WorldWideScience

Sample records for brake wear particles

  1. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  2. Airborne Wear Particles Emissions fromCommercial Disc Brake Materials– Passenger Car Field Test

    OpenAIRE

    Wahlström, Jens; Olofsson, Ulf; Jansson, Anders; Olander, Lars

    2008-01-01

    Most modern passenger cars have disc brakes on the front wheels, which unlike drum brakes are not sealed off to the ambient air. During braking, there is wear to both the rotor and the pads. This wear process generates particles, which may become airborne. In field tests it is difficult to distinguish these particles from others in the surrounding environment. It may be preferable to use laboratory test stands where the cleanness of the surrounding air can be controlled. The validity of these...

  3. Brake wear warning device: A concept

    Science.gov (United States)

    Hawkins, S. F.

    1973-01-01

    Heat-insulated wire is introduced through brake shoe and partially into brake lining. Wire is connected to positive terminal and light bulb. When brakes wear to critical point, contact between wire and wheel drum grounds circuit and turns on warning light.

  4. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    Science.gov (United States)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  5. Radioisotopic measurement methods for determining the wear railway brake shoe and its rim wearing effect

    International Nuclear Information System (INIS)

    Doman, P.

    1979-01-01

    Under operating conditions the wear of brake shoe was tested by a measuring method based on the principle of radioisotopic thickness measurement. It is characteristic to the sensitivity of the method that the wear caused by the fast braking of a train (speed: 100 km/h) as well as the uneven wear distribution were determinable. Surface activating methods assuring the periodic and continuous evaluation were also developed. A test was performed with galvanic surface activation under operating conditions to determine the rim wearing effect of the brake shoe. Apart from the operational tests a new method based on activated wear measurement was also developed. (author)

  6. A novel nonlinear nano-scale wear law for metallic brake pads.

    Science.gov (United States)

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  7. Effects of cryogenic treatment on the wear properties of brake discs

    Science.gov (United States)

    Nadig, D. S.; Shivakumar, P.; Anoop, S.; Chinmay, Kulkarni; Divine, P. V.; Harsha, H. P.

    2017-02-01

    Disc brakes are invariably used in all the automobiles either to reduce the rotational speed of the wheel or to hold the vehicle stationary. During the braking action, the kinetic energy is converted into heat which can result in high temperatures resulting in fading of brake effects. Brake discs produced out of martensite stainless steel (SS410) are expected to exhibit high wear resistance properties with low value of coefficient of friction. These factors increase the useful life of the brake discs with minimal possibilities of brake fade. To study the effects of cryogenic treatment on the wear behaviour, two types of brake discs were cryotreated at 98K for 8 and 24 hours in a specially developed cryotreatment system using liquid nitrogen. Wear properties of the untreated and cryotreated test specimens were experimentally determined using the pin on disc type tribometer (ASTM G99-95). Similarly, the Rockwell hardness (HRC) of the specimens were tested in a hardness tester in accordance with ASTM E18. In this paper, the effects of cryotreatment on the wear and hardness properties of untreated and cryotreated brake discs are presented. Results indicate enhancement of wear properties and hardness after cryogenic treatment compared with the normal brakes discs.

  8. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  9. A thermal, thermoelastic, and wear analysis of high-energy disk brakes

    Science.gov (United States)

    Kennedy, F. E., Jr.; Wu, J. J.; Ling, F. F.

    1974-01-01

    A thermomechanical investigation of the sliding contact problem encountered in high-energy disk brakes is described. The analysis includes a modelling, using the finite element method of the thermoelastic instabilities that cause transient changes in contact area to occur on the friction surface. In order to include the effect of wear at the contact surface, a wear criterion is proposed that results in the prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake assembly can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It also shows that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and, especially, the heat capacity of the brake components.

  10. Brake wear from vehicles as an important source of diffuse copper pollution

    NARCIS (Netherlands)

    Hulskotte, J.H.J.; Gon, H.A.C.D. van der; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    In this article we show that brake wear from road traffic vehicles is an important source of atmospheric (participate) copper concentrations in Europe. Consequently, brake wear also contributes significantly to deposition fluxes of copper to surface waters. We estimated the copper emission due to

  11. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  12. Effect of design factors on surface temperature and wear in disk brakes

    Science.gov (United States)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  13. Characterization of holding brake friction pad surface after pin-on-plate wear test

    DEFF Research Database (Denmark)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-01-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different...

  14. Wear determination in braking systems by radioisotopes

    International Nuclear Information System (INIS)

    Spruch, W.

    1979-01-01

    Friction and wear behaviour of friction couples has been tested applying loads and sliding speeds. The determination was carried out by direct measurements of the lining material and by surface activation of the opposite material with protons. The application limits of several braking materials could be determined and compared

  15. Automated visual inspection of brake shoe wear

    Science.gov (United States)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  16. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study.

    Science.gov (United States)

    Kazimirova, Alena; Peikertova, Pavlina; Barancokova, Magdalena; Staruchova, Marta; Tulinska, Jana; Vaculik, Miroslav; Vavra, Ivo; Kukutschova, Jana; Filip, Peter; Dusinska, Maria

    2016-07-01

    Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Friction and wear of carbon-graphite materials for high-energy brakes

    Science.gov (United States)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  18. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study

    International Nuclear Information System (INIS)

    Kazimirova, Alena; Peikertova, Pavlina; Barancokova, Magdalena; Staruchova, Marta; Tulinska, Jana; Vaculik, Miroslav; Vavra, Ivo; Kukutschova, Jana; Filip, Peter; Dusinska, Maria

    2016-01-01

    Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48 h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3 µg/cm 2 (p=0.032). - Highlights: • BWD was characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy. • Our result showed that BWD contains crystalline metal NPs. • Two different protocols for CBMN assay were used to study of genotoxicity of BWD. • We found significantly increased frequency of MNBNCs after 48 h exposure of BWD (with 10% of foetal calf serum in culture media) at the concentration 3 µg/cm 2 .

  19. Characterization of holding brake friction pad surface after pin-on-plate wear test

    Science.gov (United States)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-03-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.

  20. Friction and wear of carbon-graphite materials for high energy brakes

    Science.gov (United States)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  1. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Kazimirova, Alena, E-mail: alena.kazimirova@szu.sk [Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava (Slovakia); Peikertova, Pavlina [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava (Czech Republic); IT4Innovations, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Barancokova, Magdalena; Staruchova, Marta; Tulinska, Jana [Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava (Slovakia); Vaculik, Miroslav [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava (Czech Republic); Vavra, Ivo [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava (Czech Republic); Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 03 Bratislava (Slovakia); Kukutschova, Jana [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava (Czech Republic); Filip, Peter [Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Lincoln Drive 1263, 62901 Carbondale (United States); Dusinska, Maria [Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller (Norway)

    2016-07-15

    Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48 h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3 µg/cm{sup 2} (p=0.032). - Highlights: • BWD was characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy. • Our result showed that BWD contains crystalline metal NPs. • Two different protocols for CBMN assay were used to study of genotoxicity of BWD. • We found significantly increased frequency of MNBNCs after 48 h exposure of BWD (with 10% of foetal calf serum in culture media) at the concentration 3 µg/cm{sup 2}.

  2. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhang Shaoyang; Wang Fuping

    2007-01-01

    Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiC p (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO 4 ) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 deg. C and 316 deg. C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO 4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO 4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications

  3. On Airborne Nano/Micro-Sized Particles Released from Low-Metallic Automotive Brakes

    Czech Academy of Sciences Publication Activity Database

    Kukutschová, J.; Moravec, Pavel; Tomášek, V.; Matějka, V.; Smolík, Jiří; Schwarz, Jaroslav; Seidlerová, J.; Šafářová, K.; Filip, P.

    2011-01-01

    Roč. 159, č. 4 (2011), s. 998-1006 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z40720504 Keywords : brake wear debris * nanoparticles * oxidative wear Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.746, year: 2011

  4. Morphology and properties of periwinkle shell asbestos-free brake pad

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2016-01-01

    Full Text Available The development of asbestos-free automotive brake pad using periwinkle shell particles as frictional filler material is presented. This was with a view to exploiting the characteristics of the periwinkle shell, which is largely deposited as a waste, in replacing asbestos which has been found to be carcinogenic. Five sets of brake pads with different sieve size (710–125 μm of periwinkle shell particles with 35% resin were produced using compressive moulding. The physical, mechanical and tribological properties of the periwinkle shell particle-based brake pads were evaluated and compared with the values for the asbestos-based brake pads. The results obtained showed that compressive strength, hardness and density of the developed brake pad samples increased with decreasing the particle size of periwinkle shell from 710 to 125 μm, while the oil soak, water soak and wear rate decreased with decreasing the particle size of periwinkle shell. The results obtained at 125 μm of periwinkle shell particles compared favourably with that of commercial brake pad. The results of this research indicate that periwinkle shell particles can be effectively used as a replacement for asbestos in brake pad manufacture.

  5. Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

    Science.gov (United States)

    Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.

    2015-05-01

    Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.

  6. Braking, steering, and wear performance of radial-belted and bias-ply aircraft tires

    Science.gov (United States)

    Yager, Thomas J.; Davis, Pamela A.; Stubbs, Sandy M.; Martinson, Veloria J.

    1992-01-01

    Preliminary steering, braking, and tread wear performance results from testing of radial-belted and bias-ply aircraft tires at NASA Langley are described. An overview of the joint NASA/FAA/industry START program is presented. Attention is given to the Langley Test Facility, equipment and future activities.

  7. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  8. Toxicity and mutagenicity of low-metallic automotive brake pad materials.

    Science.gov (United States)

    Malachova, Katerina; Kukutschova, Jana; Rybkova, Zuzana; Sezimova, Hana; Placha, Daniela; Cabanova, Kristina; Filip, Peter

    2016-09-01

    Organic friction materials are standardly used in brakes of small planes, railroad vehicles, trucks and passenger cars. The growing transportation sector requires a better understanding of the negative impact related to the release of potentially hazardous materials into the environment. This includes brakes which can release enormous quantities of wear particulates. This paper addresses in vitro detection of toxic and mutagenic potency of one model and two commercially available low-metallic automotive brake pads used in passenger cars sold in the EU market. The model pad made in the laboratory was also subjected to a standardized brake dynamometer test and the generated non-airborne wear particles were also investigated. Qualitative "organic composition" was determined by GC/MS screening of dichloromethane extracts. Acute toxicity and mutagenicity of four investigated sample types were assessed in vitro by bioluminescence assay using marine bacteria Vibrio fischeri and by two bacterial bioassays i) Ames test on Salmonella typhimurium His(-) and ii) SOS Chromotest using Escherichia coli PQ37 strain. Screening of organic composition revealed a high variety of organic compounds present in the initial brake pads and also in the generated non-airborne wear debris. Several detected compounds are classified by IARC as possibly carcinogenic to humans, e. g. benzene derivatives. Acute toxicity bioassay revealed a response of bacterial cells after exposure to all samples used. Phenolic resin and wear debris were found to be acutely toxic; however in term of mutagenicity the response was negative. All non-friction exposed brake pad samples (a model pad and two commercial pad samples) were mutagenic with metabolic activation in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Eco-friendly asbestos free brake-pad: Using banana peels

    Directory of Open Access Journals (Sweden)

    U.D. Idris

    2015-07-01

    Full Text Available The use of asbestos fibre is being avoided due to its carcinogenic nature that might cause health risks. A new brake pad produced using banana peel waste to replace asbestos and Phenolic resin (phenol formaldehyde, as a binder was investigated. The resin was varying from 5 to 30 wt% with an interval of 5 wt%. Morphology, physical, mechanical and wear properties of the brake pad were studied. The results show that compressive strength, hardness and specific gravity of the produced samples were seen to be increasing with an increase in wt% of resin addition, while oil soak, water soak, wear rate and percentage charred decreased as the wt% of resin increased. Overall samples, containing 25 wt% in uncarbonized banana peels (BUNCp and 30 wt% in carbonized (BCp gave better properties. The result of this research indicates that banana peel particles can be effectively used as a replacement for asbestos in brake pad manufacture.

  10. Better Brakes

    Science.gov (United States)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  11. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    OpenAIRE

    Ren He; Xuejun Liu; Cunxiang Liu

    2013-01-01

    This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system...

  12. The Comparative Analysis and Evaluation of Ecological Characteristics of Drum and Disk Wheel Brakes

    Directory of Open Access Journals (Sweden)

    Aleksandr Revin

    2011-04-01

    Full Text Available It is well-known that automobile transport as well as industry are the main sources of air pollution. In addition to exhaust gases, the flow of traffic releases a cloud of dust, consisting of over 60% of micro- and ultramicroscopic particles with radius of 10.0–0.25 µm, which are formed due to wheel abrasion (caused by the road grip of a tyre and the use of the brake blocks (in braking. The products formed in the process of wearing of the wheel brake pads are also the sources of the mass of fine dispersed particles over an urban highway. The authors analyse and evaluate ecological characteristics of drum and disk wheel brakes of vehicles.Article in Russian

  13. Friction and Braking Application of Unhazardous Palm Slag Brake Pad Composite

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Ruzaidi Ghazali, Che Mohd; Bakri Abdullah, Mohd Mustafa Al

    2018-03-01

    This paper reveals new alternative friction materials for brake pads. Palm slag was studied as new friction materials in brake pads but its much harder made it difficult to be applied. As a way to reduce the hardness, tire dust was including as purpose on stabilizing the hardness of brake pads. The palm slag was sieves to get desired size that is 150 μm, 300 μm and 600 μm. The percentage weight of materials used are 20% graphite, 20% aluminium oxide, 20% steel fiber, 20% polyester resin and another 40% are varied between tire dust and palm slag. All of materials were blend and compress by using hot pressed machine. The composites properties that were examined are density, porosity, hardness, compressive strength, microstructure analysis and wear rate. The composition of 30% palm slag, 10% tire dust and larger size of filler give better result of mechanical properties and less wear rate of brake pads composites. Then, palm slag can be used in producing of non asbestos brake pads.

  14. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    FRICTION MATERIALSFriction CodeWearBrake FadeFriction MaterialsNotationReferencesBAND BRAKESDerivation of EquationsApplicationLever-Actuated Band Brake: Backstop DesignExample: Design of a BackstopNotationFormula CollectionReferencesEXTERNALLY AND INTERNALLY PIVOTED SHOE BRAKESPivoted External Drum BrakesPivoted Internal Drum BrakesDesign of Dual-Anchor Twin-Shoe Drum BrakesDual-Anchor Twin-Shoe Drum Brake Design ExamplesDesign of Single-Anchor Twin-Shoe Drum BrakesSingle-Anchor Twin-Shoe Drum Brake Design Exam

  15. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  16. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  17. Predict optimize the friction characteristics of brake pads; Brake pad no masatsu tokusei no yosoku to saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Saotome, H [Nissin Kogyo Co., Tokyo (Japan); Kato, T [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    The effect of the friction and the wear properties of brake pads were experimentally studied using a test rig of scale of 1/10 of the system used in a commercial car. The experimental data were investigated by the Multiple Regression Analysis and the Neural Network, and the effects of volume % of components on the friction and the wear properties were predicted. In addition the components of brake pads are optimized by Genetic Algorithms. 8 refs., 9 figs., 4 tabs.

  18. Elemental composition of current automotive braking materials and derived air emission factors

    Science.gov (United States)

    Hulskotte, J. H. J.; Roskam, G. D.; Denier van der Gon, H. A. C.

    2014-12-01

    Wear-related PM emissions are an important constituent of total PM emissions from road transport. Due to ongoing (further) exhaust emission reduction wear emissions may become the dominant PM source from road transport in the near future. The chemical composition of the wear emissions is crucial information to assess the potential health relevance of these PM emissions. Here we provide an elemental composition profile of brake wear emissions as used in the Netherlands in 2012. In total, 65 spent brake pads and 15 brake discs were collected in car maintenance shops from in-use personal cars vehicles and analyzed with XRF for their metal composition (Fe, Cu, Zn, Sn, Al, Si, Zr, Ti, Sb, Cr, Mo, Mn, V, Ni, Bi, W, P, Pb and Co). Since car, engine and safety regulations are not nationally determined but controlled by European legislation the resulting profiles will be representative for the European personal car fleet. The brake pads contained Fe and Cu as the dominant metals but their ratio varied considerably, other relatively important metals were Sn, Zn and Sb. Overall a rather robust picture emerged with Fe, Cu, Zn and Sn together making up about 80-90% of the metals present in brake pads. Because the XRF did not give information on the contents of other material such as carbon, oxygen and sulphur, a representative selection of 9 brake pads was further analyzed by ICP-MS and a carbon and sulphur analyzer. The brake pads contained about 50% of non-metal material (26% C, 3% S and the remainder mostly oxygen and some magnesium). Based on our measurements, the average brake pad profile contained 20% Fe, 10% Cu, 4% Zn and 3% Sn as the dominant metals. The brake discs consisted almost entirely of metal with iron being the dominant metal (>95%) and only traces of other metals (<1% for individual metals). Non-metal components in the discs were 2-3% Silicon and, according to literature, ∼3% carbon. The robust ratio between Fe and Cu as found on kerbsides has been used to

  19. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  20. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  1. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  2. The Friction of Vehicle Brake Tandem Master Cylinder

    International Nuclear Information System (INIS)

    Kao, M J; Chang, H; Tsung, T T; Lin, H M

    2006-01-01

    The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications

  3. CO-Ordinated Action Design of Rheostatic and Air Brakes on the Electric Railcar Series 6 111

    Directory of Open Access Journals (Sweden)

    Josip Zavada

    2012-10-01

    Full Text Available The paper presents the solution for the modification of thebrakes on the electric railcar series 6111 used in suburban traffic.It also gives the results of the performed measurements aswell as their analysis.The mentioned electric railcar is fitted with air and rheostaticbrakes whose activation is mutually independent. Sincesuburban traffic means frequent slopping, and since the enginedriver does not use the rheostatic brake regularly, but only theair brake, the wear of the brake lining and wheels is higher, andthe heat load on the brake elements is substantial. By regularapplication of rheostatic brake, the air brake could be LLSed lessthus contributing to a lower wear of the friction elements.The presented solution for the modification of the brakeconsists of co-ordinated and automatic action of the rheostaticand air brake with every braking

  4. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  5. Tribo-performance evaluation of ecofriendly brake friction composite materials

    Science.gov (United States)

    Kumar, Naresh; Singh, Tej; Grewal, G. S.

    2018-05-01

    This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.

  6. The Role of Solid Lubricants for Brake Friction Materials

    Directory of Open Access Journals (Sweden)

    Werner Österle

    2016-02-01

    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  7. Application of charged particle activation for testing machine part wear

    International Nuclear Information System (INIS)

    Kosimova, M.; Tendera, P.

    1985-01-01

    The results of application of the charge particle activation method to investigate machine part wear are presented. Study of radionuclide activity and yield has been carried out at the U-120M isochronous cyclotron by means of the method of iron foil piles from 20 to 100 μm in thick. Protons and deuterons have been used. Wear measurement is based on determination of wear particle activity in a butyric medium. An example of the results of a bench test of activated piston rings and cylinder liner of the engine for trucks is given. The method of surface activation is shown to be acceptable for studying machine part wear under the regular service conditions, especially on the stage of the primary investigations and development, when sampling structural materials and estimating different lubricating oil applicability

  8. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    Superintendent NOTICE Reproduction of this document in any form by other than naval activities is/Jotbvlhorized except isys^iedcil approval of the SecretarWof...constant. •.■, -1 "if -w \\ SÄNPLlWi V» IVf Figure 3.1.1.1 Simplified Oil Path Ref 21 Scott. D, McCullagh. PJ and Campbell GW Condition Monitoring...Wear Particles in Human Synovial Fluid Arthritis and Rheumatism, 24 (1981) 912-918 30 Evans. C H .andTew W P isolationof Biological Materials

  9. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    Directory of Open Access Journals (Sweden)

    Sawczuk Wojciech

    2017-06-01

    Full Text Available Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA, which aside from the assessment of technical conditions (wear of brake pads also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  10. Industrial research on the quality of brake shoes meant for rolling stock

    Science.gov (United States)

    Popa, E.; Pascu, L.; Socalici, A.; Lascufoni, A.

    2016-02-01

    Brake shoes wear appears as a normal exploitation process and depends both on the braking force and on the material the shoe is made of. Brake shoes are made of molded sulfurous cast iron. The industrial research and experiments aim at determining the specific characteristics of the phosphorous cast iron (chemical and structural homogeneity, hardness) and their optimization in view of improving the quality of the brake shoes meant for the rolling stock

  11. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States

    Science.gov (United States)

    Panko, Julie M.; Chu, Jennifer; Kreider, Marisa L.; Unice, Ken M.

    2013-06-01

    In addition to industrial facilities, fuel combustion, forest fires and dust erosion, exhaust and non-exhaust vehicle emissions are an important source of ambient air respirable particulate matter (PM10). Non-exhaust vehicle emissions are formed from wear particles of vehicle components such as brakes, clutches, chassis and tires. Although the non-exhaust particles are relatively minor contributors to the overall ambient air particulate load, reliable exposure estimates are few. In this study, a global sampling program was conducted to quantify tire and road wear particles (TRWP) in the ambient air in order to understand potential human exposures and the overall contribution of these particles to the PM10. The sampling was conducted in Europe, the United States and Japan and the sampling locations were selected to represent a variety of settings including both rural and urban core; and within each residential, commercial and recreational receptors. The air samples were analyzed using validated chemical markers for rubber polymer based on a pyrolysis technique. Results indicated that TRWP concentrations in the PM10 fraction were low with averages ranging from 0.05 to 0.70 μg m-3, representing an average PM10 contribution of 0.84%. The TRWP concentration in air was associated with traffic load and population density, but the trend was not statistically significant. Further, significant differences across days were not observed. This study provides a robust dataset to understand potential human exposures to airborne TRWP.

  12. In-depth analysis of bicycle hydraulic disc brakes

    Science.gov (United States)

    Maier, Oliver; Györfi, Benedikt; Wrede, Jürgen; Arnold, Timo; Moia, Alessandro

    2017-10-01

    Hydraulic Disc Brakes (HDBs) represent the most recent and innovative bicycle braking system. Especially Electric Bicycles (EBs), which are becoming more and more popular, are equipped with this powerful, unaffected by environmental influences, and low-wear type of brakes. As a consequence of the high braking performance, typical bicycle braking errors lead to more serious accidents. This is the starting point for the development of a Braking Dynamics Assistance system (BDA) to prevent front wheel lockup and nose-over (falling over the handlebars). One of the essential prerequisites for the system design is a better understanding of bicycle HDBs' characteristics. A physical simulation model and a test bench have been built for this purpose. The results of the virtual and real experiments conducted show a high correlation and allow valuable insights into HDBs on bicycles, which have not been studied scientifically in any depth so far.

  13. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    Science.gov (United States)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  14. Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems

    Directory of Open Access Journals (Sweden)

    Borawski Andrzej

    2016-09-01

    Full Text Available The braking system is one of the most important systems in any vehicle. Its proper functioning may determine the health and life the people inside the vehicle as well as other road users. Therefore, it is important that the parameters which characterise the functioning of brakes changed as little as possible throughout their lifespan. Multiple instances of heating and cooling of the working components of the brake system as well as the environment they work in may impact their tribological properties. This article describes a method of evaluating the coefficient of friction and the wear speed of abrasive wear of friction working components of brakes. The methodology was developed on the basis of Taguchi’s method of process optimization.

  15. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment

    International Nuclear Information System (INIS)

    Straffelini, Giovanni; Ciudin, Rodica; Ciotti, Alessandro; Gialanella, Stefano

    2015-01-01

    This critical review presents several aspects related to the use of copper as a main component in brake pads in road vehicles. The compositions of these materials are attracting increasing interest and concern due to the relative contribution of wear products to particulate matter emissions in the environment as a result of braking action even though there has been a reduction in exhaust products from internal combustion engines. We review the data on the main wear mechanisms in brake systems and highlight the positive role of copper. However, similar to other heavy metal emissions, even the release of copper into the atmosphere may have important environmental and health effects. Thus, several replacement strategies are being pursued, and the positive and negative features will be critically reviewed. Additionally, the future perspectives in materials development will be discussed. - Highlights: • Copper in brake pad materials: role and concerns. • Environmental and health impact of copper. • Copper replacement in frictional brake materials. • International legislation and standards on the above issues. - Importance of copper in brake pad materials and concern as regards environmental and health impact of its emission as brake wear product.

  16. Airworthiness Certification of Fe-Si3N4-graphite Brake Composites for Military Aircraft

    Directory of Open Access Journals (Sweden)

    T.R. Prabhu

    2015-12-01

    Full Text Available Metal matrix hybrid composites are usually preferred for high energy aircraft (1-10 MJ brake pads (HEABP applications. The report focuses mainly on the evaluation of the wear and braking performance of the composite for the military aircraft applications. In this paper, the design and processing of a typical HEABP composite have been discussed in detail. The airworthiness qualification tests for the HEABP and the brake units are outlined with details. Also, brake testing parameters calculations derived from the typical aircraft data are presented for both the laboratory and full scale dynamometer tests. A case study of Fe-Si3N4- graphite composite pads is presented to exemplify the steps involved in the design, development, and airworthiness certification of HEABPs for the 8 MJ energy military aircraft. From the microstructure and wear surface morphology analysis and the results of brake performance parameters, functional tests and aircraft trials, it is concluded that the Fe-Si3N4- graphite composite has a minimum life of 200 normal energy landings with excellent braking performances.

  17. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  18. Processing and study of the wear and friction behaviour of discrete ...

    Indian Academy of Sciences (India)

    due to the increase in the braking energy, (3) at low sliding speeds (5, 10 m s−1), abrasive wear is the main wear ... tion materials, gas turbine thermal barrier coatings, armour ..... in a optimum level to balance both the wear loss and the stop-.

  19. Wear and friction behaviour of soft particles filled random direction short GFRP composites

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Wahne, S.

    2007-01-01

    The random direction short E-glass fibre reinforced epoxy resin composites filled with the particles of mica and tricalcium phosphate (TCP) were prepared by hand lay-up method. The wear and friction behaviour of random direction short E-glass fibre reinforced epoxy resin (GFRP) composites sliding against AISI-1045 steel in a pin-on-disc configuration were evaluated on a TR-20LE wear and friction tester. The microhardness, density, tensile strength and compressive strength of the filled and unfilled mica as well as TCP particles were determined. The morphology of the worn surfaces of the unfilled and filled random E-glass fibre composites and the transfer films were analyzed with the scanning electron microscope. It was found that the particles as the fillers contributed significantly to improve the mechanical properties and wear resistance of the E-glass fibre. This was because the particulates as the fillers contributed to enhance the bonding strength between the fibre and the epoxy resin. Moreover, the wear and friction properties of the random E-glass fibre composites were reduced by increasing filler weight of particles

  20. Evaluation of materials and design modifications for aircraft brakes

    Science.gov (United States)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  1. A quasi-stationary approach to particle concentration and distribution in gear oil for wear mode estimation

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Jørgensen, Bent

    2015-01-01

    that particles less than 14 μm dominate the wear. Hence, it is concluded that abrasion dominate the wear, for the gear in operation, and it is concluded to be in quasi-stationary mode. The distribution of the particles is observed in conjunction with the particle quantity to determine a basis for normal...... operation. Limitations to the model in lack of fitting to large and frequent signal spikes are suggested to be caused by measurement equipment and/or model constraints. Predicting the transition from quasi-stationary (normal) mode to break-down mode is made possible by particle quantity detection as well......Suspension of wear particles in gear oil with respect to the diversity of particle size combined with filter mechanisms has been analyzed. Coupling of wear modes from tribology is combined with particle size bins to show how a mathematical model can be expanded to include information gained from...

  2. Comparison of in vivo polyethylene wear particles between mobile- and fixed-bearing TKA in the same patients.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki

    2017-09-01

    Polyethylene wear particle generation is one of the most important factors that affects the mid- to long-term results of total knee arthroplasties (TKA). Mobile-bearing total knee prostheses were developed to reduce polyethylene wear generation. However, whether mobile-bearing prostheses actually generate fewer polyethylene wear particles than fixed-bearing prostheses remains controversial. The aim of this study was to compare, within individual patients, the in vivo polyethylene wear particles created by a newly introduced mobile-bearing prosthesis in one knee and a conventional fixed-bearing prosthesis in other knee. Eighteen patients receiving bilateral TKAs to treat osteoarthritis were included. The synovial fluid was obtained from 36 knees at an average of 3.5 years after the operation. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined using a scanning electron microscope and an image analyser. The size and shape of the polyethylene wear particles from the mobile-bearing prostheses were similar to those from the conventional fixed-bearing prostheses. Although the number of wear particles from the mobile-bearing prosthesis (1.63 × 10 7  counts/knee) appeared smaller than that from the fixed-bearing prosthesis (2.16 × 10 7  counts/knee), the difference was not statistically significant. The current in vivo study shows that no statistically significant differences were found between the polyethylene wear particles generated by a newly introduced mobile-bearing PS prosthesis and a conventional fixed-bearing PS prosthesis during the early clinical stage after implantation. Therapeutic study, Level III.

