WorldWideScience

Sample records for brake energy dissipator

  1. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    International Nuclear Information System (INIS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-01-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  2. Energy dissipators

    National Research Council Canada - National Science Library

    Vischer, D. L; Hager, Willi H; Hager, W. H

    1995-01-01

    .... the book comprises chapters in farious fields such as hydraulic jump, stilling basins, ski jumps and plunge pools but introduces also a general account on various methods of dissipation, as well...

  3. A novel high-torque magnetorheological brake with a water cooling method for heat dissipation

    International Nuclear Information System (INIS)

    Wang, D M; Hou, Y F; Tian, Z Z

    2013-01-01

    The extremely severe heating of magnetorheological (MR) brakes restricts their application in high-power situations. This study aims to develop a novel MR brake with a high-torque capacity. To achieve this goal, a water cooling method is adopted to assist in heat dissipation. In the study, a structural model design of the high-torque MR brake is first developed according to the transmission properties of the MR fluid between the rotating plates. Then, the operating principle of the MR brake is illustrated, which is followed by a detailed design of the water channel. Moreover, theoretical analysis, including the transmitted torque, magnetic field and thermal analysis, is performed as well. After this, an experimental prototype of the proposed MR brake is fabricated and assembled. Then the torque transmission and heat dissipation of the prototype are experimentally investigated to evaluate the torque transmission properties and water cooling efficiency. Results indicate that the proposed MR brake is capable of producing a highly controllable brake torque, and the water cooling method can effectively assist in heat dissipation from the MR brake. (paper)

  4. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  5. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  6. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  7. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  8. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  9. Energy dissipation mapping of cancer cells.

    Science.gov (United States)

    Dutta, Diganta; Palmer, Xavier-Lewis; Kim, Jinhyun; Qian, Shizhi; Stacey, Michael

    2018-02-01

    The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. STUDY ON ENERGY EXCHANGE PROCESSES IN NORMAL OPERATION OF METRO ROLLING STOCK WITH REGENERATIVE BRAKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. O. Sulym

    2017-10-01

    Full Text Available Purpose. The analysis of the existing studies showed that the increasing of energy efficiency of metro rolling stock becomes especially important and requires timely solutions. It is known that the implementation of regenerative braking systems on rolling stock will allow significantly solving this problem. It was proved that one of the key issues regarding the introduction of the above-mentioned systems is research on efficient use of electric energy of regenerative braking. The purpose of the work is to evaluate the amount of excessive electric power of regenerative braking under normal operation conditions of the rolling stock with regenerative braking systems for the analysis of the energy saving reserves. Methodology. Quantifiable values of electrical energy consumed for traction, returned to the contact line and dissipated in braking resistors (excessive energy are determined using results of experimental studies of energy exchange processes under normal operating conditions of metro rolling stock with regenerative systems. Statistical methods of data processing were applied as well. Findings. Results of the studies analysis of metro rolling stock operation under specified conditions in Sviatoshinsko-Brovarskaia line of KP «Kyiv Metro system» stipulate the following: 1 introduction of regenerative braking systems into the rolling stock allows to return about 17.9-23.2% of electrical energy consumed for traction to the contact line; 2 there are reserves for improving of energy efficiency of rolling stock with regenerative systems at the level of 20.2–29.9 % of electrical energy consumed for traction. Originality. For the first time, it is proved that the most significant factor that influences the quantifiable values of the electrical energy regeneration is a track profile. It is suggested to use coefficients which indicate the amount and reserves of unused (excessive electrical energy for quantitative evaluation. Studies on

  11. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  12. Complex Fluids in Energy Dissipating Systems

    Directory of Open Access Journals (Sweden)

    Francisco J. Galindo-Rosales

    2016-07-01

    Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.

  13. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    Science.gov (United States)

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Energy and dissipated work in snow avalanches

    Science.gov (United States)

    Bartelt, P.; Buser, O.

    2004-12-01

    Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.

  15. Energy Dissipation in Quantum Computers

    OpenAIRE

    Granik, A.; Chapline, G.

    2003-01-01

    A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.

  16. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  17. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation

    International Nuclear Information System (INIS)

    Huang, Jingying; Qin, Datong; Peng, Zhiyuan

    2015-01-01

    Highlights: • A two-degree-of-freedom lumped thermal model is developed for battery. • The battery thermal model is integrated with vehicle driving model. • Real-time battery thermal responses is obtained. • Active control of current by regenerative braking ratio adjustment is proposed. • More energy is recovered with smaller battery temperature rise. - Abstract: Battery thermal management is important for the safety and reliability of electric vehicle. Based on the parameters obtained from battery hybrid pulse power characterization test, a two-degree-of-freedom lumped thermal model is established. The battery model is then integrated with vehicle driving model to simulate real-time battery thermal responses. An active control method is proposed to reduce heat generation due to regenerative braking. The proposed control method not only subjects to the braking safety regulation, but also adjusts the regenerative braking ratio through a fuzzy controller. By comparing with other regenerative braking scenarios, the effectiveness of the proposed strategy has been validated. According to the results, the proposed control strategy suppresses battery temperature rise by modifying the charge current due to regenerative braking. The overlarge components of current are filtered out whereas the small ones are magnified. Therefore, with smaller battery temperature rise, more energy is recovered. Compared to the traditional passive heat dissipating, the proposed active methodology is feasible and provides a novel solution for electric vehicle battery thermal management.

  18. Critical behavior in earthquake energy dissipation

    Science.gov (United States)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  19. Energy balance for a dissipative quantum system

    International Nuclear Information System (INIS)

    Kumar, Jishad

    2014-01-01

    The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)

  20. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  1. Offshore heat dissipation for nuclear energy centers

    International Nuclear Information System (INIS)

    Bauman, H.F.

    1978-09-01

    The technical, environmental, and economic aspects of utilizing the ocean or other large water bodies for the dissipation of reject heat from Nuclear Energy Centers (NECs) were investigated. An NEC in concept is an aggregate of nuclear power plants of 10 GW(e) capacity or greater on a common site. The use of once-through cooling for large power installations offers advantages including higher thermal efficiencies, especially under summer peak-load conditions, compared to closed-cycle cooling systems. A disadvantage of once-through cooling is the potential for greater adverse impacts on the aquatic environment. A concept is presented for minimizing the impacts of such systems by placing water intake and discharge locations relatively distant from shore in deeper water than has heretofore been the practice. This technique would avoid impacts on relatively biologically productive and ecologically sensitive shallow inshore areas. The NEC itself would be set back from the shoreline so that recreational use of the shore area would not be impaired. The characteristics of a heat-dissipation system of the size required for a NEC were predicted from the known characteristics of a smaller system by applying hydraulic scaling laws. The results showed that adequate heat dissipation can be obtained from NEC-sized systems located in water of appropriate depth. Offshore intake and discharge structures would be connected to the NEC pump house on shore via tunnels or buried pipelines. Tunnels have the advantage that shoreline and beach areas would not be disturbed. The cost of an offshore heat-dissipation system depends on the characteristics of the site, particularly the distance to suitably deep water and the type of soil or rock in which water conduits would be constructed. For a favorable site, the cost of an offshore system is estimated to be less than the cost of a closed-cycle system

  2. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  3. Brake or opportunity for energy efficiency services?

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Are the services aiming the control of the energy demand going to develop with the markets opening or do we have to use incentive? Are the energy suppliers the best placed to propose them? Do we have to impose obligations, or goals with quantified costs?What financial mechanisms can be used? These questions are debated at Brussels where an initiative is prepared aiming to create a favourable and harmonized frame for the energy demand control. (N.C.)

  4. Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations

    Science.gov (United States)

    Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).

  5. Braking energy regeneration control of a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Zhang, Junzhi; Lv, Chen; Qiu, Mingzhe; Li, Yutong; Sun, Dongsheng

    2013-01-01

    Highlights: • A braking energy regeneration system has been designed for a fuel cell bus. • Control strategy coordinating energy efficiency and brake safety is proposed. • The system and control strategy proposed are experimentally verified. • Based on test results, energy efficiency of the FCB is improved greatly. - Abstract: This paper presents the braking energy regeneration control of a fuel cell hybrid electric bus. The configuration of the regenerative braking system based on a pneumatic braking system was proposed. To recapture the braking energy and improve the fuel economy, a control strategy coordinating the regenerative brake and the pneumatic brake was designed and applied in the FCHB. Brake safety was also guaranteed by the control strategy when the bus encounters critical driving situations. Fuel economy tests were carried out under China city bus typical driving cycle. And hardware-in-the-loop tests of the brake safety of the FCHB under proposed control strategy were also accomplished. Test results indicate that the present approach provides an improvement in fuel economy of the fuel cell hybrid electric bus and guarantees the brake safety in the meantime

  6. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  7. If there is dissipation the particle can gain energy

    International Nuclear Information System (INIS)

    De Carvalho, R Egydio

    2015-01-01

    In this work, we summarize two different mechanisms to gain energy from the presence of dissipation in a time-dependent non-linear system. The particles can gain energy, in the average, from two different scenarios: i) for very week dissipation with the creation of an attractor with high velocity, and ii) in the opposite limit, for very strong dissipation, the particles can also gain energy from a boundary crisis. From the thermodynamic viewpoint both results are totally acceptable. (paper)

  8. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • The energy flow of an electric vehicle with regenerative brake is analyzed. • Methodology for measuring the regen brake contribution is discussed. • Evaluation parameters of regen brake contribution are proposed. • Vehicle tests are carried out on chassis dynamometer. • Test results verify the evaluation method and parameters proposed. - Abstract: This article discusses the mechanism and evaluation methods of contribution brought by regenerative braking to electric vehicle’s energy efficiency improvement. The energy flow of an electric vehicle considering the braking energy regeneration was analyzed. Then, methodologies for measuring the contribution made by regenerative brake to vehicle energy efficiency improvement were introduced. Based on the energy flow analyzed, two different evaluation parameters were proposed. Vehicle tests were carried out on chassis dynamometer under typical driving cycles with three different control strategies. The experimental results the difference between the proposed two evaluation parameters, and demonstrated the feasibility and effectiveness of the evaluation methodologies proposed

  9. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  10. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  11. estimation of ionospheric energy dissipation for the year 2012 using

    African Journals Online (AJOL)

    userpc

    energy dissipation is the dominant channel of energy transfer in that year from the solar wind. This is consistent with many results found by other researchers. Keywords: Østgaard's Empirical Relation, Ionospheric Energy Dissipation, Electron. Precipitation, Joule Heating. INTRODUCTION. In the Earth's magnetosphere, the ...

  12. Energy dissipation of rockfalls by coppice structures

    Directory of Open Access Journals (Sweden)

    G. Ciabocco

    2009-06-01

    Full Text Available The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video.

    It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC. To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  13. Energy dissipation of slot-type flip buckets

    Science.gov (United States)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  14. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  15. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  16. Dissipation of magnetic energy during disruptive current termination

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1983-09-01

    The magnetic coupling during a disruption between the plasma and the various coil systems on the PDX tokamak has been modeled. Using measured coil currents, the model indicates that dissipation of magnetic energy in the plasma equal to 75 % of the energy stored in the poloidal field of the plasma current does occur and that coupling between the plasma and the coil systems can reduce such dissipation. In the case of PDX ohmic discharges, bolometric measurements of radiation and charge exchange, integrated over a disruption, account for 90 % of the calculated energy dissipation. (author)

  17. Research on Characteristics of New Energy Dissipation With Symmetrical Structure

    Science.gov (United States)

    Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang

    2018-03-01

    Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.

  18. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  19. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    International Nuclear Information System (INIS)

    Gardea, Frank; Lagoudas, Dimitris C; Naraghi, Mohammad; Glaz, Bryan; Riddick, Jaret

    2016-01-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas. (paper)

  20. Shaping of an ion cloud's velocity field by differential braking due to Alfven wave dissipation in the ionosphere, 1. Coupling with an infinite ionosphere

    International Nuclear Information System (INIS)

    Nalesso, G.F.; Jacobson, A.R.

    1988-01-01

    We study the interaction of a plasma cloud, jetting across the geomagnetic field with the surrounding ionosphere. The cloud is assumed of finite extension in the direction normal to both the direction of motion and the magnetic field, while the ionosphere is considered a collisional anisotropic magnetized plasma. It is shown that two main mechanisms contribute to the cloud's braking: momentum exchange with the ionosphere via Alfven waves and momentum dissipation due to resistive currents. Due to the finite size of the cloud a differential braking of the different transverse harmonics of the Alfven wave appears when the momentum exchange mechanism is dominant. The result is a sharpening of the cloud's velocity field. copyright American Geophysical Union 1988

  1. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  2. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K T [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1997-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  3. Energy dissipation in a finite volume of magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoi, V.; Motsar, A.; Reks, A., E-mail: alexfx20@yandex.ru

    2017-06-01

    This study is devoted to investigation of energy dissipation processes which happen in a magnetic fluid drop with compound magnet during its motion in cylindrical non magnetic container. The possibility of energy dissipation control by means of electromagnetic field is examined. It's found that a change of magnetic field of compound magnet can lead to both increase and decrease of oscillation decay time and relative damping factor can be varied in a range of ±35%.

  4. Beam-to-Column Connections with Demountable Energy Dissipative Plates

    Directory of Open Access Journals (Sweden)

    Vasile-Mircea Venghiac

    2018-03-01

    Full Text Available The behavior of steel structures subjected to seismic actions depends directly on the connections behavior. There are two current tendencies for ensuring the structural ductility: allowing the formation of plastic hinges in the beams by using reduced beam sections or reduced web sections or by ensuring the plastic hinge formation in the connection by using dissipative elements. This paper presents a new perspective regarding the energy dissipation mechanism formation within the beam-to-column connection. The design of connections capable of dissipating large amounts of energy, with an acceptable strength and ductile behavior is a real challenge for engineers. Sustainability is a big advantage for these connections. Another big advantage is the possibility of restoring the functionality of the damaged construction in a short time interval and with reduced costs. The introduction of connections with demountable energy dissipative plates can be a step forward in designing new beam-to-column connections for steel structures.

  5. Inferring energy dissipation from violation of the fluctuation-dissipation theorem

    Science.gov (United States)

    Wang, Shou-Wen

    2018-05-01

    The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.

  6. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  7. A thermal, thermoelastic, and wear analysis of high-energy disk brakes

    Science.gov (United States)

    Kennedy, F. E., Jr.; Wu, J. J.; Ling, F. F.

    1974-01-01

    A thermomechanical investigation of the sliding contact problem encountered in high-energy disk brakes is described. The analysis includes a modelling, using the finite element method of the thermoelastic instabilities that cause transient changes in contact area to occur on the friction surface. In order to include the effect of wear at the contact surface, a wear criterion is proposed that results in the prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake assembly can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It also shows that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and, especially, the heat capacity of the brake components.

  8. Hot Brakes and Energy-Related Concepts: Is Energy Lost?

    Science.gov (United States)

    Lopez, V.; Pinto, R.

    2012-01-01

    This paper describes a secondary school experience which is intended to help students to think profoundly about some energy-related concepts. It is quite different to other experiences of mechanics because the focus is not on the quantitative calculation of energy conservation but on the qualitative understanding of energy degradation. We first…

  9. Architected squirt-flow materials for energy dissipation

    Science.gov (United States)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  10. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles

    International Nuclear Information System (INIS)

    Qiu, Chengqun; Wang, Guolin

    2016-01-01

    Highlights: • Two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. • Methodologies for calculating the contribution made by regenerative brake to improve vehicle energy efficiency are proposed. • Road test results imply that the proposed parameters are effective. - Abstract: Comprehensive research is conducted on the design and control of a regenerative braking system for electric vehicles. The mechanism and evaluation methods of contribution brought by regenerative braking to improve electric vehicle’s energy efficiency are discussed and analyzed by the energy flow. Methodologies for calculating the contribution made by regenerative brake are proposed. Additionally a new regenerative braking control strategy called “serial 2 control strategy” is introduced. Moreover, two control strategies called “parallel control strategy” and “serial 1 control strategy” are proposed as the comparative control strategy. Furthermore, two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. Finally, road tests are carried out under China typical city regenerative driving cycle standard with three different control strategies. The serial 2 control strategy offers considerably higher regeneration efficiency than the parallel strategy and serial 1 strategy.

  11. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  12. Theoretical and experimental study of an energy-reinforced braking radiation photon beam

    International Nuclear Information System (INIS)

    Bertin, Pierre-Yves

    1966-01-01

    This research thesis reports the theoretical study of a photon beam raised towards high energies, its experimental implementation, the definition of a gamma spectrometry method which aimed at checking various hypotheses used in the beam theoretical study. After a presentation of the theory of phenomena of electron braking radiation, of materialisation of photons into positon-negaton pair, and of issues related to multiple Coulomb diffusion, the author reports the study of the different solutions which allow a photon beam to be obtained. A braking radiation of mono-kinetic electron has been used. This braking radiation is reinforced by absorption of low energy protons in a column of lithium hydride. The author describes how the beam is built up, and the experimental approach. He describes how raw data are processed to get rid of the influence of the multiple Coulomb diffusion and of the braking radiation. Experimental results are compared with those obtained by convolution of photon spectra and differential cross section

  13. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  14. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...

  15. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  16. Non-dissipative energy capture of confined liquid in nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoxing; Chen, Xi [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Lu, Weiyi; Zhao, Cang [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Qiao, Yu, E-mail: yqiao@ucsd.edu [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Program of Materials Science and Engineering, University of California–San Diego, La Jolla, CA 92093 (United States)

    2014-05-19

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  17. Non-dissipative energy capture of confined liquid in nanopores

    International Nuclear Information System (INIS)

    Xu, Baoxing; Chen, Xi; Lu, Weiyi; Zhao, Cang; Qiao, Yu

    2014-01-01

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  18. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  19. Energy dissipation by a longitudinal Raman process

    International Nuclear Information System (INIS)

    Fano, U.; Inokuti, Mitio

    1994-01-01

    The concept of a longitudinal Raman process is introduced to encompass the indirect transmission of energy from slow electrons to nuclei through the reversible polarization of surrounding electrons. Experimental approaches are sought to assess this process quantitatively

  20. Mathematical Modeling for Energy Dissipation Behavior of Velocity ...

    African Journals Online (AJOL)

    The developed oil-pressure damper is installed with an additional Relief Valve parallel to the Throttle Valve. This is intended to obtain an adaptive control by changing the damping coefficient of this damper using changeable orifice size. In order to simulate its actual energy-dissipating behavior, a serial friction model and a ...

  1. Minimum Energy Dissipation under Cocurrent Flow in Packed Beds

    Czech Academy of Sciences Publication Activity Database

    Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2011-01-01

    Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011

  2. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission

  3. Wetlands as energy-dissipating systems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, J.; Květ, Jan; Rejšková, A.; Brom, J.

