a velocity range that is smaller yet, again except for IRC+10216. Compared to its first detection in 1989, the profile of the (0, 11c, 0) line observed toward IRC+10216 looks very different, and we also appear to see variability in the (0,0,0) line profile (at a much lower degree). Our limited information on temporal variabilitydisfavors a strong correlation of maser and stellar continuum flux

  6. (F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe

    Science.gov (United States)

    Ziegler, Marc

    2013-07-01

    the sample are still too small to start gravitational settling. For the elements C, N, O, Si, P, and S we find increasing abundances with increasing log(Teff^4/g), while the abundances for Ar and Fe decrease. The latter is unexpected as the higher the Teff^4/g ratio, the more the radiative force dominates the gravitational force and, thus, the elements should be kept in the atmosphere. The determined abundances were compared with previous literature values, with abundances predicted from diusion calculations, with abundances from Asymptotic Giant Branch (AGB) nucleosynthesis calculations, and, if available, with abundances found for the corresponding nebulae. The agreement was of mixed quality. The derived Teff and log g values confirmed some literature values while others had to be revised (e.g. for LSS 1362 and NGC1360). However, most of them agree with the previous literature values within the error limits. No difference in Teff can be found for DAO and O(H)-type stars, but O(H)-type stars have a lower log g (5.4 - 6.0) compared to the DAOs (6.5 - 7.4). The exception is the O(H)-type central star of the planetary nebula (CSPN) of Lo 1 with log g = 7.0. A comparison of the positions of each object with stellar evolutionary tracks for post-AGB stars in the log Teff - log g diagram lead to the respective stellar masses. The derived mean mass of the analyzed sample (M = 0.536 ± 0.023 Msol) agrees within the error limits with the expected mean mass for these objects. In the literature M = 0.638 - 0.145 Msol can be found for DA-type white dwarfs, the immediate successors of DAO-type white dwarfs. For two objects (A 35, Sh 2-174) extremely low masses were found. For A35 the derived mass (M_A35 = 0.523 ± 0.05Msol) lies at the lower end of possible masses predicted for post-AGB stars. The very low mass of Sh 2-174 (M_Sh 2-174 = 0.395 ± 0.05Msol) points at Sh 2-174 being a post-extended horizontal branch (EHB) star and not a CSPN. If a stellar mass is too low, it is

  7. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Han, Inwoo; Lee, Sang-Min; Kim, Kang-Min [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Myeong-Gu; Oh, Hyeong-Il [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Mkrtichian, David E. [National Astronomical Research Institute of Thailand, Chiang Mai 50200 (Thailand); Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, D-07778 Tautenburg (Germany); Gu, Shenghong; Bai, Jinming, E-mail: bclee@kasi.re.kr [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-07-20

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues that the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M {sub Jup} orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M {sub Jup} at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H–R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R {sub ⊙} and 57.2 R {sub ⊙} for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.

  8. ISO shows what's in the centre of our Galaxy 100 000 stars seen for the first time

    Science.gov (United States)

    2000-06-01

    The Milky Way is a large spiral galaxy 130 000 light-years across, which began to form about 10 000 or 15 000 million years ago - shortly after the origin of the Universe. It is structured in a thin disk with spiral arms and a great bulge in the centre, which as seen from the Earth lies towards the constellation of Sagittarius. Our Solar System is in the edge of one of the arms, about 25 000 light-years from the centre: a very quiet area compared to the inner central bulge. "The inner bulge of the Milky Way is like the core of a very busy metropolis. The density of stars is 500 times larger than elsewhere in the galaxy - stars can even bump into each other!. These populations of stars give us a lot of information about the whole galaxy. For example, their relative motions might reveal traces of other galaxies devoured by our own in the past", says Alain Omont, at the Institut d'Astrophysique de Paris. Despite its interest, current knowledge about the centre of the Milky Way is far from complete because the dust enshrouding it has blocked the view of most telescopes so far. Only ESA's ISO, the first space observatory working at infrared wavelengths - and hence able to see through the dust - has performed a very deep exploration of its stellar populations. One of ISO's longest observing programme, ISOGAL, has devoted 255 hours to this aim, focusing especially on the inner central bulge. The first results from this programme, a joint effort by astronomers from France, the UK, Holland, Italy, Germany, Spain, Sweden, India, South Africa, Chile and the US are already being published in the scientific literature. 100 000 red giants newly identified In a region of the galactic centre that as seen from Earth is only about four times the angular size of the full moon, ISO has identified a population of more than 100 000 stars of the 'red giant' type. Most of them are the so-called AGB (Asymptotic Giant Branch) stars, which for astronomers adds value to the finding. AGB stars

  9. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  10. Rejuvenation of the Innocent Bystander: Testing Spin-Up in a Dwarf Carbon Star Sample

    Science.gov (United States)

    Green, Paul

    2014-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dC stars are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  11. The color dependent morphology of the post-AGB star HD 161796

    NARCIS (Netherlands)

    Min, M.; Jeffers, S.V.; Canovas, H.; Rodenhuis, M.; Keller, C.U.; Waters, L.B.F.M.

    2013-01-01

    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shells, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects.

  12. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  13. The search for multiple populations in Magellanic Cloud Clusters IV: Coeval multiple stellar populations in the young star cluster NGC 1978

    Science.gov (United States)

    Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.

    2018-04-01

    We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.

  14. Olivier Chesneau's Work on Low Mass Stars

    Science.gov (United States)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  15. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  16. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    Science.gov (United States)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  17. FEROS Finds a Strange Star

    Science.gov (United States)

    1999-02-01

    responsible for the overall design and construction, as well as the data reduction software; this institution was also involved in the construction of the first major instrument for the VLT, FORS. The Copenhagen University Observatory provided the detector controller and took care of the associated installation and tests. ESO supplied the first concept for the new spectrograph, its infrastructure, the fibre link between the telescope and the instrument, and the CCD detector by means of which the spectra are recorded. FEROS is a rather unique instrument. It combines a very large spectral coverage from the near-ultraviolet to the infrared region of the spectrum (360 to 920 nm, altogether 560 nm in one exposure) and a high resolving power. The full spectral range is divided into about 100,000 separate pixels, each of which corresponds to a velocity interval of about 3 km/sec. Moreover, FEROS is extremely light-efficient for an instrument of this complex type. Despite the large number of optical elements needed to produce exceedingly detailed spectra of very high quality, 46% of the light entering the spectrograph is actually recorded by the detector. FEROS is mounted on an optical bench in an isolated and thermally controlled room next to the telescope and is an extremely stable instrument. It is operated in a very user-friendly way, and the observing astronomer can obtain quick-look results directly at the telescope using the FEROS on-line data reduction pipeline that is integrated into the ESO-MIDAS image processing system. Notes: [1]: In addition to very young stars that have not yet destroyed their "original" Lithium, this element is also found in the upper atmospheres of some peculiar stars of the so-called Asymptotic Giant Branch (AGB) type. It is believed that this is the result of nuclear burning of the Helium isotope 3 He that has been produced inside such stars during an earlier evolutionary phase. The Lithium is then brought to the surface by means of "convection", i

  18. AGB Statement on Board Responsibility for the Oversight of Educational Quality

    Science.gov (United States)

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This "Statement on Board Responsibility for the Oversight of Educational Quality," approved by the Board of Directors of the Association of Governing Boards (AGB) in March 2011, urges institutional administrators and governing boards to engage fully in this area of board responsibility. The seven principles in this statement offer suggestions to…

  19. IRAS colors of carbon stars - An optical spectroscopic test

    International Nuclear Information System (INIS)

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.

    1989-01-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs

  20. RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S4G IRAC 3.6 AND 4.5 μm IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Buta, Ronald J.; Zaritsky, Dennis; Hinz, Joannah L.; Skibba, Ramin A.; Laurikainen, Eija; Salo, Heikki; Elmegreen, Debra; Elmegreen, Bruce G.; Gadotti, Dimitri A.; Regan, Michael; Ho, Luis C.; Madore, Barry F.; Gil de Paz, Armando

    2012-01-01

    With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ∼5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information

  1. Phosphorus Chemistry in Oxygen Rich Stars

    Science.gov (United States)

    Bernal, Jacob; Schmidt, Deborah; Anderson, Julie; Ziurys, Lucy M.