  3. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  4. Wear behaviour of Armco iron after irradiation with neutrons and alpha particles

    International Nuclear Information System (INIS)

    Szatzschneider, K.

    1977-04-01

    The effects of neutron and alpha particle irradiation on the wear behaviour of Armco iron were studied. For the investigation, a pin-desk test facility was designed and built. From the experiments an influence upon wear of the type of irradiation, and the radiation dose was determined, which, however, cannot be explained - on the basis of existing wear theories - by the change in the macroscopic-mechanical properties of the material. It has again been shown that an indication of the hardness is not sufficient to describe wear. The influence of the history of the material (irradiation, annealing, deformation) is very strong and connot be predicted because of the multiplicity of interdependences. Wear in the low wear area was identified as being due to oxidation, in the high wear area as metallic. (orig./GSC) [de

  5. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  6. Indonesian commercial bus drum brake system temperature model

    International Nuclear Information System (INIS)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-01-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  7. Indonesian commercial bus drum brake system temperature model

    Science.gov (United States)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-03-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  8. Indonesian commercial bus drum brake system temperature model

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo, D. B., E-mail: rmt.bowo@gmail.com; Haryanto, I., E-mail: ismoyo2001@yahoo.de; Laksono, N. P., E-mail: priyolaksono89@gmail.com [Mechanical Engineering Dept., Faculty of Engineering, Diponegoro University (Indonesia)

    2016-03-29

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  9. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.

    Science.gov (United States)

    Stratton-Powell, Ashley A; Pasko, Kinga M; Brockett, Claire L; Tipper, Joanne L

    2016-11-01

    Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of PEEK-based wear debris from total joint arthroplasties. (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. In the four studies that

  10. Research on squeal noise of tread brake system in rail freight vehicle

    Science.gov (United States)

    Zhang, Jun; Li, Yong-hua; Fang, Ji; Zhao, Wen-zhong

    2017-07-01

    Brake squeal is a result of a unstable flutter from brake system, it results to the noise pollution in railway side and excessive wear of wheel tread. A finite element model of brake system for rail freight vehicle is set up, the contact and friction between the brake shoe and wheel tread is considered, the complex modals of brake system are calculated, the possibility of happening chatter and squeal noise are analyzed. The results show that the pressure angle or the brake force direction have a important influence on the unstable chatter and squeal noise, the more greater the pressure angle deviates from the wheel center, the more greater the possibility of happening chatter and squeal noise is, and the possibility of happening chatter and squeal noise is also increased along with the addition of friction factor.

  11. Airborne asbestos concentrations associated with heavy equipment brake removal.

    Science.gov (United States)

    Madl, A K; Gaffney, S H; Balzer, J L; Paustenbach, D J

    2009-11-01

    Asbestos-containing brake linings were used in heavy-duty construction equipment such as tractors, backhoes, and bulldozers prior to the 1980s. While several published studies have evaluated exposures to mechanics during brake repair work, most have focused on automobiles and light trucks, not on heavy agricultural or construction vehicles. The purpose of this study is to characterize the airborne concentration of asbestos to workers and bystanders from brake wear debris during brake removal from 12 loader/backhoes and tractors manufactured between 1960 and 1980. Asbestos content in brake lining (average 20% chrysotile by polarized light microscopy) and brake wear debris [average 0.49% chrysotile by transmission electron microscopy (TEM)] was also quantified. Breathing zone samples on the lapel of mechanics (n = 44) and area samples at bystander (n = 34), remote (n = 22), and ambient (n = 12) locations were collected during 12 brake changes and analyzed using phase contrast microscopy (PCM) [National Institute for Occupational Safety and Health (NIOSH) 7400] and TEM (NIOSH 7402). In addition, the fiber distribution by size and morphology was evaluated according to the International Organization for Standardization method for asbestos. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, the average airborne chrysotile concentrations (PCM equivalent) were 0.024 f/cc for the mechanic and 0.009 f/cc for persons standing 1.2-3.1 m from the activity during the period of exposure ( approximately 0.5 to 1 h). Considering the time involved in the activity, and assuming three brake jobs per shift, these results would convert to an average 8-h time-weighted average of 0.009 f/cc for a mechanic and 0.006 f/cc for a bystander. The results indicate that (i) the airborne concentrations for worker and bystander samples were significantly less than the current occupational exposure limit of 0.1 f/cc; (ii

  12. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  13. Radiation tagging measures wear at speed

    International Nuclear Information System (INIS)

    Barrett, Jon.

    1994-01-01

    A new non-invasive technique for performing accelerated wear and corrosion analysis is particularly relevant to power transmission systems. Wear tests that would normally take days or weeks to complete can now be performed in hours. A tiny patch of the wearing component is made mildly radioactive and the drop in activity as material is worn away is monitored. Known as Thin Layer Activation (TLA), the technology was originally developed and pioneered in-house by the Atomic Energy Authority. Since then, the dominant partner has been the automotive sector where TLA has been used extensively for engine wear and lubrication performance analysis. However, TLA could be used in any wear or corrosion environment. Applications include wear analysis of machine tool cutting surfaces, pump impellers and brake linings to the corrosion monitoring of process plant and pipelines. (author)

  14. Fuzzy Life-Extending Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Garhy

    2013-12-01

    Full Text Available The repeated operation of the Anti-Lock Braking System (ABS causes accumulation of structural damages in its different subsystems leading to reduction in their functional life time. This paper proposes a Fuzzy Logic based Life-Extending Control (FLEC system for increasing the service life of the ABS. FLEC achieves significant improvement in service life by the trade-off between satisfactory dynamic performance and safe operation. The proposed FLEC incorporates structural damage model of the ABS. The model utilizes the dynamic behavior of the ABS and predicts the wear rates of the brake pads/disc. Based on the predicted wear rates, the proposed fuzzy logic controller modifies its control strategy on-line to keep safe operation leading to increase in service time of the ABS. FLEC is fine tuned via genetic algorithm and its effectiveness is verified through simulations of emergency stops of a passenger vehicle model.

  15. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    . The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...... boundary condition for particle burst phenomenon, the release of wear particles from a pleated mesh filter is measured in a test rig and included in the model. The findings show that a dual filter model, with startup phenomenon included, can describe trends in the wear particle flow observed in the gear...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring....

  16. Development of automobile brake lining using pulverized cow hooves

    Directory of Open Access Journals (Sweden)

    Katsina C. BALA

    2016-06-01

    Full Text Available Asbestos has been used for so long as automobile brake lining material because of its good physical and chemical properties. However, due to the health hazard associated with its handling, it has lost favour and several alternative materials are being increasingly used. Asbestos-free brake lining was developed in this work using pulverized cow hooves along with epoxy resin, barium sulphate, graphite and aluminium oxide. This was with a view to exploiting the characteristics of cow hooves, which are largely discarded as waste materials to replace asbestos which has been found to be carcinogenic. Samples of brake linings were produced using compressive moulding in which the physical and mechanical properties of the samples were studied. The results obtained showed that proper bonding was achieved as the percentage by weight of epoxy resin increased and percentage by weight of pulverized cow hooves decreased. The hardness, compressive strength, coefficient of friction, water and oil absorption, relative density and wear rate of the brake linings were determined and compared with existing brake lining properties. The result indicates that pulverized cow hooves can be used as brake lining material for automobiles.

  17. Interactions between mammalian cells and nano- or micro-sized wear particles: physico-chemical views against biological approaches.

    Science.gov (United States)

    Prokopovich, Polina

    2014-11-01

    Total joint arthroplasty (TJA) is a more and more frequent approach for the treatment of end-stage osteoarthritis in young and active adults; it successfully relieves joint pain and improves function significantly enhancing the health-related quality of life. Aseptic loosening and other wear-related complications are some of the most recurrent reasons for revision of TJA. This review focuses on current understanding of the biological reactions to prosthetic wear debris comparing in vivo and in vitro results. Mechanisms of interactions of various types of cells with metal, polymeric and ceramic wear particles are summarised. Alternative views based on multidisciplinary approaches are proposed to consider physico-chemical, surface parameters of wear particles (such as: particle size, geometry and charge) and material (particle chemical composition and its nature) with biological effects (cellular responses). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Experimental study of the effect of wearing dust-proof mask on inhaled aerosol particle size

    International Nuclear Information System (INIS)

    Lu Shunguang; Mei Chongsheng; Wu Yuangqing; Ren Liuan.

    1985-01-01

    This paper describes a method for measuring particle size of inhaled aerosol with a phantom of human head wearing dust-proof mask and a cascade impactor. The results showed that AMAD of inhaled aerosol was degraded and the size distribution of particles changed when the dust-proof mask was wearing. The leak rate of mask increased as the size of dust particles decreased. The results are applicable to estimate internal exposure dose and to evaluate the dust-proof capacity of mask

  19. Occurrence and effects of tire wear particles in the environment - A critical review and an initial risk assessment

    International Nuclear Information System (INIS)

    Wik, Anna; Dave, Goeran

    2009-01-01

    This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l -1 and the maximum PECs in sediments range from 0.3 to 155 g kg -1 d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment. - The literature on the occurrence and effects of tire wear particles in the environment is critically reviewed, and the risks to the aquatic environment are assessed

  20. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.

    Science.gov (United States)

    Lin, Tzu-Hua; Pajarinen, Jukka; Sato, Taishi; Loi, Florence; Fan, Changchun; Córdova, Luis A; Nabeshima, Akira; Gibon, Emmanuel; Zhang, Ruth; Yao, Zhenyu; Goodman, Stuart B

    2016-09-01

    Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone

  1. Elevated temperature wear of Al6061 and Al6061-20%Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Alpas, A.T. [Univ. of Windsor, Ontario (Canada)

    1995-04-01

    Both current and potential applications of particulate reinforced aluminum alloys involve components which are required to operate under sliding contact conditions at elevated temperatures. Examples include brake rotors, piston and cylinder liners in automotive engines where operating temperatures can reach 0.5--0.8 of the melting temperature of the matrix alloy. For this reason, study of the high temperature wear resistance of aluminum alloys reinforced by Al{sub 2}O{sub 3} or SiC particles is important. These studies are also of interest for the problem of die wear during hot extrusion of aluminum matrix composites and to rationalize the process of frictional welding involved in joining of the composites. Although the room temperature tribological and mechanical behaviors of aluminum matrix composites have received considerable attention, their high temperature properties have only recently started being considered. It has been shown that Al-Si-Mg (A356) alloys with or without SiC particles show a transition from mild to severe wear when a critical temperature (at about 0.4 T{sub m}, where T{sub m} is the melting temperature of aluminum) is reached as a result of frictional heating under dry sliding conditions. In this work, high temperature wear of A16061 and A16061-20%Al{sub 2}O{sub 3} was studied at temperatures between 25--500 C. The microstructural changes that occurred during wear have been delineated in order to understand the wear mechanisms that operate at high temperatures.

  2. Wear and Degradation Modes in Selected Vehicle Tribosystems

    Directory of Open Access Journals (Sweden)

    G. Pantazopoulos

    2015-03-01

    Full Text Available The wear and degradation mechanisms of two principle vehicle tribosystems are presented to elucidate the main causes of their premature failure. The first case study concerns the malfunction of an automotive cast iron pressure plate operated in an automobile clutch system. The second is related to the unexpected failure of a stainless steel brake disk of a high performance motorcycle. Both components are designed to function under sliding friction conditions that lead to the severe wear of consumable non-metallic parts of the tribosystems: the clutch disk and the brake pad, respectively. However, in both cases it was the unexpected failure of the conjugate metallic parts that resulted in terminal system damage. The experimental approach to identify the root cause of failure involved both microstructure characterization, as well as observations of the metallic contact surfaces by means of optical and scanning electron microscopy, in conjunction with microhardness and surface topography measurements. For the case of the stainless steel brake disk in particular, Finite Element Analysis was employed to simulate the operating tribosystem, identify the site(s prone for crack initiation and validate the failure mechanisms hypotheses.

  3. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    Science.gov (United States)

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  4. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    Science.gov (United States)

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  5. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    Science.gov (United States)

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  6. Occurrence and effects of tire wear particles in the environment--a critical review and an initial risk assessment.

    Science.gov (United States)

    Wik, Anna; Dave, Göran

    2009-01-01

    This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l(-1) and the maximum PECs in sediments range from 0.3 to 155 g kg(-1) d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment.

  7. Wear and Degradation Modes in Selected Vehicle Tribosystems

    OpenAIRE

    G. Pantazopoulos; A. Tsolakis; P. Psyllaki; A. Vazdirvanidis

    2015-01-01

    The wear and degradation mechanisms of two principle vehicle tribosystems are presented to elucidate the main causes of their premature failure. The first case study concerns the malfunction of an automotive cast iron pressure plate operated in an automobile clutch system. The second is related to the unexpected failure of a stainless steel brake disk of a high performance motorcycle. Both components are designed to function under sliding friction conditions that lead to the severe wear of co...

  8. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  9. Evaluation of palm kernel fibers (PKFs for production of asbestos-free automotive brake pads

    Directory of Open Access Journals (Sweden)

    K.K. Ikpambese

    2016-01-01

    Full Text Available In this study, asbestos-free automotive brake pads produced from palm kernel fibers with epoxy-resin binder was evaluated. Resins varied in formulations and properties such as friction coefficient, wear rate, hardness test, porosity, noise level, temperature, specific gravity, stopping time, moisture effects, surface roughness, oil and water absorptions rates, and microstructure examination were investigated. Other basic engineering properties of mechanical overload, thermal deformation fading behaviour shear strength, cracking resistance, over-heat recovery, and effect on rotor disc, caliper pressure, pad grip effect and pad dusting effect were also investigated. The results obtained indicated that the wear rate, coefficient of friction, noise level, temperature, and stopping time of the produced brake pads increased as the speed increases. The results also show that porosity, hardness, moisture content, specific gravity, surface roughness, and oil and water absorption rates remained constant with increase in speed. The result of microstructure examination revealed that worm surfaces were characterized by abrasion wear where the asperities were ploughed thereby exposing the white region of palm kernel fibers, thus increasing the smoothness of the friction materials. Sample S6 with composition of 40% epoxy-resin, 10% palm wastes, 6% Al2O3, 29% graphite, and 15% calcium carbonate gave better properties. The result indicated that palm kernel fibers can be effectively used as a replacement for asbestos in brake pad production.

  10. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  11. Wear particle diffusion and tissue differentiation in TKA implant fibrous interfaces

    NARCIS (Netherlands)

    Yuan, X.; Ryd, L.; Huiskes, H.W.J.

    2000-01-01

    In the context of mechanical loosening, we studied the hypothesis that wear-particle migration in the fibrous membrane under tibial plateaus after total knee arthroplasty can be explained by the pumping effects of the interstitial fluid in the tissue. Further, as a secondary objective we

  12. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  13. Simple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles

    Czech Academy of Sciences Publication Activity Database

    Veselý, F.; Zolotarevova, E.; Špundová, M.; Kaftan, Filip; Šlouf, Miroslav; Entlicher, G.

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1935-1938 ISSN 1742-7061 R&D Projects: GA MŠk 2B06096; GA MZd NT12229 Grant - others:GA ČR(CZ) GAP503/11/0163 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : joint replacement * polyethylene wear particles * wear particles determination * colorimetric methods Subject RIV: CC - Organic Chemistry Impact factor: 5.093, year: 2012

  14. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment.

    Science.gov (United States)

    Kole, Pieter Jan; Löhr, Ansje J; Van Belleghem, Frank G A J; Ragas, Ad M J

    2017-10-20

    Wear and tear from tyres significantly contributes to the flow of (micro-)plastics into the environment. This paper compiles the fragmented knowledge on tyre wear and tear characteristics, amounts of particles emitted, pathways in the environment, and the possible effects on humans. The estimated per capita emission ranges from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. The emissions from car tyres (100%) are substantially higher than those of other sources of microplastics, e.g., airplane tyres (2%), artificial turf (12-50%), brake wear (8%) and road markings (5%). Emissions and pathways depend on local factors like road type or sewage systems. The relative contribution of tyre wear and tear to the total global amount of plastics ending up in our oceans is estimated to be 5-10%. In air, 3-7% of the particulate matter (PM 2.5 ) is estimated to consist of tyre wear and tear, indicating that it may contribute to the global health burden of air pollution which has been projected by the World Health Organization (WHO) at 3 million deaths in 2012. The wear and tear also enters our food chain, but further research is needed to assess human health risks. It is concluded here that tyre wear and tear is a stealthy source of microplastics in our environment, which can only be addressed effectively if awareness increases, knowledge gaps on quantities and effects are being closed, and creative technical solutions are being sought. This requires a global effort from all stakeholders; consumers, regulators, industry and researchers alike.

  15. Effects of potassium titanate fiber on the wear of automotive brake linings

    Science.gov (United States)

    Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.

    1977-01-01

    Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.

  16. Histopathological Analysis of PEEK Wear Particle Effects on the Synovial Tissue of Patients

    Science.gov (United States)

    Jansson, V.; Giurea, A.

    2016-01-01

    Introduction. Increasing interest developed in the use of carbon-fiber-reinforced-poly-ether-ether-ketones (CFR-PEEK) as an alternative bearing material in knee arthroplasty. The effects of CFR-PEEK wear in in vitro and animal studies are controversially discussed, as there are no data available concerning human tissue. The aim of this study was to analyze human tissue containing CFR-PEEK as well as UHMWPE wear debris. The authors hypothesized no difference between the used biomaterials. Methods and Materials. In 10 patients during knee revision surgery of a rotating-hinge-knee-implant-design, synovial tissue samples were achieved (tibial inserts: UHMWPE; bushings and flanges: CFR-PEEK). One additional patient received revision surgery without any PEEK components as a control. The tissue was paraffin-embedded, sliced into 2 μm thick sections, and stained with hematoxylin and eosin in a standard process. A modified panoptical staining was also done. Results. A “wear-type” reaction was seen in the testing and the control group. In all samples, the UHMWPE particles were scattered in the tissue or incorporated in giant cells. CFR-PEEK particles were seen as conglomerates and only could be found next to vessels. CFR-PEEK particles showed no giant-cell reactions. In conclusion, the hypothesis has to be rejected. UHMWPE and PEEK showed a different scatter-behavior in human synovial tissue. PMID:27766256

  17. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment.

    Science.gov (United States)

    Straffelini, Giovanni; Ciudin, Rodica; Ciotti, Alessandro; Gialanella, Stefano

    2015-12-01

    This critical review presents several aspects related to the use of copper as a main component in brake pads in road vehicles. The compositions of these materials are attracting increasing interest and concern due to the relative contribution of wear products to particulate matter emissions in the environment as a result of braking action even though there has been a reduction in exhaust products from internal combustion engines. We review the data on the main wear mechanisms in brake systems and highlight the positive role of copper. However, similar to other heavy metal emissions, even the release of copper into the atmosphere may have important environmental and health effects. Thus, several replacement strategies are being pursued, and the positive and negative features will be critically reviewed. Additionally, the future perspectives in materials development will be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    Directory of Open Access Journals (Sweden)

    Herbst Margaret C

    2004-12-01

    Full Text Available Abstract Background Exposure to fine particulate matter air pollutants (PM2.5 affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1 crustal material, 2 wear of steel automotive components, 3 gasoline combustion, 4 speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score, heart rate variability (+16%, supraventricular ectopic beats (+39%, % neutrophils (+7%, % lymphocytes (-10%, red blood cell volume MCV (+1%, von Willebrand Factor (+9%, blood urea nitrogen (+7%, and protein C (-11%. The "crustal" factor (but not the "collapsed" source was associated with MCL (+3% and serum uric acid concentrations (+5%. Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  19. 14 CFR 25.735 - Brakes and braking systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system, and...

  20. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M; Ota, M; Shimizu, S [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  1. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  2. Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites

    Science.gov (United States)

    Bhaskar Kurapati, Vijaya; Kommineni, Ravindra

    2017-09-01

    In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.

  3. [Environmental pollution by products of wear and tear automobile-road complex].

    Science.gov (United States)

    Levanchuk, A V

    2014-01-01

    North-West State Medical University named after I.I. Mechnikov, Saint Petersburg, Russian Federation, 191015. There is supposed the method for the assessment of amounts of pollutants released into the environment during the operational wear of tyre treads, brake system of cars and the road pavement. There are presented results of chemical analysis of residues of combustion. The necessity of control of products of work wear of automobile-road complex has been substantiated.

  4. WEAR OF THE FRICTION SURFACES PARTS IN THE PRESENSE OF SOLID PARTICLES CONTACTING ZONE

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2015-01-01

    Full Text Available The problems of intensity of wear of details of the cars working in the oil polluted by abrasive particles, depending on mechanical properties of material of details and abrasive particles, their sizes, a form and concentration, loading, temperature of a surface of friction, speed of sliding, quality of lubricant are considered. 

  5. Wear Particles Promote Reactive Oxygen Species-Mediated Inflammation via the Nicotinamide Adenine Dinucleotide Phosphate Oxidase Pathway in Macrophages Surrounding Loosened Implants

    Directory of Open Access Journals (Sweden)

    Weishen Chen

    2015-03-01

    Full Text Available Background/Aims: Prosthesis loosening is closely associated with chronic inflammatory cytokine secretion by macrophages, which are activated by wear particles or inflammatory stimulants such as lipopolysaccharide (LPS. Reactive oxygen species (ROS are critical regulators of inflammation, but their enzymatic sources in response to wear particles and their effects on peri-implant LPS-tolerance remain unclear. Methods: Three ROS-related enzymes—nicotinamide adenine dinucleotide phosphate oxidase (NOX-1 and -2 and catalase—were investigated in interface membrane tissues and in titanium (Ti particle-stimulated macrophages in vitro. The generation of ROS and downstream inflammatory effects were measured with or without pre-incubation with apocynin, an NOX inhibitor. Results: Pre-exposure to Ti particles attenuated NF-κB activation in LPS-stimulated macrophages, indicating that wear particles suppress immune response, which may lead to chronic inflammation. NOX-1 and -2 were highly expressed in aseptically loosened interface membranes and in macrophages stimulated with Ti particles; the particles induced a moderate amount of ROS generation, NF-κB activation, and TNF-a secretion in macrophages, and these effects were suppressed by apocynin. Conclusion: Wear particles induce ROS generation through the NOX signaling pathway, resulting in persistent inflammation and delayed loosening. Thus, the suppression of NOX activity may be a useful strategy for preventing prosthesis loosening.

  6. Design and testing of a rotational brake with shear thickening fluids

    Science.gov (United States)

    Tian, Tongfei; Nakano, Masami

    2017-03-01

    A rotational brake working with shear thickening fluid (STF) was designed and tested in this study. With the optimisation in design, most of the STF in the brake can receive the same shear rate when the brake rotates. The parts of this brake were fabricated with a 3D printer and then assembled manually. Three types of STFs with various carrier fluids and different particles were fabricated and tested with a rheometer. Then the brake with each STF was separately tested with the rheometer. The estimated and measured torques as a function of the angular velocity fit each other well. The stability of the rotational STF brake was investigated in repeated tests, which proved the function of the brake for a long time.

  7. Influence of particle size of wear metal on the spectrometric oil analysis programme (SOAP), demonstrated by the determination of iron by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Klaegler, S.H.; Jantzen, E.

    1982-02-01

    The possibility that there might be a relation between particle size of wear metal and spectrometric determination, (e.g. of the iron content in used lubricating oils) has been examined. In this connection it had to be clarified from which particle size of the iron wear the Fe content determined by direct AAS (solution of the oil sample) is in agreement with the true value in the used oil. The determination of the absolute iron content was performed by a colorimetric method preceded by an incineration of the used oil. Contrary to other publications, in which work is based on spherical iron particles as a simulated wear, the test described here relates to true wear particles. To obtain the total iron wear from a gear oil it was filtered off from the used oil and afterwards separated into defined particle size ranges by a procedure specially developed for this purpose. The different groups of scaly particles, which were collected in this way, were then mixed homogeneously into fresh luboil samples according to their sizes. The determination of the iron content from these newly mixed luboil samples was carried out 1. by direct AAS, 2. by AAS after incineration of the oil samples and 3. by a colorimetric method (to obtain the absolute value of the iron content). The results showed a recovery of the iron of only 50% if the wear particles were bigger than about 2 ..mu..m. That means that the true value of the iron content in a used lubricating oil is found by direct AAS only if the particle size is <=1 ..mu..m.

  8. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment

    Directory of Open Access Journals (Sweden)

    Pieter Jan Kole

    2017-10-01

    Full Text Available Wear and tear from tyres significantly contributes to the flow of (micro-plastics into the environment. This paper compiles the fragmented knowledge on tyre wear and tear characteristics, amounts of particles emitted, pathways in the environment, and the possible effects on humans. The estimated per capita emission ranges from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. The emissions from car tyres (100% are substantially higher than those of other sources of microplastics, e.g., airplane tyres (2%, artificial turf (12–50%, brake wear (8% and road markings (5%. Emissions and pathways depend on local factors like road type or sewage systems. The relative contribution of tyre wear and tear to the total global amount of plastics ending up in our oceans is estimated to be 5–10%. In air, 3–7% of the particulate matter (PM2.5 is estimated to consist of tyre wear and tear, indicating that it may contribute to the global health burden of air pollution which has been projected by the World Health Organization (WHO at 3 million deaths in 2012. The wear and tear also enters our food chain, but further research is needed to assess human health risks. It is concluded here that tyre wear and tear is a stealthy source of microplastics in our environment, which can only be addressed effectively if awareness increases, knowledge gaps on quantities and effects are being closed, and creative technical solutions are being sought. This requires a global effort from all stakeholders; consumers, regulators, industry and researchers alike.

  9. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment

    Science.gov (United States)

    Kole, Pieter Jan; Löhr, Ansje J.; Van Belleghem, Frank G. A. J.; Ragas, Ad M. J.

    2017-01-01

    Wear and tear from tyres significantly contributes to the flow of (micro-)plastics into the environment. This paper compiles the fragmented knowledge on tyre wear and tear characteristics, amounts of particles emitted, pathways in the environment, and the possible effects on humans. The estimated per capita emission ranges from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. The emissions from car tyres (100%) are substantially higher than those of other sources of microplastics, e.g., airplane tyres (2%), artificial turf (12–50%), brake wear (8%) and road markings (5%). Emissions and pathways depend on local factors like road type or sewage systems. The relative contribution of tyre wear and tear to the total global amount of plastics ending up in our oceans is estimated to be 5–10%. In air, 3–7% of the particulate matter (PM2.5) is estimated to consist of tyre wear and tear, indicating that it may contribute to the global health burden of air pollution which has been projected by the World Health Organization (WHO) at 3 million deaths in 2012. The wear and tear also enters our food chain, but further research is needed to assess human health risks. It is concluded here that tyre wear and tear is a stealthy source of microplastics in our environment, which can only be addressed effectively if awareness increases, knowledge gaps on quantities and effects are being closed, and creative technical solutions are being sought. This requires a global effort from all stakeholders; consumers, regulators, industry and researchers alike. PMID:29053641

  10. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis.

    Science.gov (United States)

    Unice, Ken M; Kreider, Marisa L; Panko, Julie M

    2013-08-06

    Impacts of surface runoff to aquatic species are an ongoing area of concern. Tire and road wear particles (TRWP) are a constituent of runoff, and determining accurate TRWP concentrations in sediment is necessary in order to evaluate the likelihood that these particles present a risk to the aquatic environment. TRWP consist of approximately equal mass fractions of tire tread rubber and road surface mineral encrustations. Sampling was completed in the Seine (France), Chesapeake (U.S.), and Yodo-Lake Biwa (Japan) watersheds to quantify TRWP in the surficial sediment of watersheds characterized by a wide diversity of population densities and land uses. By using a novel quantitative pyrolysis-GC/MS analysis for rubber polymer, we detected TRWP in 97% of the 149 sediment samples collected. The mean concentrations of TRWP were 4500 (n = 49; range = 62-11 600), 910 (n = 50; range = 50-4400) and 770 (n = 50; range = 26-4600) μg/g d.w. for the characterized portions of the Seine, Chesapeake and Yodo-Lake Biwa watersheds, respectively. A subset of samples from the watersheds (n = 45) was pooled to evaluate TRWP metals, grain size and organic carbon correlations by principal components analysis (PCA), which indicated that four components explain 90% of the variance. The PCA components appeared to correspond to (1) metal alloys possibly from brake wear (primarily Cu, Pb, Zn), (2) crustal minerals (primarily Al, V, Fe), (3) metals mediated by microbial immobilization (primarily Co, Mn, Fe with TOC), and (4) TRWP and other particulate deposition (primarily TRWP with grain size and TOC). This study should provide useful information for assessing potential aquatic effects related to tire service life.