    2010-01-01

    Roč. 37, č. 12 (2010), s. 1299-1305 ISSN 1367-5435 Institutional research plan: CEZ:AV0Z60870520 Keywords : wetlands * vegetation * energy fluxes * primary production * landscape management Subject RIV: EF - Botanics Impact factor: 2.416, year: 2010 http://www.springerlink.com/content/y5t4750647q84553/

  4. Interior Pathways to Dissipation of Mesoscale Energy

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-27

    This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer

  5. Intrinsic Energy Dissipation Limits in Nano and Micromechanical Resonators

    Science.gov (United States)

    Iyer, Srikanth Subramanian

    Resonant microelectromechanical Systems (MEMS) have enabled miniaturization of high-performance inertial sensors, radio-frequency filters, timing references and mass-based chemical sensors. Despite the increasing prevalence of MEMS resonators for these applications, the energy dissipation in these structures is not well-understood. Accurate prediction of the energy loss and the resulting quality factor (Q) has significant design implications because it is directly related to device performance metrics including sensitivity for resonant sensors, bandwidth for radio-frequency filters and phase-noise for timing references. In order to assess the future potential for MEMS resonators it is critically important to evaluate the energy dissipation limits, which will dictate the ultimate performance resonant MEMS devices can achieve. This work focuses on the derivation and evaluation of the intrinsic mechanical energy dissipation limit for single-crystal nano and micromechanical resonators due to anharmonic phonon-phonon scattering in the Akhiezer regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction and polarization dependent mode-Gruneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. Evaluation of the quality factor limit reveals that Akhiezer damping, previously thought to depend only on material properties, has a strong dependence on crystal orientation and resonant mode shape. The robust model provides a dissipation limit for all resonant modes including shear-mode vibrations, which have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to volume-preserving phonon branches, indicating that Lame or wine-glass mode resonators will have the highest upper limit on mechanical efficiency. Finally, the analytical dissipation model is integrated with commercial finite element software in order to

  6. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  7. Performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators

    Science.gov (United States)

    Jeraputra, Chuttchaval; Tiptipakorn, Supun

    2017-05-01

    This paper presents performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators. The proposed regenerative brake recycles the energy loss of a dynamic brake and feeds into the grid while an elevator inverter is operating in the braking mode. According to field measurement of energy consumption, it reveals that the efficiency can be improved as much as 18%. The prototype of a regenerative brake 12 kW, 400V, 3ϕ is developed and tested on an elevator simulator. It is shown that it can transfer energy out of a DC capacitor before the dynamic brake kicks in. Further, an economic analysis is provided to carry out the payback period and the present worth equivalent to confirm economic feasibility.

  8. Magnetostrictive Brake

    Science.gov (United States)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  9. A simulation for energy dissipation in nuclear reactions

    International Nuclear Information System (INIS)

    Mshelia, E.D.; Ngadda, Y.H.

    1989-01-01

    A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)

  10. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  11. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Science.gov (United States)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  12. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  13. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    Science.gov (United States)

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  14. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line

    International Nuclear Information System (INIS)

    Teymourfar, Reza; Asaei, Behzad; Iman-Eini, Hossein; Nejati fard, Razieh

    2012-01-01

    Highlights: ► Super-capacitors are used to store regenerative braking energy in a metro network. ► A novel approach is proposed to model easily and accurately the metro network. ► An efficient approach is proposed to calculate the required super-capacitors. ► Maximum energy saving is around 44% at off-peak period and 42% at peak period. ► Benefit/cost analyses are performed for the suggested ESS. - Abstract: In this paper, the stationary super-capacitors are used to store a metro network regenerative braking energy. In order to estimate the required energy storage systems (ESSs), line 3 of Tehran metro network is modeled through a novel approach, in peak and off-peak conditions based on the real data obtained from Tehran metro office. A useful method is proposed to predict the maximum instantaneous regenerative energy which is delivered to each station before applying ESS and based on that the ESS configuration for each station is determined. Finally, the effectiveness of the proposed ESS is confirmed by economic evaluations and benefit/cost analyses on line 3 of Tehran metro network.

  15. A field theory description of constrained energy-dissipation processes

    International Nuclear Information System (INIS)

    Mandzhavidze, I.D.; Sisakyan, A.N.

    2002-01-01

    A field theory description of dissipation processes constrained by a high-symmetry group is given. The formalism is presented in the example of the multiple-hadron production processes, where the transition to the thermodynamic equilibrium results from the kinetic energy of colliding particles dissipating into hadron masses. The dynamics of these processes is restricted because the constraints responsible for the colour charge confinement must be taken into account. We develop a more general S-matrix formulation of the thermodynamics of nonequilibrium dissipative processes and find a necessary and sufficient condition for the validity of this description; this condition is similar to the correlation relaxation condition, which, according to Bogolyubov, must apply as the system approaches equilibrium. This situation must physically occur in processes with an extremely high multiplicity, at least if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, which is useful for taking symmetry restrictions on the dynamics of dissipation processes into account. We review the literature devoted to this problem

  16. Stable schemes for dissipative particle dynamics with conserved energy

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr

    2017-07-01

    This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.

  17. Energy recapture through deceleration - regenerative braking in electric vehicles from a user perspective.

    Science.gov (United States)

    Cocron, Peter; Bühler, Franziska; Franke, Thomas; Neumann, Isabel; Dielmann, Benno; Krems, Josef F

    2013-01-01

    We report results from a 1-year field study (N = 80) on user interactions with regenerative braking in electric vehicles. Designed to recapture energy in vehicles with electric powertrains, regenerative braking has an important influence on both the task of driving and energy consumption. Results from user assessments and data from onboard data loggers indicate that most drivers quickly learned to interact with the system, which was triggered via accelerator. Further, conventional braking manoeuvres decreased significantly as the majority of deceleration episodes could only be executed through regenerative braking. Still, some drivers reported difficulties when adapting to the system. These difficulties could be addressed by offering different levels of regeneration so that the intensity of the deceleration could be individually modified. In general, the system is trusted and regarded as a valuable tool for prolonging range. Regenerative braking in electric vehicles has direct implications for the driving task. We found that drivers quickly learn to use and accept a system, which is triggered via accelerator. For those reporting difficulties in the interaction, it appears reasonable to integrate options to customise or switch off the system.

  18. Energy dissipation characteristics of sharp-edged orifice plate

    Directory of Open Access Journals (Sweden)

    Ai Wanzheng

    2015-08-01

    Full Text Available The energy loss coefficient, relating directly to the energy dissipation ratio, is an important index of this energy dissipater. In this article, this coefficient and its affecting parameters were analyzed by theoretical considerations, and their relationships were obtained by numerical simulations. It could be concluded that the energy loss coefficient of sharp-edged orifice plate and its backflow region length were mainly dominated by the contraction ratio of the orifice plate. Sharp-edged orifice plate’s energy loss coefficient and its backflow region length all increase slightly with the increase in its thickness. When Reynolds number is in the range of 9.00×104–10.3×106, Reynolds number has little impacts on energy loss coefficient and backflow region length. Two empirical expressions, relating to backflow region length and energy loss coefficient, respectively, were presented.

  19. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy

    International Nuclear Information System (INIS)

    González-Gil, Arturo; Palacin, Roberto; Batty, Paul

    2013-01-01

    Highlights: • Review of principal regenerative braking strategies and technologies for urban rail. • Different energy storage technologies are assessed for use in urban rail. • Optimising timetables is a preferential measure to improve energy efficiency. • Energy storage systems improve efficiency and reliability of urban rail systems. • Reversible substations allow for a complete recovery of braking energy. - Abstract: In a society characterised by increasing rates of urbanisation and growing concerns about environmental issues like climate change, urban rail transport plays a key role in contributing to sustainable development. However, in order to retain its inherent advantages in terms of energy consumption per transport capacity and to address the rising costs of energy, important energy efficiency measures have to be implemented. Given that numerous and frequent stops are a significant characteristic of urban rail, recuperation of braking energy offers a great potential to reduce energy consumption in urban rail systems. This paper presents a comprehensive overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail, covering timetable optimisation, on-board and wayside Energy Storage Systems (ESSs) and reversible substations. For each measure, an assessment of their main advantages and disadvantages is provided alongside a list of the most relevant scientific studies and demonstration projects. This study concludes that optimising timetables is a preferential measure to increase the benefits of regenerative braking in any urban rail system. Likewise, it has been observed that ESSs are a viable solution to reuse regenerative energy with voltage stabilisation and energy saving purposes. Electrochemical Double Layer Capacitors has been identified as the most suitable technology for ESSs in general, although high specific power batteries such as Li-ion may become a practical option for on

  20. Strain energy storage and dissipation rate in active cell mechanics

    Science.gov (United States)

    Agosti, A.; Ambrosi, D.; Turzi, S.

    2018-05-01

    When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded (symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active stress generated by the molecular motors continuously stretches and drifts the actin network, the cytoskeleton of the cell. In this paper we theoretically compare the energy stored and dissipated in this active system in two geometric configurations of interest: symmetric and polarized. We find that the stored energy is larger for a radially symmetric cell at low activation regime, while the polar configuration has larger strain energy when the active stress is beyond a critical threshold. Conversely, the dissipation of energy in a symmetric cell is always larger than that of a nonsymmetric one. By a combination of symmetry arguments and competition between surface and bulk stress, we argue that radial symmetry is an energetically expensive metastable state that provides access to an infinite number of lower-energy states, the polarized configurations.

  1. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  2. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    Science.gov (United States)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  3. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    OpenAIRE

    Yin, Guodong; Jin, XianJian

    2013-01-01

    A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sli...

  4. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  5. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2016-01-01

    Highlights: • Comparison between two braking methods for an EV maximizing the energy recovery. • Wheels slip ratio control based on robust sliding mode and ECE R13 control methods. • Regenerative braking control strategy. • Energy recovery of a HESS with respect to road surface type and road condition. - Abstract: This paper presents the comparison between two braking methods for a two-wheel front driven Electric Vehicle maximizing the energy recovery on the Hybrid Energy Storage System. The first method consists in controlling the wheels slip ratio while braking using a robust sliding mode controller. The second method will be based on ECE R13H constraints for an M1 passenger vehicle. The vehicle model used for simulation is a simplified five degrees of freedom model. It is driven by two 30 kW permanent magnet synchronous motor (PMSM) recovering energy during braking phases. Several simulation results for extreme braking conditions will be performed and compared on various road type surfaces using Matlab/Simulink®. For an initial speed of 80 km/h, simulation results demonstrate that the difference of energy recovery efficiency between the two control braking methods is beneficial to the ECE constraints control method and it can vary from 3.7% for high friction road type to 11.2% for medium friction road type. At low friction road type, the difference attains 6.6% due to different reasons treated in the paper. The stability deceleration is also discussed and detailed.

  6. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  7. Entropy production and energy dissipation in symmetric redox supercapacitors

    Science.gov (United States)

    Palma-Aramburu, N.; Santamaría-Holek, I.

    2017-08-01

    In this work we propose a theoretical model that accounts for the main features of the loading-unloading process of a symmetric redox MnO2-based supercapacitor dominated by fast electrochemical reactions at the electrodes. The model is formulated on the basis of nonequilibrium thermodynamics from which we are able to deduce generalized expressions for the electrochemical affinity, the load-voltage and the current-voltage equations that constitute generalizations of the current-overpotential and Butler-Volmer equations, and that are used to describe experimental voltagram data with good agreement. These equations allowed us to derive the behavior of the energy dissipated per cycle showing that it has a nonmonotonic behavior and that in the operation regime it follows a power-law behavior as a function of the frequency. The existence of a maximum for the energy dissipated as a function of the frequency suggests the that the corresponding optimal operation frequency should be similar in value to ωmax.

  8. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  9. Dissipative generalized Chaplygin gas as phantom dark energy

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2007-01-01

    The generalized Chaplygin gas, characterized by the equation of state p=-A/ρ α , has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003

  10. Dissipative generalized Chaplygin gas as phantom dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl

    2007-03-15

    The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].

  11. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata

    Directory of Open Access Journals (Sweden)

    Ali Newaz Bahar

    2017-02-01

    Full Text Available This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  12. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  13. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    Science.gov (United States)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  14. Monotonous braking of high energy hadrons in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  15. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  16. Dissipation of 'dark energy' by cortex in knowledge retrieval.

    Science.gov (United States)

    Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe

    2013-03-01

    We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  18. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  19. Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity

    Directory of Open Access Journals (Sweden)

    Daniel R. Teruna

    2015-01-01

    Full Text Available This study aims to evaluate energy absorption capacity of hysteretic steel damper for earthquake protection of structures. These types of steel dampers are fabricated from mild steel plate with different geometrical shapes on the side part, namely, straight, concave, and convex shapes. The performance of the proposed device was verified experimentally by a series of tests under increasing in-plane cyclic load. The overall test results indicated that the proposed steel dampers have similar hysteretic curves, but the specimen with convex-shaped side not only showed stable hysteretic behavior but also showed excellent energy dissipation capabilities and ductility factor. Furthermore, the load-deformation relation of these steel dampers can be decomposed into three parts, namely, skeleton curve, Bauschinger part, and elastic unloading part. The skeleton curve is commonly used to obtain the main parameters, which describe the behavior of steel damper, namely, yield strength, elastic stiffness, and postyield stiffness ratio. Moreover, the effective stiffness, effective damping ratio, cumulative plastic strain energy, and cumulative ductility factor were also derived from the results. Finally, an approximation trilinear hysteretic model was developed based on skeleton curve obtained from experimental results.

  20. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  1. Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

    Science.gov (United States)

    Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.

    2015-05-01

    Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.

  2. Vibration control of an artificial muscle manipulator with a magnetorheological fluid brake

    Science.gov (United States)

    Tomori, H.; Midorikawa, Y.; Nakamura, T.

    2013-02-01

    Recently, proposed applications of robots require them to contact human safely. Therefore, we focus on pneumatic rubber artificial muscle. This actuator is flexible, light, and has high-power density. However, because the artificial muscle is flexible, it vibrates when there is a high load. Therefore, we paid attention to the magnetorheological (MR) fluid. We propose a control method of the MR brake considering energy of the manipulator system. By this control method, MR brake dissipates energy leading to vibration of the manipulator. In this paper, we calculated the energy and controlled the MR brake. And, we deliberated the proposal method by simulation using the dynamic model of the manipulator, and experiment.

  3. Energy dissipation statistics along the Lagrangian trajectories in three-dimensional turbulent flows

    Science.gov (United States)

    Luo, Jian-ping; Wang, Yong-bo; Qiu, Xiang; Xia, Yu-xian; Liu, Yu-lu

    2018-02-01

    Energy dissipation rate is relevant in the turbulent phenomenology theory, such as the classical Kolmogorov 1941 and 1962 refined similarity hypothesis. However, it is extremely difficult to retrieve experimentally or numerically. In this paper, the full energy dissipation, its proxy and the pseudo-energy dissipation rate along the Lagrangian trajectories in the three-dimensional turbulent flows are examined by using a state-of-art high resolution direct numerical simulation database with a Reynolds number Re λ = 400. It is found that the energy dissipation proxy ɛ P is more correlated with the full energy dissipation rate ɛ. The corresponding correlation coefficient ρ between the velocity gradient and e shows a Gaussian distribution. Furthermore, the coarse-grained dissipation rate is considered. The cross correlation ρ is found to be increased with the increasing of the scale τ. Finally, the hierarchical structure is extracted for the full energy dissipation rate, its proxy and the pseudo one. The results show a power-law behavior in the inertial range 10 ≤ τ/ τ η ≤ 100. The experimental scaling exponent of the full energy dissipation rate is found to be h L =0.69, agrees very well with the one found for the Eulerian velocity. The experimental values for ɛ P and ɛ S are around h L = 0.78, implying a more intermittent Lagrangian turbulence. Therefore, the intermittency parameter provided by ɛ P and ɛ S will be biased.

  4. Relative Entropy, Interaction Energy and the Nature of Dissipation

    Directory of Open Access Journals (Sweden)

    Bernard Gaveau

    2014-06-01

    Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.

  5. Energy dissipation in fragmented geomaterials associated with impacting oscillators

    Science.gov (United States)

    Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    In wave propagation through fragmented geomaterials forced by periodic loadings, the elements (fragments) strike against each other when passing through the neutral position (position with zero mutual rotation), quickly damping the oscillations. Essentially the impacts act as shock absorbers albeit localised at the neutral points. In order to analyse the vibrations of and wave propagation in such structures, a differential equation of a forced harmonic oscillator was investigated, where the each time the system passes through the neutral point the velocity gets reduced by multiplying it with the restitution coefficient which characterise the impact of the fragments. In forced vibrations the impact times depend on both the forced oscillations and the restitution coefficient and form an irregular sequence. Numerical solution of the differential equation was performed using Mathematica software. Along with vibration diagrams, the dependence of the energy dissipation on the ratio of the forcing frequency to the natural frequency was obtained. For small positive values of the restitution coefficient (less than 0.5), the asymmetric oscillations were found, and the phase of the forced vibrations determined the direction of the asymmetry. Also, at some values of the forcing frequencies and the restitution coefficient chaotic behaviour was found.

  6. Kinetic Energy Dissipation on Labyrinth Configuration Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Jaafar S. Maatooq

    2017-12-01

    Full Text Available In present work a labyrinth (zigzag, in shape has been used to configure the steps of stepped spillway by using the physical model. This configuration does not introduce previously by investigators or in construction techniques of dams or cascades. It would be expected to improve the flow over chute. A magnifying the width path of each step to become, LT, instead of, W, will induce the interlocking between the mainstream and that spread laterally due to labyrinth path. This phenomenon leads to reduce the jet velocities near the surfaces, thus minimizing the ability of cavitation and with increasing a circulation regions the ability of air entrainment be maximized. The results were encouraging, (e.g., the reverse performance has recorded for spillway slope. From the evaluation of outcome, the average recorded of percentage profits of kinetic energy dissipation with a labyrinth shape compared with the results of traditional shape were ranged between (13- 44%. Different predictive formulas have been proposed based on iteration analysis, can be recommended for evaluation and design.

  7. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  8. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard.

    Science.gov (United States)

    Livorati, André L P; Caldas, Iberê L; Leonel, Edson D

    2012-06-01

    The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon.

  9. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  10. Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows

    Science.gov (United States)

    Duncan, B. S.

    1992-01-01

    True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be

  11. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  12. Optimal design of base isolation and energy dissipation system for nuclear power plant structures

    International Nuclear Information System (INIS)

    Zhou Fulin

    1991-01-01

    This paper suggests the method of optimal design of base isolation and energy dissipation system for earthquake resistant nuclear power plant structures. This method is based on dynamic analysis, shaking table tests for a 1/4 scale model, and a great number of low cycle fatigue failure tests for energy dissipating elements. A set of calculation formulas for optimal design of structures with base isolation and energy dissipation system were introduced, which are able to be used in engineering design for earthquake resistant nuclear power plant structures or other kinds of structures. (author)

  13. Observations of turbulent energy dissipation rate in the upper ocean of the central South China Sea

    Science.gov (United States)

    Chen, G.

    2016-02-01

    Measurements of turbulent energy dissipation rate, velocity, temperature, and salinity were obtained in the upper ocean of the central South China Sea (14.5˚N, 117.0˚E) during an experimental campaign from May 11th to 13th 2010. Dissipation rate was elevated ( 10-7 Wkg-1) at night by convection mixing and was weakened ( 10-9 Wkg-1) in daytime due to the warming stratification. Thermocline dissipation rate varied with time ( 10-9 Wkg-1 to 10-8 Wkg-1) under the influence of internal waves. Energy was transferred from the diurnal internal tides to high frequency internal waves through nonlinear wave-wave interactions. This energy cascade process was accompanied by elevated shear and enhanced dissipation, which played an important role in the turbulent mixing in thermocline. Compare with the thermocline dissipation, dissipation below the thermocline was more stable and weak ( 10-10 Wkg-1). The observed dissipation rate during the measurement was well parameterized by the MacKinnon-Gregg parameterization (a model based on a reinterpretation of wave-wave interaction theory), whereas the Gregg-Henyey parameterization was not in good agreement with the observed dissipation rate.