    2017-06-01

    Observations of PO and PN have been carried out at the Arizona Radio Observatory at 1, 2, and 3 mm. Multiple transitions of PO and PN have been detected towards the O-rich AGB stars TX Cam and RCas. Data obtained toward supergiant stars VY Canis Majoris and NML Cyg have also been analyzed. Abundances were obtained for these molecules in all four objects using the radiative transfer code ESCAPADE, which is suitable for symmetric and asymmetric stellar outflows. The abundances of PN and PO were found to be in the range 10^{-8} - 10^{-7} relative to H_{2}. While PN appears to be a parent molecule formed by LTE chemistry near the stellar photosphere, PO appears to be created further out from the star at r > 400 R_*.

  2. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  3. Rejuvenation of the Innocent Bystander: Testing Spin-Up in Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul

    2013-09-01

    Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dCs are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).

  4. Rejuvenation of the Innocent Bystander: Results from a Pilot X-ray Study of Dwarf Carbon Stars

    Science.gov (United States)

    Mazzoni, Fernando; Montez, Rodolfo; Green, Paul

    2018-01-01

    We present the results of a pilot study by the Chandra X-ray Observatory of X-ray emission from dwarf Carbon (dC) stars. Carbon stars were thought to be exclusively AGB stars but main sequence dwarfs showing carbon molecular bands appear to be the dominant variety. The existence of dC stars is surprising since dwarf stars cannot intrinsically produce carbon as an AGB star can. It is hypothesized that dC stars are polluted by an evolved companion star. Evidence of past pollution can appear in X-ray emission where increased coronal activity (“spin-up”) or mass accretion via a disk can be detected. Using the Chandra X-ray Observatory we detected X-ray photons in the vicinity of all the dC stars in our a pilot sample. For each detection we characterized the X-ray emission and compared to the emission expected from potential emission scenarios. Although the process that produces the X-ray emission from dC stars is presently unclear and our pilot sample is small, our results suggest that X-ray emission might be a universal characteristic of dC stars. Further examination of the X-ray emission plus future X-ray and multiwavelength observations will help us better understand the nature of these intriguing stars.

  5. Imaging Variable Stars with HST

    Science.gov (United States)

    Karovska, M.

    2012-06-01

    (Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  6. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; de Boer, Thomas; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  7. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  8. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Green, Paul [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, {approx}5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while {approx}7% are giants. The dCs likely span absolute magnitudes M{sub i} from {approx}6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C{sub 2} bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at {approx}40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  9. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Green, Paul

    2013-01-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ∼5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ∼7% are giants. The dCs likely span absolute magnitudes M i from ∼6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C 2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ∼40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  10. Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey

    Science.gov (United States)

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  11. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  12. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  13. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  14. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    Science.gov (United States)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  15. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  16. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  17. Stellar neutron sources and s-process in massive stars

    Science.gov (United States)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  18. Stability properties of Q-stars

    International Nuclear Information System (INIS)

    Becerril, R.; Bernal, A.; Guzman, F.S.; Nucamendi, U.

    2007-01-01

    We present the evolution of Q-star configurations using numerical methods. We solve the full Einstein-Klein-Gordon system of equations and show that: Q-stars can be stable and unstable. The unstable branch is two fold: configurations with negative binding energy that collapse and form black holes, and others with positive binding energy that explode and release the scalar field

  19. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  20. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  1. The giant branch of Omega Centauri. II. Mixing versus primordial abundance variations

    International Nuclear Information System (INIS)

    Norris, J.; Bessell, M.S.

    1977-01-01

    The lower giant branch of ω Centauri in the magnitude range 13< V<14 contains weak-G-band stars, CH stars, and CN stars; five stars from a sample of 20 members are clearly peculiar. There is also a positive correlation between the strength of the CN band at lambda3883 and the Ca II H and K lines in this sample, with the calcium lines being strongest in the CH and CN stars. All available BVRI data show that while the wide giant branch of ω Cen in the (V, B--V) -plane extends redward almost to that of 47 Tuc, there is a clear separation of ω Cen from 47 Tuc in the (V, R--I) -plane. This suggests that there are no stars on the giant branch of ω Cen with metal abundance as high as that in 47 Tuc. We obtain an upper limit [Fe/H]approx.-1.0 for a sample of approx.60 ω Cen giants brighter than V=14. This is surprising in view of the result of Freeman and Rodgers that there exist strong-lined RR Lyrae stars on the horizontal branch of ω Cen which are most easily understood in terms of 47 Tucanae-like abundances. While we offer no explanation for the strong-lined RR Lyrae stars, we suggest that the mixed stars on the giant branch of ω Cen are stronger lined than normal because of the effect of CN opacity on their atmospheric structure

  2. Stellar evolution IV: evolution of a star of 1.5 M(S) from the main-sequence to the red-giant branch with and without overshooting from convective core

    International Nuclear Information System (INIS)

    Maeder, A.

    1975-01-01

    For a star of 1.5 M(S) with an initial composition given by X=0.70 and Z=0.03, three sets of evolutionary models are computed with different assumptions on the non-local effects characterizing the turbulent motions in the convective core. Some overshooting from the convective core may occur during Main-sequence evolution. The changes in the stellar structure, lifetimes and evolutionary tracks brought about by this process are studied. Some characteristics of the evolutionary tracks in the theoretical HR diagram have a very high sensitivity to the exact extent of the convective core, and this may provide powerful tests of events occurring in the deep stellar interior. (orig./BJ) [de

  3. Poisson branching point processes

    International Nuclear Information System (INIS)

    Matsuo, K.; Teich, M.C.; Saleh, B.E.A.

    1984-01-01

    We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers

  4. Renal Branch Artery Stenosis

    DEFF Research Database (Denmark)

    Andersson, Zarah; Thisted, Ebbe; Andersen, Ulrik Bjørn

    2017-01-01

    Renovascular hypertension is a common cause of pediatric hypertension. In the fraction of cases that are unrelated to syndromes such as neurofibromatosis, patients with a solitary stenosis on a branch of the renal artery are common and can be diagnostically challenging. Imaging techniques...... that perform well in the diagnosis of main renal artery stenosis may fall short when it comes to branch artery stenosis. We report 2 cases that illustrate these difficulties and show that a branch artery stenosis may be overlooked even by the gold standard method, renal angiography....

  5. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  6. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  7. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  8. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  9. Gamma-ray line emission from 26Al produced by Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Prantzos, N.; Casse, M.; Gros, M.; Arnould, M.

    1985-08-01

    The recent satellite observations of the 1.8 MeV line from the decay of 26 Al has given a new impetus to the study of the nucleosynthesis of 26 Al. In this communication we discuss the production and ejection of 26 Al by massive mass-losing stars (Of and WR stars), in the light of recent stellar models. We also derive the longitude distribution of the 26 Al gamma-ray line emission produced by the galactic collection of WR stars, based on various estimates of their radial distribution. This longitude profile provides i) a specific signature of massive stars on the background of other potential 26 Al sources, as novae, supernovae, certain red giants and possibly AGB stars and ii) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments

  10. Branching trajectory continual integral

    International Nuclear Information System (INIS)

    Maslov, V.P.; Chebotarev, A.M.