  11. Wear rate quantifying in real-time using the charged particle surface activation

    Science.gov (United States)

    Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P. M.

    1997-02-01

    Surface activation, commonly known as Thin Layer Activation (TLA), is currently employed in over 30 accelerator laboratories around the world for wear and/or corrosion monitoring in industrial plants [1-6]. TLA was primarily designed and developed to meet requirements of potential industrial partners, in order to transfer this technique from research to industry. The method consists of accelerated ion bombardment of a surface of interest, e.g., a machine part subjected to wear. Loss of material owing to wear, erosive corrosion or abrasion is characterized by monitoring the resultant changes in radioactivity. In principle, depending upon the case at hand, one may choose to measure either the remnant activity of the component of interest or to monitor the activity of the debris. For applications of the second type, especially when a lubricating agent is involved, dedicated installations have been constructed and adapted to an engine or a tribological testing stand in order to assure oil circulation around an externally placed detection gauge. This way, the wear particles suspended in the lubricant can be detected and the material loss rates quantified in real time. Moreover, in specific cases, such as the one presented in this paper, remnant activity measurements prove to be useful tools for complementary results. This paper provides a detailed presentation of such a case: in situ resistance-to-wear testing of two types of piston rings.

  12. Tribological properties of nonasbestos brake pad material by using coconut fiber

    Science.gov (United States)

    Craciun, A. L.; Pinca-Bretotean, C.; Utu, D.; Josan, A.

    2017-01-01

    In automotive industry, the brake system is influenced by a large number of variables including geometry of components, materials of brakes, components interaction and many operating condition. Organic fiber reinforced metallic friction composites are increasingly being used in automotive brake shoes, disc and pads, linings, blocks, clutch facings, primarily because of awareness of health hazards of asbestos. Current trend in the research field of automotive industry is to utilization of different wastes as a source of raw materials for composite materials. This will provide more economical benefit and also environmental preservation by utilize the waste of natural fibre In this paper it has performed a tribological study to determine the characteristics of the friction product by using coconut natural fibred reinforced in aluminium composite. In this sense, two different laboratory formulation were prepared with 5% and 10% coconut fibre and other constitutes like binder, friction modifiers, abrasive material and solid lubrificant using powder mettallurgy. These dnew materials for brake pads are tested for tribological behaviour in a standard pin on disc tribometer. To know the wear behavior of composite materials will determine the parameters that characterize there tribological properties.

  13. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  14. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles

    International Nuclear Information System (INIS)

    Zhang Zhaozhu; Su Fenghua; Wang Kun; Jiang Wei; Men Xuehu; Liu Weimin

    2005-01-01

    The carbon fabric composites filled with the particulates of polyfluo-150 wax (PFW), nano-particles of ZnO (nano-ZnO), and nano-particles of SiC (nano-SiC), respectively, were prepared by dip-coating of the carbon fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the carbon fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration are evaluated on a Xuanwu-III high-temperature friction and wear tester. The morphologies of the worn surfaces of the filled carbon fabric composites and the counterpart steel pins are analyzed by means of scanning electron microscopy. The effect of the fillers on the adhesion strength of the adhesive is evaluated using a DY35 universal materials tester. It is found that the fillers PFW, nano-ZnO, and nano-SiC contribute to significantly increasing anti-wear abilities of the carbon fabric composites, however, nano-SiC increase the friction coefficient of the carbon fabric composites. The wear rates of the composites at elevated temperature above 180 deg. C are much larger than that below 180 deg. C, which attribute to the degradation and decomposition of the adhesive resin at an excessively elevated temperature. That the interface bonding strength among the carbon fabric, the adhesive, and the particles is significantly increased after solidification and with the transferred film of the varied features largely account for the increased wear-resistance of the filled carbon fabric composites as compared with the unfilled one

  15. Elemental analysis of airborne fine particles collected at the roadside of an arterial road

    International Nuclear Information System (INIS)

    Hirabayashi, M.

    2008-01-01

    Airborne particulate matter was collected at the intersection of Industrial Road in Kawasaki-city, Kanagawa, Japan using a 12-stage low-pressure impactor. High concentrations of airborne particulate matter have been observed in this area. The collected samples were analyzed for 34 elements by instrumental neutron activation analysis (INAA), and data on the elemental concentrations were obtained. High concentrations of fine particles of As, Br, Sb, V, and Zn were observed. It was further observed that these fine particles were originated predominantly from the wear of tires and brakes, and not from automobile exhaust emissions. (author)

  16. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  17. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  18. Hydrostatically regenerative brake system for commercial vehicles and mobil hydraulic work engines; Hydrostatisch Regeneratives Bremssystem (HRB) fuer Nutzfahrzeuge und mobile Arbeitsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kliffken, Markus Gustav; Ehret, Christine; Stawiarksi, Robert [Bosch Rexroth AG, Elchingen (Germany)

    2008-07-01

    The characteristics of the hydraulic storage system and the hydrostatically renewable brake system of Bosch Rexroth AG (Eichingen, Federal Republic of Germany) as a hydraulic hybrid system permit a fast integration in the vehicle, low costs of maintenance and high security. The system is suitable for vehicles which frequently start and brake. As a function of the operating cycle, savings of up to 25 % are possible. Additionally, the hydrostatically renewable brake system reduces the wear of brakes and provides a larger travelling comfort by eliminating interruptions of traction power. At present, the functionality of the hydrostatically renewable brake system is tested in a field test at Berlin (Federal Republic of Germany). Further prototypes also are developed and tested in the U.S.A. up to the end of the year 2008.

  19. Nanoscale mechanochemical wear of phosphate laser glass against a CeO{sub 2} particle in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiaxin, E-mail: yujiaxin@swust.edu.cn [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); He, Hongtu; Zhang, Yafeng [Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010 (China); Hu, Hailong [Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-01-15

    Highlights: • Friction components of phosphate glass/CeO{sub 2} pair in humid air were quantified to understand the friction mechanism. • Severe nanoscale wear was directly observed by AFM topography on both phosphate glass and CeO{sub 2} particle in humid air. • The wearless behaviors of phosphate glass in vacuum were confirmed by the AFM phase image. • Capillary water bridge induced corrosion plays an important role in the mechanochemical wear of phosphate glass in air. - Abstract: Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO{sub 2} particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO{sub 2} pair in air was found to be 5–7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65–79%. The capillary water bridge further induced a serious material removal of glass and CeO{sub 2} particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Ce−O−P bond, accelerating the reaction between water and the glass/CeO{sub 2} pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  20. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  1. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si₉B13 Glass Particles.

    Science.gov (United States)

    Guo, Lingyu; Liu, Yan; Shen, Kechang; Song, Chaoqun; Yang, Min; Kim, Kibuem; Wang, Weimin

    2015-08-07

    The AA6061-T6 aluminum alloy samples including annealed Fe 78 Si₉B 13 particles were prepared by friction stir processing (FSP) and investigated by various techniques. The Fe 78 Si₉B 13 -reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200) plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE) for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe 78 Si₉B 13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe 78 Si₉B 13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  2. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  3. Brakes, brake control and driver assistance systems function, regulation and components

    CERN Document Server

    2014-01-01

    Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems. Contents Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Car braking-system components.- Wheel brakes.- Antilock breaking systems.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modulator.- Sensors for brake control.- Sensotronic brake control.- Active steering.- Occupant protection systems.- Driver assistance systems.- Adaptive cruise control.- Parking systems.- Instrumentation.- Orientation methods.- Navigation systems.- Workshop technology. The target groups Motor-vehicle technicians in education and vocational training Master-mechanics and technicians in garage-workshops Teachers and lecturers in vocation...

  4. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  5. Braking system

    Science.gov (United States)

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  6. The model of the dependence of the abrasive wear value on the maximal linear wear

    Directory of Open Access Journals (Sweden)

    О.А. Вишневський

    2004-01-01

    Full Text Available  The relation of the contact area of the rubber roll with a sample and the maximal linear wear value is found. The mathematical model of the dependence of the wear volume weight value on the maximal dimple depth is presented with the friction on abrasive particles fixed nonrigidly. The relation of volume weight wear with the rubber roll contact surface area with a sample with the friction on abrasive particles fixed nonrigidly is established.

  7. Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses.

    Science.gov (United States)

    Du, Zhe; Wang, Shujun; Yue, Bing; Wang, Ying; Wang, You

    2018-02-16

    T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 10 8 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro , with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo . Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses.

  8. Formation and alteration of airborne particles in the subway environment.

    Science.gov (United States)

    Moreno, T; Querol, X; Martins, V; Minguillón, M C; Reche, C; Ku, L H; Eun, H R; Ahn, K H; Capdevila, M; de Miguel, E

    2017-01-25

    Most particles in the rail subway environment are sub-micron sized ferruginous flakes and splinters generated mechanically by frictional wear of brake pads, wheels and rails. To better understand the mechanisms of formation and the alteration processes affecting inhalable particles in subways, PM samples (1-2.5 μm and 2.5-10 μm) were collected in the Barcelona Metro and then studied under a scanning electron microscope. Most particles in these samples are hematitic (up to 88%), with relatively minor amounts of mineral matter (up to 9%) and sulphates (up to 5%). Detailed microscopy (using back scattered and TEM-DRX imaging) reveals how many of the metallic particles comprise the metallic Fe nucleus surrounded by hematite (Fe 2 O 3 ) and a coating of sulphate and chloride salts mixed with mineral matter (including Ca-carbonates, clay minerals and quartz). These observations record the emission of fine to ultrafine FePM by frictional wear at elevated temperatures that promote rapid partial (or complete) oxidation of the native metal. Water condensing on the PM surface during cooling leads to the adsorption of inorganic mineral particles that coat the iron oxide. The distinctively layered polymineralic structure that results from these processes is peculiar to particles generated in the subway environment and very different from PM typically inhaled outdoors.

  9. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  10. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  11. Erosion wear response of epoxy composites filled with steel industry slag and sludge particles: A comparative study

    Science.gov (United States)

    Purohit, Abhilash; Satapathy, Alok

    2018-03-01

    In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz - Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz - Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro- hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.

  12. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H. [School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou (China); Kou, F. F., E-mail: htong_2005@163.com [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2017-03-10

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  13. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    International Nuclear Information System (INIS)

    Tong, H.; Kou, F. F.

    2017-01-01

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  14. Concrete surface with nano-particle additives for improved wearing resistance to increasing truck traffic.

    Science.gov (United States)

    2012-07-01

    This study focused on the use of nanotechnology in concrete to improve the wearing resistance of concrete. The nano : materials used were polymer cross-linked aerogels, carbon nanotubes, and nano-SiO2, nano-CaCO3, and nano-Al2O3 : particles. As an in...

  15. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  16. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    OpenAIRE

    Yin, Guodong; Jin, XianJian

    2013-01-01

    A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sli...

  17. TLA-marker for wear rate monitoring

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Catana, M.; Roman, M.

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author)

  18. TLA-marker for wear rate monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C; Plostinaru, D; Ivan, A [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania); Catana, M; Roman, M [Institute for Research and Design in Transportation, Bucharest, (Romania)

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author).

  19. Development of combined brake system on front and rear brakes for scooter; Scooter yo zenkorin rendo brake system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Y; Itabashi, T; Shinohara, S; Honda, Y [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Scooters need appropriate front and rear wheel braking power distribution and each of front and rear brakes have been operated using right and left levers. This time, a low cost brakes with cable type combined brake system for small size scooter and a brakes with hydraulic type combined brake system for middle size scooter have been developed to obtain appropriate front and rear wheel braking power distribution. Both systems use convenient left lever to operate. 3 refs., 9 figs., 1 tab.

  20. Shuttle landing runway modification to improve tire spin-up wear performance

    Science.gov (United States)

    Daugherty, Robert H.; Yager, Thomas J.; Stubbs, Sandy M.

    1988-01-01

    This paper presents the results of a series of tire spin-up wear tests on a simulated Kennedy Space Center (KSC) runway that were carried out to investigate the tire wear problem for Space Shuttle landings on the KSC runway and to test several modifications of the runway surface designed to alleviate the problem. It was found that the runway surface produced by a concrete smoothing machine using cutters spaced one and three-quarters blades per centimeter provided adequate wet cornering while limiting spin-up wear. Based on the test results, the KSC runway was smoothed for about 1066 m at each end, leaving the original high friction surface, for better wet steering and braking, in the 2438-m central section.

  1. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  2. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    Science.gov (United States)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  3. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  4. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    2013-01-01

    Full Text Available A new cooperative braking control strategy (CBCS is proposed for a parallel hybrid electric vehicle (HEV with both a regenerative braking system and an antilock braking system (ABS to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC, and the motor speed, a fuzzy logic control strategy (FLC is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.

  5. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si9B13 Glass Particles

    Directory of Open Access Journals (Sweden)

    Lingyu Guo

    2015-08-01

    Full Text Available The AA6061-T6 aluminum alloy samples including annealed Fe78Si9B13 particles were prepared by friction stir processing (FSP and investigated by various techniques. The Fe78Si9B13-reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200 plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe78Si9B13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe78Si9B13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  6. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    Science.gov (United States)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  7. THE STUDY OF BRAKE EFFECTIVENESS HOPPER SYSTEM WITH SEPARATE BRAKING TRUCKS

    Directory of Open Access Journals (Sweden)

    O. Je. Nishhenko

    2009-06-01

    Full Text Available The results of tests of the hopper brake systems for the pellets having typical system and separate braking per each bogie are presented. It is shown that the brake system with separate braking has several advantages as compared to the typical one.

  8. Developing of a software for determining advanced brake failures in brakes test bench

    Directory of Open Access Journals (Sweden)

    Hakan Köylü

    2016-08-01

    Full Text Available At present time, the brake test bench conducts the braking and suspension tests of front or rear axles and the test results are evaluated through one axle. The purpose of the brake testing system is to determine braking force and damping coefficient dissymmetry of one axle. Thus, this test system evaluates the performance of service brake, hand brake and suspension systems by considering separately front and rear axle dissymmetry. For this reason, the effects of different braking and damping forces applied by right and left wheels of both axles on braking performance of all vehicle are not determined due to available algorithm of the test bench. Also, the other brake failures are not occurred due to the algorithm of brake test system. In this study, the interface has been developed to determine the other effects of dissymmetry and the other brake failures by using the one axle results of brake test bench. The interface has algorithm computing the parameters according to the interaction between front and rear axles by only using measured test results. Also, it gives the warnings by comparing changes in the parameters with braking performance rules. Braking and suspension tests of three different vehicles have been conducted by using brake test bench to determine the performance of the algorithm. Parameters based on the axle interaction have been calculated by transferring brake test results to the interface and the test results have been evaluated. As a result, the effects of brake and suspension failures on braking performance of both axle and vehicle have been determined thanks to the developed interface.

  9. Development of mechanical brake assist; Mechanical brake assist no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, M; Shingyoji, S; Nakamura, I; Tagawa, T; Saito, Y; Ishihara, T; Kobayashi, S; Yoshida, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have recognized that there are drivers who cannot apply strong brake pedal force , in spite of the necessity of hard braking in emergencies. We have developed a `mechanical brake assist system` which assists drivers appropriately, according to the drivers` characteristics based on studying the characteristic`s of conditions of drivers applying the brake pedal force in emergency conditions. 2 refs., 7 figs., 1 tab.

  10. Magnetostrictive Brake

    Science.gov (United States)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  11. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  12. Electronic brakes. From ABS to brake-by-wire. 2. ed.; Elektronische Bremssysteme. Vom ABS zum Brake-by-Wire

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, H.R.

    2003-07-01

    The book reports trends in vehicle brakes from 1968 to 1998. This was the age of the electronic revolution. The book presents conventional brakes, antiblocking systems (ABS), antislip systems (ASS), brake assistants (BAS), dynamic control systems, and brake-by-wire systems. [German] Das Buch berichtet ueber Entwicklungen an Fahrzeugbremsanlagen in der Zeitspanne von 1968 bis etwa 1998. Diese Zeit war gepraegt vom Vordringen der Elektronik in die Bremsen, was fuer Hersteller und Kunden eine Revolution bedeutete. Behandelt sind: (a) Konventionelle Bremsanlagen, (b) Antiblockiersysteme (ABS), (c) Anti-Schlupf-regelungen (ASR), (d) Bremsassistenten (BAS), (e) Fahrdynamikregelungen (FDR, ESP), (f) Brake-by-Wire (orig.)

  13. Design and multi-physics optimization of rotary MRF brakes

    Science.gov (United States)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  14. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  15. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  16. Forecast of reliability for mechanical components subjected to wearing; Pronostico de la fiabilidad de componentes mecanicos sometidos a desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Zevallos, J.; Castellote-Varona, C.; Alanbari, M.

    2010-07-01

    Generally, improving quality and price of products, obtaining a complete customer satisfaction and achieving excellence in all the processes are some of the challenges currently set up by every company. To do this, knowing frequently the reliability of some component is necessary. To achieve this goal, a research, that contributes with clear ideas and offers a methodology for the assessment of the parameters involved in the reliability calculation, becomes necessary. A parameter closely related to this concept is the probability of product failure depending on the operating time. It is known that mechanical components fail by: creep, fatigue, wear, corrosion, etc. This article proposes a methodology for finding the reliability of a component subject to wear, such as brake pads, grinding wheels, brake linings of clutch discs, etc. (Author)

  17. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    Science.gov (United States)

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  18. Validity of a device designed to measure braking power in bicycle disc brakes.

    Science.gov (United States)

    Miller, Matthew C; Fink, Philip W; Macdermid, Paul William; Perry, Blake G; Stannard, Stephen R

    2017-07-21

    Real-world cycling performance depends not only on exercise capacities, but also on efficiently traversing the bicycle through the terrain. The aim of this study was to determine if it was possible to quantify the braking done by a cyclist in the field. One cyclist performed 408 braking trials (348 on a flat road; 60 on a flat dirt path) over 5 days on a bicycle fitted with brake torque and angular velocity sensors to measure brake power. Based on Newtonian physics, the sum of brake work, aerodynamic drag and rolling resistance was compared with the change in kinetic energy in each braking event. Strong linear relationships between the total energy removed from the bicycle-rider system through braking and the change in kinetic energy were observed on the tar-sealed road (r 2  = 0.989; p brake torque and angular velocity sensors are valid for calculating brake power on the disc brakes of a bicycle in field conditions. Such a device may be useful for investigating cyclists' ability to traverse through various terrains.

  19. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Research and development of mezoscopic composite phase material based on heat-/wear-resistant metal); 1999 nendo mezoscopic fukuso soshiki seigyo tainetsu taimamosei kinzokuki fukugo zairyo no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Using an in-situ method, three kinds of Fe-C-Ni-Cr-Mo-Nb-based alloys are developed, whose strength is not less than 800MPa at 1073K. They exhibit, in a high-temperature erosion wear test, a wear resistance which is 2-3 times higher than that of conventional materials. When they are cast, wear-causing graphite precipitation is suppressed thanks to the cast iron coagulating in gaps in the ceramic formed into a net shape. It is also found that in this process the precipitation of cementites etc., which improves on the abrasion and wear characteristics, is accelerated and that the cementites etc. are finely dispersed for improvement on the brake (brake block) characteristics. Tentatively produced brake blocks are tested for performance at the Railway Technical Research Institute. The new materials are found to exhibit a wear resistance which is 2.2 times higher, and a braking capability 1.6 times better, than those of conventional materials. In the case of an Fe-50Cr-4.8C alloy produced by an MA (mechanical alloying) method, {alpha}-Fe is dispersed into M{sub 23}C{sub 6} for a remarkable improvement on the wear-resisting feature. A 10%TiC cermet exhibits a remarkably high wear resistance, that is, a transverse rupture strength of 1270MPa which is higher than that of a cast high-speed steel. (NEDO)

  20. Distribution of polyethylene wear particles and bone fragments in periprosthetic tissue around total hip joint replacements

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Entlicher, G.; Pavlova, Ewa; Šlouf, Miroslav; Pokorný, D.; Veselý, F.; Gallo, J.; Sosna, A.

    2010-01-01

    Roč. 6, č. 9 (2010), s. 3595-3600 ISSN 1742-7061 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : joint replacement * polyethylene * wear particles distribution Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.824, year: 2010

  1. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  2. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  3. Effect of hip braces on brake response time: Repeated measures designed study.

    Science.gov (United States)

    Dammerer, Dietmar; Waidmann, Cornelia; Huber, Dennis G; Krismer, Martin; Haid, Christian; Liebensteiner, Michael C

    2017-08-01

    The question whether or not a patient with a hip brace should drive a car is of obvious importance because the advice given to patients to resume driving is often anecdotal as few scientific data are available on this specific subject. To assess driving ability (brake response time) with commonly used hip braces. Repeated measures design. Brake response time was assessed under six conditions: (1) without a brace (control), (2) with a typical postoperative hip brace with adjustable range of motion and the settings: unrestricted, (3) flexion limited to 70°, (4) extension blocked at 20° hip flexion, (5) both flexion and extension limited (20°/70°) and (6) an elastic hip bandage. Brake response time was assessed using a custom-made driving simulator as used in previous studies. The participants were a convenience sample of able-bodied participants. A total of 70 participants (35 women and 35 men) participated in our study. Mean age was 31.1 (standard deviation: 10.6; range: 21.7-66.4) years. A significant within-subject effect for brake response time was found ( p = 0.009), but subsequent post hoc analyses revealed no significant differences between control and the other settings. Based on our findings, it does not seem mandatory to recommend driving abstinence for patients wearing a hip orthosis. We suggest that our results be interpreted with caution, because (1) an underlying pathological hip condition needs to be considered, (2) the ability to drive a car safely is multifactorial and brake response time is only one component thereof and (3) brake response time measurements were performed only with healthy participants. Clinical relevance Hip braces are used in the context of joint-preserving and prosthetic surgery of the hip. Therefore, clinicians are confronted with the question whether to allow driving a car with the respective hip brace or not. Our data suggest that hip braces do not impair brake response time.

  4. A new structure of a magnetorheological brake with the waveform boundary of a rotary disk

    International Nuclear Information System (INIS)

    Nam, Tran Hai; Ahn, Kyoung Kwan

    2009-01-01

    This paper presents a novel magnetorheological (MR) brake design incorporating a rotary disk with a waveform boundary that generates a resistance force based on the effects of a material deformation process. This force is transmitted from an external agent and creates the necessary energy for breaking the structure of the hardened MR fluid. Its minimum destructive ability is proportional to the variable stiffness of an MR fluid in a magnetic field. In this design, the waveform wall of a rotary disk crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. The resistance forces and braking torques generated by this crush action are stronger than those produced by strain action. To verify our proposed MR brake, the proposed and conventional MR brakes are designed using similar magnetic circuits and material parameters. We compared the performance of our novel MR brake to the performance of a conventional MR brake, and demonstrated that the measured resistance torque of the proposed MR brake is approximately 600% greater than resistance torques generated by conventional brakes

  5. A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles

    International Nuclear Information System (INIS)

    Kumar, S.; Subramanya Sarma, V.; Murty, B.S.

    2008-01-01

    Solid particle erosion wear behaviour of A356 and A356/TiB 2 in situ composites has been studied. A356 alloy reinforced with in situ TiB 2 particles was fabricated by the reaction of halide salts with aluminium melt and the formation of Al 3 Ti brittle phase is completely suppressed. The composites show good grain refinement of α-Al and modification of eutectic Si. These in situ composites show high hardness and better erosion resistance than the base alloy. Though the sizes of in situ formed TiB 2 reinforcement particles are smaller than the erodent SiC particles, TiB 2 particles are able to effectively resist the erodent particles. Design of experiment has been used to run the solid particle erosion experiment. An attempt has also been made to develop a mathematical model by using regression analysis. Analysis of variance (ANOVA) technique is applied to check the validity of the developed model. Student's t-test is utilized to find out the significance of factors. The wear mechanism has been studied by analyzing the surface of the worn specimen using scanning electron microscopy and energy dispersive X-ray microanalysis

  6. Influence of convective cooling on a disc brake temperature distribution during repetitive braking

    International Nuclear Information System (INIS)

    Adamowicz, Adam; Grzes, Piotr

    2011-01-01

    The purpose of this study is to evaluate an impact of convective mode of heat transfer on the thermal behaviour of a disc brake system during repetitive braking process with the constant velocity using fully three-dimensional finite element model. The transient thermal analysis to determine the temperature distributions on the contact surface of a disc brake is performed. The issue of non-uniform frictional heating effects of mutual slipping of a disc over fixed pads is tested using FE models with the several possible to occur in automotive application heat transfer coefficients. To have a possibility of comparison of the temperature distributions of a disc during cyclic brake application, the energy transformed during time of every analyzed case of braking process and the subsequent release periods was equal. The time-stepping procedure is employed to develop moving heat source as the boundary heat flux acting interchangeably with the convective cooling terms. The difficulties accounted for the accurate simulation of heating during spin of the rotor is omitted by the use of the code, which enable shaping curves responsible for the thermal flux entering the disc at subsequent moments of time. The resulting evolution of temperature on the friction surface reveals a wide range of variations, distinguishing periods of heating and cooling states. It has been established, that during single braking the convective cooling has insignificant influence on the temperature distributions of a disc brake, consequently is not able to prevent overheat problem. However the brake release period after the braking operation, when the velocity of the vehicle remains on the same level, results in considerable decrease of temperature. - Highlights: → Convection does not allow to lower temperature of disc during single braking process. → Maximal temperature of disc decreases with number of brake applications. → Temperature at the end of braking increases with number of brake

  7. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  8. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  9. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  10. An antilock molecular braking system.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  11. Brake noise measurements on mixed freight trains with composite brake blocks

    NARCIS (Netherlands)

    Jansen, E.H.W.; Dittrich, M.G.; Sikma, E.L.

    2008-01-01

    Brake noise is known to be a major contributor to the total sound emission of railway yards and areas near stations. It has been established that composite brake blocks reduce rolling noise, but it is not known if this is also the case for braking noise. Therefore, in order to investigate this,

  12. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  13. Optimum design of brake friction material using hybrid entropy-GRA approach

    Directory of Open Access Journals (Sweden)

    Kumar Naresh

    2016-01-01

    Full Text Available The effect of Kevlar and natural fibres on the performance of brake friction materials was evaluated. Four friction material specimens were developed by varying the proportion of Kevlar and natural fibres. Two developed composite contained 5-10 wt.% of Kevlar fibre while in the other two the Kevlar fibre was replaced with same amount of natural fibre. SAE J661 protocol was used for the assessment of the tribological properties on a Chase testing machine. Result shows that the specimens containing Kevlar fibres shows higher friction and wear performance, whereas Kevlar replacement with natural fibre resulted in improved fade, recovery and friction fluctuations. Further hybrid entropy-GRA (grey relation analysis approach was applied to select the optimal friction materials using various performance defining attributes (PDA including friction, wear, fade, recovery, friction fluctuations and cost. The friction materials with 10 wt% of natural fibre exhibited the best overall quality.

  14. Reel safety brake

    Science.gov (United States)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  15. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is 'road dust'. The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: (i) How do traction

  16. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact

    Science.gov (United States)

    Frérot, Lucas; Aghababaei, Ramin; Molinari, Jean-François

    2018-05-01

    Sliding contact between solids leads to material detaching from their surfaces in the form of debris particles, a process known as wear. According to the well-known Archard wear model, the wear volume (i.e. the volume of detached particles) is proportional to the load and the sliding distance, while being inversely proportional to the hardness. The influence of other parameters are empirically merged into a factor, referred to as wear coefficient, which does not stem from any theoretical development, thus limiting the predictive capacity of the model. Based on a recent understanding of a critical length-scale controlling wear particle formation, we present two novel derivations of the wear coefficient: one based on Archard's interpretation of the wear coefficient as the probability of wear particle detachment and one that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms of the properties of the interface, surface roughness parameters and applied load for various rough contact situations. Both new wear interpretations are evaluated analytically and numerically, and recover some key features of wear observed in experiments. This work shines new light on the understanding of wear, potentially opening a pathway for calculating the wear coefficient from first principles.

  17. Unidirectional high gain brake stop

    Science.gov (United States)

    Lang, David J. (Inventor)

    1987-01-01

    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed.