  14. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    Science.gov (United States)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  15. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  16. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  17. Numerical simulation of energy equation with viscous dissipation for compressible flow over cones

    International Nuclear Information System (INIS)

    Asif, M.; Chughtai, I.R.

    1998-01-01

    A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)

  18. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  19. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  20. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    Science.gov (United States)

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile.

  1. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  2. Forces and energy dissipation in inhomogeneous non-equilibrium superconductors

    International Nuclear Information System (INIS)

    Poluehktov, Yu.M.; Slezov, V.V.

    1987-01-01

    The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given

  3. Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2014-01-01

    Full Text Available This study was conducted to characterize carbon nanotube (CNT/water nanofluids (CNWNFs and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER, were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.

  4. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  5. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  6. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  7. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea

    Science.gov (United States)

    Liang, Chang-Rong; Chen, Gui-Ying; Shang, Xiao-Dong

    2017-05-01

    Measurements of the turbulent kinetic energy dissipation rate ( ɛ), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced ( ɛ ˜ 10-7 W kg-1) at night due to the convective mixing and was weakened ( ɛ ˜ 10-9 W kg-1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ˜8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ɛ in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ɛ ˜ 10-10 W kg-1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.

  8. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  9. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    Starting from the early paper by Heber (1969), several studies have demonstrated a subtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) in response to rapid changes in environmental conditions. More recent work, briefly reviewed here, has also demonstrated the existence of two components in the maked peak centered at 505-540 nm: an irreversible component, attributed to the interconversion of leaf xanthophylls, and a reversible component at slightly longer wavelengths, resulting from conformational changes induced by the buildup of a pH gradient across the thylakoid membrane associated with photosynthetic electron transport. Both processes (xanthophyll de-epoxidation and conformational changes) are known to contribute to the dissipation of excess energy in Photosystem II (PSII). Leaf spectroscopy could therefore provide a powerful non-invasive tool for the determination of leaf photosynthetic processes. This led to the development of the normalized spectral index PRI (Photochemical Reflectance Index; Gamon, Penuelas &Field 1992; Gamon, Serrano &Surfus 1997), which relates the functional signal at 531 nm to a reference signal at 570 nm. The index has been found to track diurnal changes in xanthophyll de-epoxidation state, radiation use efficiency and fluorescence in response to light, both at the leaf and more recently at the canopy level. A common relationship has also beenreported across species and functional types, although such a generality has not always been confirmed. Recent reports (Stylinski et al. 2000) have also hinted of a possible link between PRI and leaf photosynthetic potential, possibly through the correlation between xanthophyll content and electron transport machinery in the chloroplast. Such a link, if confirmed, could prove very useful for the remote sensing and modelling ofvegetation. Some of these open questions were addressed in the present study. The correlation between leaf function and reflectance was

  10. Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium

    Science.gov (United States)

    Green, Jason R.; Costa, Anthony B.; Grzybowski, Bartosz A.; Szleifer, Igal

    2013-01-01

    Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov–Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov–Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes. PMID:24065832

  11. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  12. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

    Science.gov (United States)

    Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

    2014-12-01

    Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

  13. Influence of the fin orientation on the cooling of disc-brakes

    International Nuclear Information System (INIS)

    Abanto, J.; Reggio, M.

    2003-01-01

    Nowadays, computational fluid dynamics is being applied in many fronts to improve the understanding of the flow and heat transfer behaviour in engineering applications. Unfortunately, there are not so many computational investigations regarding the ventilation and temperature distribution in discs-brakes. In this respect, this study presents a (CFD) analysis is carried out to investigate temperature distributions and flow patterns through disc brakes. The final goal is the development of shapes that optimize heat dissipation rates dictating the stopping capability of disc brakes. High performance discs brakes have a variety of cooling channels and the optimization of these passages is a challenging task for the manufacturing industry. High values of heat transfer coefficients of disc-brake configurations, are the most critical quantities during the design phase of new braking systems. In this context, a parametric study of the influence of the fin orientation concerning the cooling process of the rotating disc-brakes is presented. The numerical simulation was performed using four different solid configurations with the same weight, material properties and boundary conditions. In order to keep constant the influence of the numerical diffusion, these forms have been inserted in the fixed far computational domain (more than 90% of the overall domain). This large transient conjugate heat transfer analysis has been performed following the standard Fade and Recovery procedures. These allows to evaluate the heat dissipation and the evolution of heat transfer coefficients in space and time for each idealized brake model. Relevant temperature variations have been observed during the braking process when compared to the baseline disc-brake model. A commercial finite-volume based code was used for this CFD application. Mass, momentum, energy and K - ε RNG turbulence equations have been solved. (author)

  14. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  15. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    Science.gov (United States)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  16. Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY

    Science.gov (United States)

    Soares, S. M.; Natarov, A.; Richards, K. J.

    2016-05-01

    A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.

  17. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  18. Energy density of a dissipative polarizable solid by a Lagrangean formalism

    International Nuclear Information System (INIS)

    Englman, R.; Yahalom, A.

    2003-01-01

    A Lagrangean for the dynamics of an electromagnetic field in a dispersive and dissipative material is constructed (adapting some ideas by Bekenstein and Hannay) and an expression for the energy density that is positive is obtained from it. The expression contains extra (sink) degrees of freedom that represent dissipating modes. In simplified cases the sink modes can be eliminated to yield an energy density expression in terms of the electromagnetic fields, the polarization and the magnetization only, but which contains parameters associated with the sink modes. The method of adding extra modes can be used to set up a Lagrangean formalism for dissipative systems in general, such that will reinstate time-translation invariance and will yield a unique energy density

  19. A dissipated energy comparison to evaluate fatigue resistance using 2-point bending

    Directory of Open Access Journals (Sweden)

    Cinzia Maggiore

    2014-02-01

    Full Text Available Fatigue is the main failure mode in pavement engineering. Typically, micro-cracks originate at the bottom of asphalt concrete layer due to horizontal tensile strains. Micro-cracks start to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different methods are usually used to describe fatigue behavior in asphalt materials such as: phenomenological approach, fracture mechanics approach and dissipated energy approach. This paper presents a comparison of fatigue resistances calculated for different dissipated energy models using 2-point bending (2PB at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect.

  20. Energy thrift and improved performance achieved through novel railway brake discs

    International Nuclear Information System (INIS)

    Tirovic, Marko

    2009-01-01

    A disc with radial vanes and circumferential pillars proves to be successful in operation and achieves energy efficiency improvements compared with those of traditional design. Cooling characteristics of this novel design are practically identical to the disc with tangential vanes but the equivalent aerodynamic (air pumping) losses are approximately 50% less. It is shown that these reductions in pumping losses can lead to substantial energy savings in train operations. When developing new designs and/or comparing different railway disc designs, the proposed disc cooling to aerodynamic efficiency ratio (η v ) was found to be a very useful parameter to assess. This 'efficiency ratio' - a ratio of convective power dissipation to aerodynamic power losses can help in achieving adequate balance of cooling efficiency and aerodynamic losses to suit particular application. The use of CFD is of enormous benefit in generating discs that fulfil these demanding requirements, with the spin rig being exceptionally useful for experimental work

  1. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  2. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  3. Better Brakes

    Science.gov (United States)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  4. Effect of angular-momentum dissipation and fluctuation on energy coherence lengths and time evolution in the dissipative collision 28Si+48Ti

    International Nuclear Information System (INIS)

    Kun, S.Yu.; WITS Univ., Johannesburg; Noerenberg, W.; TH Darmstadt; Papa, M.

    1992-09-01

    We analyze the energy autocorrelation functions and the energy coherence lengths in the strongly dissipative collision 28 Si(E lab = 130 MeV) + 4 8Ti for Z=11 and 12 reaction fragments. It is found that in order to obtain a good fit of both the energy averaged angular distributions and the angular dependence of the energy coherence lengths one has to take into account (i) the dissipation and fluctuation of the relative angular momentum of the dinucleus and (ii) the contribution from direct (fast) reactions in addition to the statistical (relatively slow) interaction processes. The established angular dependence is a direct consequence of the angular-momentum dissipation-fluctuation effects on the time-space evolution of the intermediate dinucleus. (orig.)

  5. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  6. Cancer is an adaptation that selects in animals against energy dissipation.

    Science.gov (United States)

    Muller, Anthonie W J

    2017-07-01

    As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis

  7. Braking system

    Science.gov (United States)

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  8. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  9. How important is the friction model on the modeling of energy dissipation

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.

    2005-01-01

    Frictional forces arising from the relative motion of two contacting surfaces are a well-known source of energy dissipation. Sometimes this is an unwanted effect of the design, but it can also be intentionally used to increase the damping of a certain system in a simple and cost-effective way. In an

  10. Dissipation of solar energy in landscape - controlled by management of water and vegetation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan

    2001-01-01

    Roč. 24, - (2001), s. 641-645 ISSN 0960-1481 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Solar energy dissipation * vegetation * production -evapotranspiration Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.224, year: 2001

  11. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  12. Investigation of energy dissipation in meat with an experimental ultrasonic device

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.

    2000-01-01

    The phenomena concomitant with acoustic energy dissipation in meat were studied. An experimental ultrasonic device (25-37 kHz, 2 W/square cm) was applied. Measurements of meat temperature in ultrasonic field showed the temperature rise significant for technological reasons. In this respect the changes in water absorption ability and acidity of meat were also examined

  13. Assessment of Stability and Energy Dissipation Performances of an Antifer Layer Protected Caisson

    Directory of Open Access Journals (Sweden)

    M. Sedat Kabdaşlı

    2015-08-01

    Full Text Available The present study intends to assess the stability and energy dissipation performances of a breakwater configuration (APC protected by an antifer layer. For comparison, an ordinary caisson (OC, which was 5% wider and 10% heavier, was also investigated. Physical models were implemented and tested under regular and irregular waves; and resulting linear and angular displacements were directly measured via a photogrammetric method. Additionally, wave forces and resulting horizontal displacements were estimated both from recorded pressure data and from individual incident waves by modified Goda method. To calculate the horizontal displacement, the estimated wave force time series were directly double-integrated, whilst the theoretical method proposed by Shimosako et al. (1994 were used on the individual force values. Although OC was tested under shorter durations and had a more favorable superstructure in terms of resisting forces, the results indicated that APC was significantly more stable. Energy dissipation performance of the tested configurations were quantified in terms of spectral averaged and phase resolved reflection coefficients, whereas antifer damage ratio was measured on a block-count basis. Results indicated that the APC configuration had an enhanced performance of dissipating the wave energy; moreover, the dissipated energy directly links to antifer damage ratio.

  14. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  15. Impact of curved shaped energy dissipaters downstream of head structures on both water energy dissipation and irrigation water quality

    Directory of Open Access Journals (Sweden)

    Ashour Mohamed A.

    2015-03-01

    Full Text Available Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was conducted to investigate some untested shapes of curved dissipaters with different angles of curvature and arrangements from two points of view. The first is to examine its efficiency in dissipating the kinetic water energy. The second is to examine the most effective shape and arrangement obtained from the aforementioned step in enriching the flow with dissolved oxygen for enhancement of the irrigation water quality. The study was held in the irrigation and hydraulic laboratory of the Civil Department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using 21 types of curved dissipaters with different arrangements. A total of 660 runs were carried out. Results were analysed, tabulated and graphically presented, and new formulas were introduced to estimate the energy dissipation ratio, as well as the DO concentrations. Results in general showed that the dissipater performance is more tangible in dissipating the residual energy when the curvature is in the opposite direction to that of the flow. Also, the energy loss ratio increases with an increase in curvature angle (θ, until it reaches (θ = 120°, then it decreases again. The study also showed that using three rows of dissipaters give nearly the same effect as using four rows, concerning both the relative energy dissipation and dissolved oxygen content. So, it is recommended to use three rows of the curved dissipater with the angle of curvature (θ = 120° in the opposite direction to that of the flow to obtain the maximum percentage of water energy dissipation downstream of head structures, and maximum dissolved oxygen content too

  16. Energy dissipation and charged particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan Edward, K.G.; )

    2013-01-01

    In this paper, we use a model combining the constituent quark picture with Landau relativistic hydrodynamics. Within this model, the secondary particle production in nucleus-nucleus or nucleon-nucleon (p-barp/pp) collisions is basically driven by the amount of the initial effective energy deposited by participants (quarks or nucleons) into the Lorentz contracted overlap region

  17. Dissipative processes in 18O + 9Be and 18O + 181Ta reactions at Fermi energies

    International Nuclear Information System (INIS)

    Erdemchimeg, B.; Mikhailova, T.I.; Artyukh, A.G.; Kaminski, G.; Sereda, Yu.M.; Erdemchimeg, B.; Kaminski, G.; Sereda, Yu.M.; Colonna, M.; Di Toro, M.; Wolter, H.H.

    2010-01-01

    A study of peripheral nuclear collisions at Fermi energies with transport models is presented. It is motivated by experiments devoted to studying of isotopic yields in the reactions 18 O on 9 Be and 181 Ta at E/A = 35 MeV measured at very forward angles. The data show a two-component structure, one centered at beam velocity ('direct component') and another at lower velocities ('dissipative component'). It is shown that the transport calculations describe the general features of the dissipative component of the reaction. In our calculations we take into account the evaporation of the excited, primary projectile-like residues due to statistical decay. This improves the comparison of the results of the calculations with experiment. We find substantially different behavior of the dissipative component in the reactions with light and heavy target.

  18. Load proportional safety brake

    Science.gov (United States)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  19. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  20. On friction braking demand with regenerative braking

    NARCIS (Netherlands)

    Walker, A.M.; Lampérth, M.U.; Wilkins, S.

    2002-01-01

    Developments in Hybrid Electric and pure Electric Vehicles are intended to improve the operational efficiency of road vehicles. Regenerative braking, which has long been established in rail vehicles, is integral to efficiency improvement, with up to 30% of overall traction energy demand satisfied by

  1. The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

    NARCIS (Netherlands)

    Idarraga Alarcon, G.A.; Burgelman, N.D.M.; Meza Meza, J.; Toro, A.; Li, Z.

    2015-01-01

    This work investigates the energy dissipation in a wheel/rail system through friction work modeling. In order to identify the effect of the friction coefficient on the energy dissipation in the wheel/rail contact, several simulations were performed using a 3D multibody model of a railway vehicle

  2. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.

    Science.gov (United States)

    Demmig-Adams, Barbara; Adams, William W

    2006-01-01

    This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.

  3. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  4. Rapid Quantification of Energy Absorption and Dissipation Metrics for PPE Padding Materials

    Science.gov (United States)

    2010-01-22

    dampers ,   i.e.,  Hooke’s  Law  springs  and   viscous ...absorbing/dissipating materials. Input forces caused by blast pressures, determined from computational fluid dynamics (CFD) analysis and simulation...simple  lumped-­‐ parameter  elements   –  spring,  k  (energy  storage)   –  damper ,  b  (energy  dissipa/on   Rapid

  5. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    Directory of Open Access Journals (Sweden)

    Chen M

    2015-07-01

    Full Text Available Ming Chen,1 Erik Anderson,2 Geoffrey Hill,3 John J Chen,4 Thomas Patrianakos2 1Department of Surgery, University of Hawaii, Honolulu, HI, 2Department of Ophthalmology, John H Stroger, Jr Hospital of Cook County, Chicago, IL, 3Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 4Biostatistics Core, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA Purpose: To compare cumulative dissipated energy between two phacoemulsification machines. Setting: An ambulatory surgical center, Honolulu, Hawaii, USA. Design: Retrospective chart review. Methods: A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results: The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds (P<0.001 across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds (P=0.005–<0.001. Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion: The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. Keywords: phacoemulsification, cumulative dissipated energy, Centurion Vision System, Infiniti Vision System

  6. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    Science.gov (United States)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  7. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    International Nuclear Information System (INIS)

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  8. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun

    2010-06-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  9. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun; Fellner, Klemens; Zhu, Changjiang

    2010-01-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  10. Diabatic emission of neutrons: A probe for the energy dissipation mechanism in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Cassing, W.

    1984-05-01

    The precompound emission of neutrons in central nucleus-nucleus collisions is investigated within the framework of dissipative diabatic dynamics. For 92 Mo + 92 Mo at bombarding energies between 7.5 and 20 MeV/u the differential neutron multiplicities dMsub(n)/dEsub(n) are estimated from the decay of highly excited diabatic single-particle states. The energy spectra have an almost exponential high-energy tail with effective temperatures up to 10 MeV for 20 MeV/u bombarding energy. (orig.)

  11. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    Science.gov (United States)

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Kinetic energy dissipation of a tuning fork immersed in superfluid helium at different frequencies of oscillations

    International Nuclear Information System (INIS)

    Gritsenko, I.A.; Klokol, K.A.; Sokolov, S.S.; Sheshin, G.A.

    2016-01-01

    An experimental study is made of the drag coefficient, which is the characteristics of energy dissipation during oscillations of the tuning forks, immersed in liquid helium. The experiments were performed in the temperature range from 0.1 to 3.5 K covering both the range of a hydrodynamic flow, and the ballistic regime of transfer of thermal excitations of superfluid helium below 0.6 K. It is found that there is the frequency dependence of the drag coefficient in the hydrodynamic limit, when the main dissipation mechanism is the viscous friction of the fluid against the walls of the oscillating body at temperatures above 0.7 K. In this case, the drag coefficient is proportional to the square root of the frequency of oscillation, and its temperature dependence in He II is determined by the respective dependence of the normal component density of the normal component and the viscosity of the fluid. At lower temperatures, the dependence of drag coefficient on the frequency is not available, and the magnitude of the dissipative losses is determined only by the temperature dependence of the density of the normal component. At the same time in the entire range of temperatures value of dissipative losses depends on the geometry of the oscillating body.

  13. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  14. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  15. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  16. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    Science.gov (United States)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  17. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    OpenAIRE

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    Ming Chen,1 Erik Anderson,2 Geoffrey Hill,3 John J Chen,4 Thomas Patrianakos2 1Department of Surgery, University of Hawaii, Honolulu, HI, 2Department of Ophthalmology, John H Stroger, Jr Hospital of Cook County, Chicago, IL, 3Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 4Biostatistics Core, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA Purpose: To compare cumulative dissipated energy between two phacoemulsification mac...

  18. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  19. A photophysical control mechanism for zeaxanthin-associated radiationless energy dissipation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.A.; Cua, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry; Young, A. [Johns Moores Univ., Liverpool (United Kingdom). School of Biological and Earth Sciences; Gosztola, D.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

    1994-09-01

    Understanding the way in which excess solar energy is dissipated by photosynthetic membranes under high light stress is a major problem in photosynthesis studies. This paper reports femtosecond time-resolved, fast-transient optical spectroscopic analyses of three important xanthophylls: violaxanthin, antheraxanthin, zeoaxanthin. The results support the notion that the enzymatic reactions that interconvert these xanthophylls act as a kind of ``molecular gear shift`` controlling whether the molecules function as light-harvesting pigments performing forward energy transfer or as fluorescence quenchers performing reverse energy transfer.