    1980-01-01

    Heuristic definition of the Feynman continual integral over branching trajectories is suggested which makes it possible to obtain in the closed form the solution of the Cauchy problem for the model Hartree equation. A number of properties of the solution is derived from an integral representation. In particular, the quasiclassical asymptotics, exact solution in the gaussian case and perturbation theory series are described. The existence theorem for the simpliest continual integral over branching trajectories is proved [ru

  11. Elemental abundances of mercury-manganese stars and the population 2-type star HD 109995

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1985-02-01

    Ultraviolet and optical data for the Hg-Mn stars Coronae Borealis and Cancri is being combined with data for the field-horizontal-branch population II star HD 109995 in order to derive the element abundances in their photospheres. Data collected by IUE is being utilized

  12. Branches of the landscape

    International Nuclear Information System (INIS)

    Dine, Michael; O'Neil, Deva; Sun Zheng

    2005-01-01

    With respect to the question of supersymmetry breaking, there are three branches of the flux landscape. On one of these, if one requires small cosmological constant, supersymmetry breaking is predominantly at the fundamental scale; on another, the distribution is roughly flat on a logarithmic scale; on the third, the preponderance of vacua are at very low scale. A priori, as we will explain, one can say little about the first branch. The vast majority of these states are not accessible even to crude, approximate analysis. On the other two branches one can hope to do better. But as a result of the lack of access to branch one, and our poor understanding of cosmology, we can at best conjecture about whether string theory predicts low energy supersymmetry or not. If we hypothesize that are on branch two or three, distinctive predictions may be possible. We comment of the status of naturalness within the landscape, deriving, for example, the statistics of the first branch from simple effective field theory reasoning

  13. 细粒棘球绦虫AgB8/1-AgB8/2重组嵌合抗原表达系统的构建%Establishment of Echinococcus granulosus AgB8/1-AgB8/2 chimeric recombinant protein expression system

    Institute of Scientific and Technical Information of China (English)

    古力帕丽·麦曼提依明; 马海梅; 吾拉木·马木提; 陈洁; 陈璐; 丁剑冰; 马秀敏; 温浩

    2011-01-01

    目的 构建pET32a-AgB8/1-AgB8/2原核表达载体,并对其重组蛋白进行原核细胞表达.方法 从细粒棘球绦虫原头蚴中提取总RNA,反转录生成cDNA,以此cDNA为模板,用基因特异性引物分别扩增EgAgB8/1和EgAgB8/2基因编码其分泌型多肽的片段,经测序后,以此两条基因片段为依据,人工合成EgAgB8/1-EgAgB8/2嵌合抗原编码核酸序列,将其克隆至pUCm-T载体,测序鉴定其正确性.通过对pUCm-T/AgB8/1-AgB8/2重组质粒进行双酶切,将获得的AgB8/1-AgB8/2嵌合抗原编码核酸序列用定向克隆技术克隆至原核表达质粒pET32a上,测序鉴定插入片段正确后,转化至E.coli BL21(DE3)Lys S,IPTG初步诱导表达pET32a-AgB8/1-AgB8/2重组嵌合蛋白.用SDS-PAGE电泳分析鉴定重组蛋白的表达水平.结果 测序表明,AgB8/1-AgB8/2嵌合抗原编码核酸序列正方向插入至pET32a质粒.SDS-PAGE电泳分析显示,IPTG诱导后重组嵌合蛋白得到成功表达,在相对分子量约38 kD处有表达条带.结论 成功构建了pET32a-AgB8/1-AgB8/2原核表达质粒,并初步诱导表达出AgB8/1-AgB8/2嵌合重组蛋白,为进一步研究其免疫学特性奠定了基础.%In order to construct the pET32a-AgB8/1-AgB8/2 chimeric antigen prokaryotic expression recombinant plasmid and the expression of its recombinant protein, the total RNA was extracted from protoscoleces of Echinococcus granulosus,and reverse transcribed into cDNA, the cDNA encoding mature form of EgAgB8/land EgAgB8/2 antigen were amplified by PCR using gene specific primers.Based on the both gene fragments, a nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were artificially synthesized after sequence confirmation.The synthesized nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were conformed by sequencing after cloning into pUCm-T vector, then the target sequence was directionally ligated into pET32a plasmid after double digestion with restriction enzymes for prokaryotic

  14. Branches of the Facial Artery.

    Science.gov (United States)

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  15. BRITE-Constellation: Nanosatellites for precision photometry of bright stars

    Science.gov (United States)

    Weiss, W. W.; Moffat, A. F. J.; Schwarzenberg-Czerny, A.; Koudelka, O. F.; Grant, C. C.; Zee, R. E.; Kuschnig, R.; Mochnacki, St.; Rucinski, S. M.; Matthews, J. M.; Orleański, P.; Pamyatnykh, A. A.; Pigulski, A.; Alves, J.; Guedel, M.; Handler, G.; Wade, G. A.; Scholtz, A. L.; Scholtz

    2014-02-01

    BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V ~ 4, with precision and time coverage not possible from the ground. The current mission design consists of three pairs of 7 kg nanosats (hence ``Constellation'') from Austria, Canada and Poland carrying optical telescopes (3 cm aperture) and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats (funded by Austria) are UniBRITE, designed and built by UTIAS-SFL (University of Toronto Institute for Aerospace Studies-Space Flight Laboratory) and its twin, BRITE-Austria, built by the Technical University Graz (TUG) with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency, under contract to the Canadian Space Agency. Each BRITE instrument has a wide field of view (~ 24 degrees), so up to 15 bright stars can be observed simultaneously in 32 × 32 sub-rasters. Photometry (with reduced precision but thorough time sampling) of additional fainter targets will be possible through on-board data processing. A critical technical element of the BRITE mission is the three-axis attitude control system to stabilize a nanosat with very low inertia. The pointing stability is better than 1.5 arcminutes rms, a significant advance by UTIAS-SFL over any previous nanosatellite. BRITE-Constellation will primarily measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology. The BRITE sample of many of the brightest stars in the night sky is dominated by the most intrinsically luminous stars: massive stars seen at all evolutionary stages, and evolved medium-mass stars at the very end of their nuclear burning phases (cool giants and AGB stars). The Hertzsprung-Russell diagram for stars brighter than mag V=4 from which the BRITE-Constellation sample

  16. High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608

    Science.gov (United States)

    Şahin, T.

    2018-01-01

    We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.

  17. VD-411 branch driver

    International Nuclear Information System (INIS)

    Gorbunov, N.V.; Karev, A.G.; Mal'tsev, Eh.I.; Morozov, B.A.

    1985-01-01

    The VD-411 branch driver for CAMAC moduli control by the SM-4 computer is described. The driver realizes data exchange with moduli disposed in 28 crates grouped in 4 branches. Data exchange can be carried out either in the program regime or in the regime of direct access to the memory. Fulfilment of 11 block regimes and one program regime is provided for. A possibility of individual programming of exchange methods in block regimes is left for users for organisation of quicker and most flexible data removal from the CAMAC moduli. In the regime of direct access the driver provides data transmission at the size up to 64 Kwords placing it in the computer memory of 2 M byte. High rate of data transmission and the developed system of interruptions ensure efficient utilization of the VD-411 branch driver at data removal from facilities in high energy physics experiments

  18. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  19. Energy generation in convective shells of low mass, low metallicity stars

    International Nuclear Information System (INIS)

    Bazan, G.

    1989-01-01

    We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs

  20. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  1. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  2. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  3. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  4. Tracheobronchial Branching Anomalies

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick; Park, A Young

    2010-01-01

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  5. Intermittency in branching models

    International Nuclear Information System (INIS)

    Chiu, C.B.; Texas Univ., Austin; Hwa, R.C.; Oregon Univ., Eugene

    1990-01-01

    The intermittency properties of three branching models have been investigated. The factorial moments show power-law behavior as function of small rapidity width. The slopes and energy dependences reveal different characteristics of the models. The gluon model has the weakest intermittency. (orig.)

  6. State-set branching

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Veloso, Manuela M.; Bryant, Randal E.

    2008-01-01

    In this article, we present a framework called state-set branching that combines symbolic search based on reduced ordered Binary Decision Diagrams (BDDs) with best-first search, such as A* and greedy best-first search. The framework relies on an extension of these algorithms from expanding a sing...

  7. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  8. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  9. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  11. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  12. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  13. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  14. Origin of the solar system s-process abundances

    International Nuclear Information System (INIS)

    Malaney, R.A.; Boothroyd, A.I.

    1987-01-01

    In the search for the origin of the solar system s-process abundances much attention has been focused on the intershell zones of thermally pulsing asymptotic giant branch (AGB) stars. It has recently been suggested that, relative to the poor fits obtained from intermediate-mass AGB models, low-mass AGB models may result in much better fits to the observed solar system abundances. This suggestion was motivated by the high intershell base temperatures indicated by recent low-mass AGB calculations. Using new data, presented for the peak intershell base temperature in such stars, the s-process enhancements occurring in the intershell zones of low-mass AGB stars are calculated. A nonsolar distribution of s-process abundances is reported for all realistic AGB models studied. Other possible astrophysical sites for the origin of the solar system s-process abundances are discussed. 35 references

  15. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  16. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  17. Iron Abundance in the Prototype PG 1159 Star, GW Vir Pulsator PG 1159-035, and Related Objects

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.; Kurucz, R. L.