  18. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  19. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  20. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  1. THE INFLUENCE OF BRAKE PADS THERMAL CONDUCTIVITY ON PASSANGER CAR BRAKE SYSTEM EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Predrag D Milenković

    2010-01-01

    Full Text Available In phase of vehicle braking system designing, besides of mechanical characteristics, it is also necessary to take under consideration the system's thermal features. This is because it is not enough just to achieve proper braking power, for the brake system to be effective but equally important thing is the dissipation of heat to the environment. Heat developed in the friction surfaces dissipate into the environment over the disk in one hand and through the brake linings and caliper, in the other. The striving is to make that greatest amount of heat to dissipate not threw the brake pads but threw disc. The experimental researching of heat transfer process taking place at vehicle brakes was made in the R&D Center of "Zastava automobili" car factory in order to increase the efficiency of brake system. The standard laboratory and road test procedures were used, according to factory quality regulations. The modern equipment such as thermo camera, thermo couples, torque transducers, signal amplifiers, optical speed measuring system and laptop computer were used. In this paper will be shown the part of the experimental researching, which refers to the thermal conductivity of brake pad friction linings.

  2. Design and analysis of an MR rotary brake for self-regulating braking torques.

    Science.gov (United States)

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  3. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  4. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  5. Dynamics of braking vehicles: from Coulomb friction to anti-lock braking systems

    International Nuclear Information System (INIS)

    Tavares, J M

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and without sliding. The advantage of using an anti-lock braking system (ABS) is put in evidence, and a quantitative estimate of its efficiency is proposed and discussed

  6. IDEAL BRAKE FORCE DISTRIBUTION BETWEEN THE AXLES OF THE TWO-AXLE VEHICLE SERVICE BRAKE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Podryhalo

    2015-07-01

    Full Text Available The obtained analytical expressions allow us to evaluate the stability of two-axle vehicles at various slowdowns. An analytical expression for calculating the ideal according to condition stability ensuring of a two-axle vehicle at service brake applications of brake force distribution allows to offer automatic control devices for brake force adjucement. With decellerationg growth of the two-axle vehicle at service braking the braking force acting on the front axle should decrease relative to the brake force on the rear axle.

  7. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Wang, Guoshun; Fu, Rong

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  8. Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Rice, Lynsey [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2010-12-15

    Tire wear particles filed from the treads of end-of-life vehicle tires have been added to sea water to examine the release of Zn and the toxicity of the resulting leachate and dilutions thereof to the marine macroalga, Ulva lactuca. Zinc release appeared to be diffusion-controlled, with a conditional rate constant of 5.4 {mu}g[L(h){sup 1/2}]{sup -1}, and about 1.6% of total Zn was released after 120 h incubation. Exposure to increasing concentrations of leachate resulted in a non-linear reduction in the efficiency of photochemical energy conversion of U. lactuca and, with the exception of the undiluted leachate, increasing accumulation of Zn. Phototoxicity was significantly lower on exposure to equivalent concentrations of Zn added as Zn(NO{sub 3}){sub 2}, suggesting that organic components of leachate are largely responsible for the overall toxicity to the alga. Given the ubiquity and abundance of TWP in urban coastal sediments, the generation, biogeochemistry and toxicity of tire leachate in the marine setting merit further attention. - Tire wear leachate is toxic to Ulva lactuca and zinc is a potential bioindicator of leachate contamination in urban marine systems.

  9. Single acting translational/rotational brake

    Science.gov (United States)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  10. Sensotronic brake control. Braking with maximum efficiency; Die Sensotronic Brake Control. Bremsen auf hoechstem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Fischle, G.; Stoll, U.; Hinrichs, W.

    2002-05-01

    Sensotronic Brake Control (SBC) celebrated its world premiere when it was introduced into standard production along with the new SL in October 2001. This innovative brake system is also fitted as standard in the new E-Class. The design of the system components is identical to those used in the SL-Class. The software control parameters have been adapted to the conditions in the new saloon. (orig.) [German] Die Sensotronic Brake Control (SBC) wurde als Weltneuheit mit dem neuen SL im Oktober 2001 in Serie gebracht. Dieses innovative Bremssystem gehoert ebenfalls zur Serienausstattung der neuen E-Klasse. Die Systemkomponenten sind baugleich mit denen der SL-Klasse. Die Regelparameter der Software sind an die Verhaeltnisse der Limousine angepasst. (orig.)

  11. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  12. INFLUENCE OF THE TIME OF DISINHIBITION TO TRANSIENTS AND WEAR OF THE FRICTION LININGS IN AN ASYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    V. V. Solencov

    2016-01-01

    Full Text Available Time and the stopping distance of the electric drive with frequent starting-and-braking modes that contain embedded asynchronous motor with a recessed combined braking device depend on the moment of an electromagnet disinhibition. At the same time other important criteria are taken into the account, i.e. wear resistance of the brake device and the smoothness of the deceleration of the electric drive. In general such an asynchronous motor contains asynchronous engine with squirrel-cage rotor, electromechanical normally-closed brake, electromagnetical slip clutch and control circuit. The mechanical characteristics of the deceleration of asynchronous motor with recessed combined brake device at different moments of an electromagnet disinhibition are presented. The mathematical model is featured and the transients in such a motor are presented. Formation models for computer research were carried out in the Fortran 2008 programming language. Calculation of the system of differential equations was fulfilled by the Runge – Kutta method. The deceleration of the electromechanical brake at various speeds caused different time values and stopping distances. The plots of stopping distance and the braking time at various moments of an electromagnet disinhibition are demonstrated. The optimum moment of switching on an electromechanical brake, providing small stopping distance and the braking time is the time when the speed wвкл = 0,6–0,8 of the nominal. In this case the acceptable number of brake applications for friction linings (compared with mechanical braking will increase by 1.6–2.8 times. The pilot study confirmed the validity of the obtained mathematical models and discovered patterns.

  13. Distribution of polyethylene wear debris and bone particles in granuloma tissue around total hip joint replacements

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Lapčíková, Monika; Šlouf, Miroslav; Entlicher, G.; Pokorný, D.; Veselý, F.; Sosna, A.

    2008-01-01

    Roč. 18, č. 2 (2008), s. 173-174 ISSN 1120-7000. [Domestic Meeting of the European Hip Society /8./. 11.06.2008-13.06.2008, Madrid] R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : wear debris * bone particles * total hip joint replacement Subject RIV: CD - Macromolecular Chemistry www. hip -int.com

  14. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  15. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    International Nuclear Information System (INIS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-01-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  16. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  17. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  18. Brake force estimation for electromechanical vehicle brakes; Bremskraft-Rekonstruktion fuer elektromechanische Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R. [Continental Teves (Germany)

    1999-06-01

    Due to the increasing safety and comfort demands of the customer, the functionality of modern brake systems has grown continuously in the last years. However, implementation of the extended functionality in conventional brake hydraulics makes active electronic intervention necessary and therefore requires a lot of technical effort. In recent years the automotive supplier industry has started to develop brake systems which have electromechanical brake actuators generating the brake forces at the individual wheels. Electromechanically actuated wheel brakes need to be operated in a closed control loop. This paper introduces a new method to reconstruct the needed feedback value brake force from easy to measure signals. (orig.) [Deutsch] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen, aktiven Eingriff sehr aufwendig. In den letzten Jahren hat daher die Automobilzulieferindustrie begonnen, Bremssysteme zu entwickeln, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. Elektromechanisch betaetigte Radbremsen muessen im geschlossenen Regelkreis betrieben werden. Der vorliegende Beitrag, der im Rahmen einer Forschungskooperation zwischen Continental Teves und dem Institut fuer Automatisierungstechnik der TU Darmstadt entstand stellt ein Verfahren vor, mit dem die dafuer benoetigte Rueckfuehrungsgroesse `Bremskraft` aus einfach messbaren Signalen rekonstruiert werden kann. (orig.)

  19. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Directory of Open Access Journals (Sweden)

    Jon Mabe

    2017-03-01

    Full Text Available The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  20. A new look at inhalable metalliferous airborne particles on rail subway platforms.

    Science.gov (United States)

    Moreno, Teresa; Martins, Vânia; Querol, Xavier; Jones, Tim; BéruBé, Kelly; Minguillón, Maria Cruz; Amato, Fulvio; Capdevila, Marta; de Miguel, Eladio; Centelles, Sonia; Gibbons, Wes

    2015-02-01

    Most particles breathed on rail subway platforms are highly ferruginous (FePM) and extremely small (nanometric to a few microns in size). High magnification observations of particle texture and chemistry on airborne PM₁₀ samples collected from the Barcelona Metro, combined with published experimental work on particle generation by frictional sliding, allow us to propose a general model to explain the origin of most subway FePM. Particle generation occurs by mechanical wear at the brake-wheel and wheel-rail interfaces, where magnetic metallic flakes and splinters are released and undergo progressive atmospheric oxidation from metallic iron to magnetite and maghemite. Flakes of magnetite typically comprise mottled mosaics of octahedral nanocrystals (10-20 nm) that become pseudomorphed by maghemite. Continued oxidation results in extensive alteration of the magnetic nanostructure to more rounded aggregates of non-magnetic hematite nanocrystals, with magnetic precursors (including iron metal) still preserved in some particle cores. Particles derived from steel wheel and rails contain a characteristic trace element chemistry, typically with Mn/Fe=0.01. Flakes released from brakes are chemically very distinctive, depending on the pad composition, being always carbonaceous, commonly barium-rich, and texturally inhomogeneous, with trace elements present in nanominerals incorporated within the crystalline structure. In the studied subway lines of Barcelona at least there appears to be only a minimal aerosol contribution from high temperature processes such as sparking. To date there is no strong evidence that these chemically and texturally complex inhalable metallic materials are any more or less toxic than street-level urban particles, and as with outdoor air, the priority in subway air quality should be to reduce high mass concentrations of aerosol present in some stations. Copyright © 2014. Published by Elsevier B.V.

  1. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  2. 49 CFR 393.52 - Brake performance.

    Science.gov (United States)

    2010-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... specifications for performance-based brake testers for commercial motor vehicles, where braking force is the sum of the braking force at each wheel of the vehicle or vehicle combination as a percentage of gross...

  3. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  4. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Nguyen, N D; Choi, S B

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics. (paper)

  5. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    Science.gov (United States)

    Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.

  6. Antiskid braking system

    Science.gov (United States)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  7. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Directory of Open Access Journals (Sweden)

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  8. Design and analysis of magneto rheological fluid brake for an all terrain vehicle

    Science.gov (United States)

    George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.

    2018-02-01

    This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.

  9. Quantification of brake data acquired with a brake power meter during simulated cross-country mountain bike racing.

    Science.gov (United States)

    Miller, Matthew C; Fink, Philip W; Macdermid, Paul W; Stannard, Stephen R

    2018-01-17

    There is currently a dearth of information describing cycling performance outside of propulsive and physiological variables. The aim of the present study was to utilise a brake power meter to quantify braking during a multi-lap cross-country mountain bike time trial and to determine how braking affects performance. A significant negative association was determined between lap time and brake power (800.8 ± 216.4 W, mean ± SD; r = -0.446; p  0.05) which was attributed to decreased brake work (p < 0.05) and brake time (p < 0.05) in both the front and rear brakes by the final lap. A multiple regression model incorporating braking and propulsion was able to explain more of the variance in lap time (r 2  = 0.935) than propulsion alone (r 2  = 0.826). The present study highlights that riders' braking contributes to mountain bike performance. As riders repeat a cross-country mountain bike track, they are able to change braking, which in turn can counterbalance a reduction in power output. Further research is required to understand braking better.

  10. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  11. Performance requirements for locomotive braking systems

    CSIR Research Space (South Africa)

    Vermaak, P

    2000-02-01

    Full Text Available operated “Neutral Brake”. This brake may become active immediately or after a certain time delay when the controller is placed in the neutral position or moved into the neutral position by the “dead-man’s device”. Because this brake will interfere... in testing emergency brake systems due to the inherent braking action of the service brakes and/or locomotive controllers; • Potential problems limitations to braking effort associated with the prime movers and/or hydraulic systems on hydrostatically...

  12. Tire tread wear particles in ambient air--a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole.

    Science.gov (United States)

    Avagyan, Rozanna; Sadiktsis, Ioannis; Bergvall, Christoffer; Westerholm, Roger

    2014-10-01

    Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m(3) benzothiazole and 64 pg/m(3) 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m(3), respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.

  13. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  14. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.

    Science.gov (United States)

    Galvin, A L; Jennings, L M; Tipper, J L; Ingham, E; Fisher, J

    2010-10-01

    The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.

  15. Effect of surgical shoes on brake response time after first metatarsal osteotomy?a prospective cohort study

    OpenAIRE

    Dammerer, Dietmar; Braito, Matthias; Biedermann, Rainer; Ban, Michael; Giesinger, Johannes; Haid, Christian; Liebensteiner, Michael C.; Kaufmann, Gerhard

    2016-01-01

    Background The aim of this study is to assess patients? driving ability when wearing surgical shoes following right-sided first metatarsal osteotomy. Methods From August 2013 to August 2015, 42 consecutive patients (mean age 54.5?years) with right-sided hallux valgus deformity underwent first metatarsal osteotomy. Patients were tested for brake response time (BRT) 1?day preoperatively (control run) and at 2 and 6?weeks postoperatively. Two different types of foot orthosis were investigated. B...

  16. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    Science.gov (United States)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  17. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  18. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Choi, S B

    2015-01-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass. (technical note)

  19. Single-asperity contributions to multi-asperity wear simulated with molecular dynamics

    International Nuclear Information System (INIS)

    Eder, S J; Cihak-Bayr, U; Bianchi, D

    2016-01-01

    We use a molecular dynamics approach to simulate the wear of a rough ferrite surface due to multiple hard, abrasive particles under variation of normal pressure, grinding direction, and particle geometry. By employing a clustering algorithm that incorporates some knowledge about the grinding process such as the main grinding direction, we can break down the total wear volume into contributions from the individual abrasive particles in a time-resolved fashion. The resulting analysis of the simulated grinding process allows statements on wear particle generation, distribution, and stability depending on the initial topography, the grinding angle, the normal pressure, as well as the abrasive shape and orientation with respect to the surface. (paper)

  20. Brake Stops Both Rotation And Translation

    Science.gov (United States)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  1. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  2. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  3. 49 CFR 230.77 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall be...

  4. High performance brake discs made of fiber reinforced ceramics; Hochleistungsbremsscheiben aus Faserverbundkeramik

    Energy Technology Data Exchange (ETDEWEB)

    Rosenloecher, J.; Deinzer, G.; Waninger, R.; Muenchhoff, J. [AUDI AG, 85045 Ingolstadt (Germany)

    2007-11-15

    The Audi AG is one of the worldwide leading car manufacturers of the premium class. One of the main aims of the technical development department at Audi is the use of novel and innovative materials. The Audi AG has intensively worked on the development and introduction of ceramic brake discs for several car types. These brake discs are made of a short carbon fiber reinforced silicon carbide ceramic, a so called CMC-material (ceramic matrix composite). This material is produced in a very complex process by silicon melt infiltration of carbon preforms. The advantages of these innovative and powerful brake discs out of C/SiC-ceramic are the low weight and thus the reduction of the unsprung rotating masses, the low wear rate during completed service life, the temperature and fading stability and the corrosion resistance. The complete braking system and its periphery had to be reengineered and adjusted because of the specific material properties. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Audi AG ist einer der weltweit fuehrenden Automobilhersteller der Premiumklasse. Eines der Hauptziele der Technischen Entwicklung bei Audi ist der Einsatz neuartiger und innovativer Werkstoffe. Daher bietet die Audi AG nach intensiver Entwicklung und Erprobung fuer mehrere Fahrzeugmodelle Keramikbremsscheiben an. Diese Bremsscheiben bestehen aus einer kohlenstoffkurzfaserverstaerkten Siliziumkarbidkeramik, einem sog. CMC-Werkstoff. Dieser Werkstoff wird in einem aufwendigen Verfahren ueber die Schmelzinfiltration von Kohlenstoff-Preformen mit Silizium hergestellt. Die Vorteile dieser innovativen und leistungsfaehigen Bremsscheiben aus C/SiC-Keramik sind das geringe Gewicht und dadurch die Reduzierung der ungefederten rotierenden Massen, der geringe Verschleiss ueber Betriebsdauer, die Temperatur- und Fadingstabilitaet und die Korrosionsbestaendigkeit. Aufgrund der materialspezifischen Eigenschaften wurde das gesamte Bremssystem ueberarbeitet und die

  5. The design of brake fatigue testing system

    Directory of Open Access Journals (Sweden)

    Huang, Xiaoya

    2015-01-01

    Full Text Available Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automatically and ensure brake drum constant speed output; what is more, closed loop control system were used to control the brake shoe, so that the cylinder pressure keeps stable in the process of dynamic braking.

  6. The design of aircraft brake systems, employing cooling to increase brake life

    Science.gov (United States)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  7. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    Science.gov (United States)

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    OpenAIRE

    Damian HADRYŚ; Tomasz WĘGRZYN; Michał MIROS

    2008-01-01

    In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  9. Study of corrosive-erosive wear behaviour of Al6061/albite composites

    International Nuclear Information System (INIS)

    Sharma, S.C.; Krishna, M.; Murthy, H.N. Narasimha; Tarachandra, R.; Satyamoorthy, M.; Bhattacharyya, D.

    2006-01-01

    This investigation analyses the influence of dispersed alumina particles on the wear behaviour of the Al/albite composites in a corrosive environment. The composites were prepared by modified pressure die-casting technique. The corrosive-erosive wear experiments were carried out on a proprietary corrosion-erosion wear tester to study the wear characteristics of the composites. The slurry was made up of water and alumina (size: 90-150 μm, proportion: 0-30 wt.%), while H 2 SO 4 (0.01, 0.1 and 1N) was added to create the corrosive conditions. Experiments were arranged to test the relationships among the corrosive-erosive wear rate, concentrations of H 2 SO 4 and alumina in the slurry, weight percent of albite in the composite, erosion speed and distance. Wear rate varies marginally at low speeds but sharply increases at higher speeds. The corrosive wear rate logarithmically increased with the increasing concentration of the corrosive medium. The effect of abrasive particles and corrosion medium on the wear behaviour of the composite is explained experimentally, theoretically and using scanning electron microscopy

  10. Brake blending strategy for a hybrid vehicle

    Science.gov (United States)

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  11. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    Directory of Open Access Journals (Sweden)

    Damian HADRYŚ

    2008-01-01

    Full Text Available In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  12. Fibre-reinforced ceramics for vehicle brakes; Faserverstaerkte Keramiken fuer Bremsenanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenkel, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Bauweisen- und Konstruktionsforschung

    2000-07-01

    In the context of their aerospace research activities, DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) developed a new process for producing ceramic fibre composite materials that are extremely light and tough. Apart from their applications in aerospace engineering, they have great potential for motor brakes with improved friction and wear characteristics. Excellent results were achieved with the new materials even with conventional brake liners. With customised liners, brake life may be prolonged to match the car life. Further applications are expected in trucks for transport in hazardous materials, high-speed trains, aircraft, industrial machinery and plants, and conveyor systems. [German] Im Rahmen der Raumfahrt-Forschung wurde vom Deutschen Zentrum fuer Luft- und Raumfahrt (DLR) das Fluessigsilicier-Verfahren zur Herstellung von keramischen Verbundwerkstoffen entwickelt. Diese extrem leichten und bruchzaehen Faserkeramiken haben sich unter den besonderen Bedingungen des Weltraums beispielsweise fuer Hitzeschutzstrukturen von Raumfahrzeugen hervorragend bewaehrt. Darueber hinaus zeigten Untersuchungen ein hohes Anwendungspotenzial fuer neue Bremsen mit deutlich verbesserten Reibungs- und Verschleisseigenschaften. Weiterentwicklungen des keramischen Gefueges fuehrten zu innovativen Leichtbau- bzw. Hochleistungs-Bremsen auf der Basis dieser harten und hitzebestaendigen Verbundwerkstoffe. Bereits mit serienmaessigen Bremsbelaegen wurden die heute geltenden Verschleiss- und Reibwertanforderungen teilweise weit uebertroffen. Die Leistungsfaehigkeit heutiger Bremssysteme kann damit deutlich gesteigert und die ungefederte Masse des Fahrwerks drastisch reduziert werden. Mit der zielgerichteten Anpassung geeigneter Belaege auf die neuen Keramik-Bremsscheiben scheint erstmals ein Einsatz von Lebensdauerbremsen moeglich zu sein, deren geringe Verschleissraten einen Austausch der Bremsscheiben waehrend der Betriebszeit eines Fahrzeugs ueberfluessig machen. Neben der

  13. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  14. Load proportional safety brake

    Science.gov (United States)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  15. Compact, Lightweight Servo-Controllable Brakes

    Science.gov (United States)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  16. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  17. An analysis of the physiologic parameters of intraoral wear: a review

    International Nuclear Information System (INIS)

    Lawson, Nathaniel C; Cakir, Deniz; Burgess, John O; Janyavula, Sridhar

    2013-01-01

    This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2–7 and 5–55 °C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method. (paper)

  18. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    Science.gov (United States)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  19. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    1998-01-01

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  20. A study of wear in refrigerating machines using thin layer activation

    International Nuclear Information System (INIS)

    Hammer, P.; Eichhorn, K.; Eifrig, C.

    1986-01-01

    Wear is studied in a ball-and-socket joint of a newly developed refrigerating machine. Using deuteron activation a 15 μm deep Co-57 layer is generated at the ring-shaped friction area in the steel socket of the joint. The measurement of the Co-57 intensity of the wear particles held back on an oil filter provides information about the wear rate of the socket during machine operation. The measurement of the Co-57 contaminations occuring in the individual parts of the machine at the end of the test gives information about the distribution of the wear particles in the machine and about the material transfer in the ball-and-socket joint. (author)

  1. Intelligent Braking System using the IR Sensor

    OpenAIRE

    Gajanan Koli

    2017-01-01

    Most of the accidents in four wheeled vehicles occur because of failure of braking systems. Manual method of applying brakes is always dangerous as it leads to accidents. Unconsciousness of driver, failure in the linkages of braking systems, road conditions, uncontrollable speed of the vehicle and manual operation of braking systems are the reasons of accidents. It is necessary to control brakes automatically through electronics devices to minimize the accident problems. In this research pape...

  2. 49 CFR 393.55 - Antilock brake systems.

    Science.gov (United States)

    2010-10-01

    ... hydraulic braked vehicles. Each hydraulic braked vehicle subject to the requirements of paragraph (a) of...)). (2) Each air braked commercial motor vehicle other than a truck tractor, manufactured on or after... malfunction circuits and signals for air braked vehicles. (1) Each truck tractor manufactured on or after...

  3. Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions

    International Nuclear Information System (INIS)

    Kim, Byung-Kook; Shin, Dong-Gap; Kim, Chang-Lae; Kim, Dae-Eun; Goo, Byeong-Choon

    2017-01-01

    The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

  4. Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Kook; Shin, Dong-Gap; Kim, Chang-Lae; Kim, Dae-Eun [Yonsei Univ., Seoul (Korea, Republic of); Goo, Byeong-Choon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2017-01-15

    The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

  5. Simulation of surface wear by using a pin-on-disk tribometer, metallographic examination

    International Nuclear Information System (INIS)

    Brin, C.; Villain, J.P.; Riviere, J.P.; Cauvin, R.

    1998-01-01

    Simple laboratory tests have been realized in water using a pin-on-disc tribometer under Hertz pressures well below the elastic limit of the 304 steel studied. The wear morphologies obtained under different experimental conditions (load, applied time, elimination or non-elimination of wear particles) always present a semi-periodic structure of tracks with small roughness. The structural (X-ray and TEM) characterizations reveal the existence of martensite, both in the degraded areas and in the wear particles. The track formation would result from the pulling out of particles, together with the local phase transformation of austenite into martensite under stresses, followed by the ploughing of the surface. The wear mechanism could be essentially attributed to mechanical and metallurgical effects. (authors)

  6. BASIC STUDY ON TAILORMADE BRAKING SUPPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    Toshiya HIROSE, M.S.

    2004-01-01

    This research reviewed the construction of models of a Tailormade Braking Support System (TBSS for braking to stop vehicles and the evaluation of drivers. As a result, the following conclusions were drawn. (1 Braking factors were found to change in the period from the start of braking to stopping; (2 Changes in braking factors can be logically incorporated into the control elements of braking support system; (3 Readymade Driver Model is effective as a model to be incorporated into the base system of TBSS; (4 Tailormade Driver Model built on Neural Network is effective as a main model to construct TBSS; (5 As for TBSS, both subjective and objective ratings on the timing and magnitude of braking are favorable, and its safety and sense of security are improved.

  7. Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Zhang Di; Li Guobin

    2005-01-01

    This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy

  8. 49 CFR 393.40 - Required brake systems.

    Science.gov (United States)

    2010-10-01

    ... subpart. (2) Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and..., and 393.52 of this subpart. (4) Electric brake systems. Motor vehicles equipped with electric brake..., trucks and truck tractors manufactured on or after March 1, 1975, and trailers manufactured on or after...

  9. Brakes Specialist. Teacher Edition. Automotive Service Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  10. The dynamics of antilock brake systems

    Science.gov (United States)

    Denny, Mark

    2005-11-01

    The nonlinear dynamics of automobile braking are investigated. Nonlinearity arises because of the manner in which the friction coefficient between vehicle tyres and road surface depends upon vehicle speed and wheel angular speed. We show how antilock brake systems approach optimum braking performance.

  11. Talking about the Automobile Braking System

    Science.gov (United States)

    Xu, Zhiqiang

    2017-12-01

    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  12. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  13. Model-Based Brake Control including Tyre Behaviour

    NARCIS (Netherlands)

    De Vries, E.J.H.

    2012-01-01

    The objective of the thesis is to develop a method for controlled braking of a vehicle. The brake pedal depression has been considered to be proportional to the intended deceleration. The brake controller is not aimed to replace a cruise control; it will have an anti-lock braking (ABS) function. The

  14. 49 CFR 393.41 - Parking brake system.

    Science.gov (United States)

    2010-10-01

    ... system shall, at all times, be capable of being applied by either the driver's muscular effort or by... 49 Transportation 5 2010-10-01 2010-10-01 false Parking brake system. 393.41 Section 393.41... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles...

  15. Brake for rollable platform

    Science.gov (United States)

    Morris, A. L.

    1974-01-01

    Frame-mounted brake is independent of wheels and consists of simple lever-actuated foot. Brake makes good contact with surface even though foot pad is at higher or lower level than wheels, this is particularly important when a rollable platform is used on irregular surface.

  16. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  17. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    OpenAIRE

    Minh Vu Trieu; Oamen Godwin; Vassiljeva Kristina; Teder Leo

    2016-01-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. Thi...

  18. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  19. A method to achieve comparable thermal states of car brakes during braking on the road and on a high-speed roll-stand

    Science.gov (United States)

    Wolff, Andrzej

    2010-01-01

    The temperature of a brake friction surface influences significantly the braking effectiveness. The paper describes a heat transfer process in car brakes. Using a developed program of finite element method, the temperature distributions in brake rotors (disc and drum brake) of a light truck have been calculated. As a preliminary consistency criterion of the brake thermal state in road and roll-stand braking conditions, a balance of the energy cumulated in the brake rotor has been taken into account. As the most reliable consistency criterion an equality of average temperatures of the friction surface has been assumed. The presented method allows to achieve on a roll-stand the analogical thermal states of automotive brakes, which are observed during braking in road conditions. Basing on this method, it is possible to calculate the braking time and force for a high-speed roll-stand. In contrast to the previous papers of the author, new calculation results have been presented.

  20. On the mechanism of running-in during wear tests of a babbitt B83

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.; Fazlyakhmetov, R. F.; Pshenichnyuk, A. I.

    2015-05-01

    Based on an analysis of changes in the structure of cast babbitt of grade B83 in the process of wear tests and on a comparison of the wear curves of cast babbitt and electroplated coating of the same phase composition, there is proposed a wear mechanism at the running-in stage of B83, which is reduced to the spalling-off of coarse particles of the intermetallic β phase, pressing-in of the cleaved particles into the soft plastic matrix, and the formation of a fairly homogeneous coating uniformly paved by small, hard particles.

  1. 49 CFR 229.46 - Brakes: General.

    Science.gov (United States)

    2010-10-01

    ... regulating all pressures, including but not limited to the automatic and independent brake valves, operate as intended and that the water and oil have been drained from the air brake system. ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46...

  2. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    Science.gov (United States)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  3. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  4. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    Science.gov (United States)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  5. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  6. 49 CFR 238.431 - Brake system.

    Science.gov (United States)

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset parameters...