  20. Recent progress and application on seismic isolation energy dissipation and control for structures in China

    Science.gov (United States)

    Zhou, Fulin; Tan, Ping

    2018-01-01

    China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.

  1. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour

    Science.gov (United States)

    Li, Ling; Ortiz, Christine

    2014-05-01

    Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm-3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm-3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

  2. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  3. Energy-Based Design Criterion of Dissipative Bracing Systems for the Seismic Retrofit of Frame Structures

    Directory of Open Access Journals (Sweden)

    Gloria Terenzi

    2018-02-01

    Full Text Available Direct sizing criteria represent useful tools in the design of dissipative bracing systems for the advanced seismic protection of existing frame structures, especially when incorporated dampers feature a markedly non-linear behaviour. An energy-based procedure is proposed herein to this aim, focusing attention on systems including fluid viscous devices. The procedure starts by assuming prefixed reduction factors of the most critical response parameters in current conditions, which are evaluated by means of a conventional elastic finite element analysis. Simple formulas relating the reduction factors to the equivalent viscous damping ratio of the dampers, ξeq, are proposed. These formulas allow calculating the ξeq values that guarantee the achievement of the target factors. Finally, the energy dissipation capacity of the devices is deduced from ξeq, finalizing their sizing process. A detailed description of the procedure is presented in the article, by distinguishing the cases where the prevailing structural deficiencies are represented by poor strength of the constituting members, from the cases having excessive horizontal displacements. A demonstrative application to the retrofit design of a reinforced concrete gym building is then offered to explicate the steps of the sizing criterion in practice, as well as to evaluate the enhancement of the seismic response capacities generated by the installation of the dissipative system.

  4. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  5. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  6. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  7. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  8. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    2013-01-01

    Full Text Available A new cooperative braking control strategy (CBCS is proposed for a parallel hybrid electric vehicle (HEV with both a regenerative braking system and an antilock braking system (ABS to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC, and the motor speed, a fuzzy logic control strategy (FLC is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.

  9. THE INFLUENCE OF BRAKE PADS THERMAL CONDUCTIVITY ON PASSANGER CAR BRAKE SYSTEM EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Predrag D Milenković

    2010-01-01

    Full Text Available In phase of vehicle braking system designing, besides of mechanical characteristics, it is also necessary to take under consideration the system's thermal features. This is because it is not enough just to achieve proper braking power, for the brake system to be effective but equally important thing is the dissipation of heat to the environment. Heat developed in the friction surfaces dissipate into the environment over the disk in one hand and through the brake linings and caliper, in the other. The striving is to make that greatest amount of heat to dissipate not threw the brake pads but threw disc. The experimental researching of heat transfer process taking place at vehicle brakes was made in the R&D Center of "Zastava automobili" car factory in order to increase the efficiency of brake system. The standard laboratory and road test procedures were used, according to factory quality regulations. The modern equipment such as thermo camera, thermo couples, torque transducers, signal amplifiers, optical speed measuring system and laptop computer were used. In this paper will be shown the part of the experimental researching, which refers to the thermal conductivity of brake pad friction linings.

  10. Experimental analysis of mechanical joints strength by means of energy dissipation

    Science.gov (United States)

    Wolf, Alexander; Lafarge, Remi; Kühn, Tino; Brosius, Alexander

    2018-05-01

    Designing complex structures with the demand for weight reduction leads directly to a multi-material concept. This mixture has to be joined securely and welding, mechanical joining and the usage of adhesives are commonly used for that purpose. Sometimes also a mix of at least two materials is useful to combine the individual advantages. The challenge is the non-destructive testing of these connections because destructive testing requires a lot of preparation and expensive testing equipment. The authors show a testing method by measuring and analysing the energy dissipation in mechanical joints. Known methods are radiography, thermography and ultrasound testing. Unfortunately, the usage of these methods is difficult and often not usable in fibre-reinforced-plastics. The presented approach measures the propagation of the elastic strain wave through the joint. A defined impact strain is detected with by strain-gauges whereby the transmitter is located on one side of the joint and the receiver on the other, respectively. Because of different mechanisms, energy dissipates by passing the joint areas. Main reasons are damping caused by friction and material specific damping. Insufficient performed joints lead to an effect especially in the friction damping. By the measurement of the different strains and the resulting energy loss a statement to the connection quality is given. The possible defect during the execution of the joint can be identified by the energy loss and strain vs. time curve. After the description of the method, the authors present the results of energy dissipation measurements at a bolted assembly with different locking torques. By the adjustable tightening torques for the screw connections easily a variation of the contact pressure can be applied and analysed afterwards. The outlook will give a statement for the usability for other mechanical joints and fibre-reinforced-plastics.

  11. New technical solutions of using rolling stock electrodynamical braking

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  12. Frictional systems under periodic loads — History-dependence, non-uniqueness and energy dissipation

    International Nuclear Information System (INIS)

    Barber, J R

    2012-01-01

    Nominally static contacts such as bolted or shrink-fit joints typically experience regions of microslip when subjected to oscillatory loading. This results in energy dissipation, reflected as apparent hysteretic damping of the system, and also may cause the initiation of fretting fatigue cracks. Early theoretical studies of the Hertzian contact problem by Cattaneo and Mindlin were confirmed experimentally by Johnson, who identified signs of fretting damage in the slip annulus predicted by the theory. For many years, tribologists assumed that Melan's theorem in plasticity could be extended to frictional systems — i.e. that if there exists a state of residual stress associated with frictional slip that is sufficient to prevent periodic slip in the steady state, then the system will shake down, regardless of the initial condition. However, we now know that this is true only if there is no coupling between the normal and tangential loading problems, as will be the case notably when contact occurs on a symmetry plane. For all other cases, periodic loading scenarios can be devised such that shakedown occurs for some initial conditions and not for others. The initial condition here might be determined by the assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading path before the steady cycle is attained. This non-uniqueness of the steady state persists at load amplitudes above the shakedown limit, in which case there is always some dissipation, but the dissipation per cycle (and hence both the effective damping and the susceptibility to fretting damage) depends on the initial conditions. This implies that fretting fatigue experiments need to follow a well-defined assembly protocol if reproducible results are to be obtained. We shall also present results showing that when both normal and tangential forces vary in time, the energy dissipation is very sensitive to the relative phase of the oscillatory components, being greatest

  13. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  14. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems.

    Science.gov (United States)

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    To compare cumulative dissipated energy between two phacoemulsification machines. An ambulatory surgical center, Honolulu, Hawaii, USA. Retrospective chart review. A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (PInfiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%-45% (2.25-12.54 percent-seconds) (P=0.005-Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system.

  15. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    International Nuclear Information System (INIS)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance

  16. Suitability of Hydraulic Disk Brakes for Passive Actuation of Upper-Extremity Rehabilitation Exoskeleton

    Directory of Open Access Journals (Sweden)

    Arno H. A. Stienen

    2009-01-01

    Full Text Available Passive, energy-dissipating actuators are promising for force-coordination training in stroke rehabilitation, as they are inherently safe and have a high torque-to-weight ratio. The goal of this study is to determine if hydraulic disk brakes are suitable to actuate an upper-extremity exoskeleton, for application in rehabilitation settings. Passive actuation with friction brakes has direct implications for joint control. Braking is always opposite to the movement direction. During standstill, the measured torque is equal to the torque applied by the human. During rotations, it is equal to the brake torque. Actively assisting movement is not possible, nor are energy-requiring virtual environments. The evaluated disk brake has a 20 Nm bandwidth (flat-spectrum, multi-sine of 10 Hz; sufficient for torques required for conventional therapy and simple, passive virtual environments. The maximum static output torque is 120 Nm, sufficient for isometric training of the upper extremity. The minimal impedance is close zero, with only the inertia of the device felt. In conclusion, hydraulic disk brakes are suitable for rehabilitation devices.

  17. BRAKE DEVICE

    Science.gov (United States)

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  18. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  19. Energy dissipation during an explosion in a porous elasto-plastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Lovetskii, E.E.; Maslennikov, A.M.; Fetisov, V.S.

    1979-01-01

    A study is made of the redistribution of energy from camouflage blasting in a saturated porous medium. The study is undertaken with the aid of a numerical solution to a system of hydrodynamic equations, that account for shear strength of the substance under investigation. A study is made of the energy characteristics of explosion, their dynamic development, the influence of strength parameters of the medium, and porosity on these characteristics. A mechanism that is associated with the impact compression of matter is identified as the basic mechanism of energy dissipation for dry porous media. Water saturation of pores brings the energy characteristics of the explosion close to the explosion in a monolith. 12 references, 5 figures, 1 table.

  20. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  1. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  2. Friction and wear of carbon-graphite materials for high-energy brakes

    Science.gov (United States)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  3. Friction and wear of carbon-graphite materials for high energy brakes

    Science.gov (United States)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  4. Deliberate utilization of interaction torques brakes elbow extension in a fast throwing motion.

    Science.gov (United States)

    Hore, Jon; Debicki, Derek B; Gribble, Paul L; Watts, Sherry

    2011-05-01

    We tested the hypothesis that in fast arm movements the CNS deliberately utilizes interaction torques to decelerate (brake) joint rotations. Twelve subjects performed fast 2-D overarm throws in which large elbow extension velocities occurred. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. After ball release, a large follow-through shoulder extension acceleration occurred that was initiated by shoulder extensor muscle torque. This shoulder acceleration produced a flexor interaction torque at the elbow that initiated elbow deceleration (braking). An instantaneous mechanical interaction of passive torques then occurred between elbow and shoulder, i.e., elbow extension deceleration produced a large shoulder extensor interaction torque that contributed to the shoulder extension acceleration which, simultaneously, produced a large elbow flexor interaction torque that contributed to elbow extension deceleration, and so on. Late elbow flexor muscle torque also contributed to elbow deceleration. The interaction of passive torques between shoulder and elbow was braked by shoulder flexor muscle torque. In this mechanism, shoulder musculature contributed to braking elbow extension in two ways: shoulder extensors initiated the mechanical interaction of passive torques between shoulder and elbow and shoulder flexors dissipated kinetic energy from elbow braking. It is concluded that, in fast 2-D throws, the CNS deliberately utilizes powerful interaction torques between shoulder and elbow to brake motion at the elbow.

  5. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    Science.gov (United States)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  6. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Directory of Open Access Journals (Sweden)

    Chen-Guang Huang

    2017-11-01

    Full Text Available During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  7. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Science.gov (United States)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  8. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    International Nuclear Information System (INIS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ∼30 ps and a center wavelength of ∼1929 nm with a spectral bandwidth of ∼3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system. (letter)

  9. Energy-dissipating and self-repairing SMA-ECC composite material system

    International Nuclear Information System (INIS)

    Li, Xiaopeng; Li, Mo; Song, Gangbing

    2015-01-01

    Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events. (paper)

  10. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  11. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  12. Comparative study of passive and semi-active energy dissipation devices intended for overhead cranes

    International Nuclear Information System (INIS)

    Guihot, P.; Revaud, D.

    1996-04-01

    This paper deals with the results of a bibliographic survey of energy dissipation devices which could be adapted for overhead cranes. The principle of passive devices using friction, yielding steel systems of viscous and viscoelastic systems are remembered. An active control system, which needs a minimum of external control energy is also presented. The application to overhead cranes which have a strong non linear behaviour under strong seismic motion (sliding between rails and wheels, local yielding and damage) is further discussed. The first results of a numerical study in progress are likewise purposed. The criterion of selection of the devices turn on the performance, the robustness and the reliability. The behaviour in the presence of non linearities, the sensitivity to the variations of the vibratory characteristics, and lastly the sensitivity to the response delay of the active controller are taken into account. (authors). 14 refs., 4 figs

  13. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  14. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem

    Science.gov (United States)

    Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.

    2013-02-01

    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

  15. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division

    Science.gov (United States)

    Xiong, Liping; Lan, Ganhui

    2015-01-01

    Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator’s regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system’s regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators’ monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator’s regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function. PMID:26317492

  16. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  17. Laser energy-pooling processes in an optically thick Cs vapor near a dissipative surface

    International Nuclear Information System (INIS)

    Gagne, Jean-Marie; Le Bris, Karine; Gagne, Marie-Claude

    2002-01-01

    We characterize, for the first time to our knowledge, the laser-induced backward fluorescence (retrofluorescence) spectra that result from energy-pooling collisions between Cs atoms near a dissipative thin Cs layer on a glass substrate. We resolve, experimentally and theoretically, the laser spectroscopic problem of energy-pooling processes related to the nature of the glass-metallic vapor interface. Our study focused on the integrated laser-induced retrofluorescence spectra for the 455.5-nm (7 2 P 3/2 -6 2 S 1/2 ) and 852.2-nm (6 2 P 3/2 -6 2 S 1/2 ) lines as a function of laser scanning through pumping resonance at the 852.2-nm line. We experimentally investigate the retrofluorescence from 420 to 930 nm, induced by a diode laser tuned either in the wings or in the center of the pumping resonance line. We present a detailed theoretical model of the retrofluorescence signal based on the radiative transfer equation, taking into account the evanescent wave of the excited atomic dipole strongly coupled with a dissipative surface. Based on theoretical and experimental results, we evaluate the effective nonradiative transfer rate A(bar sign) 6 2 P 3/2 →6 2 S 1/2s f for atoms in the excited 6 2 P 3/2 level located in the near-field region of the surface of the cell. Values extracted from the energy-pooling process analysis are equivalent to those found directly from the 852.2-nm resonance retrofluorescence line. We show that the effective energy-pooling coefficients k-tilde 7 2 P 3/2 and k-tilde 7 2 P 1/2 are approximately equal. The agreement between theory and experiment is remarkably good, considering the simplicity of the model

  18. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  19. Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow

    Science.gov (United States)

    Abe, Hiroyuki; Antonia, Robert Anthony

    2011-05-01

    Non-dimensional parameters for the mean energy and scalar dissipation rates Cɛ and Cɛθ are examined using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow with a passive scalar (Pr = 0.71) at several values of the Kármán (Reynolds) number h+. It is shown that Cɛ and Cɛθ are approximately equal in the near-equilibrium region (viz., y+ = 100 to y/h = 0.7) where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes of Cɛ and Cɛθ are about 2 and 1 in the logarithmic and outer regions, respectively, when h+ is sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary layer, reflecting the similarity between the mean velocity and temperature distributions among these three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour of Cɛ and Cɛθ impacts on turbulence modeling. In particular, the similarity between Cɛ and Cɛθ leads to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and Corrsin microscales and analogous relations, in terms of h+, for the Taylor microscale Reynolds number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both the DNS data at small to moderate h+ and the experimental data of Comte-Bellot [Ph. D. thesis (University of Grenoble, 1963)] at larger h+. It does not however apply to a turbulent boundary layer where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30% larger than for the channel flow.

  20. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Science.gov (United States)

    Djenidi, L.; Antonia, R. A.

    2012-10-01

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of < \\varepsilon rangle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.

  1. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  2. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  3. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  4. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    Science.gov (United States)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  5. Testing Procedures for High Output Fluid Viscous Dampers Used in Building and Bridge Structures to Dissipate Seismic Energy

    Directory of Open Access Journals (Sweden)

    Douglas P. Taylor

    1995-01-01

    Full Text Available Today's economic climate demands that conversion of military technology for commerical applications be a part of an aerospace and defense company's strategic planning. Toward this goal, a successful defense conversion has occurred recently with the application of high capacity fluid damping devices from the defense community for use as seismic energy dissipation elements in commercial buildings, bridges, and related structures. These products have been used by the military for many years for attenuation of weapons grade shock, typically applied to shipboard equipment or land based strategic weapons. Commercial energy dissipation devices historically have involved heavy yielding sections or hysteretic joints.

  6. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence

    Science.gov (United States)

    Cleve, J.; Greiner, M.; Sreenivasan, K. R.

    2003-03-01

    The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.

  7. Comparative analysis of two hybrid energy storage systems used in a two front wheel driven electric vehicle during extreme start-up and regenerative braking operations

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2017-01-01

    Highlights: • Comparison of HESS Ultracapacitor and Flywheel for maximizing EV energy recovery. • Energy recovery performed for extreme two front-wheel driven EV brake conditions. • Regenerative EV braking control strategies and constraints for HESS. • Comparative cost effectiveness for two HESS solutions Ultracapacitors and Flywheel. - Abstract: This paper presents the comparative study of two hybrid energy storage systems (HESS) of a two front wheel driven electric vehicle. The primary energy source of the HESS is a Li-Ion battery, whereas the secondary energy source is either an ultracapacitor (UC) or a flywheel energy system (FES). The main role of the secondary source is to deliver/recover energy during high peak power demand, but also to increase battery lifetime, considered among the most expensive items in the electric vehicle. As a first step, a techno-economic comparative study, supported by strong literature research, is performed between the UC and the FES. The design and sizing of each element will be presented. The comparison criteria and specifications are also described. The adopted approach in this paper is based on an academic non-oriented point of view. In a second step, each of the HESS will be integrated in a more global Simulink model which includes the vehicle model, the traction control system (TCS), the regenerative braking system and the vehicle actuators. Simulation tests are performed for an extreme braking and vehicle starting-up operations. Tests are realized on two different surface road types and conditions (high and low friction roads) and for different initial system states. In order to show the most appropriate storage system regarding compactness, weight and battery constraints minimization, deep comparative analysis is provided.

  8. Energy dissipation unveils atomic displacement in the noncontact atomic force microscopy imaging of Si(111 )-(7 ×7 )

    Science.gov (United States)

    Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko

    2018-03-01

    The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.

  9. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  10. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  11. Carbon nanotubes within polymer matrix can synergistically enhance mechanical energy dissipation

    Science.gov (United States)

    Ashraf, Taimoor; Ranaiefar, Meelad; Khatri, Sumit; Kavosi, Jamshid; Gardea, Frank; Glaz, Bryan; Naraghi, Mohammad

    2018-03-01

    Safe operation and health of structures relies on their ability to effectively dissipate undesired vibrations, which could otherwise significantly reduce the life-time of a structure due to fatigue loads or large deformations. To address this issue, nanoscale fillers, such as carbon nanotubes (CNTs), have been utilized to dissipate mechanical energy in polymer-based nanocomposites through filler-matrix interfacial friction by benefitting from their large interface area with the matrix. In this manuscript, for the first time, we experimentally investigate the effect of CNT alignment with respect to reach other and their orientation with respect to the loading direction on vibrational damping in nanocomposites. The matrix was polystyrene (PS). A new technique was developed to fabricate PS-CNT nanocomposites which allows for controlling the angle of CNTs with respect to the far-field loading direction (misalignment angle). Samples were subjected to dynamic mechanical analysis, and the damping of the samples were measured as the ratio of the loss to storage moduli versus CNT misalignment angle. Our results defied a notion that randomly oriented CNT nanocomposites can be approximated as a combination of matrix-CNT representative volume elements with randomly aligned CNTs. Instead, our results points to major contributions of stress concentration induced by each CNT in the matrix in proximity of other CNTs on vibrational damping. The stress fields around CNTs in PS-CNT nanocomposites were studied via finite element analysis. Our findings provide significant new insights not only on vibrational damping nanocomposites, but also on their failure modes and toughness, in relation to interface phenomena.