    2011-01-01

    We performed an iron abundance determination of the hot, hydrogen deficient post-AGB star PG 1159-035. which is the prototype of the PG 1159 spectral class and the GW Vir pulsators, and of two related objects (PG 1520+525, PG 1144+005), based on the first detection of Fe VIII lines in stellar photospheres. In another PG 1159 star. PG 1424+535. we detect Fe VII lines. In all four stars, each within T(sub eff) = 110,000-150,000 K, we find a solar iron abundance. This result agrees with our recent abundance analysis of the hottest PG 1159 stars (T(sub eff) = 150,000-200,000 K) that exhibit Fe x lines. On the whole, we find that the PG 1159 stars are not significantly iron deficient, in contrast to previous notions.

  18. Compact Stars with Sequential QCD Phase Transitions

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-01

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  19. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included...... in the Copenhagen City Heart Study examined in 1976-2003 free from previous myocardial infarction (MI), chronic heart failure, and left bundle branch block through registry linkage until 2009 for all-cause mortality and cardiovascular outcomes. The prevalence of RBBB/IRBBB was higher in men (1.4%/4.7% in men vs. 0.......5%/2.3% in women, P block was associated with significantly...

  20. Generalized Markov branching models

    OpenAIRE

    Li, Junping

    2005-01-01

    In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...

  1. Tau leptonic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.

  2. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  3. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  4. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    Science.gov (United States)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  5. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  8. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  9. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  10. The branch librarians' handbook

    CERN Document Server

    Rivers, Vickie

    2004-01-01

    ""Recommended""--Booklist; ""an excellent addition...highly recommended""--Public Libraries; ""clear...very sound advice...strongly recommend""--Catholic Library World; ""excellent resource...organized...well written""--Against the Grain; ""interesting...thoroughly practical...a very good book...well organized...clearly written""--ARBA. This handbook covers a wide variety of issues that the branch librarian must deal with every day. Chapters are devoted to mission statements (the Dallas Public Library and Dayton Metro Library mission statements are highlighted as examples), library systems,

  11. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil.

    Science.gov (United States)

    Babu, A Giridhar; Shea, Patrick J; Sudhakar, D; Jung, Ik-Boo; Oh, Byung-Taek

    2015-03-15

    Endophytic bacteria have the potential to promote plant growth and heavy metal(loid) (HM) removal from contaminated soil. Pseudomonas koreensis AGB-1, isolated from roots of Miscanthus sinensis growing in mine-tailing soil, exhibited high tolerance to HMs and plant growth promoting traits. Transmission electron microscope (TEM) analysis revealed that AGB-1 sequestered HMs extracellularly and their accumulation was visible as dark metal complexes on bacterial surfaces and outside of the cells. DNA sequencing of HM resistance marker genes indicated high homology to the appropriate regions of the arsB, ACR3(1), aoxB, and bmtA determinants. Inoculating mining site soil with AGB-1 increased M. sinensis biomass by 54%, chlorophyll by 27%, and protein content by 28%. High superoxide dismutase and catalase activities, and the lower malondialdehyde content of plants growing in AGB-1-inoculated soil indicate reduced oxidative stress. Metal(loid) concentrations in roots and shoots of plants grown in inoculated soil were higher than those of the controls in pot trials with mine tailing soil. Results suggest that AGB-1 can be used in association with M. sinensis to promote phytostabilization and remediation of HM-contaminated sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Observações espectroscópicas da candidata a pós-AGB IRAS 19386+0155

    Science.gov (United States)

    Lorenz-Martins, S.; Pereira, C. B.

    2003-08-01

    Nesse trabalho apresentamos a análise fotosférica da estrela candidata a pós-AGB IRAS 19386+0155. Com os dados obtidos no espectrógrafo FEROS foram determinados os parâmetros atmosféricos e abundâncias fotosféricas utilizando o código MOOG. A análise do espectro mostrou que IRAS 19386+0155 possui os seguintes parâmetros atmosféricos : Teff = 6800K, log g = 1.4, [M/H] = -1.5 e Vt = 8.4 km/s. O padrão de abundância obtido para os elementos mais leves (Carbono, Nitrogênio e Oxigênio) e elementos a (Magnésio, Silício e Cálcio) foi inferior ao solar (log C = 7.74, log N = 7.28, Log O = 8.43, log Mg = 7.14, log Si = 7.54 e log Ca = 5.91). Uma inspeção visual do espectro ISO deste objeto revela a presença de poeira fria na forma de silicatos cristalinos. Embora as bandas mais marcantes de silicatos amorfos (em 10 mm e 18mm) não sejam observadas, a emissão em 21 mm, presente em algumas pós-AGBs também não está presente. O espectro ISO parece revelar um meio rico em oxigênio, mas a forma da distribuição de energia no infravermelho não obedece ao padrão apresentado por outras pós-AGBs. Nossos resultados nos levam a sugerir que IRAS 19386+0155 talvez faça parte de um sistema binário, uma vez que outras pós-AGBs que são membros de sistemas binários apresentam padrão de abundância semelhante.

  13. The Chemistry of Extragalactic Carbon Stars

    Science.gov (United States)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  14. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  15. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  16. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C. [Cornell Center for Astrophysics and Planetary Science, Cornell Univ., Ithaca, NY 14853-6801 (United States); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Univ. of Manchester, Manchester M13 9PL (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Lagadec, E. [Observatoire de la Côte d’Azur, F-06300, Nice (France); Boyer, M. L. [CRESST and Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Kemper, F.; Srinivasan, S. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C. (China); Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Van Loon, J. Th. [Lennard Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Volk, K., E-mail: sloan@isc.astro.cornell.edu [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  17. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    International Nuclear Information System (INIS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Srinivasan, S.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Van Loon, J. Th.; Volk, K.

    2016-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C 2 H 2 at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  18. A spectral atlas of λ Bootis stars

    Directory of Open Access Journals (Sweden)

    Paunzen E.

    2014-01-01

    Full Text Available Since the discovery of λ Bootis stars, a permanent confusion about their classification can be found in literature. This group of non-magnetic, Population I, metal-poor A to F-type stars, has often been used as some sort of trash can for "exotic" and spectroscopically dubious objects. Some attempts have been made to establish a homogeneous group of stars which share the same common properties. Unfortunately, the flood of "new" information (e.g. UV and IR data led again to a whole zoo of objects classified as λ Bootis stars, which, however, are apparent non-members. To overcome this unsatisfying situation, a spectral atlas of well established λ Bootis stars for the classical optical domain was compiled. It includes intermediate dispersion (40 and 120Å mm-1 spectra of three λ Bootis, as well as appropriate MK standard stars. Furthermore, "suspicious" objects, such as shell and Field Horizontal Branch stars, have been considered in order to provide to classifiers a homogeneous reference. As a further step, a high resolution (8Å mm-1 spectrum of one "classical" λ Bootis star in the same wavelength region (3800-4600Å is presented. In total, 55 lines can be used for this particular star to derive detailed abundances for nine heavy elements (Mg, Ca, Sc, Ti, Cr, Mn, Fe, Sr and Ba.

  19. Quiver Varieties and Branching

    Directory of Open Access Journals (Sweden)

    Hiraku Nakajima

    2009-01-01

    Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.

  20. Integrating over Higgs branches

    International Nuclear Information System (INIS)

    Moore, G.; Shatashvili, S.