  7. Microstructure and wear behaviour of aluminium alloys containing embedded nanoscaled lead dispersoids

    International Nuclear Information System (INIS)

    Bhattacharya, Victoria; Chattopadhyay, K.

    2004-01-01

    We report the early stage friction and wear characteristics of aluminium containing nanosized lead dispersions. The nanocomposite was produced by rapid solidification. The experimental results indicate a significant decrease in friction and wear rate in comparison to its coarse grained counterparts. We show that the observed results suggest an adhesive type of wear mechanism. However, increase in hardness due to refinement of the aluminium grains cannot quantitatively rationalize the results. We explore and discuss the role of nanoscaled lead particles and the mass transport between the sample and counterface via mechanical alloying, in the formation of tribolayers affecting the tribological properties. The plane view and cross-sectional transmission electron microscopy reveals significant elongation as well as coarsening of the lead particles during the process of wear. We attempt to understand these results in the framework of moving dislocations and their assistance to the mass transport among the dispersed lead particles

  8. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.

  9. Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Yau-Ting; Huang, Guan-Jhih; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Huang, Shing-Jong; Lin, Ying-Chih; Ho, Jinn-Hsuan; Yang, Jye-Shane

    2010-10-11

    Five pentiptycene-derived stilbene systems (1 R; R = H, OM, NO, Pr, and Bu) have been prepared and investigated as light-driven molecular brakes that have different-sized brake components (1 Hbrake component in the trans form ((E)-1 R), which corresponds to the brake-off state. When the brake is turned on by photoisomerization to the cis form ((Z)-1 R), the pentiptycene rotation can be arrested on the NMR spectroscopic timescale at temperatures that depend on the brake component. In the cases of (Z)-1 NO, (Z)-1 Pr, and (Z)-1 Bu, the rotation is nearly blocked (k(rot)=2-6 s(-1)) at 298 K. It is also demonstrated that the rotation is slower in [D(6)]DMSO than in CD(2)Cl(2). A linear relationship between the free energies of the rotational barrier and the steric parameter A values is present only for (Z)-1 H, (Z)-1 OM, and (Z)-1 NO, and it levels off on going from (Z)-1 NO to (Z)-1 Pr and (Z)-1 Bu. DFT calculations provide insights into the substituent effects in the rotational ground and transition states. The molar reversibility of the E-Z photoswitching is up to 46%, and both the E and Z isomers are stable under the irradiation conditions. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  11. Emergency Braking of a Mine Hoist in the Context of the Braking System Selection

    Science.gov (United States)

    Wolny, Stanisław

    2017-03-01

    The paper addresses the selected aspects of the dynamic behaviour of mine hoists during the emergency braking phase. Basing on the model of the hoist and supported by theoretical backgrounds provided by the author (Wolny, 2016), analytical formulas are derived to determine the parameters of the braking system such that during an emergency braking it should guarantee that: - the maximal loading of the hoisting ropes should not exceed the rope breaking force, - deceleration of the conveyances being stopped should not exceed the admissible levels Results of the dynamic analysis of the mine hoist behaviour during an emergency braking phase summarised in this study can be utilised to support the design of conveyance and rope attachments by the fatigue endurance methods, with an aim to adapt it to the specified operational parameters of the hoisting installation (Eurokod 3).

  12. ABOUT WAVEFORM OF BRAKING CYLINDER FILLING IN FREIGHT CARS

    Directory of Open Access Journals (Sweden)

    L. V. Ursuliak

    2016-04-01

    Full Text Available Purpose. As part of the scientific paper it is necessary to study the waveform impact of the braking cylinders filling on longitudinal train dynamics at different modes of braking. At this one should estimate the level of maximum longitudinal forces and braking distance size in freight cars of various lengths. Methodology. In this paper we attempt to approximate the actual diagram of braking cylinders filling with rational functions of varying degrees. In selection of coefficients in the required functions the highest values of the longitudinal forces and braking distances were used as controlled parameters. They were compared with similar values obtained as a result of experimental rides. The level of longitudinal forces and braking distances amount were evaluated by means of mathematical modeling of train longitudinal vibrations, caused by different braking modes. Findings. At mathematical modeling was assumed that the train consists of 60 uniform four-axle gondola cars, weight of 80 tons, equipped with air dispenser No. 483 included in the median operation, composite braking blocks, and one locomotive VL-8. Train before braking has been pre-stretched. Various types of pneumatic braking (emergency, full service and adjusting braking of the freight train on the horizontal section of the track were simulated. As the calculation results were obtained values of the longitudinal forces, braking distances amounts and reduction time in speed at various braking modes. Originality. Waveform impact of the braking cylinders filling on the longitudinal forces level and braking distances amount in freight trains were investigated. Also the longitudinal loading of freight trains at various pneumatic braking was investigated. Practical value. Obtained results can be used to assess the level of largest longitudinal forces and braking distances in the freight trains of different lengths by mathematical modeling of different braking modes.

  13. Biodegradability of unused lubricating brake fluids in fresh and ...

    African Journals Online (AJOL)

    The biodegradability of four unused lubricating brake fluids (Total brake fluid, Allied brake fluid, Oando brake fluid and Ate brake fluid) was carried out in fresh and marine water obtained from Isiokpo stream and Bonny river of the Niger Delta, South South Nigeria. Biodegradability, of the brake fluids were obtained after a 56 ...

  14. Investigations on the braking safety of utility vehicles with retarders; Untersuchungen zur Bremssicherheit von Nutzfahrzeugen mit Retardern

    Energy Technology Data Exchange (ETDEWEB)

    Pittius, R.

    1996-12-31

    When the use of retarders in utility vehicles increased in the middle of the 80s, the Forschungsvereinigung Automobiltechnik (FAT) commissioned a study on the safety aspect of this braking technology in trucks. Retarders are wear-free permanent brakes that are fitted in the drive transmission system of utility vehicles, thereby generating braking forces only at the wheels of the live shaft. The question of the possible overbraking of the live shafts was just as well investigated as the interaction between the retarder and service brake in so-called integrated braking systems, and both under conditions of low adhesion as well as in the border area of the dynamics of vehicle movement. This subject met with considerable joint interest on the part of the motor vehicle industry as well as of manufacturers of towed vehicles and unit sets. FAT, therefore, commissioned the Institut fuer Kraftfahrwesen of the University of Hannover to carry out a three-phase research project on the braking behaviour and dynamics of vehicle movement of two-axle, single vehicles as well as of two- and three-part trailer trains equipped with retarders. (orig.) [Deutsch] Als Mitte der 80er Jahre der Einsatz von Retardern in Nutzfahrzeugen zunahm, hat die Forschungsvereinigung Automobiltechnik e.V. (FAT) den Sicherheitsaspekt dieser Bremstechnik im Lastzug untersuchen lassen. Retarder sind verschleissfreie Dauerbremsen, die im Triebstrang von Nutzfahrzeugen eingebaut werden und somit Bremskraefte nur an den Raedern der Antriebsachsen erzeugen. Die Frage einer moeglichen Ueberbremsung der Antriebsachsen sollte ebenso untersucht werden wie die Wechselwirkungen zwischen Retarder und Betriebsbremsanlage in sogenannten integrierten Bremssystemen, und zwar sowohl bei niedrigen Kraftschlussbdingungen als auch im fahrdynamischen Grenzbereich. An dieser Thematik bestand ein erhebliches gemeinsames Interesse der Motorwagenindustrie sowie der Anhaenger- und Aggregathersteller. Die FAT hat deshalb das

  15. Statistical analysis of brake squeal noise

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2011-06-01

    Despite substantial research efforts applied to the prediction of brake squeal noise since the early 20th century, the mechanisms behind its generation are still not fully understood. Squealing brakes are of significant concern to the automobile industry, mainly because of the costs associated with warranty claims. In order to remedy the problems inherent in designing quieter brakes and, therefore, to understand the mechanisms, a design of experiments study, using a noise dynamometer, was performed by a brake system manufacturer to determine the influence of geometrical parameters (namely, the number and location of slots) of brake pads on brake squeal noise. The experimental results were evaluated with a noise index and ranked for warm and cold brake stops. These data are analysed here using statistical descriptors based on population distributions, and a correlation analysis, to gain greater insight into the functional dependency between the time-averaged friction coefficient as the input and the peak sound pressure level data as the output quantity. The correlation analysis between the time-averaged friction coefficient and peak sound pressure data is performed by applying a semblance analysis and a joint recurrence quantification analysis. Linear measures are compared with complexity measures (nonlinear) based on statistics from the underlying joint recurrence plots. Results show that linear measures cannot be used to rank the noise performance of the four test pad configurations. On the other hand, the ranking of the noise performance of the test pad configurations based on the noise index agrees with that based on nonlinear measures: the higher the nonlinearity between the time-averaged friction coefficient and peak sound pressure, the worse the squeal. These results highlight the nonlinear character of brake squeal and indicate the potential of using nonlinear statistical analysis tools to analyse disc brake squeal.

  16. Probabilistic Analysis of Wear of Polymer Material used in Medical Implants

    Directory of Open Access Journals (Sweden)

    T. Goswami

    2016-05-01

    Full Text Available Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to failure (to occurrence of maximum allowable wear depth is evaluated as a function of a mean wear rate of normal wear and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval (reliability is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental data for Ultra High Molecular Weight Polyethylene (UHMWPE cups of artificial hip implants is used to make numerical calculations.

  17. New technical solutions of using rolling stock electrodynamical braking

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  18. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  19. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure.... Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the... brakes fully applied. (b) Air brake system hoses, tubes and connections. Air system tubes, hoses and...

  20. Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states

    Science.gov (United States)

    Vincenti, Benoit; Douarche, Carine; Clement, Eric

    2018-03-01

    We study the effect of magnetic field on the rheology of magnetic micro-swimmers suspensions. We use a model of a dilute suspension under simple shear and subjected to a constant magnetic field. Particle shear stress is obtained for both pusher and puller types of micro-swimmers. In the limit of low shear rate, the rheology exhibits a constant shear stress, called actuated stress, which only depends on the swimming activity of the particles. This stress is induced by the magnetic field and can be positive (brake state) or negative (motor state). In the limit of low magnetic fields, a scaling relation of the motor-brake effect is derived as a function of the dimensionless parameters of the model. In this case, the shear stress is an affine function of the shear rate. The possibilities offered by such an active system to control the rheological response of a fluid are finally discussed.

  1. Adaptive controller for regenerative and friction braking system

    Science.gov (United States)

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  2. Recent studies of tire braking performance. [for aircraft

    Science.gov (United States)

    Mccarty, J. L.; Leland, T. J. W.

    1973-01-01

    The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.

  3. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  4. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    Science.gov (United States)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  5. Elastoplastic finite element analysis for wet multidisc brake during lasting braking

    Directory of Open Access Journals (Sweden)

    Ji Zhanling

    2015-01-01

    Full Text Available Addressed to serious heat degradation problem of the braking continuously performed in the drag brake application for a long time, finite element analysis for bidirectional thermal-structure coupling is adopted to investigate temperature and stress when material properties are temperature-dependent. Based on the constitutive relations of heat transfer and strain-stress, three-dimensional transient finite element equilibrium equations with many kinds of boundary conditions for bidirectional thermal-structure coupling were derived. And it was originally presented that start time, location, severity and evolution laws of plastic deformation were depicted using dimensionless stress distribution contour with the yield limit related to temperature. The change laws of plastic element number and contact area versus braking time were expressed by plasticity ratio and contact ratio curves, respectively. The laws revealed by the numerical calculation results are in accordance with the objective perception and reasoning.

  6. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... to ICP-MS was used to confirm the metal–protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF4 of the wear particles in hip aspirates. In the serum samples, AF4–ICP-MS suggested that Cr...... unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF4 with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes...

  7. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Brake Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory, operation, and repair of drum brakes, disc brakes, and brake system components. The course is comprised of six units: (1) Fundamentals of Brake Systems, (2) Master Cylinder, (3) Drum Brakes, (4) Disc Brakes, (5) Power Brakes, and (6)…

  8. Friction brake cushions acceleration and vibration loads

    Science.gov (United States)

    Fraser, G. F.; Zawadski, G. Z.

    1966-01-01

    Friction brake cushions an object in a vehicle from axially applied vibration and steady-state acceleration forces. The brake incorporates a doubly tapered piston that applies a controlled radial force to friction brake segments bearing against the walls of a cylinder.

  9. Friction and wear behavior of TiC particle reinforced ZA43 matrix composites

    Institute of Scientific and Technical Information of China (English)

    谢贤清; 张荻; 刘金水; 吴人洁

    2001-01-01

    TiC/ZA43 composites were fabricated by XDTM and stirring-casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block-on-ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ(TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface.

  10. 49 CFR 236.701 - Application, brake; full service.

    Science.gov (United States)

    2010-10-01

    ... a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure is developed. As applied to an automatic or electro-pneumatic brake with speed governor control, an application other than emergency which develops the maximum brake cylinder pressure, as determined by the design of...

  11. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  12. Modelling and analysis of abrasive wear performance of composites ...

    African Journals Online (AJOL)

    It has been observed that fibre length plays a major role in wear phenomenon. The length of the fibre has been optimized using a popular evolutionary technique known as particle swarm optimization (PSO) and neural network. The study recommends that fibre length should be 7-8 mm for minimum wear of the composites.

  13. REGRESSIVE ANALYSIS OF BRAKING EFFICIENCY OF M1 CATEGORY VEHICLES WITH ANTI-BLOCKING BRAKE SYSTEM

    Directory of Open Access Journals (Sweden)

    О. Sarayev

    2015-07-01

    Full Text Available The problematics of assessing the effectiveness of vehicle braking after road accidentoccurrence is considered. For the first time in relation to the modern models of vehicles equipped with anti-lock brakes there were obtained regression models describing the relationship between the coefficient of traction and a random variable of steady deceleration. This does not contradict the essence of the stochastic physical object, which is the process of vehicle braking, unlike the previously adopted method of formalizing this process, using a deterministic function.

  14. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  15. Justification of parameters artificial soil for laboratory research of cutting edge wear

    Directory of Open Access Journals (Sweden)

    I. V. Liskin

    2017-01-01

    Full Text Available For soil cultivation with the cutting tools of agricultural machines we can allocate three main types of shavings: shift, separation and continuous chip. The shift is most accurately expressed on sandy soils, a separation - on clay and loamy, continuous chip - on humid soils with the high content of clay particles. In field conditions researches of regularities of cutting edges wear are complicated because of heterogeneity of physic and mechanical properties of the soil and the changing climatic conditions. At laboratory modeling of soil conditions we can make experiments independent of weather and season. For development of the artificial soil and depend modeling of edges wear we considered conditions of creation of model with use mechanics of abrasive wear. Have allocated The major factors defining character and intensity of wear were allocated. The wearing-out ability of abrasive particles is defined by the radius of the curve of their sharp ledges. This radius depends on the particle size. The hardness of the soil influences wear of the cutting details and characterizes penetration into it of the cutting elements, and degree of fixedness of abrasive particles defines shaving type. We conseeder the soil as the abrasive environment with the particles which are in a condition of non-rigid fixing and have an opportunity to move relatively each other or to turn on itself under the influence of normal and tangential stress. Type of shaving when soil layer destruction depends on a ratio of the normal and tangential stress characterizing degree of fixedness of firm particles. We conducted researches of physic and mechanical properties of the artificial soil on the basis of quartz sand and paraffin. Injection of the petrolatum into structure of the artificial soil reduces the hardness and degree of fixedness of firm particles, but the ceresin increases these indicators. The mechanical structure was changed due to introduction of dust-like cement and

  16. Thermal Characterisation of Brake Pads

    DEFF Research Database (Denmark)

    Ramousse, Séverine; Høj, Jakob Weiland; Sørensen, O. T.

    2001-01-01

    The chemical-physical decomposition processes that occur in a brake pad heated to 1000degreesC have been studied. This temperature can be reached when a brake pad is applied. Thermogravimetry and differential thermal analysis were used in combination with evolved gas analysis, and image analysis...... using a scanning electron microscope.A brake pad is essentially a mixture of iron, carbon and binder. Combined techniques have been used, because of chemical reaction overlap, to determine how and at what temperature the binder decomposes, the coal and graphite combust and the iron oxidises.This work...

  17. Adjustable Tooling for Bending Brake

    Science.gov (United States)

    Ellis, J. M.

    1986-01-01

    Deep metal boxes and other parts easily fabricated. Adjustable tooling jig for bending brake accommodates spacing blocks and either standard male press-brake die or bar die. Holds spacer blocks, press-brake die, bar window die, or combination of three. Typical bending operations include bending of cut metal sheet into box and bending of metal strip into bracket with multiple inward 90 degree bends. By increasing free space available for bending sheet-metal parts jig makes it easier to fabricate such items as deep metal boxes or brackets with right-angle bends.

  18. Safety brake for tape reels

    Science.gov (United States)

    Carle, C. E.

    1977-01-01

    All-mechanical device senses end of tape and stops reel, even in event of electronic system failure. Assembly includes stop to prevent brake from overriding tape. Recentering mechanism returns brake to neutral position after torque is removed from reels.

  19. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  20. Fatal accidental inhalation of brake cleaner aerosols.

    Science.gov (United States)

    Veit, F; Martz, W; Birngruber, C G; Dettmeyer, R B

    2018-04-23

    Brake cleaner liquid is commonly used for cleaning of engines and motor parts. The commercially available products usually contain mainly volatile organic compounds. As a consequence brake cleaner evaporates fast and almost completely from the cleaned surface. This case report presents a fatal accidental inhalation of brake cleaner liquid aerosols due to the attempted cleaning of a boat engine. A 16year old boy was found lifeless in the engine compartment of a boat engine. In close proximity to the body, the police found cleanings wipes soaked with brake cleaner as well as a pump spray bottle filled with brake cleaner. Essentially the autopsy revealed a cerebral oedema with encephalomalacia, no coagulated blood as well as increased blood and tissue fluid content of the lung. Toxicological analysis revealed brake cleaner fluid in the lung, gastric content and heart blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 49 CFR 393.43 - Breakaway and emergency braking.

    Science.gov (United States)

    2010-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.43 Breakaway and emergency braking. (a) Towing vehicle protection system. Every motor vehicle, if used to tow a trailer equipped with brakes, shall be equipped with... brake systems installed on towed vehicles shall be so designed, by the use of “no-bleed-back” relay...

  2. Development of a multi-pole magnetorheological brake

    International Nuclear Information System (INIS)

    Shiao, Yaojung; Nguyen, Quang-Anh

    2013-01-01

    This paper presents a new approach in the design and optimization of a novel multi-pole magnetorheological (MR) brake that employs magnetic flux more effectively on the surface of the rotor. MR brakes with conventional single ring-type electromagnetic poles have reached the limits of torque enhancement. One major reason is the limitation of the magnetic field strength within the active area of the MR fluid due to the geometric constraints of the coil. The multi-pole MR brake design features multiple electromagnetic poles surrounded by several coils. As a result, the active chaining areas for the MR fluid are greatly increased, and significant brake torque improvement is achieved. The coil structure, as a part of the stator, becomes flexible and customizable in terms of space usage for the winding and bobbin design. In addition, this brake offers extra options in its dimensions for torque enhancement because either the radial or the axial dimensions of the rotor can be increased. Magnetic circuit analysis was conducted to analyze the effects of the design parameters on the field torque. After that, simulations were done to find the optimal design under all major geometric constraints with a given power supply. The results show that the multi-pole MR brake provides a considerable braking torque increase while maintaining a compact and solid design. This is confirmation of its feasibility in actual braking applications. (paper)

  3. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  4. Diesel Technology: Brakes. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Hilley, Robert; Scarberry, Terry; Kellum, Mary

    This document contains teacher and student materials for a course on brakes in the diesel technology curriculum. The course consists of 12 units organized in three sections. The three units of the introductory section cover: (1) brakes; (2) wheel bearings and seals; and (3) antilock brake systems. The second section, Hydraulic Brakes, contains the…

  5. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  6. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  7. 14 CFR 23.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 23.493 Section 23.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....493 Braked roll conditions. Under braked roll conditions, with the shock absorbers and tires in their...

  8. Neutrons put the brakes on stress

    International Nuclear Information System (INIS)

    Gill, Katynna

    2006-01-01

    Don't you hate it when you're driving along, put your foot on the brake and feel that juddering feeling through the pedal? It happens when the disc brake rotors become distorted through normal use of the brakes. To the car manufacturing industry it's called r unout , and is a multimillion dollar warranty problem each year. Not to mention a pain for drivers! Dr Maurice Ripley and Dr Oliver Kirstein from the Australian Nuclear Science and Technology Organisation (ANSTO) wanted to figure out whether runout is caused by residual stresses from the manufacturing process or by normal use of the brake, so they decided to test and compare a used and new brake disc. 'To picture what metal looks like at the atomic level, imagine spheres stacked evenly around each other in all three dimensions,' explained Kirstein. T he spheres represent atoms in the metal and the structure is called a metallic lattice.' We're familiar with the idea that metal expands when it gets hot - the atoms get excited with the heat and have the energy to move further away from each other, so spaces between the atoms in the lattice get larger. 'When parts of the metal are heated up and cool down at different rates, you may end up with a distorted lattice with some parts expanded and others not,' explained Kirstein. 'This unevenness in the lattice creates residual stress.' While a bunch of methods were available to test the discs, Kirstein and Ripley picked neutrons from ANSTO's HIFAR (High Flux Australian Reactor) as their tool of choice. 'Neutrons allow us to look at the inside of the metal without damaging it,' said Kirstein. 'They can penetrate through the iron, so we were able to take measurements at a series of points at different depths through the brake disc.' Word around the car industry is that when residual stresses are relaxed through heating of the brake disc during use, the discs could potentially distort, causing the runout and that juddering feeling. But everyone was clueless as to what

  9. 14 CFR 27.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 27.493 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  10. 14 CFR 29.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 29.493 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.493 Braked roll conditions. Under braked roll conditions with the shock absorbers in their static positions— (a) The limit...

  11. 49 CFR 229.57 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 229.57 Section 229.57 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Foundation brake gear. A lever, rod, brake beam, hanger, or pin may not be worn through more than 30 percent...

  12. An evaluation of short-term exposures of brake mechanics to asbestos during automotive and truck brake cleaning and machining activities.

    Science.gov (United States)

    Richter, Richard O; Finley, Brent L; Paustenbach, Dennis J; Williams, Pamela R D; Sheehan, Patrick J

    2009-07-01

    Historically, the greatest contributions to airborne asbestos concentrations during brake repair work were likely due to specific, short-duration, dust-generating activities. In this paper, the available short-term asbestos air sampling data for mechanics collected during the cleaning and machining of vehicle brakes are evaluated to determine their impact on both short-term and daily exposures. The high degree of variability and lack of transparency for most of the short-term samples limit their use in reconstructing past asbestos exposures for brake mechanics. However, the data are useful in evaluating how reducing short-term, dust-generating activities reduced long-term exposures, especially for auto brake mechanics. Using the short-term dose data for grinding brake linings from these same studies, in combination with existing time-weighted average (TWA) data collected in decades after grinding was commonplace in rebuilding brake shoes, an average 8-h TWA of approximately 0.10 f/cc was estimated for auto brake mechanics that performed arc grinding of linings during automobile brake repair (in the 1960s or earlier). In the 1970s and early 1980s, a decline in machining activities led to a decrease in the 8-h TWA to approximately 0.063 f/cc. Improved cleaning methods in the late 1980s further reduced the 8-h TWA for most brake mechanics to about 0.0021 f/cc. It is noteworthy that when compared with the original OSHA excursion level, only 15 of the more than 300 short-term concentrations for brake mechanics measured during the 1970s and 1980s possibly exceeded the standard. Considering exposure duration, none of the short-term exposures were above the current OSHA excursion level.

  13. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  14. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  15. On friction braking demand with regenerative braking

    NARCIS (Netherlands)

    Walker, A.M.; Lampérth, M.U.; Wilkins, S.

    2002-01-01

    Developments in Hybrid Electric and pure Electric Vehicles are intended to improve the operational efficiency of road vehicles. Regenerative braking, which has long been established in rail vehicles, is integral to efficiency improvement, with up to 30% of overall traction energy demand satisfied by

  16. Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis

    Science.gov (United States)

    Hussain Idrisi, Amir; Ismail Mourad, Abdel-Hamid; Thekkuden, Dinu Thomas; Christy, John Victor

    2018-03-01

    This paper reports study on statistical analysis of the wear characteristics of AA5083/SiC nanocomposite. The aluminum matrix composites with different wt % (0%, 1% and 2%) of SiC nanoparticles were fabricated by using stir casting route. The developed composites were used in the manufacturing of spur gears on which the study was conducted. A specially designed test rig was used in testing the wear performance of the gears. The wear was investigated under different conditions of applied load (10N, 20N, and 30N) and operation time (30 mins, 60 mins, 90 mins, and 120mins). The analysis carried out at room temperature under constant speed of 1450 rpm. The wear parameters were optimized by using Taguchi’s method. During this statistical approach, L27 Orthogonal array was selected for the analysis of output. Furthermore, analysis of variance (ANOVA) was used to investigate the influence of applied load, operation time and SiC wt. % on wear behaviour. The wear resistance was analyzed by selecting “smaller is better” characteristics as the objective of the model. From this research, it is observed that experiment time and SiC wt % have the most significant effect on the wear performance followed by the applied load.

  17. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  18. Dynamic analysis of three autoventilated disc brakes

    Directory of Open Access Journals (Sweden)

    Ricardo A. García-León

    2017-09-01

    Full Text Available The braking system of a car must meet several requirements, among which safety is the most important. It is also composed of a set of mechanical parts such as springs, different types of materials (Metallic and Non Metallic, gases and liquids. The brakes must work safely and predictably in all circumstances, which means having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical strength, maximum temperature, thermal deformation, cracking resistance, among others. Therefore, the main objective of this work is to analyze the dynamics and kinetics of the brake system from the pedal as the beginning of mathematical calculations to simulate the behavior and Analysis of Finite Elements (FEA, with the help of SolidWorks Simulation Software. The results show that the third brake disc works best in relation to the other two discs in their different working conditions such as speed and displacement in braking, concluding that depending on the geometry of the brake and the cooling channels these systems can be optimized that are of great importance for the automotive industry.

  19. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  20. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  1. 49 CFR 238.319 - Running brake test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received, or...

  2. Practical Use of the Braking Attributes Measurements Results

    Directory of Open Access Journals (Sweden)

    Ondruš Ján

    2017-01-01

    Full Text Available This contribution deals with issues of braking the passenger car. The measurement of braking deceleration of the vehicle Kia Cee´d 1,6 16 V was carried out by an optical device Correvit system. The measurement was carried out on the airport of the village of Rosina located close to Zilina. 10 drivers of different age, praxis, and kilometers driven participated in the measurement. The measured process was the vehicle full braking with the service brake of the initial speed of approximately 50 km.h-1. Each of the drivers had 10 attempts. In the closure of this contribution the results of the performed measurements, their evaluation and comparison are presented. Practical result from the contribution is mainly the measurement set of braking deceleration of the respective vehicle during intensive braking.

  3. Accelerometer-controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  4. 30 CFR 75.1404-1 - Braking system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Braking system. 75.1404-1 Section 75.1404-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips § 75.1404-1 Braking system. A locomotive equipped with a dual braking system will be deemed to satisfy the requirements of § 75.1404 for a...

  5. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  6. Asperity-Level Origins of Transition from Mild to Severe Wear

    Science.gov (United States)

    Aghababaei, Ramin; Brink, Tobias; Molinari, Jean-François

    2018-05-01

    Wear is the inevitable damage process of surfaces during sliding contact. According to the well-known Archard's wear law, the wear volume scales with the real contact area and as a result is proportional to the load. Decades of wear experiments, however, show that this relation only holds up to a certain load limit, above which the linearity is broken and a transition from mild to severe wear occurs. We investigate the microscopic origins of this breakdown and the corresponding wear transition at the asperity level. Our atomistic simulations reveal that the interaction between subsurface stress fields of neighboring contact spots promotes the transition from mild to severe wear. The results show that this interaction triggers the deep propagation of subsurface cracks and the eventual formation of large debris particles, with a size corresponding to the apparent contact area of neighboring contact spots. This observation explains the breakdown of the linear relation between the wear volume and the normal load in the severe wear regime. This new understanding highlights the critical importance of studying contact beyond the elastic limit and single-asperity models.

  7. Discussion on stochastic braking for a single-rail rope-driven lifter

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This paper discusses the braking and control of a A-2/73 clip type friction brake system made in FRG - a clamp type brake system made in USSR and an eccentric wheel type brake system made in Poland. Then it analyses a ZGZ auto increasing force type braking system of a single-rail rope driven lifter. The braking principle of the ZGZ system is that the braking blocks insert along the brake base and contact with the ribs of the single-rail. Then the braking would be realized as a function of increasing frictional force.