  12. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)

    2012-10-15

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)

  13. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  14. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  15. Energy Conservation in Dissipative Processes: Teacher Expectations and Strategies Associated with Imperceptible Thermal Energy

    Science.gov (United States)

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…

  16. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion

    Science.gov (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  17. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  18. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  19. MMS observation of energy conversion and collisionless plasma dissipation channels in the turbulent magnetosheath

    Science.gov (United States)

    Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.

    2017-12-01

    High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.

  20. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    International Nuclear Information System (INIS)

    Fatchurrohman, N; Marini, C D; Suraya, S; Iqbal, AKM Asif

    2016-01-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc. (paper)

  1. Energy dissipation effects on imaging of soft materials by dynamic atomic force microscopy: A DNA-chip study

    Energy Technology Data Exchange (ETDEWEB)

    Phaner-Goutorbe, M., E-mail: magali.phaner@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Iazykov, M. [Université de Lyon, laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d' Italie 69364 Lyon cedex 07 (France); Villey, R. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Université de Lyon, laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin 43 boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Sicard, D.; Robach, Y. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2013-05-01

    Using amplitude-mode AFM (AM-AFM), we have obtained valuable information during these recent years through the study of amplitude and phase shift dependence on tip–sample separation, leading to a comprehensive understanding of the interaction processes. Two imaging regimes, attractive and repulsive, have been identified and a relationship between phase and dissipative energy was established, providing information on observed material properties. Most of the previous studies have concerned model systems: either hard or soft materials. In this paper, we present the analysis of a mixed system of soft structures on a hard substrate. This is a DNA chip for biological applications consisting of oligonucleotides covalently linked by a layer of silane to a silicon substrate. A detailed study of amplitude-phase curves as a function of the tip–sample separation allowed us to define the best experimental conditions to obtain specific information: we got reliable conditions to minimize noise during topographic imaging and an understanding of the processes of energy dissipation involved in the DNA breaking for DNA arrays. By calculating the energy dissipated as a function of the amplitude of oscillation, we have demonstrated a transition from an energy dissipation process governed by localized viscoelastic interactions (due to the soft layer) to a process governed by extended irreversible deformations (due to the hard substrate). Highlights: ► Amplitude mode AFM analysis of a DNA array is presented. ► Reliable conditions for noise minimization on topographic images are presented. ► Phase, amplitude vs distance curves are analyzed for different setpoint amplitudes. ► Energy dissipation processes are described from viscoelasticity to DNA breaking.

  2. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  3. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  4. Validity of a device designed to measure braking power in bicycle disc brakes.

    Science.gov (United States)

    Miller, Matthew C; Fink, Philip W; Macdermid, Paul William; Perry, Blake G; Stannard, Stephen R

    2017-07-21

    Real-world cycling performance depends not only on exercise capacities, but also on efficiently traversing the bicycle through the terrain. The aim of this study was to determine if it was possible to quantify the braking done by a cyclist in the field. One cyclist performed 408 braking trials (348 on a flat road; 60 on a flat dirt path) over 5 days on a bicycle fitted with brake torque and angular velocity sensors to measure brake power. Based on Newtonian physics, the sum of brake work, aerodynamic drag and rolling resistance was compared with the change in kinetic energy in each braking event. Strong linear relationships between the total energy removed from the bicycle-rider system through braking and the change in kinetic energy were observed on the tar-sealed road (r 2  = 0.989; p brake torque and angular velocity sensors are valid for calculating brake power on the disc brakes of a bicycle in field conditions. Such a device may be useful for investigating cyclists' ability to traverse through various terrains.

  5. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    Science.gov (United States)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  6. Energy decay for wave equations of phi-Laplacian type with weakly nonlinear dissipation

    Directory of Open Access Journals (Sweden)

    Aissa Guesmia

    2008-08-01

    Full Text Available In this paper, first we prove the existence of global solutions in Sobolev spaces for the initial boundary value problem of the wave equation of $phi$-Laplacian with a general dissipation of the form $$ (|u'|^{l-2}u''-Delta_{phi}u+sigma(t g(u'=0 quadext{in } Omegaimes mathbb{R}_+ , $$ where $Delta_{phi}=sum_{i=1}^n partial_{x_i}igl(phi (|partial_{x_i}|^2partial_{x_i}igr$. Then we prove general stability estimates using multiplier method and general weighted integral inequalities proved by the second author in [18]. Without imposing any growth condition at the origin on $g$ and $phi$, we show that the energy of the system is bounded above by a quantity, depending on $phi$, $sigma$ and $g$, which tends to zero (as time approaches infinity. These estimates allows us to consider large class of functions $g$ and $phi$ with general growth at the origin. We give some examples to illustrate how to derive from our general estimates the polynomial, exponential or logarithmic decay. The results of this paper improve and generalize many existing results in the literature, and generate some interesting open problems.

  7. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Science.gov (United States)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  8. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  9. Effects of Energy Dissipation Rate on Islets of Langerhans: Implications for Isolation and Transplantation

    Science.gov (United States)

    Shenkman, Rustin M.; Godoy-Silva, Ruben; Papas, Klearchos K.; Chalmers, Jeffrey J.

    2010-01-01

    Acute physical stresses can occur in the procurement and isolation process and potentially can contribute to islet death or malfunction upon transplantation. A contractional flow device, previously used to subject suspended cells to well-defined hydrodynamic forces, has been modified and used to assess the vulnerability of porcine islets of Langerhans to hydrodynamic forces. The flow profiles and velocity gradients in this modified device were modeled using commercial CFD software and characterized, as in previous studies, with the scalar parameter, energy dissipation rate (EDR). Porcine islets were stressed in a single pass at various stress levels (i.e., values of EDR). Membrane integrity, oxygen uptake rate, caspase 3/7 activity, and insulin release were not affected by the levels of fluid stress tested up to an EDR of 2 × 103 W/m3. Visual observation of the stressed islets suggested that cells at the islet exterior were peeled away at EDR greater than 10,000 W/m3, however, this observation could not be confirmed using image analysis software, which determined the ratio of surface perimeter to total area. The result of this study suggests an upper limit in fluid stress to which islets can be subjected. Such upper limits assist in the design and operation of future islet processing equipment and processes. PMID:19191351

  10. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  11. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    Science.gov (United States)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-11-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  12. Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2017-04-01

    Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.

  13. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  14. Acceleration of the solar-thermal energy development but still some brakes upon photovoltaic conversion

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    France shows today the highest growth rate for solar thermal energy with respect to other European countries. This market is structuring and tries to favour quality. A label for systems certification has been presented in January 2007. Photovoltaic conversion has been tied up for a long time by poorly attractive power repurchase tariffs. It benefits now from a propitious framework for its development even if some financial incentive questions relative to the integration of solar panels to buildings remain unanswered. (J.S.)

  15. Transfer and dissipation of energy during wave group propagation on a gentle beach slope

    Science.gov (United States)

    Padilla, Enrique M.; Alsina, José M.

    2017-08-01

    The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.

  16. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  17. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  18. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  19. Braking wind in Australia. A critical evaluation of the renewable energy target

    International Nuclear Information System (INIS)

    Valentine, Scott

    2010-01-01

    This paper provides a critical evaluation of Australia's new Renewable Energy Target (RET) program with respect to its capacity to support wind power development. Four structural flaws associated with the RET which undermine its effectiveness as a catalyst for technological change in the electricity sector are discussed: (1) the inclusion of waste coal mine gas (WCMG) as an eligible fuel source which acts as an indirect coal industry subsidy, (2) program duration which is too short and ill-structured, (3) a multiplier that is well-intended to support small-scale renewable technologies but which creates 'phantom capacity', and (4) the capped target of 45,000 GWh which will stymie long-term wind power market investment. The paper concludes with recommendations which stress the importance of passing effective Carbon Pollution Renewable Scheme (CPRS) legislation to offset the weaknesses associated with the RET. If an effective CPRS cannot be implemented, the paper recommends that amendments be made to the RET to (1) remove WCMG from the list of approved alternative energy sources, and (2) extend the RET targets to reach 120,000 GWh by 2030. (author)

  20. 14 CFR 25.735 - Brakes and braking systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system, and...

  1. Peripheral collisions in Ar induced reactions between 27 and 44 A.MeV: study of energy dissipation by measuring the correlated neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.; Pouthas, J.; Jahnke, U.; Jiang, D.X.; Lott, B.; Jacquet, D.

    1988-01-01

    A 4 π detector measuring the neutron multiplicities has been used to investigate the energy dissipation during peripheral collisions in Ar induced reactions around the Fermi Energy. Besides the persistance of direct transfer reactions for the most peripheral collisions, there are strong evidences for the occurrence of quite large energy dissipation, a clear signature for the one body friction to still play a major role at these intermediate energies

  2. A method to achieve comparable thermal states of car brakes during braking on the road and on a high-speed roll-stand

    Science.gov (United States)

    Wolff, Andrzej

    2010-01-01

    The temperature of a brake friction surface influences significantly the braking effectiveness. The paper describes a heat transfer process in car brakes. Using a developed program of finite element method, the temperature distributions in brake rotors (disc and drum brake) of a light truck have been calculated. As a preliminary consistency criterion of the brake thermal state in road and roll-stand braking conditions, a balance of the energy cumulated in the brake rotor has been taken into account. As the most reliable consistency criterion an equality of average temperatures of the friction surface has been assumed. The presented method allows to achieve on a roll-stand the analogical thermal states of automotive brakes, which are observed during braking in road conditions. Basing on this method, it is possible to calculate the braking time and force for a high-speed roll-stand. In contrast to the previous papers of the author, new calculation results have been presented.

  3. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  4. A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO_2

    Science.gov (United States)

    Hackerott, João A.; Bakhoday Paskyabi, Mostafa; Reuder, Joachim; de Oliveira, Amauri P.; Kral, Stephan T.; Marques Filho, Edson P.; Mesquita, Michel dos Santos; de Camargo, Ricardo

    2017-11-01

    We discuss scalar similarities and dissimilarities based on analysis of the dissipation terms in the variance budget equations, considering the turbulent kinetic energy and the variances of temperature, specific humidity and specific CO_2 content. For this purpose, 124 high-frequency sampled segments are selected from the Boundary Layer Late Afternoon and Sunset Turbulence experiment. The consequences of dissipation similarity in the variance transport are also discussed and quantified. The results show that, for the convective atmospheric surface layer, the non-dimensional dissipation terms can be expressed in the framework of Monin-Obukhov similarity theory and are independent of whether the variable is temperature or moisture. The scalar similarity in the dissipation term implies that the characteristic scales of the atmospheric surface layer can be estimated from the respective rate of variance dissipation, the characteristic scale of temperature, and the dissipation rate of temperature variance.

  5. Antiskid braking system

    Science.gov (United States)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  6. Towards development of lignin reinforced elastomeric compounds with reduced energy dissipation

    Science.gov (United States)

    Bahl, Kushal

    This research deals with development of lignin as reinforcing filler for elastomeric compounds. Lignins are naturally abundant and cost competitive wood derivatives possessing strong mechanical properties and offering reactive functional groups on their surfaces. The presence of the functional groups imparts polarity to the lignin molecules and makes them incompatible with non-polar elastomers. Also, the large particle size of lignin does not produce desired mechanical reinforcement. The present study deals with solving the outstanding issues associated with the use of lignin as fillers for polymeric compounds. In addition, the work specifically focuses on producing rubber compounds with reduced energy dissipation via partial replacement of carbon black with lignin. The first part of this study is devoted to suppression of the polarity of lignin and achievement of compatibility with rubber matrix via modification of lignosulfonates (LS) with cyclohexylamine (CA). CA reduces the polarity of lignin via interactions originating from proton transfer and hydrogen bonding. X-ray Photoelectron Spectroscopy (XPS) confirms the attachment of CA on the surfaces of lignin. The mechanical properties of rubber compounds increase substantially along with improvement in cure properties and increase in crosslink density in the presence of LS particles modified with CA. The tensile strength and storage modulus show an increase by 45% and 41% respectively. The values of the 100% modulus and elongation at break also improve by 35% and 60% respectively. The second part of this study exploits the non-covalent interactions between lignin and carbon black (CB) for the design of novel hybrid filler particles exhibiting lower energy loss in rubber compounds. The hybrid fillers offer unique morphology consisting of coating layers of lignin on carbon black particle aggregates. It is found that such coating layers are formed due to pi-pi interactions between lignin and carbon black. Raman

  7. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  8. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb 3 Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb 3 Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb 3 Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  9. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell

    Science.gov (United States)

    Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B.

    2005-01-01

    A beach morphology monitoring program was initiated during summer 1997 along the Columbia River littoral cell (CRLC) on the coasts of northwest Oregon and southwest Washington, USA. This field program documents the seasonal through interannual morphological variability of these high-energy dissipative beaches over a variety of spatial scales. Following the installation of a dense network of geodetic control monuments, a nested sampling scheme consisting of cross-shore topographic beach profiles, three-dimensional topographic beach surface maps, nearshore bathymetric surveys, and sediment size distribution analyses was initiated. Beach monitoring is being conducted with state-of-the-art real-time kinematic differential global positioning system survey methods that combine both high accuracy and speed of measurement. Sampling methods resolve variability in beach morphology at alongshore length scales of approximately 10 meters to approximately 100 kilometers and cross-shore length scales of approximately 1 meter to approximately 2 kilometers. During the winter of 1997/1998, coastal change in the US Pacific Northwest was greatly influenced by one of the strongest El Nin??o events on record. Steeper than typical southerly wave angles resulted in alongshore sediment transport gradients and shoreline reorientation on a regional scale. The La Nin??a of 1998/1999, dominated by cross-shore processes associated with the largest recorded wave year in the region, resulted in net beach erosion along much of the littoral cell. The monitoring program successfully documented the morphological response to these interannual forcing anomalies as well as the subsequent beach recovery associated with three consecutive moderate wave years. These morphological observations within the CRLC can be generalized to explain overall system patterns; however, distinct differences in large-scale coastal behavior (e.g., foredune ridge morphology, sandbar morphometrics, and nearshore beach slopes

  11. Road-surface properties affecting rates of energy dissipation from vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)

    2009-09-15

    The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)

  12. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  13. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  14. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  15. Dissipation of the electronic excitation energy in fluorides with different type of a crystal lattice

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.

    2004-01-01

    F-centers is revealed. Therefore, in researched crystals any of types STE is not starting for creation of the F-centers. The expenditure energy for creation of STE at 20 K and the F-centers in the field of their primary creation (300 K) in crystals LiF and MeF 2 are comparable and equal 1.5-2 eV. It means that formation of both types of defects can be only result of decay created by radiation electronic excitation. Therefore, there are two basic channels of dissipation energy of high-energy electronic excitation, i.e. the creation of two-center type configuration of STEs in triplet state and creation Frenkel pairs defects. Occupation of channels occurs during an oscillatory relaxation of high-energy electronic excitation (a precursor state), instead of a process thermally activation conversion of one type of initial defect to another (from triplet STE to F, H pair). Thus total efficiency of generation of defects on channels remains practically to a constant in all the investigated temperature range 20-500 K. It is established, that the ratio between channels of energy dissipation of a precursor state depends on many parameters: temperatures of a crystal at an irradiation, type of crystal lattice, type and concentration both primary and created the defectiveness of a material during irradiation. Thus, creation of primary radiation defects of a lattice both in crystals LiF and MgF 2 , occurs during a relaxation electronic excitation. All set of experimental results are evidence of identical character of mechanisms of generation of primary defects in these crystals in wide temperature area, as well as similarity of structure and character of behavior of primary defects, specifying on the certain universality of the considered processes in ionic crystals

  16. Influence of convective cooling on a disc brake temperature distribution during repetitive braking

    International Nuclear Information System (INIS)

    Adamowicz, Adam; Grzes, Piotr

    2011-01-01

    The purpose of this study is to evaluate an impact of convective mode of heat transfer on the thermal behaviour of a disc brake system during repetitive braking process with the constant velocity using fully three-dimensional finite element model. The transient thermal analysis to determine the temperature distributions on the contact surface of a disc brake is performed. The issue of non-uniform frictional heating effects of mutual slipping of a disc over fixed pads is tested using FE models with the several possible to occur in automotive application heat transfer coefficients. To have a possibility of comparison of the temperature distributions of a disc during cyclic brake application, the energy transformed during time of every analyzed case of braking process and the subsequent release periods was equal. The time-stepping procedure is employed to develop moving heat source as the boundary heat flux acting interchangeably with the convective cooling terms. The difficulties accounted for the accurate simulation of heating during spin of the rotor is omitted by the use of the code, which enable shaping curves responsible for the thermal flux entering the disc at subsequent moments of time. The resulting evolution of temperature on the friction surface reveals a wide range of variations, distinguishing periods of heating and cooling states. It has been established, that during single braking the convective cooling has insignificant influence on the temperature distributions of a disc brake, consequently is not able to prevent overheat problem. However the brake release period after the braking operation, when the velocity of the vehicle remains on the same level, results in considerable decrease of temperature. - Highlights: → Convection does not allow to lower temperature of disc during single braking process. → Maximal temperature of disc decreases with number of brake applications. → Temperature at the end of braking increases with number of brake

  17. On the energy flux of stationary electromagnetic waves in anisotropic dissipative media with spatial dispersion

    NARCIS (Netherlands)

    Tokman, M. D.; Westerhof, E.; Gavrilova, M. A.

    2000-01-01

    The special features of the propagation of electromagnetic waves in gyrotropic medium with dispersion and resonant dissipation (specifically, in a magnetoactive plasma) are studied. Even though the anti-Hermitian components of the permittivity tensor are substantial in magnitude, weakly damped waves

  18. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    Directory of Open Access Journals (Sweden)

    M. Wacławczyk

    2017-11-01

    Full Text Available In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983. The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  19. How plasmas dissipate: cascade and the production of internal energy and entropy in weakly collisional plasma turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.

    2017-12-01

    Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.

  20. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  1. Viscous dissipation of energy at the stage of accumulation of the Earth

    Science.gov (United States)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.

  2. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  3. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  4. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    Directory of Open Access Journals (Sweden)

    Sawczuk Wojciech

    2017-06-01

    Full Text Available Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA, which aside from the assessment of technical conditions (wear of brake pads also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  5. Experiments with eddy currents: the eddy current brake

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I

    2004-01-01

    A moderate-cost experimental setup is presented to help students to understand some qualitative and quantitative aspects of eddy currents. The setup operates like an eddy current brake, a device commonly used in heavy vehicles to dissipate kinetic energy by generating eddy currents. A set of simple experiments is proposed to measure eddy current losses and to relate them to various relevant parameters. Typical results for each of the experiments are presented, and comparisons with theoretical predictions are included. The experiments, which are devoted to first-year undergraduate students, deal also with other pedagogically relevant topics in electricity and magnetism, such as basic laws, electrical measurement techniques, the sources of the magnetic field and others

  6. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    International Nuclear Information System (INIS)

    Yoon, Hong Min; Kondaraju, Sasidhar; Lee, Jung Shin; Suh, Youngho; Lee, Joonho H.; Lee, Joon Sang

    2017-01-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  7. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  8. Reel safety brake

    Science.gov (United States)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  9. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  10. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  11. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles

    Science.gov (United States)

    Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang

    2016-08-01

    For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.