    2000-01-01

    We develop some useful techniques for integrating over Higgs branches in supersymmetric theories with 4 and 8 supercharges. In particular, we define a regularized volume for hyperkaehler quotients. We evaluate this volume for certain ALE and ALF spaces in terms of the hyperkaehler periods. We also reduce these volumes for a large class of hyperkaehler quotients to simpler integrals. These quotients include complex coadjoint orbits, instanton moduli spaces on R 4 and ALE manifolds, Hitchin spaces, and moduli spaces of (parabolic) Higgs bundles on Riemann surfaces. In the case of Hitchin spaces the evaluation of the volume reduces to a summation over solutions of Bethe ansatz equations for the non-linear Schroedinger system. We discuss some applications of our results. (orig.)

  1. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  2. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  3. The efficiency of bank branches

    OpenAIRE

    Omid Takbiri; Mohammad Mohammadi; Bahman Naderi

    2015-01-01

    Banking industry has significant contribution in development of economies of developing countries. Most banks execute their operations through different branches. Therefore it is important to measure the relative efficiencies of these branches. Data envelopment analysis (DEA) is one of the most useful tools in measuring banks’ performance. The present paper aims to extract ranking pattern of banks based on performance evaluation using DEA analysis. In the present research, 120 bank branches o...

  4. Methods and Technologies Branch (MTB)

    Science.gov (United States)

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  5. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  6. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  7. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  8. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  9. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  10. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  11. White dwarf stars with carbon atmospheres.

    Science.gov (United States)

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  12. A-type central stars of planetary nebulae. 2. The central stars of NGC 2346, He 2-36 and NGC 3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1978-12-01

    Spectrograms, scanner, uvby and ANS ultraviolet measurements of the central stars of NGC 2346, He 2-36 and NGC 3132 are analysed. The observations suggest that the first one is a foreground horizontal-branch star, and the second is above the horizontal branch, presumably in a rapid evolutionary phase. Both objects are probably variable. The central star of NGC 3132 is a slightly evolved main-sequence star with a hot visual companion. The evolutionary status of this system is briefly discussed.

  13. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    Science.gov (United States)

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  14. Tau hadronic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...

  15. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  16. Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches

    KAUST Repository

    Ratkanthwar, Kedar

    2013-01-01

    An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl) diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILi, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and 1H-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers. © 2013 The Royal Society of Chemistry.

  17. CONSTRAINTS ON HELIUM ENHANCEMENT IN THE GLOBULAR CLUSTER M3 (NGC 5272): THE HORIZONTAL BRANCH TEST

    International Nuclear Information System (INIS)

    Catelan, M.; Valcarce, A. A. R.; Cortes, C.; Grundahl, F.; Sweigart, A. V.

    2009-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of ∼>0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the cluster's blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  18. Binary stars as sources of iron and of s-process isotopes

    International Nuclear Information System (INIS)

    Iben, Icko Jr.; Bologna Univ.; Sussex Univ., Brighton

    1986-01-01

    Sources of elements and isotopes in stars, during the development of stars, is examined. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. Intermediate mass stars in their asymptotic giant branch phase of evolution as sources of carbon, merging white dwarfs as sources of iron, and helium star cataclysmics as sources of s-process elements, are all discussed. (U.K.)

  19. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.; Villanova, S.; Mennickent, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Zamora, O.; García-Hernández, D. A.; Dell’Agli, F.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Souto, Diogo; Cunha, Katia [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Hasselquist, Sten [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Vieira, K. [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Zasowski, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sobeck, J.; Hayes, C. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Placco, V. M., E-mail: jfernandezt@astro-udec.cl, E-mail: jfernandezt87@gmail.com [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); and others

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  20. New candidates for carbon stars with silicate features

    Science.gov (United States)

    Chan, S. J.; Kwok, Sun

    1991-01-01

    All stars in the General Catalog of Cool Galactic Carbon Stars with IRAS 12-micron fluxes greater than 10 Jy were searched for Low-Resolution-Spectrometer (LRS) spectra in the IRAS LRS data base. Out of the 532 spectra examined, 11 were found to show the 9.7-micron silicate emission feature. Four of these are identified for the first time. This group of carbon stars may represent transition objects between oxygen-rich and carbon-rich stars on the asymptotic giant branch.

  1. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  2. The Geometry Optimisation of a Triple Branch Pipe Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2008-01-01

    Full Text Available The paper presents the geometrical optimization of a triple branch pipesubmitted to an internal pressure. The goal of the optimization was todetermine the optimum thickness of piping and branch pipe ribs, in thecondition of reaching admissible values of the stress and displacement.The resistance calculus was realized with Cosmos DesignStar softwareand the geometry was modeled with Microstation Modeler software.

  3. Hot Jupiters and cool stars

    International Nuclear Information System (INIS)

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-01-01

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M ☉ ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  4. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  5. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin D. [Institute d' Astrophysique de Paris, CNRS, UPMC, 98bis Bd Arago, F-75014 Paris (France); Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Gil de Paz, Armando [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lee, Janice C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Boquien, Mederic [Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  6. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  7. Abundances in very metal-poor stars

    Science.gov (United States)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  8. Critical Phenomena Associated with Boson Stars

    OpenAIRE

    Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via co...

  9. Topological analysis of long-chain branching patterns in polyolefins.

    Science.gov (United States)

    Bonchev, D; Markel, E; Dekmezian, A

    2001-01-01

    Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.

  10. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    while one star is only slightly above solar metallicity, the other is likely more than four times as metal-rich as the Sun.The features in the observed and synthetic spectra generally matched well, but the absorption lines of scandium, vanadium, and yttrium were consistently stronger in the observed spectra than in the synthetic spectra. This led the authors to conclude that these galactic center stars are unusually rich in these metals trace elements that could reveal the formation history of the galactic nucleus.Old Stars, New Trends?Scandium to iron ratio versusiron abundance for stars in the disk of the Milky Way (blue) and the stars in this sample (orange). The value reported for this sample is a 95% lower limit. [Do et al. 2018]For stars in the disk of the Milky Way, the abundance of scandium relative to iron tends to decrease as the overall metallicity increases, but the stars investigated in this study are both iron-rich and anomalously high in scandium. This hints that the nuclear star cluster might represent a distinct stellar population with different metallicity trends.However, its not yet clear what could cause the elevated abundances of scandium, vanadium, and yttrium relative to other metals. Each of these elements is linked to a different source; scandium and vanadium are mainly produced in Type II and Type Ia supernovae, respectively, while yttrium is likely synthesized in asymptotic giant branch stars. Future observations of stars near the center of the Milky Way may help answer this question and further constrain the origin of our galaxys nuclear star cluster.CitationTuan Do et al 2018 ApJL 855 L5. doi:10.3847/2041-8213/aaaec3

  11. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    Energy Technology Data Exchange (ETDEWEB)

    Iben, I. Jr.; Tutukov, A.V. (Illinois Univ., Urbana (USA); Astronomicheskii Sovet, Moscow (USSR))

    1989-07-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs.

  12. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1989-01-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs

  13. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  14. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  15. DK UMa: A Star on the Ascent

    Science.gov (United States)

    Simon, Theodore

    1999-01-01

    DK UMa (= 24 UMa = HD 82210) is a G4 IV-III star. According to its M(sub v) and B - V color, it is located at the base of the red giant branch, having recently exited from the Hertzsprung Gap. Now poised to start its first ascent along the giant branch, DK UMa is at a significant juncture in its post-main-sequence evolution, offering an important evolutionary comparison for magnetic activity with stars like 31 Comae, which is just entering the Hertzsprung Gap, and older stars like the Hyades giants or P Ceti, which have passed the tip of the giant branch and lie in the so-called 'clump'. As part of a major survey of the ultraviolet and X ray properties of a well-defined sample of evolved giant stars, DK UMa was observed with the Extreme Ultraviolet Explorer (EUVE) spacecraft in March 1997, for a total exposure time of 230 kiloseconds. A plot of the extracted short-wavelength (SW) spectrum of this star is shown, where it is compared with similar EUVE exposures for other yellow and red giant stars in the activity survey. In terms of the spectral lines of different ionization stages present in these spectra, the transition region and coronal temperature of DK UMa appears to be intermediate between those of 31 Com and P Ceti. Combining the relative strengths of the EUVE lines with Hubble Space Telescope (HST) data at near UV wavelengths and with ROSAT X-ray fluxes, the differential emission measure (DEM) distributions of these stars form a sequence in coronal temperature, which peaks at 10(exp 7.2) K for 31 Com, at 10(exp 6.8) K for B Ceti, and at intermediate temperatures for DK UMa - consistent with the evolutionary stages represented by the three stars. The integrated fluxes of the strongest emission lines found in the EUVE spectrum of DK UMa are listed, again compared with similar measurements for other giant stars that were observed in the course of other EUVE Guest Observer programs.