  8. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  9. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    Conveniently gathering formulas, analytical methods, and graphs for the design and selection of a wide variety of brakes and clutches in the automotive, aircraft, farming, and manufacturing industries, Clutches and Brakes: Design and Selection, Second Edition simplifies calculations, acquaints engineers with an expansive range of application, and assists in the selection of parameters for specific design challenges. Contains an abundance of examples, 550 display equations, and more than 200 figures for clear presentation of various design strategies Thoroughly revised throughout, the second edition offers… Additional chapters on friction drives and fluid clutches and retarders An extended discussion on cone brakes and clutches A simpler formulation of the torque from a centrifugal clutch Updated sections on automatic braking systems An analysis of variable-speed friction drives with clutch capability Analytical and computer-assisted design techniques.

  10. On radiation of electrons moving in braking electric fields with distributed potential

    International Nuclear Information System (INIS)

    Fedulov, V.I.; Suvorov, V.I.; Umirov, U.R.

    2002-01-01

    The characteristics of radiation of electron moving in flat structures with braking electric field created by an accelerating electrode and another electrode with distributed potential are investigated. The analytical expressions for definition of conditions for complete loss of energy by electron in structure with distributed potential and for arising the electron vibrations are received. Also expressions connecting the electron energy with the point of entry and its fluctuation frequency are received. The mathematical model of irradiation process is offered depending on energy and point of entry of the electron. The connection between a radiation wave length and position of point of entry of electrons in the braking electric field are found. A possibility of emerging the optical radiation in solid environments at passage of charge particles through substance is shown. (author)

  11. Tooth wear and wear investigations in dentistry.

    Science.gov (United States)

    Lee, A; He, L H; Lyons, K; Swain, M V

    2012-03-01

    Tooth wear has been recognised as a major problem in dentistry. Epidemiological studies have reported an increasing prevalence of tooth wear and general dental practitioners see a greater number of patients seeking treatment with worn dentition. Although the dental literature contains numerous publications related to management and rehabilitation of tooth wear of varying aetiologies, our understanding of the aetiology and pathogenesis of tooth wear is still limited. The wear behaviour of dental biomaterials has also been extensively researched to improve our understanding of the underlying mechanisms and for the development of restorative materials with good wear resistance. The complex nature of tooth wear indicates challenges for conducting in vitro and in vivo wear investigations and a clear correlation between in vitro and in vivo data has not been established. The objective was to critically review the peer reviewed English-language literature pertaining to prevalence and aetiology of tooth wear and wear investigations in dentistry identified through a Medline search engine combined with hand-searching of the relevant literature, covering the period between 1960 and 2011. © 2011 Blackwell Publishing Ltd.

  12. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  13. Station Stopping of Freight Trains with Pneumatic Braking

    OpenAIRE

    Yun Bai; Baohua Mao; Tinkin Ho; Yu Feng; Shaokuan Chen

    2014-01-01

    In Chinese mainline railway, freight trains need to stop within passenger stations at times because of the delayed passenger trains. Without any decision-support system, it is very difficult for drivers to stop trains within stations with consistency in one braking action. The reasons are that braking performance of train changes with the conditions of braking equipment and the drivers’ subjective evaluations of track profiles and braking distance are vague and imprecise. This paper presents ...

  14. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    Science.gov (United States)

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles. Copyright 2016, SLACK Incorporated.

  15. 49 CFR 238.231 - Brake system.

    Science.gov (United States)

    2010-10-01

    ...) Equipped with brake indicators as defined in § 238.5, designed so that the pressure sensor is placed in a... alcohol or other chemicals into the air brake system of passenger equipment is prohibited. (f) The...

  16. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  17. 77 FR 51649 - Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems

    Science.gov (United States)

    2012-08-24

    ... motorcycle braking regulations from around the world, including the U.S. motorcycle brake systems standard.... Partial Failure Test--Split Service Brake System I. Power-Assisted Braking System Failure Test V. Other... motorcycle brake system technologies. In order to address modern braking technologies, the agency sought to...

  18. Experimental investigation of tread wear and particle emission from tyres with different treadwear marking

    Science.gov (United States)

    Grigoratos, Theodoros; Gustafsson, Mats; Eriksson, Olle; Martini, Giorgio

    2018-06-01

    The Treadwear Rating (TWR) provided on the sidewall of the tyre is a marking intended to inform the customer about the expected durability of the tyre. The current study explores whether there is a correlation between the TWR and tyres' tread mass loss. Furthermore, it explores the possible correlation between the TWR and tyre wear dust emitted in the form of PM10 and PM2.5. For that reason, two tyres of the same brand (B) but with different TWR and three tyres of different brands (C and D with the same TWR as one of the B tyres and A with a lower TWR) were tested at a constant speed of 70 km/h by means of the Swedish National Road and Transport Research Institute (VTI) road simulator. Tyres of the same TWR but of different brands showed different behaviour in terms of material loss, PM, and PN emissions under the selected testing conditions. This means that it is not feasible to categorize tyres of different brands in terms of their emissions based on their TWR. The test performed on the two tyres of the same brand but with different TWR showed instead a substantial (not statistically significant) difference in both total wear and PM10 emissions. The tyre with the higher TWR (B2) showed less wear and PM10 emissions compared to the B1 tyre having a lower TWR. Since only two tyres of the same brand and with different TWR were tested, this result cannot be generalized and more tests are necessary to confirm the relation within the same brand. In general, the tyre tread mass loss showed no obvious statistical relation to PM10, PM2.5 or PN concentration. In all cases approximately 50% (by mass) of emitted PM10 fall within the size range of fine particles, while PN size distribution is dominated by nanoparticles most often peaking at 20-30 nm.

  19. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  20. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  1. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  2. Brakes. Auto Mechanics Curriculum Guide. Module 6. Instructor's Guide.

    Science.gov (United States)

    Allain, Robert

    This module is the sixth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Eight units cover: introduction to automotive brake systems; disc and drum brake system components and how they operate; properties of brake fluid and procedures for bleeding the brake system; diagnosing and determining needed repairs on…

  3. Controlled braking scheme for a wheeled walking aid

    OpenAIRE

    Coyle, Eugene; O'Dwyer, Aidan; Young, Eileen; Sullivan, Kevin; Toner, A.

    2006-01-01

    A wheeled walking aid with an embedded controlled braking system is described. The frame of the prototype is based on combining features of standard available wheeled walking aids. A braking scheme has been designed using hydraulic disc brakes to facilitate accurate and sensitive controlled stopping of the walker by the user, and if called upon, by automatic action. Braking force is modulated via a linear actuating stepping motor. A microcontroller is used for control of both stepper movement...

  4. Radial brake assembly for a control rod drive

    International Nuclear Information System (INIS)

    Hekmati, A.; Gibo, E.Y.

    1992-01-01

    This patent describes a brake assembly for a control rod drive for selectively preventing travel of a control rod in a nuclear reactor vessel. It comprises a shaft having a longitudinal centerline axis; means for selectively rotating the shaft in a first direction and in a second direction, opposite to the first direction; a stationary housing having a central aperture receiving the shaft; a frame fixedly joined to the housing and having a guide hole; a rotor disc fixedly connected to the shaft for rotation therewith and having at least one rotor tooth extending radially outwardly from a perimeter thereof, the rotor tooth having a locking surface and an inclined surface extending therefrom in a circumferential direction; a brake member disposed adjacent to the rotor disc perimeter and including a base, at least one braking tooth having a locking surface extending therefrom in a circumferential direction, and a plunger extending radially outwardly from the base and slidably joined to the frame through the guide hole; the rotor tooth and the braking tooth being complementary to each other; and means for selectively positioning the brake member in a deployed position abutting the rotor disc perimeter for allowing the braking tooth locking surface to contact the rotor tooth locking surface for preventing rotation of the shaft in the first direction, and in a retracted position spaced radially away from the rotor disc for allowing the rotor disc and the shaft to rotate without restraint from the brake member, the positioning means including a tubular solenoid fixedly joined to the frame and having a central bore disposed around the brake member plunger and effective for sliding the brake member plunger relative to the frame for positioning the brake member in the deployed and retracted positions

  5. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  6. 30 CFR 56.14101 - Brakes.

    Science.gov (United States)

    2010-07-01

    ... which is not originally equipped with brakes unless the manner in which the equipment is being operated...; (2) The performance of the service brakes shall be evaluated according to Table M-1. Table M-1 Gross... values include a one-second operator response time. Table M-2—The Speed of a Vehicle Can be Determined by...

  7. The antilock braking system anomaly: a drinking driver problem?

    Science.gov (United States)

    Harless, David W; Hoffer, George E

    2002-05-01

    Antilock braking systems (ABS) have held promise for reducing the incidence of accidents because they reduce stopping times on slippery surfaces and allow drivers to maintain steering control during emergency braking. Farmer et al. (Accident Anal. Prevent. 29 (1997) 745) provide evidence that antilock brakes are beneficial to nonoccupants: a set of 1992 model General Motors vehicles equipped with antilock brakes were involved in significantly fewer fatal crashes in which occupants of other vehicles, pedestrians, or bicyclists were killed. But, perversely, the risk of death for occupants of vehicles equipped with antilock brakes increased significantly after adoption. Farmer (Accident Anal. Prevent. 33 (2001) 361) updates the analysis for 1996- 1998 and finds a significant attenuation in the ABS anomaly. Researchers have put forward two hypotheses to explain this antilock brake anomaly: risk compensation and improper operation of antilock brake-equipped vehicles. We provide strong evidence for the improper operation hypothesis by showing that the antilock brake anomaly is confined largely to drinking drivers. Further, we show that the attenuation phenomenon occurs consistently after the first three to four years of vehicle service.

  8. A simulator study of adverse wear with metal and cement debris contamination in metal-on-metal hip bearings.

    Science.gov (United States)

    Halim, T; Clarke, I C; Burgett-Moreno, M D; Donaldson, T K; Savisaar, C; Bowsher, J G

    2014-03-01

    Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt-chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm(3)/Mc, 4.1 mm(3)/Mc and 6.4 mm(3)/Mc, respectively. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29-37. ©2015 The British Editorial Society of Bone & Joint Surgery.

  9. The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls

    International Nuclear Information System (INIS)

    Kang, Minwoo; Suh, Yongchan; Oh, Yong-Jun; Lee, Young-Kook

    2014-01-01

    Highlights: • V addition changed the pro-eutectic phase from austenite to vermicular (V,Nb)C. • Pro-eutectic (V,Nb)C particles were segregated to the inner part of the roll. • Wear loss was inversely proportional to MC fraction under the same graphite fraction. • Cementite particles acted as the initiation site and propagation path of cracks. • High-temperature wear sequence of centrifugally cast Ni-hard rolls was suggested. - Abstract: The effects of V on the microstructure and wear resistance of centrifugally cast Ni-hard rolls are investigated under a constant fraction of graphite using electron microscopes and a revolving disk-type high-temperature wear tester. The volume fraction of (V,Nb)C particles was increased at the expense of the volume fraction of cementite with an increase in the V concentration. However, the volume fraction of graphite was held nearly constant by controlling the concentration ratio of Si and Cr. As the V concentration was higher than 3 wt.%, the pro-eutectic phase was changed from austenite to (V,Nb)C carbide. The pro-eutectic vermicular (V,Nb)C particles were segregated to the inner part of the roll during centrifugal casting. The wear resistance was improved with an addition of V due to the high volume fractions of the coarse eutectic and pro-eutectic (V,Nb)C particles and the precipitation hardening of fine (V,Nb)C particles in the martensitic matrix. The worn surface showed that cementite particles acted as the initiation site and propagation route of cracks

  10. [Systemic spread of wear debris--an in-vivo study].

    Science.gov (United States)

    Burian, B; Wimmer, M A; Kunze, J; Sprecher, C M; Pennekamp, P H; von Engelhardt, L V; Diedrich, O; Kraft, C N

    2006-01-01

    The aim of this study was to elucidate whether there is a systemic spread of wear debris from peripherally applied stainless steel and titanium particles into the blood and subsequently to parenchymatous organs. Furthermore, we report on histological findings at the implantation site. In Syrian Gold hamsters we implanted 2 mm3 wear debris of stainless steel and titanium into the dorsal skin fold chamber. Over a period of 2 weeks we took blood samples and afterwards explanted the implant area, the heart, lung, liver and spleen. One half of the organs and the implant area were used for histological analysis. The other half of the organs and the blood samples were analysed by optical emission spectrometer with inductively coupled plasma and graphite furnace atomic absorption spectrophotometry for their contents of chromium, nickel and titanium. In the group with titanium particles, histological analysis of the implant site showed moderate phagocyted wear in granulocytes but no other pathological findings. Animals treated with stainless steel wear debris had a massive inflammatory reaction, in some cases leading to necrosis. The analysis of the blood and one half of the organs showed increased levels of chromium and, already 24 hours after implantation, raised values for nickel. The result of the hamsters treated with titanium showed significantly elevated levels of titanium ions in the organs, but not in the blood samples. Histology of the organs did not reveal pathological findings. In this study we could show a massive inflammatory reaction for stainless steel wear debris in contrast to titanium wear debris at the implantation site. The elevated blood levels of chromium and increased values of other metals in the organs suggest the haematogenic distribution of ions from the peripherally implanted wear debris.

  11. Thermodynamical Description of Running Discontinuities: Application to Friction and Wear

    Directory of Open Access Journals (Sweden)

    Claude Stolz

    2010-06-01

    Full Text Available The friction and wear phenomena appear due to contact and relative motion between two solids. The evolution of contact conditions depends on loading conditions and mechanical behaviours. The wear phenomena are essentially characterized by a matter loss. Wear and friction are in interaction due to the fact that particles are detached from the solids. A complex medium appears as an interface having a strong effect on the friction condition. The purpose of this paper is to describe such phenomena taking account of different scales of modelization in order to derive some macroscopic laws. A thermodynamical approach is proposed and models of wear are analysed in this framework where the separation between the dissipation due to friction and that due to wear is made. Applications on different cases are presented.

  12. 30 CFR 77.1401 - Automatic controls and brakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic controls and brakes. 77.1401 Section... MINES Personnel Hoisting § 77.1401 Automatic controls and brakes. Hoists and elevators shall be equipped with overspeed, overwind, and automatic stop controls and with brakes capable of stopping the elevator...

  13. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    Science.gov (United States)

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-11-01

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Experimental investigation of an accelerometer controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  15. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2013-04-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  16. Wear mechanisms of dental composite restorative materials by two different in-vitro methods

    Directory of Open Access Journals (Sweden)

    Juliana Antonino de Souza

    2012-01-01

    Full Text Available In this work two very simple apparatuses, namely the ball crater (or ball-on-plate and the linear reciprocating (or pin-on-plate tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.

  17. 49 CFR 393.49 - Control valves for brakes.

    Science.gov (United States)

    2010-10-01

    ... in paragraphs (b) and (c) of this section, every motor vehicle manufactured after June 30, 1953, which is equipped with power brakes, must have the braking system so arranged that one application valve must when activated cause all of the service brakes on the motor vehicle or combination motor vehicle...

  18. 49 CFR 393.48 - Brakes to be operative.

    Science.gov (United States)

    2010-10-01

    ..., snowy, or icy roads. (2) Automatic devices. Automatic devices must not reduce the front-wheel braking force by more than 50 percent of the braking force available when the automatic device is disconnected... times be capable of operating. (b) Devices to reduce or remove front-wheel braking effort. A commercial...

  19. Air brake-dynamometer accurately measures torque

    Science.gov (United States)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  20. 49 CFR 238.315 - Class IA brake test.

    Science.gov (United States)

    2010-10-01

    ... that utilize an electric signal to communicate a service brake application and only a pneumatic signal... and release of the brakes on the last car in the train; and (6) The communicating signal system is... be used to verify the set and release on cars so equipped. However, the observation of the brake...

  1. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  2. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  3. Wear studies of engine components using neutron activation techniques

    International Nuclear Information System (INIS)

    Banados Perez, H.E.; Carvalho, G.; Daltro, T.F.L.

    1984-01-01

    The results obtained in a series of tests for determining the wearing rate of some diesel engine components are reported. The pieces investigated were the needles of fuel injection nozzles, that were previously irradiated with a 10 13 nv in the IEA-R1 nuclear reactor, and the wearing rate was established for different types of fuels. Total wear was calculated by measuring the specific activity of 51 Cr present in the fuel and originated by metal particles worn from the needle. Wear were performed using a device that simulated the actual working conditions of the injection nozzles. The system was run during 350 hours and, along that period, 36 fuel samples of 10 ml each, were collected and analysed for cumulative wear calculation. A metal concentration as low as 10- 6 g in 10 ml of fuel sample could be measured by this method. At present time this procedure is being applied for measuring the wear-rate of other nozzle parts, using localized neutron activation techiques. (Author) [pt

  4. Study on reduction method of brake squeal; Brake naki teigen shuho ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, T; Okada, Y [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    The reduction of brake squeal is an important technological subject in terms of making vehicles quieter. In our research, we carried out a modal analysis from the caliper to the installation bracket during generating brake squeal to identify the places that influence the squeal. Based on this, we studied proposals to reduce the squeal, and have reduced the squeal noise at about 5 kHz as reported in this paper. 1 ref., 12 figs.

  5. 49 CFR 238.313 - Class I brake test.

    Science.gov (United States)

    2010-10-01

    ... intercity passenger train shall receive a Class I brake test once each calendar day that the train is placed...-distance intercity passenger train shall receive a Class I brake test: (1) Prior to the train's departure... shoes or pads are firmly seated against the wheel or disc with the brakes applied; (3) Piston travel is...

  6. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Nelson, R., E-mail: nelson.90.mech@gmail.com [Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph.2001@gmail.com [Center for Research in Metallurgy, School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa)

    2016-08-15

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneously in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.

  7. Reconstruction of braking force in vehicles with electromechanically actuated wheel brakes; Rekonstruktion der Bremskraft bei Fahrzeugen mit elektromechanisch betaetigten Radbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.

    1999-07-01

    Modern braking systems have a variety of functions, but implementation of the enhanced functionality with conventional hydraulic systems is difficult because of electronic actuation. The car industry therefore is working on new braking systems in which the braking force is generated individually on the wheels by means of electromechanical actuators. Owing to their nonlinear characteristics and variable braking efficiency, electromechanically actuated wheel brakes must be operated in a closed control loop. The author presents a low-cost method for reconstruction of the braking force which is required for efficient control. [German] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen Eingriff sehr aufwendig. - Von der Automobilzulieferindustrie werden daher neuartige Bremssysteme entwickelt, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. - Elektromechanisch betaetigte Radbremsen muessen aufgrund ihres nichtlinearen Verhaltens und des veraenderlichen Wirkungsgrades im geschlossenen Regelkreis betrieben werden. In dieser Arbeit wird erstmals ein Verfahren vorgestellt, mit dem die fuer die Regelung benoetigte Rueckfuehrungsgroesse Bremskraft kostenguenstig rekonstruiert werden kann. (orig.)

  8. Evaluation of the dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to chrysotile or crocidolite asbestos in a 28-day quantitative inhalation toxicology study.

    Science.gov (United States)

    Bernstein, D M; Toth, B; Rogers, R A; Sepulveda, R; Kunzendorf, P; Phillips, J I; Ernst, H

    2018-04-26

    This study provides an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake-dust (brakes manufactured with chrysotile). The design included a 28-day repeated multi-dose inhalation exposure (6 h/d, 5 d/wk, 4 wks) followed by 28-days without exposure. Fiber control groups included a similar grade chrysotile as used in the brakes and a commercial crocidolite asbestos. Aerosol fiber distributions of the chrysotile and crocidolite were similar (fiber-length > 20 μm/cm 3 : Chrysotile-low/high 42/62; Crocidolite-low/high 36/55; WHO-fibers/cm 3 : Chrysotile-low/high 192/219; Crocidolite-low/high 211/255). The total number of aerosol particles/cm 3 in the brake-dust was similar to that in the chrysotile (Brake-dust 710-1065; Chrysotile 532-1442). Brake-dust at particle exposure levels equal to or greater than chrysotile or crocidolite caused no indication of microgranulomas, epithelial hyperplasia, or fibrosis (Wagner score brake-dust and chrysotile-HD groups or in thickness of visceral or parietal pleural. The crocidolite exposure resulted in extensive inflammatory response, collagen development and adhesions between the visceral and parietal surfaces with double the surface thickness. These results provide essential information for the design of a subsequent subchronic study. Copyright © 2018. Published by Elsevier Inc.

  9. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  10. 49 CFR 570.59 - Service brake system.

    Science.gov (United States)

    2010-10-01

    ... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any one of the following performance criteria will satisfy the requirements of this section. Verify that tire...

  11. Braking energy regeneration control of a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Zhang, Junzhi; Lv, Chen; Qiu, Mingzhe; Li, Yutong; Sun, Dongsheng

    2013-01-01

    Highlights: • A braking energy regeneration system has been designed for a fuel cell bus. • Control strategy coordinating energy efficiency and brake safety is proposed. • The system and control strategy proposed are experimentally verified. • Based on test results, energy efficiency of the FCB is improved greatly. - Abstract: This paper presents the braking energy regeneration control of a fuel cell hybrid electric bus. The configuration of the regenerative braking system based on a pneumatic braking system was proposed. To recapture the braking energy and improve the fuel economy, a control strategy coordinating the regenerative brake and the pneumatic brake was designed and applied in the FCHB. Brake safety was also guaranteed by the control strategy when the bus encounters critical driving situations. Fuel economy tests were carried out under China city bus typical driving cycle. And hardware-in-the-loop tests of the brake safety of the FCHB under proposed control strategy were also accomplished. Test results indicate that the present approach provides an improvement in fuel economy of the fuel cell hybrid electric bus and guarantees the brake safety in the meantime

  12. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  13. A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2011-01-01

    This paper proposes a new approach to modeling the magnetic circuit of an MR brake and applies it to explore an engineering optimization problem. The MR brake used in this work is a bi-directional type whose range of braking torque varies from negative to positive values. The model of the bi-directional MR brake can be split into two components: the mechanical part and the magnetic circuit. While the mechanical part is modeled using Bingham's equation, an approach to modeling the magnetic circuit is proposed in this work. For verification of the effectiveness of this method, an optimal design aiming to minimize the mass subjected to the geometric and desired torque constraints is undertaken. In order to solve such an optimization problem, which consists of numerous constraints and potential local optima, a particle swarm optimization (PSO) algorithm in combination with a gradient-based repair method is proposed. The optimal solution of the problem obtained from the proposed method is then investigated and compared with that obtained from finite element analysis (FEA). In addition, an experiment on a manufactured bi-directional MR brake with the optimal parameters is undertaken to validate the accuracy of the proposed analysis methodology

  14. Use of an additive in biofuel to evaluate emissions, engine component wear and lubrication characteristics

    International Nuclear Information System (INIS)

    Kalam, M.A.; Majsuki, H.H.

    2003-01-01

    This paper presents the results of experiments carried out to evaluate the effect of adding an anticorrosion additive to blended biofuel and lubricating oil on emissions, engine component wear and lubrication characteristics. The blended biofuels consist of 7.5 and 15 per cent palm olein (PO) with ordinary diesel oil (OD). Pure OD was used for comparison purposes. Exhaust emission gases such as NO x , CO and hydrocarbons (HCs) were measured by an exhaust emission analyser for engine operation on 50 per cent throttle at speeds of 800-3600 r/min. To measure engine component wear and lubricating oil characteristics, the engine was operated at 50 per cent throttle at a speed of 2000 r/min for a period of 100 h with each of the fuel samples. The same lubricating oil, conventional SAE 40, was used in all the fuels. A multielement oil analyser (MOA) was used to measure the increase in wear of metals (Fe, Cu, Al, Pd) and the decrease in lubricating oil additives (Zn, Ca) in the lubricating oil used. An ISL automatic Houillon viscometer (ASTM D445) and potentiometric titration (ASTM D2896) were used to measure viscosity and total base number (TBN) respectively. The results show that the addition of anticorrosion additive with biofuel and lubricating oil improves the emission and engine wear characteristics; both the exhaust emission gases (NO x , CO and HCs) and the wear of metals (Fe, Cu, Al and Pd) decrease with the blended fuels in comparison with the base fuel OD. Detailed results, including engine brake power, are discussed. (Author)

  15. BRAKE DEVICE

    Science.gov (United States)

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  16. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  17. Combined emergency braking and turning of articulated heavy vehicles

    OpenAIRE

    Morrison, G; Cebon, David

    2017-01-01

    ‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘atte...

  18. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  19. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  20. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  1. Braking system for use with an arbor of a microscope

    International Nuclear Information System (INIS)

    Norgren, D.U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location

  2. Braking system for use with an arbor of a microscope

    Science.gov (United States)

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  3. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    Science.gov (United States)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  4. Development of Asbestos - Free Brake Pad Using Bagasse

    Directory of Open Access Journals (Sweden)

    V. S. Aigbodion

    2010-03-01

    Full Text Available Development of asbestos-free brake pad using bagasse was investigated with a view to replace the use of asbestos whose dust is carcinogenic. The bagasse were sieve into sieve grades of 100, 150, 250, 350 and 710µm. the sieve bagasse was used in production of brake pad in ratio of 70%bagasse-30%resin using compression moulding. The properties examined are microstructure analysis, hardness, compressive strength, density, flame resistance, water and oil absorption. The microstructure reveals uniform distribution of resin in the bagasse. The results obtained showed that the finer the sieve size the better the properties. The results obtained in this work were compared with that of commercial brake pad (asbestos based and optimum formulation laboratory brake pad Palm Kernel Shell based (PKS, the results are in close agreement. Hence bagasse can be used in production of asbestos-free brake pad.

  5. Morphological and Wear behaviour of new Al-SiCmicro-SiCnano hybrid nanocomposites fabricated through powder metallurgy

    Science.gov (United States)

    Arif, Sajjad; Tanwir Alam, Md; Aziz, Tariq; Ansari, Akhter H.

    2018-04-01

    In the present work, aluminium matrix composites reinforced with 10 wt% SiC micro particles along with x% SiC nano particles (x = 0, 1, 3, 5 and 7 wt%) were fabricated through powder metallurgy. The fabricated hybrid composites were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and elemental mapping. The relative density, hardness and wear behaviour of all hybrid nanocomposites were studied. The influence of various control factors like SiC reinforcement, sliding distance (300, 600, 900 and 1200 m) and applied load (20, 30 and 40 N) were explored using pin-on-disc wear apparatus. The uniform distribution of micro and nano SiC particles in aluminium matrix is confirmed by elemental maps. The hardness and wear test results showed that properties of the hybrid composite containing 5 wt% nano SiC was better than other hybrid composites. Additionally, the wear loss of all hybrid nanocomposites increases with increasing sliding distance and applied load. The identification of wear phenomenon were studied through the SEM images of worn surface.

  6. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  7. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  8. Optimal design for slip deceleration control in anti-lock braking system

    Science.gov (United States)

    Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur

    2018-05-01

    ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.

  9. Consideration of materials for aircraft brakes

    Science.gov (United States)

    Peterson, M. B.; Ho, T.-L.

    1974-01-01

    A study has been made of the frictional behavior of several aircraft brake materials using a simple high-temperature Falex-type apparatus. Tests were run at velocities of seven ft/minute; loads to 600 pounds and temperatures to 700 C. The data for these brake materials sliding against a variety of steels and other materials indicate a large reduction in friction due to surface oxidation in the temperature range 250 to 300 C. It also was found that the retention of this oxide was a function of the temperature changes. With increasing temperature the oxide was removed, while with reducing temperature it was retained. Frictional behavior was more characteristic of the steel than the brake material.

  10. Wheel brake with mechatronic parameter value control - investigation of operating behaviour and driver integration problems, with particurticular regard to brake-by-wire systems; Radbremse mit mechatronischer Kennwertregelung - Untersuchung von Betriebsverhalten und Fahreranbindungsproblematik, hinsichtlich Brake-by-Wire-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M.