  12. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  13. An antilock molecular braking system.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  14. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  15. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  16. Elliptical Leaf Spring Shock and Vibration Mounts with Enhanced Damping and Energy Dissipation Capabilities Using Lead Spring

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2015-01-01

    Full Text Available We present an enhancement to the existing elliptical leaf spring (ELS for improved damping and energy dissipation capabilities. The ELS consists of a high tensile stainless steel elliptical leaf spring with polymer or rubber compound. This device is conceived as a shock and vibration isolator for equipment and lightweight structures. The enhancement to the ELS consists of a lead spring plugged vertically between the leaves (referred to as lead-rubber elliptical leaf spring (LRELS. The lead is shown to produce hysteretic damping under plastic deformations. The LRELS isolator is shown to exhibit nonlinear hysteretic behavior. In both horizontal directions, the LRELS showed symmetrical rate independent behavior but undergoes stiffening behavior under large displacements. However, in the vertical direction, the LRELS behavior is asymmetric, exhibiting softening behavior in compression and stiffening behavior in tension. Mathematical models based on the Bouc-Wen model, describing the hysteretic behavior of the proposed isolator, are developed and numerically calibrated using a series of finite element analyses. The LRELS is found to be effective in the in-plane and vertical directions. The improved damping and energy dissipation of the LRELS is provided from the hysteretic damping of the lead spring.

  17. Brake for rollable platform

    Science.gov (United States)

    Morris, A. L.

    1974-01-01

    Frame-mounted brake is independent of wheels and consists of simple lever-actuated foot. Brake makes good contact with surface even though foot pad is at higher or lower level than wheels, this is particularly important when a rollable platform is used on irregular surface.

  18. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  19. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    Science.gov (United States)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  20. An Intelligent Regenerative Braking Strategy for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-09-01

    Full Text Available Regenerative braking is an effective approach for electric vehicles (EVs to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear wheels so as to accord with the ideal distribution curve are considered to prevent vehicles from experiencing wheel lock and slip phenomena during braking. Then, a fuzzy RBS using the driver’s braking force command, vehicle speed, battery SOC, battery temperature are designed to determine the distribution between friction braking force and regenerative braking force to improve the energy recuperation efficiency. The experimental results on an “LF620” prototype EV validated the feasibility and effectiveness of regenerative braking and showed that the proposed fuzzy RBS was endowed with good control performance. The maximum driving range of LF620 EV was improved by 25.7% compared with non-RBS conditions.

  1. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  2. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Low-cost viscometer based on energy dissipation in viscous liquids

    Science.gov (United States)

    Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.

    2001-04-01

    We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.

  4. Use of elastomers in regenerative braking systems

    Science.gov (United States)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  5. A study on properties of a cone-type brake for motor vehicle winch

    Directory of Open Access Journals (Sweden)

    Dongxu Li

    2016-05-01

    Full Text Available The brake of winch is to prevent the occurrence of reverse slipping at working time. Based on the analysis of two types of brake, this article establishes the relationship model of the brake force and the angle of the screw thread on the brake shaft and builds the model of the relationship of the brake force and the height of the cone and found that the brake force is the largest when the angle of the screw is 45°. Also found that the brake force increases with the increase in the load, and the brake force is positively related to the height of the cone. Two brake mechanisms are manufactured and arranged in the same winch to conduct the experimental performance comparison. The experimental results show that the temperature of the winch with cone brake finally reaches about 60°C, which is 33% lower than the 90°C of the disk brake, and the no-load current of the cone brake winch is under 60 A, while in the disk brake winch it is over 90 A after 7 min, which consumes 33% energy than cone brake. The cone brake can reduce the occurrence of harmful friction and enhance the efficiency of winch and is able to solve the winch safety problem caused by nylon cable damage because of the heat accumulation.

  6. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  7. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    Science.gov (United States)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  8. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  9. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  10. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    International Nuclear Information System (INIS)

    Adams, J; Fantner, G E; Hansma, P K; Fisher, L W

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence

  11. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  12. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  13. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  14. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  15. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  16. Performance investigation on dissipative dielectric elastomer generators with a triangular energy harvesting scheme

    Science.gov (United States)

    Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan

    2017-11-01

    In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.

  17. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  18. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  19. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  20. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  1. Computer simulation of energy dissipation from near threshold knock-ons in Fe3Al

    International Nuclear Information System (INIS)

    Schade, G.; Leighly, H.P. Jr.; Edwards, D.R.

    1976-01-01

    A computer program has been developed and used to model a series of knock-ons near the damage energy threshold in a micro-crystallite of the ordered alloy Fe 3 Al. The primary paths of energy removal from the knock-on site were found to be along the [100] and [111] directions by means of focusing type collision chains. The relative importance of either direction as an energy removal path varied with the initial knock-on direction and also changed with time during the course of the knock-on event. The time rate of energy removal was found to be greatest in the [111] direction due to the shorter interatomic distances between atoms along this direction

  2. Unidirectional high gain brake stop

    Science.gov (United States)

    Lang, David J. (Inventor)

    1987-01-01

    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed.

  3. Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading

    Directory of Open Access Journals (Sweden)

    G. Balaganesan

    Full Text Available Abstract Composite laminates are made of glass woven roving mats of 610gsm, epoxy resin and nano clay which are subjected to projectile impact. Nano clay dispersion is varied from 1% to 5%. Impact tests are conducted in a gas gun setup with a spherical nose cylindrical projectile of diameter 9.5 mm of mass 7.6 g. The energy absorbed by the laminates when subjected to impact loading is studied, the velocity range is below ballistic limit. The effect of nano clay on energy absorption in vibration, delamination and matrix crack is studied for different weight % of nano clay and for different thickness values of the laminates. The natural frequencies and damping factors are obtained for the laminates during impact and the effect of nano clay is studied. The results show considerable improvement in energy absorption due to the presence of nano clay

  4. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    Science.gov (United States)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  5. Attractors of dissipative structure in three dissipative fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1993-10-01

    A general theory with use of auto-correlations for distributions is presented to derive that realization of coherent structures in general dissipative dynamic systems is equivalent to that of self-organized states with the minimum dissipation rate for instantaneously contained energy. Attractors of dissipative structure are shown to be given by eigenfunctions for dissipative dynamic operators of the dynamic system and to constitute the self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids and to compressible resistive MHD plasmas are presented to lead to attractors in the three dissipative fluids and to describe a common physical picture of self-organization and bifurcation of the dissipative structure. (author)

  6. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  7. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  8. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  9. Infragravity-wave dynamics in shallow water : energy dissipation and role in sand suspension and transport

    NARCIS (Netherlands)

    de Bakker, A.T.M.|info:eu-repo/dai/nl/371573734

    2016-01-01

    Infragravity waves (20-200 s) receive their energy from sea-swell waves (2-20 s), and are thought to be important to beach erosion during storms, when they can reach up to several meters in height. Numerous studies have observed that on sandy beaches infragravity waves can lose a large part of their

  10. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation

    NARCIS (Netherlands)

    Maschke, Bernhard M.J.; Ortega, Romeo; Schaft, Arjan J. van der

    1998-01-01

    It is well known that the total energy is a suitable Lyapunov function to study the stability of the trivial equilibrium of an isolated standard Hamiltonian system. In many practical instances, however, the system is in interaction with its environment through some constant forcing terms. This gives

  11. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  12. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Science.gov (United States)

    Nozaki, Kengo; Matsuo, Shinji; Fujii, Takuro; Takeda, Koji; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya

    2018-04-01

    Generally, reverse-biased photodetectors (PDs) are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W). Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  13. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Directory of Open Access Journals (Sweden)

    Kengo Nozaki

    2018-04-01

    Full Text Available Generally, reverse-biased photodetectors (PDs are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W. Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  14. Evaluation of materials and design modifications for aircraft brakes

    Science.gov (United States)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  15. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.

    Science.gov (United States)

    Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S

    2018-05-01

    During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2  = 0.64, p angle was negatively correlated with hip negative work (r = -0.46, R 2  = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2  = 0.37, p angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2  = 0.25, p angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  17. Development of mechanical brake assist; Mechanical brake assist no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, M; Shingyoji, S; Nakamura, I; Tagawa, T; Saito, Y; Ishihara, T; Kobayashi, S; Yoshida, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have recognized that there are drivers who cannot apply strong brake pedal force , in spite of the necessity of hard braking in emergencies. We have developed a `mechanical brake assist system` which assists drivers appropriately, according to the drivers` characteristics based on studying the characteristic`s of conditions of drivers applying the brake pedal force in emergency conditions. 2 refs., 7 figs., 1 tab.

  18. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    International Nuclear Information System (INIS)

    Virk, K; Marsh, M; Monti, A; Trehard, T; Hazra, K; Boba, K; Remillat, C D L; Scarpa, F; Farrow, I R

    2013-01-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests. (paper)

  19. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  20. Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Winglee, R.M.

    1993-01-01

    The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models

  1. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    International Nuclear Information System (INIS)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makes an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected

  2. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  3. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M; Ota, M; Shimizu, S [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  4. Neutrons put the brakes on stress

    International Nuclear Information System (INIS)

    Gill, Katynna

    2006-01-01

    Don't you hate it when you're driving along, put your foot on the brake and feel that juddering feeling through the pedal? It happens when the disc brake rotors become distorted through normal use of the brakes. To the car manufacturing industry it's called r unout , and is a multimillion dollar warranty problem each year. Not to mention a pain for drivers! Dr Maurice Ripley and Dr Oliver Kirstein from the Australian Nuclear Science and Technology Organisation (ANSTO) wanted to figure out whether runout is caused by residual stresses from the manufacturing process or by normal use of the brake, so they decided to test and compare a used and new brake disc. 'To picture what metal looks like at the atomic level, imagine spheres stacked evenly around each other in all three dimensions,' explained Kirstein. T he spheres represent atoms in the metal and the structure is called a metallic lattice.' We're familiar with the idea that metal expands when it gets hot - the atoms get excited with the heat and have the energy to move further away from each other, so spaces between the atoms in the lattice get larger. 'When parts of the metal are heated up and cool down at different rates, you may end up with a distorted lattice with some parts expanded and others not,' explained Kirstein. 'This unevenness in the lattice creates residual stress.' While a bunch of methods were available to test the discs, Kirstein and Ripley picked neutrons from ANSTO's HIFAR (High Flux Australian Reactor) as their tool of choice. 'Neutrons allow us to look at the inside of the metal without damaging it,' said Kirstein. 'They can penetrate through the iron, so we were able to take measurements at a series of points at different depths through the brake disc.' Word around the car industry is that when residual stresses are relaxed through heating of the brake disc during use, the discs could potentially distort, causing the runout and that juddering feeling. But everyone was clueless as to what

  5. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  6. Safety brake for tape reels

    Science.gov (United States)

    Carle, C. E.

    1977-01-01

    All-mechanical device senses end of tape and stops reel, even in event of electronic system failure. Assembly includes stop to prevent brake from overriding tape. Recentering mechanism returns brake to neutral position after torque is removed from reels.

  7. Regenerative Intelligent Brake Control for Electric Motorcycles

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2017-10-01

    Full Text Available Vehicle models whose propulsion system is based on electric motors are increasing in number within the automobile industry. They will soon become a reliable alternative to vehicles with conventional propulsion systems. The main advantages of this type of vehicles are the non-emission of polluting gases and noise and the effectiveness of electric motors compared to combustion engines. Some of the disadvantages that electric vehicle manufacturers still have to solve are their low autonomy due to inefficient energy storage systems, vehicle cost, which is still too high, and reducing the recharging time. Current regenerative systems in motorcycles are designed with a low fixed maximum regeneration rate in order not to cause the rear wheel to slip when braking with the regenerative brake no matter what the road condition is. These types of systems do not make use of all the available regeneration power, since more importance is placed on safety when braking. An optimized regenerative braking strategy for two-wheeled vehicles is described is this work. This system is designed to recover the maximum energy in braking processes while maintaining the vehicle’s stability. In order to develop the previously described regenerative control, tyre forces, vehicle speed and road adhesion are obtained by means of an estimation algorithm. A based-on-fuzzy-logic algorithm is programmed to carry out an optimized control with this information. This system recuperates maximum braking power without compromising the rear wheel slip and safety. Simulations show that the system optimizes energy regeneration on every surface compared to a constant regeneration strategy.

  8. On the Role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains

    Directory of Open Access Journals (Sweden)

    Silvia Meniconi

    2018-02-01

    Full Text Available In the last decades several reliable technologies have been proposed for fault detection in water distribution networks (DNs, whereas there are some limitations for transmission mains (TMs. For TM inspection, the most common fault detection technologies are of inline types—with sensors inserted into the pipelines—and then more expensive with respect to those used in DNs. An alternative to in-line sensors is given by transient test-based techniques (TTBTs, where pressure waves are injected in pipes “to explore” them. On the basis of the results of some tests, this paper analyses the relevance of the system configuration, energy dissipation phenomena, and pipe material characteristics in the transient behavior of a real TM. With this aim, a numerical model has been progressively refined not only in terms of the governing equations but also by including a more and more realistic representation of the system layout and taking into account the actual functioning conditions. As a result, the unexpected role of the minor branches—i.e., pipes with a length smaller than the 1% of the length of the main pipe—is pointed out and a preliminary criterion for the system skeletonization is offered. Moreover, the importance of both unsteady friction and viscoelasticity is evaluated as well as the remarkable effects of small defects is highlighted.

  9. The effects of LT-SN on energy dissipation and lifetime in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Zeydin Pala

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs still attract the attention of researchers, users and the private sector despite their low power and low range tendency for malfunction. This attraction towards WSNs results from their low cost structure and the solutions they offer for many prevalent problems. Many conditions, which remain unforeseen or unexpected during the design of the system, may arise after the initialization of the system. Similarly, many situations where security vulnerabilities take place may emerge in time in WSNs operating normally. In this study, we called nodes which enter sleeping mode without any further waking up and causing a sparser number of nodes in the network without any function in data transmission as Long-Term Sleep Nodes (LT-SN; and considered energy spaces caused by such nodes as a problem; and established two Linear Programming (LP models based on the efficiency of the present nodes. We offered two different models which present the effect of sensor nodes, which were initially operating in wireless sensor network environment and did not wake up following sleep mode, on network lifetime. The results of the present study report that as the number of LT-SN increases, the lifetime of the network decreases.

  10. Israel-Stewart Approach to Viscous Dissipative Extended Holographic Ricci Dark Energy Dominated Universe

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2016-01-01

    Full Text Available This paper reports a study on the truncated Israel-Stewart formalism for bulk viscosity using the extended holographic Ricci dark energy (EHRDE. Under the consideration that the universe is dominated by EHRDE, the evolution equation for the bulk viscous pressure Π in the framework of the truncated Israel-Stewart theory has been taken as τΠ˙+Π=-3ξH, where τ is the relaxation time and ξ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure, it has been observed that under the influence of bulk viscosity the EoS parameter wDE is behaving like phantom, that is, wDE≤-1. It has been observed that the magnitude of the effective pressure peff=p+Π is decaying with time. We also investigated the case for a specific choice of scale factor; namely, a(t=(t-t0β/(1-α. For this choice we have observed that a transition from quintessence to phantom is possible for the equation of state parameter. However, the ΛCDM phase is not attainable by the state-finder trajectories for this choice. Finally it has been observed that in both of the cases the generalized second law of thermodynamics is valid for the viscous EHRDE dominated universe enveloped by the apparent horizon.

  11. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  12. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  13. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  14. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  15. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  16. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle

    International Nuclear Information System (INIS)

    Ruan, Jiageng; Walker, Paul D.; Watterson, Peter A.; Zhang, Nong

    2016-01-01

    Highlights: • Maximum braking energy recovery potentials of various cycles are reported. • Braking strategies are proposed for performance, comfort and energy recovery. • Braking force distributions and wheel slip ratios of different strategies are demonstrated. • The performance of ‘Eco’ strategy is experimentally validated in HWFET and NEDC. • The economic benefit of energy recovering is summarized, regarding to the fuel and maintenance cost saving. - Abstract: As motor-supplied braking torque is applied to the wheels in an entirely different way to hydraulic friction braking systems and it is usually only connected to one axle complicated effects such as wheel slip and locking, vehicle body bounce and braking distance variation will inevitability impact on the performance and safety of braking. The potential for braking energy recovery in typical driving cycles is presented to show its benefit in this study. A general predictive model is designed to analysis the economic and dynamic performance of blended braking systems, satisfying the relevant regulations/laws and critical limitations. Braking strategies for different purposes are proposed to achieve a balance between braking performance, driving comfort and energy recovery rate. Special measures are taken to avoid any effects of motor failure. All strategies are analyzed in detail for various braking events. Advanced driver assistance systems (ADAS), such as ABS and EBD, are properly integrated to work with the regenerative braking system (RBS) harmoniously. Different switching plans during braking are discussed. The braking energy recovery rates and brake force distribution details for different driving cycles are simulated. Results for two of the cycles in an ‘Eco’ mode are measured on a drive train test rig and found to agree with the simulated results to within approximately 10%. Reliable conclusions can thus be gained on the economic benefit and dynamic braking performance. The

  17. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  18. Calculations enable optimum design of magnetic brake

    Science.gov (United States)

    Kosmahl, H. G.

    1966-01-01

    Mathematical analysis and computations determine optimum magnetic coil configurations for a magnetic brake which controllably decelerates a free falling load to a soft stop. Calculations on unconventionally wound coils determine the required parameters for the desired deceleration with minimum electrical energy supplied to the stationary coil.

  19. Development of combined brake system on front and rear brakes for scooter; Scooter yo zenkorin rendo brake system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Y; Itabashi, T; Shinohara, S; Honda, Y [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Scooters need appropriate front and rear wheel braking power distribution and each of front and rear brakes have been operated using right and left levers. This time, a low cost brakes with cable type combined brake system for small size scooter and a brakes with hydraulic type combined brake system for middle size scooter have been developed to obtain appropriate front and rear wheel braking power distribution. Both systems use convenient left lever to operate. 3 refs., 9 figs., 1 tab.

  20. Comparison of Energy Dissipation, Stiffness, and Damage of Structural Oriented Strand Board (OSB, Conventional Gypsum, and Viscoelastic Gypsum Shearwalls Subjected to Cyclic Loads

    Directory of Open Access Journals (Sweden)

    Andrew S. Blasetti

    2012-06-01

    Full Text Available A key element in the seismic load resisting system of a wood framed structure is the shear wall which is typically sheathed on one side with plywood or oriented strand board (OSB and gypsum on the other. The shear capacity of gypsum sheathed shear walls is typically neglected in high seismic areas due to the susceptibility of conventional drywall screw connections to damage caused by earthquakes. The earthquake resistance of an innovative viscoelastic (VE gypsum shearwall is evaluated and compared to conventional structural and non-structural walls. Ten 8 ft × 8 ft wood framed wall specimens of three configurations [nailed-OSB, screw-gypsum, and VE polymer-gypsum] were subjected to a cyclic test protocol. The energy dissipation, stiffness, and damage characteristics of all shearwalls are reported herein. Testing results indicate the VE-gypsum walls can dissipate more energy than the OSB structural panels and 500% more energy that the conventional gypsum sheathed walls and contains a constant source of energy dissipation not seen in the structural and non-structural walls. The wall stiffness of the OSB wall degrades at a far greater rate that the VE gypsum wall and at continued cycling degrades below the VE wall stiffness. Unlike both of the conventional wall types, the VE wall showed no visible or audible signs of damage when subjected to shear displacements up to 1.