  16. Integrated photometry of globular star clusters in the Vilnius system

    International Nuclear Information System (INIS)

    Zdanavichyus, K.V.

    1983-01-01

    Integrated colour indices in the Vilnius photometric system and newly determined colour excesses Esub(B-V) for 39 globular clusters are presented. It is shown that the coincidence of integrated spectral types are not a sufficient criterion for the identity of intrinsic colour indices of globular clusters. Relation of integrated colour indices with the slope of the giant branch S and with the horizontal branch morphological type D is investigated. Integrated colour indices of clusters with a blue horizontal branch show no correlation with either D or S. The increase of colour indices of the clusters of types D >= 4 correlates with the distribution of stars along the horizontal branch. Integrated photometry of globular star clusters in the Vilnius multicoloured photometric system permits to determine their colour excesses from some Q diagrams and normal colour index. Integral normal colour indexes and Q parameters for I globular star clusters of the Mironov group display small changes as compared to clusters of group 2. Colour indexes among star clusters having only red horizontal branches (D=7) change most considerably

  17. IS DUST FORMING ON THE RED GIANT BRANCH IN 47 Tuc?

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Van Loon, Jacco Th.; McDonald, Iain; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy; Whitney, Barbara

    2010-01-01

    Using Spitzer Infrared Array Camera (IRAC) observations from the SAGE-SMC Legacy program and archived Spitzer IRAC data, we investigate dust production in 47 Tuc, a nearby massive Galactic globular cluster. A previous study detected infrared excess, indicative of circumstellar dust, in a large population of stars in 47 Tuc, spanning the entire red giant branch (RGB). We show that those results suffered from effects caused by stellar blending and imaging artifacts and that it is likely that no stars below ∼1 mag from the tip of the RGB are producing dust. The only stars that appear to harbor dust are variable stars, which are also the coolest and most luminous stars in the cluster.

  18. Theoretical red-giant branches for globular clusters

    International Nuclear Information System (INIS)

    VandenBerg, D.A.

    1984-01-01

    The authors reports computations of stellar evolutionary sequences from the base of the red-giant branch to the helium flash. Representative models with masses in the range of 0.8 to 0.9 solar masses were selected in order that the stars on the giant branches had ages of approximately 16 billion yr. Initial numerical experiments indicated that a value of α = 1.6 for the ratio of the mixing length to the pressure scale height was needed to provide the best of the Z = 0.0001 model sequence with the observations of M92. Sequences for the other assumed metallicities, Z = 0.0003, 0.001, 0.003, and 0.006, were then computed for the same value of the mixing-length parameter and overlayed directly on the observations. (Auth.)

  19. The giant branch of omega Centauri. I. Abundance variations due to mixing

    International Nuclear Information System (INIS)

    Bessell, M.S.; Norris, J.

    1976-01-01

    David Dunlap Observatory (DDO) intermediate-band and RI photometry, together with low-dispersion spectra of a representative sample of stars on the upper giant branch were analysed. Several conclusions were: i) The large width of the giant branch is inseparably connected with mixing. All stars on the red side of the upper giant branch appear to have greatly enhanced features of the CN molecule, with no comparable enhancement of [Fe/H]. ii) A positive correlation between [Fe/H] and the CN excess deltaC (41--42) exists in ω Cen similar to that reported by McClure and Norris for NGC 362. We suggest that this can be explained by the effect of the strong CN band at lambda3800 on the 38 filter of the DDO system. A broad continuum depression around lambda4000 exists in the mixed stars and may also contribute to the correlation. iii) The stars on the blue side of the giant branch show no evidence for mixing and yield an abundance [Fe/H]=-2.1 +- 0.2. It appears that the material from which the cluster formed was as metal deficient as the very metal poor globular clusters. iv) The strong CN enhancement in stars on the red side of the giant branch is not accompanied by greatly enhanced features of CH and C 2 as found in the CH stars. We suggest that the CN stars have O/C>1 and that during the mixing process much of the material now seen at the surface of these objects has been processed through the CN cycle. v) The large width of the branch seen in the (V, B--V) -plane is greatly reduced in the (R, R--I) -plane. This suggests to us that blocking effects are predominant in causing the observed spread in (B--V). We consider the problem that ω Cen is apparently unique in possessing an anomalously wide giant branch. We investigate the possibility that the effect could result from anomalously large angular momentum, and suggest that it might be profitable to observe the highly flattened cluster NGC 6273 to ascertain if it exhibits the same phenomenon

  20. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    Energy Technology Data Exchange (ETDEWEB)

    Valcarce, A. A. R.; De Medeiros, J. R. [Universidade Federal do Rio Grande do Norte, Departamento de Física, 59072-970 Natal, RN (Brazil); Catelan, M. [Pontificia Universidad Católica de Chile, Centro de Astroingeniería, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Alonso-García, J. [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Facultad de Física, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Cortés, C. [Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Física, Av. José Pedro Alessandri 774, Santiago (Chile)

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  1. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    International Nuclear Information System (INIS)

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-García, J.; Cortés, C.

    2014-01-01

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  2. Space plasma branch at NRL

    Science.gov (United States)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  3. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  4. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    International Nuclear Information System (INIS)

    Ghezzi, Cristian R.

    2005-01-01

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture

  5. Branch prediction in the pentium family

    DEFF Research Database (Denmark)

    Fog, Agner

    1998-01-01

    How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions.......How the branch prediction mechanism in the Pentium has been uncovered with all its quirks, and the incredibly more effective branch prediction in the later versions....

  6. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  7. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  8. Cyanogen distribution of M4 and the possible connection between horizontal branch morphology and chemical inhomogeneity

    International Nuclear Information System (INIS)

    Norris, J.

    1981-01-01

    A spectroscopic survey of 45 red giants in the globular cluster M4 has been completed with a view to ascertaining whether the bimodal distribution of stars on the horizontal branch (Lee) is accompanied by a cyanogen dichotomy on the giant branch, similar to the situation found in NGC 6752. From analysis of some 118 spectra, it is concluded that the red giants in M4 (in the magnitude range M/sub V/approx.0.3 to -1.2) do show a bimodal cyanogen distribution. There appears also to be an anticorrelation between the behavior of CN and CH. A working hypothesis is proposed which will explain most of the known peculiarities of the three globular clusters 47 Tuc, M4, and NGC 6752, for which comprehensive cyanogen surveys are available. It is suggested that there is a spectrum of core rotational velocity in the main-sequence stars of globular clusters. Beyond some critical value of the rotational velocity, a star will mix the products of the CN cycle into its outer layers, while still on or near the main sequence. The range in angular momentum leads also to a range in luminosity at which helium flash occurs and, thereby, to a range in envelope mass on the horizontal branch. Both the distribution of the products of mixing in the red giants and that of stars along the horizontal branch are thus determined by the spectrum of angular velocities in the cluster stars. This work thus supports the contention that core rotation is a parameter which effects horizontal branch morphology (the case is made that it should be regarded as the third parameter). The hypothesis has the advantage that it makes several predictions which are open to observational test

  9. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  10. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  11. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  12. Cash efficiency for bank branches.

    Science.gov (United States)

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  13. NCI: DCTD: Biometric Research Branch

    Science.gov (United States)

    The Biometric Research Branch (BRB) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  14. Risk Factor Assessment Branch (RFAB)

    Science.gov (United States)

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  15. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  16. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  17. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  18. Module for the organization of a branch of the universal branch driver in the CAMAC standard

    International Nuclear Information System (INIS)

    Nguen Fuk; Smirnov, V.A.; Khmelevski, E.