    1998-11-01

    The book presents a new brake system with mechatronically controlled self-energizing and with low energy demand. Potentials and limits of mechatronic parameter value control are pointed out with a view towards future brake-by-wire systems. Measurements on a parameter-controlled duplex drum brake provide information on the response to different disturbances. The possibility of influencing the driver by parameter-controlled wheel brakes were investigated in a novel experimental vehicle with freely programmable brake system parameters, and the main paramters of the driver/brake system interface were identified. The report ends with a few words on adaptive brake systems which can combine optimum driving efficiency with maximum comfort in all possible driving situations. (orig.) [Deutsch] Das vorliegende Buch stellt eine neuartige Fahrzeugbremse mit mechatronisch geregelter Selbstverstaerkung vor, die einen niedrigen Spannenergiebedarf aufweist. Im Hinblick auf zukuenftige Brake-by-Wire-Systeme werden Potentiale, aber auch Grenzen einer mechatronischen Kennwertregelung aufgezeigt. Messungen an einer kennwertgeregelten Duplex-Trommelbremse geben Aufschluss ueber das Betriebsverhalten unter Einfluss verschiedener Stoergroessen. Die Moeglichkeiten einer Fahrerbeeinflussung durch kennwertgeregelte Radbremsen werden mittels eines neuartigen Versuchsfahrzeugs mit frei programmierbaren Bremssystemparametern untersucht. Darueber hinaus wird die Schnittstelle Fahrer/Bremssystem hinsichtlich ihrer bestimmenden Parameter beschrieben. Den Schluss der Arbeit bildet ein Ausblick auf adaptive Bremssysteme mit dem Potential, optimale fahrdynamische Effizienz bei groesstmoeglichem Komfort situationsabhaengig darzustellen. (orig.)

  11. Physiology and pathophysiology of the ileal brake in humans

    NARCIS (Netherlands)

    Vu, My Kieu

    2007-01-01

    The ileal brake is an intraluminal nutrient-triggered feedback control from the distal to the proximal gut with fat being the most potent trigger. Peptide YY (PYY) is one of the hormonal mediators of the ileal brake. Effects of the fat induced ileal brake on proximal small intestine, postprandial

  12. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  13. Wear Resistance Analysis of A359/SiC/20p Advanced Composite Joints Welded by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    O. Cuevas Mata

    Full Text Available Abstract Advancement in automotive part development demands new cost-effective materials with higher mechanical properties and improved wear resistance as compared to existing materials. For instance, Aluminum Matrix Composites (AMC shows improved mechanical properties as wear and abrasion resistance, high strength, chemical and dimensional stability. Automotive industry has focused in AMC for a variety of applications in automotive parts in order to improve the fuel economy, minimize vehicle emissions, improve design options, and increase the performance. Wear resistance is one of the most important factors in useful life of the automotive components, overall in those components submitted to mechanical systems like automotive brakes and suspensions. Friction Stir Welding (FSW rises as the most capable process to joining AMC, principally for the capacity to weld without compromising their ceramic reinforcement. The aim of this study is focused on the analysis of wear characteristics of the friction-stir welded joint of aluminum matrix reinforced with 20 percent in weight silicon carbide composite (A359/SiC/20p. The experimental procedure consisted in cut samples into small plates and perform three welds on these with a FSW machine using a tool with 20 mm shoulder diameter and 8 mm pin diameter. The wear features of the three welded joints and parent metal were analyzed at constant load applying 5 N and a rotational speed of 100 rpm employing a Pin-on - Disk wear testing apparatus, using a sapphire steel ball with 6 mm diameter. The experimental results indicate that the three welded joints had low friction coefficient compared with the parent metal. The results determine that the FSW process parameters affect the wear resistance of the welded joints owing to different microstructural modifications during welding that causes a low wear resistance on the welded zone.

  14. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    Directory of Open Access Journals (Sweden)

    Boyi Xiao

    2017-11-01

    Full Text Available A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other improved regenerative braking strategies. The performance simulation was performed using standard driving cycles (NEDC, LA92, and JP1015 and a real-world-based urban cycle in China. The tested braking strategies satisfied the general safety requirements of Europe (as specified in ECE-13H, and the emergency braking scenario and economic potential were tested. The simulation results demonstrated the differences in the braking force distribution performance of these three regenerative braking strategies, the feasibility of the braking methods for the proposed driving cycles and the energy economic potential of the three strategies.

  15. An analysis of braking measures

    OpenAIRE

    De Groot, S.; De Winter, J.C.F.; Wieringa, P.A.; Mulder, M.

    2010-01-01

    Braking to a full stop at a prescribed target position is a driving manoeuvre regularly used in experiments to investigate driving behaviour or to test vehicle acceleration feedback systems in simulators. Many different performance measures have been reported in the literature for analysing braking. These may or may not be useful to analyse the stopping manoeuvre, because a number of potential problems exist: 1) the scores on a measure may be insufficiently reliable, 2) the measure may be inv...

  16. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  17. Influence of quartz particles on wear in vertical roller mills

    DEFF Research Database (Denmark)

    Jensen, Lucas R.D.; Friis, Henrik; Fundal, Erling

    2010-01-01

    The standard closed circuit comminution process commonly employed in industrial vertical roller mills has been analyzed to determine the influence of typical abrasive minerals on wear rates. With the main focus on raw mixes used in cement plants, synthetic mixtures imitating were prepared. Using...

  18. An Instructor's Guide for a Program in Brake Services.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The instructor's guide is designed to present an understanding of the automotive hydraulic brake system and to help individuals develop new skills for employment in this specialized field of automotive service. Applicable for secondary or adult education, this guide describes: the brake system, types of brakes, diagnosis and correction of brake…

  19. Light-gated molecular brakes based on pentiptycene-incorporated azobenzenes.

    Science.gov (United States)

    Tan, Wei Shyang; Chuang, Po-Ya; Chen, Chia-Huei; Prabhakar, Chetti; Huang, Shing-Jong; Huang, Shou-Ling; Liu, Yi-Hung; Lin, Ying-Chih; Peng, Shie-Ming; Yang, Jye-Shane

    2015-04-01

    Three azobenzene derivatives (2 R, 2 OR, and 2 NR) that differed in their terminal substituent (alkyl, alkyloxy, and dialkylamino, respectively) have been synthesized and investigated as molecular brakes, in which the rigid H-shaped pentiptycene group functioned as a rotor and the dinitrophenyl group as a "brake pad". The E and Z isomers of these compounds corresponded to the "brake-off" and "brake-on" states, respectively. The rotation rate of the rotor was evaluated by VT NMR spectroscopy for the brake-on state and by DFT calculations for the brake-off state. The difference between the rotation rates for the rotor in the two states was as large as eight orders of magnitude at ambient temperature. Photochemical switching of the azobenzene moieties afforded efficiencies of 55-67%. A combination of photochemical E→Z and thermal Z→E isomerization promoted the switching efficiency up to 78%. The terminal substituent affected both the photochemical and thermal switching efficiencies. Solvent polarity also played an important role in the lifetimes of the Z isomers. These azobenzene systems displayed similar braking powers but superior switching efficiencies to the stilbene analogue (1O R; ca. 60% vs 20%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Plasma brake model for preliminary mission analysis

    Science.gov (United States)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  1. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  2. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  3. Anti-wear additive content in fully synthetic PAO and PAG base oils and its effect on electrostatic and tribological phenomena in a rotating shaft-oil-lip seal system

    Science.gov (United States)

    Gajewski, Juliusz B.; Głogowski, Marek J.

    2013-03-01

    The paper presents the results of experiments on electrostatic and tribological aspects of different anti-wear additive's contents when an additive is blended with different fully synthetic (poly-α-olefin) and PAG (polyalkylene glycol) base oils in a rotating shaft-oil and oil-lip seal interfacial system. The experimental results are the relationships of electric potential induced in a lip seal's stiffening ring to angular velocity of a rotating metal shaft and to temperature of the oils tested. The braking torque of a shaft is measured with a torquemeter sensor connected directly with a microprocessor-based system for controlling the rotational speed and for measuring the shaft's braking torque and oil temperature. The beneficial and promising results are obtained for PAG when an external DC electric field is applied to the system and the braking torque is then reduced for a certain combination of the base oil and additive's contents. On the basis of the former and present research results an analysis is made to permit one to show how the type of the oils and additives tested can affect both interfaces: rotating shaft-oil and oil-lip of the lip seal and especially the braking torque.

  4. Research on motor braking-based DYC strategy for distributed electric vehicle

    Science.gov (United States)

    Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei

    2017-08-01

    In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.

  5. Regenerative Intelligent Brake Control for Electric Motorcycles

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2017-10-01

    Full Text Available Vehicle models whose propulsion system is based on electric motors are increasing in number within the automobile industry. They will soon become a reliable alternative to vehicles with conventional propulsion systems. The main advantages of this type of vehicles are the non-emission of polluting gases and noise and the effectiveness of electric motors compared to combustion engines. Some of the disadvantages that electric vehicle manufacturers still have to solve are their low autonomy due to inefficient energy storage systems, vehicle cost, which is still too high, and reducing the recharging time. Current regenerative systems in motorcycles are designed with a low fixed maximum regeneration rate in order not to cause the rear wheel to slip when braking with the regenerative brake no matter what the road condition is. These types of systems do not make use of all the available regeneration power, since more importance is placed on safety when braking. An optimized regenerative braking strategy for two-wheeled vehicles is described is this work. This system is designed to recover the maximum energy in braking processes while maintaining the vehicle’s stability. In order to develop the previously described regenerative control, tyre forces, vehicle speed and road adhesion are obtained by means of an estimation algorithm. A based-on-fuzzy-logic algorithm is programmed to carry out an optimized control with this information. This system recuperates maximum braking power without compromising the rear wheel slip and safety. Simulations show that the system optimizes energy regeneration on every surface compared to a constant regeneration strategy.

  6. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  7. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    International Nuclear Information System (INIS)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  8. 14 CFR 25.493 - Braked roll conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Braked roll conditions. 25.493 Section 25.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.493 Braked roll conditions. (a...

  9. Pre-Extreme Automotive Anti-Lock Brake Systems

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2004-01-01

    Full Text Available Designing of systems ensuring active safety of automobiles with intellectual functions requires usage of new control principles for wheel and automobile operation. One of such principles is a preextreme control strategy. Its aim is to ensure wheel work in pre-extreme, stable area of «tire grip coefficient wheel slip coefficient» dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms which has been made on simulation results of bus braking with various anti-lock brake systems has revealed their high efficiency.

  10. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  11. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    Science.gov (United States)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  12. A study on properties of a cone-type brake for motor vehicle winch

    Directory of Open Access Journals (Sweden)

    Dongxu Li

    2016-05-01

    Full Text Available The brake of winch is to prevent the occurrence of reverse slipping at working time. Based on the analysis of two types of brake, this article establishes the relationship model of the brake force and the angle of the screw thread on the brake shaft and builds the model of the relationship of the brake force and the height of the cone and found that the brake force is the largest when the angle of the screw is 45°. Also found that the brake force increases with the increase in the load, and the brake force is positively related to the height of the cone. Two brake mechanisms are manufactured and arranged in the same winch to conduct the experimental performance comparison. The experimental results show that the temperature of the winch with cone brake finally reaches about 60°C, which is 33% lower than the 90°C of the disk brake, and the no-load current of the cone brake winch is under 60 A, while in the disk brake winch it is over 90 A after 7 min, which consumes 33% energy than cone brake. The cone brake can reduce the occurrence of harmful friction and enhance the efficiency of winch and is able to solve the winch safety problem caused by nylon cable damage because of the heat accumulation.

  13. Experimental investigation of disc brakes for formula Bharat

    Science.gov (United States)

    Misra, Sheelam; Chandra, Sharad; Bagwadi, Ashutosh

    2018-05-01

    we have made the brake assembly for Formula Student India in which we gathered the information about the force distribution in Master Cylinder, Assembly of Master Cylinder, Disc Brakes, Pedal Assembly has been gathered from various sources in which we come to know about that Vertical Master Cylinder is much better than the Horizontal Master Cylinder because of which we are able to reduce the weight of the Formula Student Car which ultimately affects the performance of the car. In other words, we have considered the various environmental conditions in which this braking system. The dimensions for the Disc Brake rotor is considered according to the space constraints and the material is finalized according to the hunch of calculations and the environmental conditions.

  14. Diffraction of radiation from channelled charged particles

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Grubich, A.O.; Dubovskaya, I.Ya.

    1978-01-01

    An explicit expression for cross-section and radiation spectrum at diffraction is calculated. It is shown that photons emitted by channelled particles form a typical diffraction pattern which contains information about the crystal structure. It is also shown that the change of the longitudinal energy of the particle caused by the radiation braking becomes important when the particle energy is increased. (author)

  15. Parametric Optimization Design of Brake Block Based on Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Jin Hua-wei

    2017-01-01

    Full Text Available As one of the key part of automotive brake,the performance of brake block has a direct impact on the safety and comfort of cars. Modeling the brake block of disc brake in reverse parameterization by reverse engineering software, analyzing and optimizing the reconstructed model by CAE software. Processing the scanned point cloud by Geomagic Studio and reconstructing the CAD model of the brake block with the parametric surface function of the software, then analyzing and optimizing it by Wrokbench. The example shows that it is quick to reconstruct the CAD model of parts by using reverse parameterization method and reduce part re-design development cycle significantly.

  16. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    Science.gov (United States)

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Generation of brake squeal. Fundamental vibration in brake system; Entstehungsmechanismus des Bremsenquietschens. Grundschwingung im Bremssystem

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoming; Mitschke, M.

    1997-11-01

    Reducing or preventing brake squealing is a prime goal of brake development. To provide constructional means of doing this the mechanism by which it occurs must first be understood. Research at the Technical University of Braunschweig now offers a plausible explanation. (orig.) [Deutsch] Die Verringerung oder Vermeidung des Bremsenquietschens ist ein wichtiges Ziel der Bremsenentwicklung. Um konstruktiv Abhilfe zu schaffen, muss zunaechst der Entstehungsmechanismus fuer dieses unerwuenschte Geraeusch geklaert werden. Forschung an der Technischen Universitaet Braunschweig ermoeglicht jetzt eine plausible Erklaerung. (orig.)

  18. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    Science.gov (United States)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  19. Pedestrian injury mitigation by autonomous braking.

    Science.gov (United States)

    Rosén, Erik; Källhammer, Jan-Erik; Eriksson, Dick; Nentwich, Matthias; Fredriksson, Rikard; Smith, Kip

    2010-11-01

    The objective of this study was to calculate the potential effectiveness of a pedestrian injury mitigation system that autonomously brakes the car prior to impact. The effectiveness was measured by the reduction of fatally and severely injured pedestrians. The database from the German In-Depth Accident Study (GIDAS) was queried for pedestrians hit by the front of cars from 1999 to 2007. Case by case information on vehicle and pedestrian velocities and trajectories were analysed to estimate the field of view needed for a vehicle-based sensor to detect the pedestrians one second prior to the crash. The pre-impact braking system was assumed to activate the brakes one second prior to crash and to provide a braking deceleration up to the limit of the road surface conditions, but never to exceed 0.6 g. New impact speeds were then calculated for pedestrians that would have been detected by the sensor. These calculations assumed that all pedestrians who were within a given field of view but not obstructed by surrounding objects would be detected. The changes in fatality and severe injury risks were quantified using risk curves derived by logistic regression of the accident data. Summing the risks for all pedestrians, relationships between mitigation effectiveness, sensor field of view, braking initiation time, and deceleration were established. The study documents that the effectiveness at reducing fatally (severely) injured pedestrians in frontal collisions with cars reached 40% (27%) at a field of view of 40 degrees. Increasing the field of view further led to only marginal improvements in effectiveness. 2010 Elsevier Ltd. All rights reserved.

  20. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  1. The acting wear mechanisms on metal-on-metal hip joint bearings: in-vitro results

    NARCIS (Netherlands)

    Wimmer, M.A.; Loos, J.; Nassutt, R.; Heitkemper, M.; Fischer, A.

    2001-01-01

    Metal-on-metal (MOM) hip joint bearings are currently under discussion as alternatives to metal-on-polymer (MOP) bearings. Some criteria under scrutiny are the wear resistance, the influence of wear particles on the surrounding tissue, as well as the frictional torque. In order to understand and

  2. EEG potentials predict upcoming emergency brakings during simulated driving

    Science.gov (United States)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  3. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  4. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2017-09-01

    Full Text Available The poor wear performance of copper is improved by reinforcing hard ceramic particles. The present work reports the fabrication of Cu/TiB2 (0, 6, 12, 18 vol.% copper matrix composites (CMCs using friction stir processing (FSP. TiB2 particles were initially packed together into a machined groove and were subjected to FSP under a constant set of process parameters. The microstructure was observed using optical, scanning and transmission electron microscopy. The wear behavior was examined using a pin-on-disc apparatus. The micrographs showed a homogeneous distribution of TiB2 particles without aggregation and segregation. The distribution of TiB2 particles was closely persistent across the stir zone. TiB2 particles were well bonded with the copper matrix without any interfacial reaction. Many TiB2 particles fractured during FSP. The grains in the composite were extensively refined because of dynamic recrystallization and pinning effect of TiB2 particles. The wear behavior under dry sliding condition was presented in detail.

  5. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  6. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  7. THE DEVELOPMENT OF TROLLEYBUS DRIVE BRAKE SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Safonau

    2011-01-01

    Full Text Available The requirements for trolleybuses brake systems are analyzed. Some results of the studies examined, contemporary trends of developing in this direction are shows. The range of problems whose solution is aimed at creating high-performance brake systems whose increase efficiency and safety of trolleybuses determined.

  8. ESTIMATION OF DRIVER’S POWER EXPENSES OF CAR BRAKE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    A. Turenko

    2010-01-01

    Full Text Available The estimation method of driver’s power expenses for the brake management is offered. The estimation method takes into account power expenses at driving in action of the brake system and power expenses at holding the pressed brake pedal

  9. Fallback level concepts for conventional and by-wire automotive brake systems

    International Nuclear Information System (INIS)

    Retzer, H; Mishra, R; Ball, A; Schmidt, K

    2012-01-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  10. Fallback level concepts for conventional and by-wire automotive brake systems

    Science.gov (United States)

    Retzer, H.; Mishra, R.; Ball, A.; Schmidt, K.

    2012-05-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  11. Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials

    International Nuclear Information System (INIS)

    Kachhap, Rakesh K.; Satapathy, Bhabani K.

    2014-01-01

    Graphical abstract: Graphical abstract showing correlation between enhanced frictional stability and enhanced visc-oelastic energy dissipation. - Highlights: • Developed new class of brake composites based on WS 2 and cenosphere. • Synergistic effect of WS 2 and cenosphere for enhanced friction stability. • Wear surface morphology revealed composition specific topography. • Friction fade-recovery performance remained optimal. - Abstract: Tungsten disulfide (WS 2 /TDS) based cenosphere (Cn) filled friction composites with varying cenosphere to WS 2 ratio (Cn/TDS) were fabricated by compression molding of phenolic resin based dry formulation mix and evaluated for their thermal, thermo-mechanical and tribological performances. The loss and revival of braking friction effectiveness due to heating or cooling of the disc termed as fade and recovery performance have been characterized on a Krauss friction testing machine following ECE R-90 industrial standards. The fade performance remained dependent on Cn/TDS, where enhanced fading could be correlated to lower Cn/TDS value accompanied with broader frictional fluctuations i.e. μ max –μ min . A decrease in the frictional-recovery response ensued with increase in Cn/TDS. Dynamic mechanical analysis revealed an increase in storage modulus till 2.5 wt.% of TDS loading followed by consistent decrease whereas two distinct peaks in loss modulus plots that are composition independent have been observed. Scanning electron microscopy revealed the worn surface morphology associated with the dynamics of contact patches formation and deformation vis-a-vis friction layer formation as integrally responsible for the observed friction performance. Energy dispersive analysis of X-rays (EDX) enabled compositional analysis of the friction layer viz. Fe, W, Si, and Al content which may have a mechanistic role in controlling phenomena like, disc rubbing, lubricity, porosity, and hardness of friction layer formed during braking

  12. Analyzing Track Responses to Train Braking

    DEFF Research Database (Denmark)

    Bose, Tulika; Levenberg, Eyal; Zania, Varvara

    2018-01-01

    The objective of this study was to suggest a response analysis framework for railway tracks that are subjected to braking. An analytical formulation was developed, in which the rail–track system was modeled as an infinite beam supported by an orthogonal Winkler foundation consisting of linear...... a response analysis framework for railway tracks that are subjected to braking. An analytical formulation was developed, in which the rail–track system was modeled as an infinite beam supported by an orthogonal Winkler foundation consisting of linear springs in perpendicular directions. The spring constants...... springs in perpendicular directions. The spring constants were varied over a wide range in order to represent different track types. Braking loads were simulated as representative sets of vertical and longitudinal forces, either concentrated or distributed. Considering a realistic set of model parameters...

  13. The intelligent brake: SBS brakes safely and comfortably in all situations; Die intelligente Bremse: SBS verzoegert stets sicher und komfortabel

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-07-01

    The Vision SLR study demonstrates the technology with which DaimlerChrysler vehicles will be equipped in the next century. The car that won the Gran Turismo incorporates the Sensortronic Brake System (SBS), an electrohydraulic braking system for optimum safety and comfort even in critical situations. [German] Die Fahrzeugstudie Vision SLR demonstriert eindrucksvoll die Technik, mit der DaimlerChrysler Fahrzeuge des kommenden Jahrhunderts ausstatten wird. Eine Besonderheit des Gran Turismo-Silberpfeils: das Sensortronic Brake System (SBS), ein elektrohydraulisches Bremssystem, das auch in kritischen Situationen optimale Fahrsicherheit und Komfort bietet. (orig.)

  14. Analysis of the stability of PTW riders in autonomous braking scenarios.

    Science.gov (United States)

    Symeonidis, Ioannis; Kavadarli, Gueven; Erich, Schuller; Graw, Matthias; Peldschus, Steffen

    2012-11-01

    While fatalities of car occupants in the EU decreased remarkably over the last decade, Powered Two Wheelers (PTWs) fatalities still increase following the increase of PTW ownership. Autonomous braking systems have been implemented in several types of vehicles and are presently addressed by research in the field of PTWs. A major concern in this context is the rider stability. Experiments with volunteers were performed in order to find out whether autonomous braking for PTWs will produce a greater instability of the rider in comparison to manual braking. The PTW's braking conditions were simulated in a laboratory with a motorcycle mock-up mounted on a sled, which was accelerated with an average of 0.35 g. The motion of the rider was captured in autonomous braking scenarios with and without pre-warning as well as in manual braking scenarios. No significant differences between the scenarios were found with respect to maximum forward displacement of the volunteer's torso and head (pautonomous braking at low deceleration will not cause significant instabilities of the rider in comparison to manual braking in idealized laboratory conditions. Based on this, further research into the development and implementation of autonomous braking systems for PTWs, e.g. by extensive riding tests, seems valuable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. City, Addis Ababa, Ethiopia

    African Journals Online (AJOL)

    user

    2017;31(4). Road dust is a mixture of substances that involve vehicular emissions, dust that emanates from tires wears and brake lining; soil and plant fragments and other biological materials (4). It may contain several metals including lead, chromium, nickel and zinc from wear of brake linings of motor vehicles and wear of.

  16. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    Science.gov (United States)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  17. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  18. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  19. Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites

    International Nuclear Information System (INIS)

    Suresha, B.; Kumar, Kunigal N. Shiva

    2009-01-01

    The aim of the research article is to study the mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites. The measured wear volume loss increases with increase in abrading distance/abrasive particle size. However, the specific wear rate decreases with increase in abrading distance and decrease in abrasive particle size. The results showed that the highest specific wear rate is for glass fabric reinforced vinyl ester composite with a value of 10.89 x 10 -11 m 3 /Nm and the lowest wear rate is for carbon fabric reinforced vinyl ester composite with a value of 4.02 x 10 -11 m 3 /Nm. Mechanical properties were evaluated and obtained values are compared with the wear behaviour. The worn surface features have been examined using scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher percentage of broken glass fiber as compared to carbon fiber. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.

  20. Self-dispersed crumpled graphene balls in oil for friction and wear reduction.

    Science.gov (United States)

    Dou, Xuan; Koltonow, Andrew R; He, Xingliang; Jang, Hee Dong; Wang, Qian; Chung, Yip-Wah; Huang, Jiaxing

    2016-02-09

    Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borrowing from the analogy that pieces of paper that are crumpled do not readily stick to each other (unlike flat sheets), we expect that ultrafine particles resembling miniaturized crumpled paper balls should self-disperse in oil and could act like nanoscale ball bearings to reduce friction and wear. Here we report the use of crumpled graphene balls as a high-performance additive that can significantly improve the lubrication properties of polyalphaolefin base oil. The tribological performance of crumpled graphene balls is only weakly dependent on their concentration in oil and readily exceeds that of other carbon additives such as graphite, reduced graphene oxide, and carbon black. Notably, polyalphaolefin base oil with only 0.01-0.1 wt % of crumpled graphene balls outperforms a fully formulated commercial lubricant in terms of friction and wear reduction.

  1. Development of a Dynamic Engine Brake Model for Control Purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.

    2006-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  2. Development of a dynamic engine brake model for control purposes

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Willems, F.P.T.; Vink, W.; van den Heuvel, I.T.M.; Corde, G.

    2007-01-01

    This paper presents the extension of an existing mean value dynamic engine model with new models for the combination of a compression release brake and an exhaust valve brake. The focus is on the prediction of engine brake torque, exhaust gas temperatures and mass flow rates. The implemented models

  3. 30 CFR 75.1403-2 - Criteria-Hoists transporting materials; brakes.

    Science.gov (United States)

    2010-07-01

    ... Mantrips § 75.1403-2 Criteria—Hoists transporting materials; brakes. Hoists and elevators used to transport materials should be equipped with brakes capable of stopping and holding the fully loaded platform, cage... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Hoists transporting materials; brakes...

  4. Braking Control for Improving Ride Comfort

    Directory of Open Access Journals (Sweden)

    Lee Jonghyup

    2018-01-01

    Full Text Available While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB and other brake-by-wire (BBW systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.

  5. Sand Particles Impact on the Tribological Behavior of Sliding Contact

    Directory of Open Access Journals (Sweden)

    Aldajah Saud

    2016-01-01

    Full Text Available Lubricant contaminants cause severe problems to machines. Substantial research has been conducted to study the impact of such contaminates on the tribological performance of lubricated contacts. The primary goal of such studies is to find solutions to avoid the dirtiest cause of damaging machines’ parts and to reduce energy consumption and maintenance costs. The current study investigates the tribological behavior of contaminated lubricated contacts; the contaminants considered in this research are sand particles. The effect of the sand particles concentration levels on friction and wear of a tribological system under sliding contact was studied. Three different concentration levels were tested; 5%, 10% and 15%.The experimental program was carried out using an in-house built ball on disc machine at room temperature, constant normal load, constant speed, constant running time and constant travelling distance. Results showed that both friction coefficient and wear volume of the contacting surfaces are dependent on the concentration level of the sand particles. Both friction coefficient and wear volume increased by increasing the sand particles concentration. SEM was utilized to study the wear mechanisms of the contacting surfaces, it was found that the dominant wear mechanism in all cases was abrasive wear.

  6. Aspects regarding manufacturing technologies of composite materials for brake pad application

    Science.gov (United States)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.

    2018-01-01

    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  7. Cryo-braking using penetrators for enhanced capabilities for the potential landing of payloads on icy solar system objects

    Science.gov (United States)

    Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.

    2018-03-01

    The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.

  8. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating?

    Science.gov (United States)

    Shin, H S; Ingram, J R; McGill, A-T; Poppitt, S D

    2013-08-15

    The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake

  9. Short term braking capability during power interruptions for integrated matrix converter

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    attractive. Sinusoidal input currents and bi-directional power flow are other advantages of the matrix converter, but it is less immune to power grid disturbances compared to a standard ASD. In hoisting applications, short-term braking capability during a power outage is needed until the mechanical brake...... engages or to perform more effective a combined braking. This paper proposes a new method to provide short-term braking capability during a power outage for matrix converters. A braking chopper is needed in the clamp circuit, which allows for a drastically reduction of the capacitor size. The power flow...

  10. Coaxial magnetic brakes using single-domain YBCO

    International Nuclear Information System (INIS)

    Putman, P.T.; Salama, K.

    2008-01-01

    In coaxial magnetic brakes, the changing field produced by movement of a solenoidal magnet induces a current in the wall of a conductive tube. The interaction of the field and current leads to a repulsive force that slows the motion of the magnet. For brake applications that require high force density, melt-textured YBCO is a clear choice of material for the magnet because it can carry high currents at a given field and temperature, and is inherently capable of operating in persistent current mode. We present calculations of the performance of this type of brake as a function of magnet current density for catch tubes composed of aluminum and titanium. These results are validated with low speed (20 m/s) tests. Calculations indicate that melt-textured magnets can decelerate projectiles with a mass of 1 kg from 2000 m/s to rest in distances on the order of 10 m. This suggests that this type of brake is suitable for use in hypervelocity experiments, which sometimes requires nondestructive deceleration of projectiles for diagnostic purposes

  11. Rotary Speed Sensor for Antilocking Brakes

    Science.gov (United States)

    Berdahl, C. M.