  1. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  2. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  3. Energy-saving measures in the electrocar. Pt. 1 and 2. 1. Energy-optimized recuperative braking. 2. Energy-optimized charging of traction batteries; Energiesparmassnahmen am Elektroauto. T. 1 und 2. T. 1: Energieoptimiertes rekuperatives Bremsen. T. 2: Energieoptimiertes Laden von Traktionsbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Goetting, G.; Willer, B.; Knorr, R.

    2001-07-01

    The first part of the research project was titled ''energy-optimized recuperative braking''. In this part, several braking strategies, especially those for use in electro vehicles which in addition to the mechanical brakes of the vehicle also incorporate the electrical drive into the brake system were compared with the support of a simulation model and evaluated. The paper reports both on the simulation model used and on the possibilities of saving energy which can be achieved using the various braking strategies for differing driving cycles. In the second part of the research project, ''energy-optimized charging of traction batteries'', possible methods of charging traction batteries of electro vehicles are shown and assessed with regard to the battery efficiency under various conditions of application. [German] In dem unter der Ueberschrift 'Energieoptimiertes rekuperatives Bremsen' laufenden ersten Teil des Forschungsvorhabens wurden verschiedene und speziell fuer den Einsatz im Elektrofahrzeug entworfene Bremsstrategien, die neben den mechanischen Bremsen des Fahrzeugs auch den elektrischen Antrieb in das Bremssystem einbeziehen, mit Hilfe eines Simulationsmodells verglichen und bewertet. Im Bericht werden sowohl das verwendete Simulationsmodell erlaeutert als auch die energetischen Einsparmoeglichkeiten, die sich mit den verschiedenen Bremsstrategien fuer unterschiedliche Fahrzyklen erzielen lassen, aufgezeigt. Im zweiten Teil des Forschungsvorhabens ('Energieoptimiertes Laden von Traktionsbatterien') wurden moegliche Ladeverfahren fuer Traktionsbatterien von Elektrofahrzeugen aufgezeigt und hinsichtlich des Batteriewirkungsgrades bei unterschiedlichen Einsatzbedingungen beurteilt. In die Untersuchungen waren Blei-, NiMH-, NaNiCl{sub 2}- und Lithium-Batterien eingeschlossen. (orig.)

  4. MAGNETIC BRAKING AND PROTOSTELLAR DISK FORMATION: AMBIPOLAR DIFFUSION

    International Nuclear Information System (INIS)

    Mellon, Richard R.; Li Zhiyun

    2009-01-01

    It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Nonideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip relative to the bulk neutral matter. We find that the slippage does not sufficiently weaken the braking to allow rotationally supported disks to form for realistic levels of cloud magnetization and cosmic ray ionization rate; in some cases, the magnetic braking is even enhanced. Only in dense cores with both exceptionally weak fields and unreasonably low ionization rate do such disks start to form in our simulations. We conclude that additional processes, such as Ohmic dissipation or Hall effect, are needed to enable disk formation. Alternatively, the disk may form at late times when the massive envelope that anchors the magnetic brake is dissipated, perhaps by a protostellar wind.

  5. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen Conifer Jack Pine

    OpenAIRE

    Busch, F.; Huner, N.; Ensminger, I.

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack ...

  6. Molecular-scale noncontact atomic force microscopy contrasts in topography and energy dissipation on c(4x2) superlattice structures of alkanethiol self-assembled monolayers

    OpenAIRE

    Fukuma, Takeshi; Ichii, Takashi; Kobayashi, Kei; Yamada, Hirofumi; Matsushige, Kazumi

    2004-01-01

    Alkanethiol self-assembledmonolayers formed on Au(111) surfaces were investigated by noncontact atomic force microscopy (NC-AFM). Dodecanethiol monolayers prepared at 78 °C were imaged by NC-AFM, which revealed that the film is composed predominantly of two different phases of c(4×2)superlattice structures. The obtained molecular-scale NC-AFM contrasts are discussed in comparison with previously reported scanning tunneling microscopy images. We found that the energy dissipation image exhibits...

  7. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  8. Modeling and Demonstrating Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control

    Science.gov (United States)

    2010-06-01

    dynamics within the regenerative braking process. A discussion was provided regarding the energy within the system during the experiment. F. THESIS ...within the system during the regenerative braking process. Chapter V concludes the thesis with the information gained from the research, and provides...CONCLUSION This thesis explored ideas in which the USN can benefit from energy recovery systems that implements regenerative braking technologies

  9. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Directory of Open Access Journals (Sweden)

    Q Joyce Han

    Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  10. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Science.gov (United States)

    Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi

    2015-01-01

    Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  11. Deployable Engine Air Brake

    Science.gov (United States)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  12. Tether Deployer And Brake

    Science.gov (United States)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  13. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  14. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  15. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  16. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  17. 49 CFR 393.52 - Brake performance.

    Science.gov (United States)

    2010-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... specifications for performance-based brake testers for commercial motor vehicles, where braking force is the sum of the braking force at each wheel of the vehicle or vehicle combination as a percentage of gross...

  18. CFD modeling and computation of convective heat coefficient transfer of automotive disc brake rotors -Modelado CFD y cálculo de la transferencia de coeficientes de calor por convección de rotores de freno de disco automotores

    Directory of Open Access Journals (Sweden)

    Ali Belhocine

    2017-05-01

    Full Text Available Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for safe retardation of the vehicles. During braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behaviour of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  19. Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials

    International Nuclear Information System (INIS)

    Kachhap, Rakesh K.; Satapathy, Bhabani K.

    2014-01-01

    Graphical abstract: Graphical abstract showing correlation between enhanced frictional stability and enhanced visc-oelastic energy dissipation. - Highlights: • Developed new class of brake composites based on WS 2 and cenosphere. • Synergistic effect of WS 2 and cenosphere for enhanced friction stability. • Wear surface morphology revealed composition specific topography. • Friction fade-recovery performance remained optimal. - Abstract: Tungsten disulfide (WS 2 /TDS) based cenosphere (Cn) filled friction composites with varying cenosphere to WS 2 ratio (Cn/TDS) were fabricated by compression molding of phenolic resin based dry formulation mix and evaluated for their thermal, thermo-mechanical and tribological performances. The loss and revival of braking friction effectiveness due to heating or cooling of the disc termed as fade and recovery performance have been characterized on a Krauss friction testing machine following ECE R-90 industrial standards. The fade performance remained dependent on Cn/TDS, where enhanced fading could be correlated to lower Cn/TDS value accompanied with broader frictional fluctuations i.e. μ max –μ min . A decrease in the frictional-recovery response ensued with increase in Cn/TDS. Dynamic mechanical analysis revealed an increase in storage modulus till 2.5 wt.% of TDS loading followed by consistent decrease whereas two distinct peaks in loss modulus plots that are composition independent have been observed. Scanning electron microscopy revealed the worn surface morphology associated with the dynamics of contact patches formation and deformation vis-a-vis friction layer formation as integrally responsible for the observed friction performance. Energy dispersive analysis of X-rays (EDX) enabled compositional analysis of the friction layer viz. Fe, W, Si, and Al content which may have a mechanistic role in controlling phenomena like, disc rubbing, lubricity, porosity, and hardness of friction layer formed during braking

  20. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  1. Dissipative structures in magnetorotational turbulence

    Science.gov (United States)

    Ross, Johnathan; Latter, Henrik N.

    2018-03-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  2. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  3. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    Directory of Open Access Journals (Sweden)

    Boyi Xiao

    2017-11-01

    Full Text Available A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other improved regenerative braking strategies. The performance simulation was performed using standard driving cycles (NEDC, LA92, and JP1015 and a real-world-based urban cycle in China. The tested braking strategies satisfied the general safety requirements of Europe (as specified in ECE-13H, and the emergency braking scenario and economic potential were tested. The simulation results demonstrated the differences in the braking force distribution performance of these three regenerative braking strategies, the feasibility of the braking methods for the proposed driving cycles and the energy economic potential of the three strategies.

  4. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector; Mecanismes de reaction et de dissipation de l`energie dans les collisions symetriques noyau-noyau de 25 a 74 MeV/u: apport des mesures exclusives du multidetecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, V [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, `proximity effect` and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author) 91 refs.

  5. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    FRICTION MATERIALSFriction CodeWearBrake FadeFriction MaterialsNotationReferencesBAND BRAKESDerivation of EquationsApplicationLever-Actuated Band Brake: Backstop DesignExample: Design of a BackstopNotationFormula CollectionReferencesEXTERNALLY AND INTERNALLY PIVOTED SHOE BRAKESPivoted External Drum BrakesPivoted Internal Drum BrakesDesign of Dual-Anchor Twin-Shoe Drum BrakesDual-Anchor Twin-Shoe Drum Brake Design ExamplesDesign of Single-Anchor Twin-Shoe Drum BrakesSingle-Anchor Twin-Shoe Drum Brake Design Exam

  6. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  7. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum.

    Science.gov (United States)

    Shibata, Yutaka; Mohamed, Ahmed; Taniyama, Koichiro; Kanatani, Kentaro; Kosugi, Makiko; Fukumura, Hiroshi

    2018-05-01

    Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.

  8. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  9. A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2013-12-01

    Full Text Available Cooperative braking with regenerative braking and mechanical braking plays an important role in electric vehicles for energy-saving control. Based on the parallel and the series cooperative braking models, a combined model with a predictive control strategy to get a better cooperative braking performance is presented. The balance problem between the maximum regenerative energy recovery efficiency and the optimum braking stability is solved through an off-line process optimization stream with the collaborative optimization algorithm (CO. To carry out the process optimization stream, the optimal Latin hypercube design (Opt LHD is presented to discrete the continuous design space. To solve the poor real-time problem of the optimization, a high-precision predictive model based on the off-line optimization data of the combined model is built, and a predictive control strategy is proposed and verified through simulation. The simulation results demonstrate that the predictive control strategy and the combined model are reasonable and effective.

  10. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  11. Structure–function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation

    International Nuclear Information System (INIS)

    Thielen, M; Schmitt, C N Z; Eckert, S; Speck, T; Seidel, R

    2013-01-01

    The mechanical properties of artificial foams are mainly determined by the choice of bulk materials and relative density. In natural foams, in contrast, variation to optimize properties is achieved by structural optimization rather than by conscious substitution of bulk materials. Pomelos (Citrus maxima) have a thick foam-like peel which is capable of dissipating considerable amounts of kinetic energy and thus this fruit represents an ideal role model for the development of biomimetic impact damping structures. This paper focuses on the analysis of the biomechanics of the pomelo peel and on its structure–function relationship. It deals with the determination of the onset strain of densification of this foam-like tissue and on how this property is influenced by the arrangement of vascular bundles. It was found here that the vascular bundles branch in a very regular manner—every 16.5% of the radial peel thickness—and that the surrounding peel tissue (pericarp) attains its exceptional thickness mainly by the expansion of existing interconnected cells causing an increasing volume of the intercellular space, rather than by cell division. These findings lead to the discussion of the pomelo peel as an inspiration for fibre-reinforced cast metallic foams with the capacity for excellent energy dissipation. (paper)

  12. Dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs

  13. Brakes Specialist. Teacher Edition. Automotive Service Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  14. Adjustable Tooling for Bending Brake

    Science.gov (United States)

    Ellis, J. M.

    1986-01-01

    Deep metal boxes and other parts easily fabricated. Adjustable tooling jig for bending brake accommodates spacing blocks and either standard male press-brake die or bar die. Holds spacer blocks, press-brake die, bar window die, or combination of three. Typical bending operations include bending of cut metal sheet into box and bending of metal strip into bracket with multiple inward 90 degree bends. By increasing free space available for bending sheet-metal parts jig makes it easier to fabricate such items as deep metal boxes or brackets with right-angle bends.

  15. Thermal Characterisation of Brake Pads

    DEFF Research Database (Denmark)

    Ramousse, Séverine; Høj, Jakob Weiland; Sørensen, O. T.

    2001-01-01

    The chemical-physical decomposition processes that occur in a brake pad heated to 1000degreesC have been studied. This temperature can be reached when a brake pad is applied. Thermogravimetry and differential thermal analysis were used in combination with evolved gas analysis, and image analysis...... using a scanning electron microscope.A brake pad is essentially a mixture of iron, carbon and binder. Combined techniques have been used, because of chemical reaction overlap, to determine how and at what temperature the binder decomposes, the coal and graphite combust and the iron oxidises.This work...

  16. Microscopic nuclear dissipation. Pt. 2

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1983-01-01

    We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)

  17. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  18. Intelligent Braking System using the IR Sensor

    OpenAIRE

    Gajanan Koli

    2017-01-01

    Most of the accidents in four wheeled vehicles occur because of failure of braking systems. Manual method of applying brakes is always dangerous as it leads to accidents. Unconsciousness of driver, failure in the linkages of braking systems, road conditions, uncontrollable speed of the vehicle and manual operation of braking systems are the reasons of accidents. It is necessary to control brakes automatically through electronics devices to minimize the accident problems. In this research pape...

  19. Single acting translational/rotational brake

    Science.gov (United States)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  20. Brake Stops Both Rotation And Translation

    Science.gov (United States)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  1. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Brake Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory, operation, and repair of drum brakes, disc brakes, and brake system components. The course is comprised of six units: (1) Fundamentals of Brake Systems, (2) Master Cylinder, (3) Drum Brakes, (4) Disc Brakes, (5) Power Brakes, and (6)…

  2. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  3. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  4. An analysis of braking measures

    OpenAIRE

    De Groot, S.; De Winter, J.C.F.; Wieringa, P.A.; Mulder, M.

    2010-01-01

    Braking to a full stop at a prescribed target position is a driving manoeuvre regularly used in experiments to investigate driving behaviour or to test vehicle acceleration feedback systems in simulators. Many different performance measures have been reported in the literature for analysing braking. These may or may not be useful to analyse the stopping manoeuvre, because a number of potential problems exist: 1) the scores on a measure may be insufficiently reliable, 2) the measure may be inv...

  5. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    Science.gov (United States)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  6. Implementation and Performance Evaluation of a Regenerative Braking System Coupled to Ultracapacitors for a Brushless DC Hub Motor Driven Electric Tricycle

    OpenAIRE

    Kuruppu, Sandun

    2010-01-01

    Research related to electrical vehicles is gaining importance due to the, energy crisis. An electric vehicle itself is far ahead of an internal combustion, engine based vehicle due to its efficiency. Using regenerative braking when, braking, improves the efficiency of an electric vehicle as it recovers energy that, could go to waste if mechanical brakes were used. A novel regenerative braking, system for neighborhood electric vehicles was designed, prototyped and tested., The proposed system ...

  7. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    OpenAIRE

    Ren He; Xuejun Liu; Cunxiang Liu

    2013-01-01

    This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system...

  8. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

  9. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  10. Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Yau-Ting; Huang, Guan-Jhih; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Huang, Shing-Jong; Lin, Ying-Chih; Ho, Jinn-Hsuan; Yang, Jye-Shane

    2010-10-11

    Five pentiptycene-derived stilbene systems (1 R; R = H, OM, NO, Pr, and Bu) have been prepared and investigated as light-driven molecular brakes that have different-sized brake components (1 Hbrake component in the trans form ((E)-1 R), which corresponds to the brake-off state. When the brake is turned on by photoisomerization to the cis form ((Z)-1 R), the pentiptycene rotation can be arrested on the NMR spectroscopic timescale at temperatures that depend on the brake component. In the cases of (Z)-1 NO, (Z)-1 Pr, and (Z)-1 Bu, the rotation is nearly blocked (k(rot)=2-6 s(-1)) at 298 K. It is also demonstrated that the rotation is slower in [D(6)]DMSO than in CD(2)Cl(2). A linear relationship between the free energies of the rotational barrier and the steric parameter A values is present only for (Z)-1 H, (Z)-1 OM, and (Z)-1 NO, and it levels off on going from (Z)-1 NO to (Z)-1 Pr and (Z)-1 Bu. DFT calculations provide insights into the substituent effects in the rotational ground and transition states. The molar reversibility of the E-Z photoswitching is up to 46%, and both the E and Z isomers are stable under the irradiation conditions. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic braking in galactic flows

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1982-01-01

    The nuclear fireworks of active galaxies are believed to derive their power from the kinetic energy of gas falling onto a massive central objects; mass shed from evolving galactic stars is an obvious source of fuel for this process. But this ejected material shares the galactic rotation, and a centrifugal barrier will prevent it from reaching the nucleus, if its angular momentum is not removed. This paper shows that, if the large-scale galactic magnetic field has a strong enough radial component, magnetic torques can act to spin down the infalling matter. Rotation of the interstellar gas induces a toroidal magnetic field, and Maxwell stresses remove angular momentum from the flow; gas can then fall inward to the galactic center. In this way, the monster in the nucleus can be fed on gas from a galaxy's own stars. The magnetic fields in M87 and NGC 1275, giant elliptical galaxies which are accreting from an intracluster medium, appear to be strong enough to allow magnetic braking

  12. Dissipative Solitons that Cannot be Trapped

    International Nuclear Information System (INIS)

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-01-01

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states

  13. Quantum dissipation of a simple conservative system

    International Nuclear Information System (INIS)

    Ibeh, G. J.; Mshelia, E. D.

    2014-01-01

    A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.

  14. Comparison of Two Railgun Power Supply Architectures to Quantify the Energy Dissipated After the Projectile Leaves the Railgun

    Science.gov (United States)

    2016-06-01

    reason , we cannot stop the discharge of energy to the rails. As a result, there is a great deal of inductive arcing and 34 heating at the muzzle. The...energy. When the armature exits the rails, a finite energy from the railgun pulsed-power supply is inductively stored in the rails and discharges at...forced by the system inductance to flow as an electrical discharge, creating a muzzle flash. Quantification of this post-fire rail energy in our

  15. Wheel brake with mechatronic parameter value control - investigation of operating behaviour and driver integration problems, with particurticular regard to brake-by-wire systems; Radbremse mit mechatronischer Kennwertregelung - Untersuchung von Betriebsverhalten und Fahreranbindungsproblematik, hinsichtlich Brake-by-Wire-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M.