    1976-01-01

    A module is elaborated for the organization of a branch of the universal branch driver in the CAMAC standard for the conjugation of a control crate trunk with a branch trunk. A block diagram of the module is described; its principal specifications are given. The universal branch driver system may accomodate up to 10 branch organization modules with one control source module

  19. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, E. D.; Brown, J. E. [Western Illinois University, Physics Department, 1 University Circle, Macomb, IL 61455 (United States); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ortiz, J. Morales [University of Puerto Rico, Río Piedras Campus, Physical Sciences Department, P.O. Box 23323, San Juan, PR 00931 (United States); Hofner, P.; Creech-Eakman, M. J. [New Mexico Institute of Mining and Technology, Physics Department, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia, Michoacán (Mexico); Linz, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  20. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  1. BDC 500 branch driver controller

    CERN Document Server

    Dijksman, A

    1981-01-01

    This processor has been designed for very fast data acquisition and date pre-processing. The dataway and branch highway speeds have been optimized for approximately 1.5 mu sec. The internal processor cycle is approximately 0.8 mu sec. The standard version contains the following functions (slots): crate controller type A1; branch highway driver including terminator; serial I/O port (TTY, VDU); 24 bit ALU and 24 bit program counter; 16 bit memory address counter and 4 word stack; 4k bit memory for program and/or data; battery backup for the memory; CNAFD and crate LAM display; request/grant logic for time- sharing operation of several BDCs. The free slots can be equipped with e.g. extra RAM, computer interfaces, hardware multiplier/dividers, etc. (0 refs).

  2. Branching geodesics in normed spaces

    International Nuclear Information System (INIS)

    Ivanov, A O; Tuzhilin, A A

    2002-01-01

    We study branching extremals of length functionals on normed spaces. This is a natural generalization of the Steiner problem in normed spaces. We obtain criteria for a network to be extremal under deformations that preserve the topology of networks as well as under deformations with splitting. We discuss the connection between locally shortest networks and extremal networks. In the important particular case of the Manhattan plane, we get a criterion for a locally shortest network to be extremal

  3. Cash efficiency for bank branches

    OpenAIRE

    Cabello, Julia Garc?a

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks? branches is also a relevant issue as any significant improvement in cash management at the bank ...

  4. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  5. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  6. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  7. Branching processes and neutral evolution

    CERN Document Server

    Taïb, Ziad

    1992-01-01

    The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current sta...

  8. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  9. Grain Nucleation Experiments and other Laboratory Data

    DEFF Research Database (Denmark)

    Andersen, Anja C.

    2011-01-01

    Stars are conspicuous components of galaxies, and the sites of the creation of most chemical elements. Due to their brightness and their production of heavy elements, stars on the Asymptotic Giant Branch (AGB) play an important role for understanding stellar and galactic evolution. This conferenc...

  10. Structural properties of star-like dendrimers in solution

    International Nuclear Information System (INIS)

    Rathgeber, S.; Gast, A.P.; Hedrick, J.L.

    2002-01-01

    We measured the form factor of star-like poly-ε-caprolactone dendrimers under good solvent conditions with small-angle neutron scattering (SANS). The parameters varied in the experiment were the dendrimer generation g=1,2,3 and the number of segments between the branching units n=5,10,15,20. The results are discussed in the frame work of the Beaucage model from which we cannot only derive the radius of gyration R g of the dendrimers but also their fractal dimensions. Decreasing the number of spacer units between the branching points results in a strong stretching of the dendrons. The fractal dimension increases monotonically with increasing generation and spacer number between the limit expected for a low-functionality star P∼5/3 (loose, polymeric structure) and that expected for a high-functionality star P∼3 (compact shape). (orig.)

  11. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  12. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    Science.gov (United States)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  13. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  14. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  15. ENERGY STAR Certified Televisions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30,...

  16. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  17. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  18. ENERGY STAR Certified Telephones

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP...

  19. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  20. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  1. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  2. Dynamic Crack Branching - A Photoelastic Evaluation,

    Science.gov (United States)

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  3. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  4. Universal size properties of a star-ring polymer structure in disordered environments

    Science.gov (United States)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  5. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  6. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  7. CARBON STARS IN THE SATELLITES AND HALO OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Katherine; Guhathakurta, Puragra; Rockosi, Constance M.; Smith, Graeme H. [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Beaton, Rachael L. [The Observatories of the Carnegie Institutions for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gilbert, Karoline M.; Tollerud, Erik J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Howley, Kirsten, E-mail: khamren@ucolick.org [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  8. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    Science.gov (United States)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  9. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  10. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  11. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  12. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  13. Absence of young white dwarf companions to five technetium stars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.V.; Lambert, D.L.

    1987-10-01

    A search for hot companions to five stars of type MS and S has been carried out using the IUE satellite. No hot companions were detected for the MS stars HR 85, 4647, 6702, and 8062, and the S star HR 8714. Limits on the luminosities of possible white dwarf companions provide lower limits of 2-5x10 to the 8th yr to the ages of any degenerate companions. All five stars exhibit strong Tc I lines, and the presence of technetium, with a half-life of 2.1x10 to the 5th yr, signifies recent nucleosynthesis. The limits on the ages of possible white dwarf companions that are equal to or greater than 1000 half-lives of Tc exclude the possibility that the s-process elemental enhancement seen in these MS and S stars resulted from mass transfer from a more highly evolved companion (as is probably the mechanism by which barium stars are created). These MS and S stars represent a sample of true thermally pulsing asymptotic giant-branch stars. 41 references.

  14. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  15. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    International Nuclear Information System (INIS)

    Saremi, E; Abedi, A; Javadi, A; Khosroshahi, H; Molaei Nezhad, A; Van Loon, J Th; Bamber, J; Hashemi, S A; Nikzat, F

    2017-01-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss. (paper)

  16. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    Science.gov (United States)

    Saremi, E.; Javadi, A.; van Loon, J. Th; Khosroshahi, H.; Abedi, A.; Bamber, J.; Hashemi, S. A.; Nikzat, F.; Molaei Nezhad, A.

    2017-06-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss.

  17. Red Clump stars in Kepler open cluster NGC 6819

    Directory of Open Access Journals (Sweden)

    Abedigamba O.P.

    2015-01-01

    Full Text Available We measure the large frequency separation, Δν, and the frequency of maximum amplitude, νmax, for 10 Red Clump (RC single member (SM stars in the Kepler open cluster NGC 6819. We derive luminosities and masses for each individual RC star. A comparison of the observations with an isochrone of Age = 2.5 Gyr, Z = 0.017 with no mass loss using a statistical techniques is made. A fractional mass loss of 5 ± 3 percent is obtained if we assume that no correction to Δν between RC and red-giant branch (RGB is necessary. However, models suggest that an effective correction of about 1.9 percent in Δν is required to obtain the correct mass of RC stars owing to the different internal structures of stars in the two evolutionary stages. In this case we find that the mass loss in the red giant branch is not significantly different from zero. This finding confirms that of [6]. It is clear that the mass estimate obtained by asteroseismology is not sufficient to deduce the mass loss on the red giant branch. However, it is clearly only a few percent at most.

  18. ACPSEM (NZ Branch) annual meeting

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    The 1998 annual meeting of the New Zealand Branch of the Australasian College of Physical Scientists and Engineers in Medicine was held at the Christchurch School of Medicine over 26-27 November 1998, and attracted a record number of around 45 registrations. The meeting serves a number of purposes but one of the primary ones is to bring together scientists in medicine from around the country to compare notes on practices and advances, particularly in radiotherapy and diagnostic radiology physics. Following the meeting format established over recent years, separate workshops were devoted to radiotherapy physics and developments in the regional centres represented, and to practical issues relating to medical physics in diagnostic radiology. The workshops were held in parallel with presentations of scientific papers covering a wide range of topics, but with about half relating to engineering applications in medicine. (author)

  19. Branching process models of cancer

    CERN Document Server

    Durrett, Richard

    2015-01-01

    This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

  20. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. VI; The Second Parameter Pair M 3 and M 13

    Science.gov (United States)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2003-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13

  1. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  2. Field electron emission from branched nanotubes film

    International Nuclear Information System (INIS)