    1986-01-01

    Sensor based on fluidic principles produces negative pressure approximately proportional to rotational speed. Sensor developed as part of antilocking brake system for motorcycles. Uses inlet pressure rather than outlet pressure as braking-control signal, eliminating pressure pulsations caused by pump vanes and ensuring low-noise signal. Sensor is centrifugal air pump turned by one of motorcycle wheels. Air enters pump through orifice plates, and suction taken off through port in pump inlet plenum.

  12. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  13. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  14. Wear behaviour of coating of aluminium matrix composites fabricated by thermal spray method; Comportamiento a desgaste de recubrimientos de material compuesto de matriz de aluminio fabricados por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Campo, M.; Escalera, M. D.; Torres, B.; Rams, J.; Urena, A.

    2007-07-01

    In this work, the wear behaviour of coatings made of aluminium matrix composites reinforced with 20% of SiC particles and manufactured by thermal spray method with oxyacetylene flame has been investigated. the wear behaviour between coating with uncoated particles and sol-gel silica coated ones heat treated at 500 degree centigree and 725 degree centigree have been compared. The sprayed coatings with silica coated particles are more homogeneous and less porous due to increase of wettability by molten aluminium that takes place on coated particles. The microstructure of the sprayed coatings, the wear surfaces and the wear debris have been analysed using optical microscopy, scanning electron microscopy and micro-analysis techniques (EDX). The results show a smaller wear rate, a lower friction coefficient and more reduced loss of mass for the coatings sprayed with particles with sol-gel silica coatings than those made with uncoated particles. (Author) 15 refs.

  15. Investigation of wear land and rate of locally made HSS cutting tool

    Science.gov (United States)

    Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.

    2018-04-01

    Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.

  16. Auto Mechanics I. Learning Activity Packets (LAPs). Section E--Brakes.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) that outline the study activities for the "brakes" instructional area for an Auto Mechanics I course. The two LAPs cover the following topics: brake systems and power disc brakes. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included…

  17. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    OpenAIRE

    Boyi Xiao; Huazhong Lu; Hailin Wang; Jiageng Ruan; Nong Zhang

    2017-01-01

    A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other impr...

  18. Development of bushing material with higher corrosion and wear resistance; Taishoku taimamosei dogokin bush zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kira, T; Yokota, H; Kamiya, S [Taiho Kogyo Co. Ltd., Osaka (Japan)

    1997-10-01

    Recent diesel engines require a higher performance and a longer life. Due to higher cylinder pressure, the operating load and temperature of piston pin bushings become higher. Therefore, higher load capacity, higher wear resistance and higher corrosion resistance are required for piston pin bushings. For this reason, we have studied the effect of components added to copper alloy upon the corrosion resistance and the effect of hard particles dispersed in copper matrix upon the wear resistance and the influence of hard particles on the machinablity of materials. Based on the experimental results, we have developed a new bushing material improving wear and corrosion resistance. 17 figs., 3 tabs.

  19. Contact statuses between functionally graded brake disk and pure pad disk

    International Nuclear Information System (INIS)

    Shahzamanian, M.M.; Sahari, B.B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z.N.; Shahrjerdi, A.

    2009-01-01

    Full text: The contact statuses between functionally graded (FG) brake disks and pure pad disk are investigated by using finite element method (FEM). Two types of variation is considered for FG brake disk, the variation of materials are considered change in radial and thickness direction of disk. The material properties of these two types of FG brake disks are assumed to be represented by power-law distributions in the radius and thickness direction. The results are obtained and then compared. For the radial FG brake disk, the inner and outer surfaces are considered metal and ceramic respectively, and friction coefficient between metal surface and ceramic surface of FG brake dick with pad are considered 1.4 and 0.75 respectively. For the thickness FG brake disk the contact surface with pure pad brake disk is ceramic and the free surface is metal and friction coefficient between ceramic (contact) surface and pure pad brake disk is considered 0.75. In both types of FG brake disks the Coulomb contact friction is applied. Mechanical response of FG brake disks are compared and verified with the known results in the literatures. Three types of contact statuses are introduced as Sticking, Contact and Near Contact. The contact status between pad and disk for different values for pad thickness, grading index,n , and percentage of friction coefficient (λ) is shown. It can be seen that for all values of percentage of friction coefficient,λ , and grading indices, n, by increasing the thickness of pad cause the contact status changes from sticking to contact and then to near contact. (author)

  20. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  1. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  2. Experimental Method for Analyzing Friction Phenomenon Related to Drum Brake Squeal

    Directory of Open Access Journals (Sweden)

    J. GLIŠOVIĆ

    2010-12-01

    Full Text Available Automobile brakes have been intensively developed during past few decades, but the maximum motor’s power, that should amortized in vehicle brakes, has been significantly increased also. Most of the kinetic energy of the moving vehicles is transforming into heat through friction. But the small part of kinetic energy transforms into sound pressure and makes noise. Low frequency squeal of drum brakes is very intense and can lead to customers’ complain. The interaction between the brake system and the vehicle framework and suspension is often very substantial during occurrence of brake noise. Unfortunately, to solve this type of squeal problem is also difficult because of the large number of components involved. The other cause is attributed to self-excited vibration that is induced when the friction material has a negative slope in relation to the relative velocity. This paper illustrates an approach to experimental studies of drum brakes in road conditions in order to monitor changes in the coefficient of friction that can generate drum brake squeal at low frequencies.

  3. Braking and cornering studies on an air cushion landing system

    Science.gov (United States)

    Daugherty, R. H.

    1983-01-01

    An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.

  4. Study on the wear of TiN/Ti duplex and multilayer coatings in microabrasion tests

    International Nuclear Information System (INIS)

    Flores, M; De Las Heras, E; Ruelas, R; Rodriguez, E; Bautista, A; Pazos, L; Corengia, P

    2008-01-01

    Ionic nitriding, on steels, is used to harden the surface of components improving resistance to corrosion and wear and increasing the stress life. Duplex treatments are an alternative for resolving the limitations of very hard coatings on less hard substrates. In this case the duplex treatment consists of an ionic nitriding treatment followed by a single or multilayer coatings deposited by means of the PVD technique. This work presents the influence of the variation in the severity of contact on the kind of wear present in the microabrasion test used to measure the wear coefficient of duplex coatings, consisting of a layer nitrided by DC-pulsed plasma plus TiN coatings and multilayers of TiN/Ti deposited on non-nitrided and nitrided AISI 316L stainless steel and H13 steel. The severity of contact was modified by varying the charge (0.25 to 1 N). The abrasives used were a suspension of 0.1μm diameter diamond particles and a suspension of an average 5 μm diameter aluminum particles. The influence of the presence of relatively soft metallic layers on the determination of the wear coefficient was analyzed in the metal-ceramic multilayers. Two sphere revolving speeds of de 0.05 and 0.154 m/s were used on two microabrasion machines: one commercial and the other built in the UdeG laboratory. The wear marks were photographed and measured with an optic microscope. The value of the critical charge at which the transition occurs between the methods of wear of the substrates and the nitrited samples was determined. Resistance to the AISI 316L steel's microabrasive wear increases with the ionic nitriding treatment. The duplex coatings increase resistance to the wear from the nitrited samples. The wear resistance of the samples with multilayer coatings surpassed that of the duplex samples with multilayer coatings. The greater resistance of the multilayers may be explained by an increase in the resistance to the fracture and not by a increase in surface hardness. The transition

  5. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  6. TiC-Maraging stainless steel composite: microstructure, mechanical and wear properties

    Institute of Scientific and Technical Information of China (English)

    Akhtar Farid; GUO Shiju; FENG Peizhong; Khadijah Ali Shah; Syed Javid Askari

    2006-01-01

    Particulate TiC reinforced 17-4PH and 465 maraging stainless steel matrix composites were processed by conventional powder metallurgy (P/M). TiC-maraging stainless steel composites with theoretical density >97% were produced using conventional P/M. The microstructure, and mechanical and wear properties of the composites were evaluated. The microstructure of the composites consisted of (core-rim structure) spherical and semi-spherical TiC particles depending on the wettability of the matrix with TiC particles. In TiC-maraging stainless steel composites, 465 stainless steel binder phase showed good wettability with TiC particles. Some microcracks appeared in the composites, indicating the presence of tensile stresses in the composites produced during sintering. The typical properties, hardness, and bend strength were reported for the composites. After heat treatment and aging, an increase in hardness was observed. The increase in hardness was attributed to the aging reaction in maraging stainless steel. The specific wear behavior of the composites strongly depends on the content of TiC particles and their interparticle spacing, and on the heat treatment of the maraging stainless steel.

  7. Detection technology research on the one-way clutch of automatic brake adjuster

    Science.gov (United States)

    Jiang, Wensong; Luo, Zai; Lu, Yi

    2013-10-01

    In this article, we provide a new testing method to evaluate the acceptable quality of the one-way clutch of automatic brake adjuster. To analysis the suitable adjusting brake moment which keeps the automatic brake adjuster out of failure, we build a mechanical model of one-way clutch according to the structure and the working principle of one-way clutch. The ranges of adjusting brake moment both clockwise and anti-clockwise can be calculated through the mechanical model of one-way clutch. Its critical moment, as well, are picked up as the ideal values of adjusting brake moment to evaluate the acceptable quality of one-way clutch of automatic brake adjuster. we calculate the ideal values of critical moment depending on the different structure of one-way clutch based on its mechanical model before the adjusting brake moment test begin. In addition, an experimental apparatus, which the uncertainty of measurement is ±0.1Nm, is specially designed to test the adjusting brake moment both clockwise and anti-clockwise. Than we can judge the acceptable quality of one-way clutch of automatic brake adjuster by comparing the test results and the ideal values instead of the EXP. In fact, the evaluation standard of adjusting brake moment applied on the project are still using the EXP provided by manufacturer currently in China, but it would be unavailable when the material of one-way clutch changed. Five kinds of automatic brake adjusters are used in the verification experiment to verify the accuracy of the test method. The experimental results show that the experimental values of adjusting brake moment both clockwise and anti-clockwise are within the ranges of theoretical results. The testing method provided by this article vividly meet the requirements of manufacturer's standard.

  8. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  9. Effect of Nano and Micro Friction Modifier Based Lubricants on Wear behavior between Steel-Steel Contacts

    Directory of Open Access Journals (Sweden)

    S. Bhaumik

    2017-03-01

    Full Text Available The wear and surface morphology between steel (EN24, 22-24Rc-steel (EN 31, 58-60Rc contacts was investigated in presence of friction modifiers based (micro-graphite/nano particles- multi wall carbon nano tubes and zinc oxide mineral oil. Though a decrease in wear was observed (upto a certain concentration of nano friction modifiers but a weight-gain in pins after the tests was observed for all tests with ZnO nanoparticles while weight loss was observed in tests with multi wall carbon nano tubes and graphite particles based oil samples. Surface characterization of the worn surfaces showed more surface deteriorations in case of mineral oil (no friction modifiers and mineral oil with graphite as compared with nano particles/tubes based lubricants. The occurrence of a tribo film due to the deposition of nano particle and the formation of a modified layer on the pin surfaces are likely to be responsible for the reduction of coefficient of friction and better surface roughness. Apart from investigating the wear behaviour between two steel surfaces under micro and nano particles based lubricant and analysing the surfaces of the samples a part of the work was also focussed on the weight gain after tribo tests with ZnO nano particle additions.

  10. Gravitational waves from pulsars with measured braking index

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2016-09-15

    We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking index, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example. (orig.)

  11. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  12. 75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids

    Science.gov (United States)

    2010-02-03

    ... NHTSA comments S6.2 Wet Equilibrium Boiling Point... Appendix E of SAE J1703 Appendix E of SAE J1703 No.... Definition of ``Brake Fluid'' To apply FMVSS No. 116 to brake fluid that contacts EPDM rubber, we propose to expand the definition of ``brake fluid'' at S4 of the standard to expressly state that ``brake fluid...

  13. Usage of aids monitoring in automatic braking systems of modern cars

    OpenAIRE

    Dembitskyi V.; Mazylyuk P.; Sitovskyi O.

    2016-01-01

    Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the acc...

  14. Simulation and Robust Contol of Antilock Braking System ABS

    Directory of Open Access Journals (Sweden)

    David Jordan DELICHRISTOV

    2009-06-01

    Full Text Available This paper deals with simulation and robust control of Antilock Braking System ABS. The briefly are described the main parts of ABS hydraulic system and control algorithm of ABS. Hydraulic system described here is BOSCH ABS 5.x series. The goal of ABS system is vehicle stability and vehicle steering response when braking. If during the braking occurred slip at one or more wheels from any reason, ABS evaluates this by “brake slip” controller. At this moment ABS is trying to use maximal limits of adhesion between tire and road. It means that is necessary control the differences between braking torque and friction torque , which reacts to the wheel via friction reaction tire-road surface. This is realized through the solenoid valves, which are controls (triggered by on the base of PID controller described further in chapter 4. Presented concept is more or less standard for most of the existing ABS systems. The issue should be applied concept of robust ABS control algorithm, which is specific for every type of ABS.

  15. Influence of the fin orientation on the cooling of disc-brakes

    International Nuclear Information System (INIS)

    Abanto, J.; Reggio, M.

    2003-01-01

    Nowadays, computational fluid dynamics is being applied in many fronts to improve the understanding of the flow and heat transfer behaviour in engineering applications. Unfortunately, there are not so many computational investigations regarding the ventilation and temperature distribution in discs-brakes. In this respect, this study presents a (CFD) analysis is carried out to investigate temperature distributions and flow patterns through disc brakes. The final goal is the development of shapes that optimize heat dissipation rates dictating the stopping capability of disc brakes. High performance discs brakes have a variety of cooling channels and the optimization of these passages is a challenging task for the manufacturing industry. High values of heat transfer coefficients of disc-brake configurations, are the most critical quantities during the design phase of new braking systems. In this context, a parametric study of the influence of the fin orientation concerning the cooling process of the rotating disc-brakes is presented. The numerical simulation was performed using four different solid configurations with the same weight, material properties and boundary conditions. In order to keep constant the influence of the numerical diffusion, these forms have been inserted in the fixed far computational domain (more than 90% of the overall domain). This large transient conjugate heat transfer analysis has been performed following the standard Fade and Recovery procedures. These allows to evaluate the heat dissipation and the evolution of heat transfer coefficients in space and time for each idealized brake model. Relevant temperature variations have been observed during the braking process when compared to the baseline disc-brake model. A commercial finite-volume based code was used for this CFD application. Mass, momentum, energy and K - ε RNG turbulence equations have been solved. (author)

  16. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  17. 16 CFR 1512.5 - Requirements for braking system.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for braking system. 1512.5 Section 1512.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... dimension between the brake hand lever and the handlebars in the plane containing the centerlines of the...

  18. Metal-bending brake facilitates lightweight, close-tolerance fabrication

    Science.gov (United States)

    Ercoline, A. L.; Wilton, K. B.

    1964-01-01

    A lightweight, metal bending brake ensures very accurate bends. Features of the brake that adapt it for making complex reverse bends to close tolerances are a pronounced relief or cutaway of the underside of the bodyplate combined with modification in the leaf design and its suspension.

  19. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  20. Dental wear, wear rate, and dental disease in the African apes.

    Science.gov (United States)

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample.

  1. Brake lock mechanism for the two axis pointing system

    Science.gov (United States)

    Posey, Alan; Clark, Mike; Mignosa, Larry

    1991-01-01

    Six months prior to shipment of the Broadband X-ray Telescope to the Kennedy Space Center for flight aboard the Space Shuttle Columbia, a major system failure occurred. During modal survey testing of the telescope's gimbal pointing system, the roll axis brake unexpectedly released. Low level vibration and static preloads present during the modal survey were within the expected flight environment. Brake release during shuttle liftoff or ascent was an unacceptable risk to mission success; thus, a Brake Lock Mechanism (BLM) was developed.

  2. Performance Analysis of Regenerative Braking in Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Andrew Adib

    2018-02-01

    Full Text Available This paper describes the design and analysis of a regenerative braking system for a permanent magnet synchronous motor (PMSM drive for electric vehicle (EV applications. First studied is the principle for electric braking control of a PMSM motor under field-oriented control (FOC. Next, the maximum braking torque in the regeneration mode as well as the braking torque for the maximum regeneration power, respectively, are deduced. Additionally, an optimum switching scheme for the inverter is developed with the objective of maximizing energy recovery during regenerative braking to the DC-bus capacitor. The integration of an ultra-capacitor module with the battery allows for the efficient and high power transfer under regenerative braking. It was important to manage the power flow to the DC-bus as this is a key issue that affects the efficiency of the overall system. Finally, the amounts of braking energy that can be recovered, and the efficiency with which it can be returned to the battery/ultra-capacitor, is analyzed for a PMSM coupled with a DC motor as the load. The results of the analysis are validated through experimentation.

  3. Experimental Active Control of Automotive Disc Brake Rotor Squeal Using Dither

    Science.gov (United States)

    CUNEFARE, K. A.; GRAF, A. J.

    2002-02-01

    This paper presents an experimental investigation into the application of “dither” control for the active control and suppression of automobile disc brake squeal. Dither control is characterized by the application of a control effort at a frequency higher than the disturbance to be controlled. In the particular system considered here, a vibro-acoustic analysis of a disc brake system during squeal determined the acoustic squeal signature to be emanating from the brake rotor. This squeal was eliminated, and could even be prevented from occurring, through the application of a harmonic force with a frequency higher than the squeal frequency. The harmonic force was generated by a stack of piezoelectric elements placed within the brake's caliper piston. The harmonic force represented a small variation about the mean clamping force exerted by the brake upon the rotor. The high-frequency vibration in the brake system due to the action of the control system was not heard if an ultrasonic control frequency was used. More importantly, the active control system is shown to be able to prevent squeal from even occurring. This gives rise to a possible active control system integrated into the brake system of automobiles to prevent squeal.

  4. Interactive design optimization of magnetorheological-brake actuators using the Taguchi method

    Science.gov (United States)

    Erol, Ozan; Gurocak, Hakan

    2011-10-01

    This research explored an optimization method that would automate the process of designing a magnetorheological (MR)-brake but still keep the designer in the loop. MR-brakes apply resistive torque by increasing the viscosity of an MR fluid inside the brake. This electronically controllable brake can provide a very large torque-to-volume ratio, which is very desirable for an actuator. However, the design process is quite complex and time consuming due to many parameters. In this paper, we adapted the popular Taguchi method, widely used in manufacturing, to the problem of designing a complex MR-brake. Unlike other existing methods, this approach can automatically identify the dominant parameters of the design, which reduces the search space and the time it takes to find the best possible design. While automating the search for a solution, it also lets the designer see the dominant parameters and make choices to investigate only their interactions with the design output. The new method was applied for re-designing MR-brakes. It reduced the design time from a week or two down to a few minutes. Also, usability experiments indicated significantly better brake designs by novice users.

  5. Interactive design optimization of magnetorheological-brake actuators using the Taguchi method

    International Nuclear Information System (INIS)

    Erol, Ozan; Gurocak, Hakan

    2011-01-01

    This research explored an optimization method that would automate the process of designing a magnetorheological (MR)-brake but still keep the designer in the loop. MR-brakes apply resistive torque by increasing the viscosity of an MR fluid inside the brake. This electronically controllable brake can provide a very large torque-to-volume ratio, which is very desirable for an actuator. However, the design process is quite complex and time consuming due to many parameters. In this paper, we adapted the popular Taguchi method, widely used in manufacturing, to the problem of designing a complex MR-brake. Unlike other existing methods, this approach can automatically identify the dominant parameters of the design, which reduces the search space and the time it takes to find the best possible design. While automating the search for a solution, it also lets the designer see the dominant parameters and make choices to investigate only their interactions with the design output. The new method was applied for re-designing MR-brakes. It reduced the design time from a week or two down to a few minutes. Also, usability experiments indicated significantly better brake designs by novice users

  6. Frictional behavior of automotive brake materials under wet and dry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Martin, R.L. [Oak Ridge National Lab., TN (United States); Weintraub, M.H.; Jang, Ho; Donlon, W. [Ford Motor Co., Dearborn, MI (United States)

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  7. 30 CFR 57.19006 - Automatic hoist braking devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic hoist braking devices. 57.19006 Section 57.19006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 57.19006 Automatic hoist braking devices. Automatic hoists shall be provided with devices...

  8. 30 CFR 56.19006 - Automatic hoist braking devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic hoist braking devices. 56.19006 Section 56.19006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoists § 56.19006 Automatic hoist braking devices. Automatic hoists shall be provided with devices...

  9. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  10. The contribution of tyre and brake abrasion to soot levels in streets; Beitrag des Reifen- und Bremsenabriebs zur Russemission an Strassen

    Energy Technology Data Exchange (ETDEWEB)

    Rauterberg-Wulff, A.

    1998-09-01

    After the coming into force of the new soot emission thresholds as of July 1998, excess values are measured along many city streets. The author investigated whether tyre and brake abrasion contributes to soot emissions in addition to diesel soot. For this purpose, characteristic material and physical parameters of particles of diesel soot, tyre and brake material were investigated by thermography, AAS, and SEM. With the aid of a receptor-oriented approach, the contribution of these particles to soot levels measured in a highway tunnel and a Berlin city street could be assessed. The contribution of local traffic was calculated from the difference between soot levels along the road and in a background station. The measurements inside the tunnel served to determine emissin factors for diesel soot and abrasion particles from tyres and brakes. (orig.) [Deutsch] Mit Inkrafttreten des endgueltigen Russ-Immissionswertes der 23. Verordnung zum Bundes-Immissionsschutzgesetz im Juli 1998 ist an zahlreichen innerstaedtischen Strassen mit einer Ueberschreitung dieser Werte zu rechnen. Zur Beantwortung der Frage, inwieweit neben Dieselruss auch Reifen- und Bremsenabrieb zur verkehrsbedingten Russimmission beitragen, wurden charakteristische stoffliche und physikalische Eigenschaften von Dieselruss, Reifenabrieb und Bremsenabrieb mit der Thermographie, der AAS und der Rasterelektronenmikroskopie untersucht. Mit Hilfe dieses rezeptororientierten Ansatzes konnte der Beitrag dieser Partikel zur Russimmission in einem Autobahntunnel und an einer Hauptverkehrsstrasse in Berlin bestimmt werden, wobei zuerst der Beitrag des lokalen Verkehrs zur Russimmission aus der Differenz zwischen der Russimmission an der Strassen- und einer Hintergrundstation berechnet wurde. Mit Hilfe der Messungen im Tunnel konnten Emissionsfaktoren fuer Dieselruss und fuer Reifen- und Bremsenabriebpartikel bestimmt werden. (orig.)

  11. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  12. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  13. Abrasive wear of enamel by bioactive glass-based toothpastes.

    Science.gov (United States)

    Mahmood, Asad; Mneimne, Mohammed; Zou, Li Fong; Hill, Robert G; Gillam, David G

    2014-10-01

    To determine the abrasivity of a 45S5 bioactive glass based toothpaste on enamel as a function of the particle size and shape of the glass. 45S5 glass was synthesized ground and sieved to give various particle sized fractions toothpastes and their tooth brush abrasivity measured according to BS EN ISO11609 methodology. Enamel loss increased with increasing particle size. The percussion milled powder exhibited particles that had sharp edges and the pastes were significantly more abrasive than the pastes made with round ball milled powders. One interesting observation made during the present study was that there was preferential wear of the enamel at the dentin-enamel junction (DEJ), particularly with the coarse particle sized pastes.

  14. Relationship Between Kinematic and Physiological Indices During Braking Events of Different Intensities.

    Science.gov (United States)

    Musicant, Oren; Botzer, Assaf; Laufer, Ilan; Collet, Christian

    2018-05-01

    Objective To study the relationship between physiological indices and kinematic indices during braking events of different intensities. Background Based on mental workload theory, driving and other task demands may generate changes in physiological indices, such as the driver's heart rate and skin conductance. However, no attempts were made to associate changes in physiological indices with changes in vehicle kinematics that result from the driver attempts to meet task demands. Method Twenty-five drivers participated in a field experiment. We manipulated braking demands using roadside signs to communicate the speed (km/h) before braking (50 or 60) and the target speed for braking (30 or to a complete stop). In an additional session, we asked drivers to brake as if they were responding to an impending collision. We analyzed the relationship between the intensities of braking events as measured by deceleration values (g) and changes in heart rate, heart rate variability, and skin conductance. Results All physiological indices were associated with deceleration intensity. Especially salient were the differences in physiological indices between the intensive (|g| > 0.5) and nonintensive braking events. The strongest relationship was between braking intensity and skin conductance. Conclusions Skin conductance, heart rate, and heart rate variability can mirror the mental workload elicited by varying braking intensities. Application Associating vehicle kinematics with physiological indices related to short-term driving events may help improve the performance of driver assistance systems.

  15. Thermal measurement of brake pad lining surfaces during the braking process

    Science.gov (United States)

    Piątkowski, Tadeusz; Polakowski, Henryk; Kastek, Mariusz; Baranowski, Pawel; Damaziak, Krzysztof; Małachowski, Jerzy; Mazurkiewicz, Łukasz

    2012-06-01

    This paper presents the test campaign concept and definition and the analysis of the recorded measurements. One of the most important systems in cars and trucks are brakes. The braking temperature on a lining surface can rise above 500°C. This shows how linings requirements are so strict and, what is more, continuously rising. Besides experimental tests, very supportive method for investigating processes which occur on the brake pad linings are numerical analyses. Experimental tests were conducted on the test machine called IL-68. The main component of IL-68 is so called frictional unit, which consists of: rotational head, which convey a shaft torque and where counter samples are placed and translational head, where samples of coatings are placed and pressed against counter samples. Due to the high rotational speeds and thus the rapid changes in temperature field, the infrared camera was used for testing. The paper presents results of analysis registered thermograms during the tests with different conditions. Furthermore, based on this testing machine, the numerical model was developed. In order to avoid resource demanding analyses only the frictional unit (described above) was taken into consideration. Firstly the geometrical model was performed thanks to CAD techniques, which in the next stage was a base for developing the finite element model. Material properties and boundary conditions exactly correspond to experimental tests. Computations were performed using a dynamic LS-Dyna code where heat generation was estimated assuming full (100%) conversion of mechanical work done by friction forces. Paper presents the results of dynamic thermomechanical analysis too and these results were compared with laboratory tests.

  16. 49 CFR 232.503 - Process to introduce new brake system technology.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Process to introduce new brake system technology... Technology § 232.503 Process to introduce new brake system technology. (a) Pursuant to the procedures... brake system technology, prior to implementing the plan. (b) Each railroad shall complete a pre-revenue...

  17. Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2010-01-01

    This paper presents an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake. In the optimization, the required braking torque, the temperature due to zero-field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After describing the configuration, the braking torque of the proposed MR brake is derived on the basis of the field-dependent Bingham and Herschel–Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed taking into account available space, mass, braking torque and steady heat generated by zero-field friction torque of the MR brake. The optimization procedure based on the finite element analysis integrated with an optimization tool is proposed to obtain optimal geometric dimensions of the MR brake. Based on the proposed procedure, optimal solutions of single and multiple disc-type MR brakes featuring different types of MR fluid are achieved. From the results, the most effective MR brake for the middle-sized passenger car is identified and some discussions on the performance improvement of the optimized MR brake are described

  18. Investigation into the Use of Water Based Brake Fluid for Light Loads

    Directory of Open Access Journals (Sweden)

    W. A. Akpan

    2012-12-01

    Full Text Available This paper addresses the possibility of using water based fluid as a brake fluid for light loads. Characterization of both standard and water based braked fluids formulated was carried out. The properties of the latter were compared with that of a standard commercial brake fluid. The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus of University of Uyo and the braking efficiency obtained attest to its suitability for light loads.

  19. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  20. Performance Degradation Analysis of Aviation Hydraulic Piston Pump Based on Mixed Wear Theory

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-06-01

    Full Text Available This paper focuses on the mathematical modeling of axial piston pump through dividing the failure development of friction pair into lubrication, mixed lubrication and abrasion. Directing to the wedge-shaped oil film between cylinder block and valve plate, the support force distribution under the temperature variance was obtained. Considering the rough peak of valve plate, the contact load model is built under plastic deformation and elastic deformation and the corresponding wear volume is calculated. Computing the wear and tear along the counter-clockwise, the total amount of friction and wear can be calculated. Simulation and preliminary wear particle monitoring test indicates that proposed modeling and analysis can effectively reflect the real abrasion process of hydraulic piston pump.