    Zeng Baoqing; Tian Shikai; Yang Zhonghai

    2005-01-01

    We describe the preparation and analyses of films composed of branched carbon nanotubes (CNTs). The CNTs were grown on a Ni catalyst film using chemical vapor deposition from a gas containing acetylene. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the branched structure of the CNTs was determined; the field emission characteristics in a vacuum chamber indicated a lower turn on field for branched CNTs than normal CNTs

  3. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  4. Current perspectives on shoot branching regulation

    Directory of Open Access Journals (Sweden)

    Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO

    2015-03-01

    Full Text Available Shoot branching is regulated by the complex interactions among hormones, development, and environmental factors. Recent studies into the regulatory mecha-nisms of shoot branching have focused on strigolactones, which is a new area of investigation in shoot branching regulation. Elucidation of the function of the D53 gene has allowed exploration of detailed mechanisms of action of strigolactones in regulating shoot branching. In addition, the recent discovery that sucrose is key for axillary bud release has challenged the established auxin theory, in which auxin is the principal agent in the control of apical dominance. These developments increase our understan-ding of branching control and indicate that regulation of shoot branching involves a complex network. Here, we first summarize advances in the systematic regulatory network of plant shoot branching based on current information. Then we describe recent developments in the synthesis and signal transduction of strigolactones. Based on these considerations, we further summarize the plant shoot branching regulatory network, including long distance systemic signals and local gene activity mediated by strigolactones following perception of external envi-ronmental signals, such as shading, in order to provide a comprehensive overview of plant shoot branching.

  5. [Branches of the National Institute of Hygiene].

    Science.gov (United States)

    Gromulska, Marta

    2008-01-01

    National Epidemiological Institute (National Institute of Hygiene, from 7th September 1923) was established in 1918 in Warsaw and acted at national level. Its actions in the field of diseases combat were supported by bacteriological stations and vaccine production in voivodeship cities, which were taken charge of by the state, and names "National Epidemiological Institutes". According to the ministers resolution from 6th July 1921,Epidemiological Institutes were merged to National Central Epidemiological Institutes (PZH), the epidemiological institutes outside Warsaw were named branches, which were to be located in every voivodeship city, according to the initial organizational resolutions. There were country branches of NCEI in: Cracow, Lwów, Lódź, Toruń, Lublin, and Wilno in the period 1919-1923. New branches in Poznań (1925), Gdynia(1934), Katowice (Voivodeship Institute of Hygiene (1936), Luck (1937), Stanisławów (1937), Kielce(1938), and Brześć/Bug (Municipal Station acting as branch of National Central Epidemiological Institute. Branches were subordinated to NCEI-PZH) in Warsaw where action plans and unified research and diagnostic method were established and annual meeting of the country branches managers took place. All branches cooperated with hospitals, national health services, district general practitioners and administration structure in control of infectious diseases. In 1938, the post of branch inspector was established, the first of whom was Feliks Przesmycki PhD. Branches cooperated also with University of Cracow, University of Lwów and University of Wilno. In 1935, National Institutes of Food Research was incorporated in PZH, Water Department was established, and these areas of activity began to develop in the branches accordingly. In 1938 there were 13 branches of PZH, and each had three divisions: bacteriological, food research and water research. Three branches in Cracow, Kielce and Lublin worked during World War II under German

  6. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  7. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  8. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  9. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  10. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  11. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  12. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  13. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  14. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    Energy Technology Data Exchange (ETDEWEB)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  15. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-01-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  16. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  17. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-01-01

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 ≤ [Fe/H] ≤ -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  18. THE STAR FORMATION HISTORY OF ISOLATED DWARF UGC 4879

    International Nuclear Information System (INIS)

    Jacobs, Bradley A.; Tully, R. Brent; Rizzi, Luca; Karachentsev, Igor D.; Chiboucas, Kristin; Held, Enrico V.

    2011-01-01

    Recent observations of UGC 4879 with the Advanced Camera for Surveys on the Hubble Space Telescope confirm that it is a nearby isolated dwarf irregular galaxy. We measure a distance of 1.36 ± 0.03 Mpc using the tip of the red giant branch method. This distance puts UGC 4879 beyond the radius of first turnaround of the Local Group and ∼700 kpc from its nearest neighbor Leo A. This isolation makes this galaxy an ideal laboratory for studying pristine star formation uncomplicated by interactions with other galaxies. We present the star formation history of UGC 4879 derived from simulated color-magnitude diagrams.

  19. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  20. AVM branch vibration test equipment

    International Nuclear Information System (INIS)

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  1. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  2. Geometrical scaling, furry branching and minijets

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-01-01

    Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs

  3. Branching out Has So Much to Offer

    Science.gov (United States)

    Murray, Joe

    2012-01-01

    In 1989 there were thirty ATM branches nationally. In January 2012 there were just twelve ATM branches with another three "proposed". How can that happen? How did it happen? Maybe the most pertinent question is: Why did it happen? There is no single answer to the last question, but perhaps it was something to do with the changes that…

  4. Conformal branching rules and modular invariants

    International Nuclear Information System (INIS)

    Walton, M.A.

    1989-01-01

    Using the outer automorphisms of the affine algebra SU(n), we show how the branching rules for the conformal subalgebra SU(pq) contains SU(p) x SU(q) may be simply calculated. We demonstrate that new modular invariant combinations of SU(n) characters are obtainable from the branching rules. (orig.)

  5. Aeroacoustics of pipe systems with closed branches

    NARCIS (Netherlands)

    Tonon, D.; Hirschberg, A.; Golliard, J.; Ziada, S.

    2011-01-01

    Flow induced pulsations in resonant pipe networks with closed branches are considered in this review paper. These pulsations, observed in many technical applications, have been identified as self-sustained aeroacoustic oscillations driven by the instability of the flow along the closed branches. The

  6. Branching miter joints : principles and artwork

    NARCIS (Netherlands)

    Verhoeff, T.; Verhoeff, K.; Hart, G.W.; Sarhangi, R.

    2010-01-01

    A miter joint connects two beams, typically of the same cross section, at an angle such that the longitudinal beam edges continue across the joint. When more than two beams meet in one point, like in a tree, we call this a branching joint. In a branching miter joint, the beams’ longitudinal edges

  7. Branching bisimulation congruence for probabilistic systems

    NARCIS (Netherlands)

    Trcka, N.; Georgievska, S.; Aldini, A.; Baier, C.

    2008-01-01

    The notion of branching bisimulation for the alternating model of probabilistic systems is not a congruence with respect to parallel composition. In this paper we first define another branching bisimulation in the more general model allowing consecutive probabilistic transitions, and we prove that

  8. Prebiotic branched galacto-oligosaccharides (gos)

    NARCIS (Netherlands)

    Lammerts van Bueren-Brandt, Alica; Dijkhuizen, Lubbert

    2018-01-01

    The invention relates to galacto-oligosaccharide (GOS) compositions and the use thereof. Provided is the use of a GOS composition comprising branched and linear GOS species having a degree of polymerization (DP) of 3, wherein the branched DP3 GOS species are present in excess of linear DP3 GOS

  9. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  10. European Stars and Stripes

    National Research Council Canada - National Science Library

    Hendricks, Nancy

    1994-01-01

    The European Stars and Stripes (ES&S) organization publishes a daily newspaper, The Stars and Stripes, for DoD personnel stationed in Germany, Italy, the United Kingdom, and other DoD activities in the U.S. European Command...

  11. Nebraska STARS: Achieving Results

    Science.gov (United States)

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  12. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  13. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  14. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  15. Electronographic photometry of star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Walker, M.F.

    1979-01-01

    Electronographic magnitudes and colours of 78 stars in the cluster Hodge 11 in the Large Magellanic Cloud have been measured to V = 21.5 on electrographs taken with a Spectracon image-converter attached to the focus of the 1.5-m (60-inch) Cerro Tololo reflector. The zero point of the electronographic photometry was provided by photoelectric observations of four stars in the cluster field using the same telescope. The colour-magnitude diagram of the cluster consists of an evolved main sequence, whose termination point corresponds to an age of about 6 x 10 8 yr, but with a giant branch which is displaced blueward by about Δ(B-V) 0 = 0.4 from the positions of the giant branches of open clusters of similar age in our Galaxy. (author)

  16. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  17. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  18. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  19. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  20. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.