    1998-11-01

    The book presents a new brake system with mechatronically controlled self-energizing and with low energy demand. Potentials and limits of mechatronic parameter value control are pointed out with a view towards future brake-by-wire systems. Measurements on a parameter-controlled duplex drum brake provide information on the response to different disturbances. The possibility of influencing the driver by parameter-controlled wheel brakes were investigated in a novel experimental vehicle with freely programmable brake system parameters, and the main paramters of the driver/brake system interface were identified. The report ends with a few words on adaptive brake systems which can combine optimum driving efficiency with maximum comfort in all possible driving situations. (orig.) [Deutsch] Das vorliegende Buch stellt eine neuartige Fahrzeugbremse mit mechatronisch geregelter Selbstverstaerkung vor, die einen niedrigen Spannenergiebedarf aufweist. Im Hinblick auf zukuenftige Brake-by-Wire-Systeme werden Potentiale, aber auch Grenzen einer mechatronischen Kennwertregelung aufgezeigt. Messungen an einer kennwertgeregelten Duplex-Trommelbremse geben Aufschluss ueber das Betriebsverhalten unter Einfluss verschiedener Stoergroessen. Die Moeglichkeiten einer Fahrerbeeinflussung durch kennwertgeregelte Radbremsen werden mittels eines neuartigen Versuchsfahrzeugs mit frei programmierbaren Bremssystemparametern untersucht. Darueber hinaus wird die Schnittstelle Fahrer/Bremssystem hinsichtlich ihrer bestimmenden Parameter beschrieben. Den Schluss der Arbeit bildet ein Ausblick auf adaptive Bremssysteme mit dem Potential, optimale fahrdynamische Effizienz bei groesstmoeglichem Komfort situationsabhaengig darzustellen. (orig.)

  16. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.

    Science.gov (United States)

    Chen, Xuemei; Fried, Eliot

    2008-10-01

    Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.

  17. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    Science.gov (United States)

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  18. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... service brake system, such as a pump, that automatically supplies energy in the event of a primary brake...). S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph). S6.2. Road test surface. S6...

  19. investigation into the use of water based brake fluid for light loads

    African Journals Online (AJOL)

    2012-12-19

    Dec 19, 2012 ... The dry boiling point of glycol based fluid seldom exceeds 304°C . ... by means of a brake, the kinetic energy must be absorbed (Shigley, ... Similarly, when the moving body is broughtto rest after the braking, then v2 is zero.

  20. Performance requirements for locomotive braking systems

    CSIR Research Space (South Africa)

    Vermaak, P

    2000-02-01

    Full Text Available operated “Neutral Brake”. This brake may become active immediately or after a certain time delay when the controller is placed in the neutral position or moved into the neutral position by the “dead-man’s device”. Because this brake will interfere... in testing emergency brake systems due to the inherent braking action of the service brakes and/or locomotive controllers; • Potential problems limitations to braking effort associated with the prime movers and/or hydraulic systems on hydrostatically...

  1. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  2. Effects of cryogenic treatment on the wear properties of brake discs

    Science.gov (United States)

    Nadig, D. S.; Shivakumar, P.; Anoop, S.; Chinmay, Kulkarni; Divine, P. V.; Harsha, H. P.

    2017-02-01

    Disc brakes are invariably used in all the automobiles either to reduce the rotational speed of the wheel or to hold the vehicle stationary. During the braking action, the kinetic energy is converted into heat which can result in high temperatures resulting in fading of brake effects. Brake discs produced out of martensite stainless steel (SS410) are expected to exhibit high wear resistance properties with low value of coefficient of friction. These factors increase the useful life of the brake discs with minimal possibilities of brake fade. To study the effects of cryogenic treatment on the wear behaviour, two types of brake discs were cryotreated at 98K for 8 and 24 hours in a specially developed cryotreatment system using liquid nitrogen. Wear properties of the untreated and cryotreated test specimens were experimentally determined using the pin on disc type tribometer (ASTM G99-95). Similarly, the Rockwell hardness (HRC) of the specimens were tested in a hardness tester in accordance with ASTM E18. In this paper, the effects of cryotreatment on the wear and hardness properties of untreated and cryotreated brake discs are presented. Results indicate enhancement of wear properties and hardness after cryogenic treatment compared with the normal brakes discs.

  3. A new structure of a magnetorheological brake with the waveform boundary of a rotary disk

    International Nuclear Information System (INIS)

    Nam, Tran Hai; Ahn, Kyoung Kwan

    2009-01-01

    This paper presents a novel magnetorheological (MR) brake design incorporating a rotary disk with a waveform boundary that generates a resistance force based on the effects of a material deformation process. This force is transmitted from an external agent and creates the necessary energy for breaking the structure of the hardened MR fluid. Its minimum destructive ability is proportional to the variable stiffness of an MR fluid in a magnetic field. In this design, the waveform wall of a rotary disk crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. The resistance forces and braking torques generated by this crush action are stronger than those produced by strain action. To verify our proposed MR brake, the proposed and conventional MR brakes are designed using similar magnetic circuits and material parameters. We compared the performance of our novel MR brake to the performance of a conventional MR brake, and demonstrated that the measured resistance torque of the proposed MR brake is approximately 600% greater than resistance torques generated by conventional brakes

  4. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  5. Preliminary results on σZ and τint fluctuations as a function of incident energy in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Berceanu, I.; Andronic, A.; Duma, M.

    1998-01-01

    Non-statistical fluctuations in the excitation functions (EF) of dissipative heavy ion collisions (DHIC) was rather unexpected due to the fact that cross sections are always obtained on a 'coarse cell' of TKEL and θ cm . The contribution of a large number of microchannels, N, is expected to attenuate the amplitude of such fluctuations as σ(E) has a χ 2 distribution with 2N degrees of freedom. In the framework of the Partially Overlapping Molecular Levels the observation of the fluctuations of the cross section as a function of the incident energy is explained by the fact that the levels of the dinuclear system formed in the first stage of a dissipative process are excited in a region of low density situated in the vicinity of the yrast line. The time evolution of dinuclear (DNS) system with different mass asymmetries with the total mass of the nuclear system 19 F + 27 Al system configuration and its time evolution, the excitation function for this system has been measured between 111.4 MeV and 136.9 MeV with a 250 keV energy step. Fluctuations with amplitude larger than the statistical errors were observed. Large Z and angular cross correlation coefficients show their nonstatistical nature. An average energy correlation width of 170±65 keV, to which corresponds a DNS lifetime τ int (3.9 ± 1.1)·10 -21 s, was obtained by the energy autocorrelation function (EAF). The experimental EAF secondary structure period agrees with that predicted by Kun model when the deformation of the outgoing fragments is taken into account. To get more insight in the reaction mechanism, the dependence of the charge distribution variance for two total kinetic energy loss windows, W1 = 20 ± 2.5 and W2 = 30 ± 2.5 MeV, was obtained as a function of E lab . The second moments of the experimental charge distributions have been calculated and the obtained values were represented for W1 and W2. Fluctuations with quite large amplitude are present. In a transport approach of deep inelastic

  6. Adaptive regenerative braking for electric vehicles with an electric motor at the front axle using the state dependent Riccati equation control technique

    NARCIS (Netherlands)

    Jansen, S.; Alirezaei, M.; Kanarachos, S.

    2014-01-01

    In this paper a novel adaptive regenerative braking control concept for electric vehicles with an electric motor at the front axle is presented. It is well known that the "phased" type regenerative braking systems of category B maximize the amount of regenerative energy during braking. However,

  7. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Jingang Guo

    2014-10-01

    Full Text Available Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs. A sliding mode controller (SMC based on the exponential reaching law for the anti-lock braking system (ABS is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC. A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.

  8. The design of brake fatigue testing system

    Directory of Open Access Journals (Sweden)

    Huang, Xiaoya

    2015-01-01

    Full Text Available Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automatically and ensure brake drum constant speed output; what is more, closed loop control system were used to control the brake shoe, so that the cylinder pressure keeps stable in the process of dynamic braking.

  9. 49 CFR 238.231 - Brake system.

    Science.gov (United States)

    2010-10-01

    ...) Equipped with brake indicators as defined in § 238.5, designed so that the pressure sensor is placed in a... alcohol or other chemicals into the air brake system of passenger equipment is prohibited. (f) The...

  10. THE STUDY OF BRAKE EFFECTIVENESS HOPPER SYSTEM WITH SEPARATE BRAKING TRUCKS

    Directory of Open Access Journals (Sweden)

    O. Je. Nishhenko

    2009-06-01

    Full Text Available The results of tests of the hopper brake systems for the pellets having typical system and separate braking per each bogie are presented. It is shown that the brake system with separate braking has several advantages as compared to the typical one.

  11. Biodegradability of unused lubricating brake fluids in fresh and ...

    African Journals Online (AJOL)

    The biodegradability of four unused lubricating brake fluids (Total brake fluid, Allied brake fluid, Oando brake fluid and Ate brake fluid) was carried out in fresh and marine water obtained from Isiokpo stream and Bonny river of the Niger Delta, South South Nigeria. Biodegradability, of the brake fluids were obtained after a 56 ...

  12. Stellar rotation, dynamo, electromagnetic braking, age an lithium burning

    International Nuclear Information System (INIS)

    Schatzmann, E.

    1989-01-01

    After an introduction describing the problem and the observational tests of the theory a consistant model of the dynamo mechanism in rotating star is presented. This provides for the electromagnetic braking a law Ω ∼ (1.t/t c har) -3 / 4 , in good agreement with the observations. This rests on the hypothesis that the main contribution to the EM braking is due to the magnetic field present in bipolar magnetic spots at the surface of the stellar disk. The premain sequence EM braking provides an initial angular velocity on arrival on the main sequence which is slightly smaller than the angular velocity when the dynamo turns on. Starting the dynamo takes place when the level at which the (αΩ) dynamo number becomes larger than one drops below the ionization level of hydrogen. Before that time, the surface dynamo mechanism would take place in a region of low ionization, where the magnetic Reynods number is so small that dissipation overtakes the building of the magnetic field. Turbulent mixing with a turbulent diffusion coefficient proportional to Ω 2 provides a consistant picture of the time and mass dependance of the surface abundance of Lithium. When the level of Li-burning is sufficiently far from the bottom of the convective zone an asymptotic value of lithium abundance is reached. This can explain the anomalous Li abundance of pop.II stars. (author). 40 refs

  13. Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    organised equi- librium in RFP and tokamak by a deterministic approach to incompressible dissipative magnetohydrodynamics. In an earlier work Kondoh [8] formulated an energy principle including the edge plasma effects for a slightly resistive MHD ...

  14. Brakes, brake control and driver assistance systems function, regulation and components

    CERN Document Server

    2014-01-01

    Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems. Contents Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Car braking-system components.- Wheel brakes.- Antilock breaking systems.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modulator.- Sensors for brake control.- Sensotronic brake control.- Active steering.- Occupant protection systems.- Driver assistance systems.- Adaptive cruise control.- Parking systems.- Instrumentation.- Orientation methods.- Navigation systems.- Workshop technology. The target groups Motor-vehicle technicians in education and vocational training Master-mechanics and technicians in garage-workshops Teachers and lecturers in vocation...

  15. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  16. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    Science.gov (United States)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  17. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    Science.gov (United States)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  18. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-01-01

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N 2 , O 2 , and the polyyne C 10 H 2 ) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions

  19. 49 CFR 238.431 - Brake system.

    Science.gov (United States)

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset parameters...

  20. The dynamics of antilock brake systems

    Science.gov (United States)

    Denny, Mark

    2005-11-01

    The nonlinear dynamics of automobile braking are investigated. Nonlinearity arises because of the manner in which the friction coefficient between vehicle tyres and road surface depends upon vehicle speed and wheel angular speed. We show how antilock brake systems approach optimum braking performance.

  1. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  2. 49 CFR 229.46 - Brakes: General.

    Science.gov (United States)

    2010-10-01

    ... regulating all pressures, including but not limited to the automatic and independent brake valves, operate as intended and that the water and oil have been drained from the air brake system. ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46...

  3. Brake wear warning device: A concept

    Science.gov (United States)

    Hawkins, S. F.

    1973-01-01

    Heat-insulated wire is introduced through brake shoe and partially into brake lining. Wire is connected to positive terminal and light bulb. When brakes wear to critical point, contact between wire and wheel drum grounds circuit and turns on warning light.

  4. Friction brake cushions acceleration and vibration loads

    Science.gov (United States)

    Fraser, G. F.; Zawadski, G. Z.

    1966-01-01

    Friction brake cushions an object in a vehicle from axially applied vibration and steady-state acceleration forces. The brake incorporates a doubly tapered piston that applies a controlled radial force to friction brake segments bearing against the walls of a cylinder.

  5. Compact, Lightweight Servo-Controllable Brakes

    Science.gov (United States)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  6. On the effect of the near field records on the steel braced frames equipped with energy dissipating devices

    Directory of Open Access Journals (Sweden)

    Mahmoud Bayat

    Full Text Available The behavior of braced steel frame structures is of special importance due to its extensive use. Also the application of active and semi-active control systems, regarding to their benefits in obtaining better seismic performance has increased significantly. The majority of the works on steel structures and steel connections has been done under far field records, and the behavior of steel frame structures equipped with yielding dampers under these circumstances has not yet been fully analyzed. The main purpose of this paper is to determine the behavior of structures equipped with yielding dampers, located in near field based on energy concepts. In order to optimize their seismic behavior, the codes and solutions are also presented.The selected system is a braced steel frame system which is equipped with yielding dampers and the analysis is performed using the "Perform 3D V.4" software and the conclusions are drawn upon energy criterion. The effect of PGA variation and height of the frames are also considered in the study .Finally, using the above mentioned results, a proper solution is presented for typical systems in order to increase the energy damping ability and reduce the destructive effects in structures on an earthquake event, so that a great amount of induced energy is damped and destruction of the structure is prevented as much as possible.

  7. Sensotronic brake control. Braking with maximum efficiency; Die Sensotronic Brake Control. Bremsen auf hoechstem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Fischle, G.; Stoll, U.; Hinrichs, W.

    2002-05-01

    Sensotronic Brake Control (SBC) celebrated its world premiere when it was introduced into standard production along with the new SL in October 2001. This innovative brake system is also fitted as standard in the new E-Class. The design of the system components is identical to those used in the SL-Class. The software control parameters have been adapted to the conditions in the new saloon. (orig.) [German] Die Sensotronic Brake Control (SBC) wurde als Weltneuheit mit dem neuen SL im Oktober 2001 in Serie gebracht. Dieses innovative Bremssystem gehoert ebenfalls zur Serienausstattung der neuen E-Klasse. Die Systemkomponenten sind baugleich mit denen der SL-Klasse. Die Regelparameter der Software sind an die Verhaeltnisse der Limousine angepasst. (orig.)

  8. Electronic brakes. From ABS to brake-by-wire. 2. ed.; Elektronische Bremssysteme. Vom ABS zum Brake-by-Wire

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, H.R.

    2003-07-01

    The book reports trends in vehicle brakes from 1968 to 1998. This was the age of the electronic revolution. The book presents conventional brakes, antiblocking systems (ABS), antislip systems (ASS), brake assistants (BAS), dynamic control systems, and brake-by-wire systems. [German] Das Buch berichtet ueber Entwicklungen an Fahrzeugbremsanlagen in der Zeitspanne von 1968 bis etwa 1998. Diese Zeit war gepraegt vom Vordringen der Elektronik in die Bremsen, was fuer Hersteller und Kunden eine Revolution bedeutete. Behandelt sind: (a) Konventionelle Bremsanlagen, (b) Antiblockiersysteme (ABS), (c) Anti-Schlupf-regelungen (ASR), (d) Bremsassistenten (BAS), (e) Fahrdynamikregelungen (FDR, ESP), (f) Brake-by-Wire (orig.)

  9. Analytical study of dissipative solitary waves

    Energy Technology Data Exchange (ETDEWEB)

    Dini, Fatemeh [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Emamzadeh, Mehdi Molaie [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Bobin, Jean Louis [Universite Pierre et Marie Curie, Paris (France); Amrollahi, Reza [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sodagar, Majid [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Khoshnegar, Milad [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of)

    2008-02-15

    In this paper, the analytical solution to a new class of nonlinear solitons is presented with cubic nonlinearity, subject to a dissipation term arising as a result of a first-order derivative with respect to time, in the weakly nonlinear regime. Exact solutions are found using the combination of the perturbation and Green's function methods up to the third order. We present an example and discuss the asymptotic behavior of the Green's function. The dissipative solitary equation is also studied in the phase space in the non-dissipative and dissipative forms. Bounded and unbounded solutions of this equation are characterized, yielding an energy conversation law for non-dissipative waves. Applications of the model include weakly nonlinear solutions of terahertz Josephson plasma waves in layered superconductors and ablative Rayleigh-Taylor instability.

  10. Benchmarking of regenerative braking for a fully electric car

    NARCIS (Netherlands)

    Varocky, B.J.; Nijmeijer, H.; Jansen, S.; Besselink, I.J.M.; Mansvelder, R.; Mansvelders, R.E.

    2011-01-01

    Short range of electric vehicles is one of the stumbling blocks in the way of electric cars to gaining wide user acceptance and becoming a major market player. The possibility to recover vehicle energy otherwise lost as heat during braking is an inherent advantage of a hybrid electric or a fully

  11. Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei

    International Nuclear Information System (INIS)

    Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.

    1980-01-01

    Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states

  12. Collisionless dissipation of Langmuir turbulence

    International Nuclear Information System (INIS)

    Erofeev, V.I.

    2002-01-01

    An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers

  13. Brake blending strategy for a hybrid vehicle

    Science.gov (United States)

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  14. BASIC STUDY ON TAILORMADE BRAKING SUPPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    Toshiya HIROSE, M.S.

    2004-01-01

    This research reviewed the construction of models of a Tailormade Braking Support System (TBSS for braking to stop vehicles and the evaluation of drivers. As a result, the following conclusions were drawn. (1 Braking factors were found to change in the period from the start of braking to stopping; (2 Changes in braking factors can be logically incorporated into the control elements of braking support system; (3 Readymade Driver Model is effective as a model to be incorporated into the base system of TBSS; (4 Tailormade Driver Model built on Neural Network is effective as a main model to construct TBSS; (5 As for TBSS, both subjective and objective ratings on the timing and magnitude of braking are favorable, and its safety and sense of security are improved.

  15. Study of hard braking x-ray radiation on the radiation-beam complex ''TEMP''

    International Nuclear Information System (INIS)

    Batrakov, A.B.; Glushko, E.G.; Egorov, A.M.; Zinchenko, A.A.; Litvinenko, V.V.; Lonin, Yu.F.; Ponomarev, A.G.; Rybka, A.V.; Fedotov, S.I.; Uvarov, V.T.

    2015-01-01

    A calculation over of basic parameters of the hard brake x-rayed radiation for the microsecond accelerating of relativistic electronic beam T EMP . Optimization of converters is conducted for these aims. Maximal doses are experimentally got brake x-rayed radiation on beam-radiation complex T EMP . The diagrams of orientation of the brake x-rayed radiation are taken off depending on energies of bunches and forms of electrodes.

  16. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  17. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  18. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    Science.gov (United States)

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  20. Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

    Directory of Open Access Journals (Sweden)

    N. Engler

    2005-06-01

    Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.

  1. Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural Control

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2016-01-01

    Full Text Available In view of the disadvantages such as higher yield stress and inadequate adjustability, a combined low yield point steel plate damper involving low yield point steel plates and common steel plates is proposed. Three types of combined plate dampers with new hollow shapes are proposed, and the specific forms include interior hollow, boundary hollow, and ellipse hollow. The “maximum stiffness” and “full stress state” are used as the optimization objectives, and the topology optimization of different hollow forms by alternating optimization method is to obtain the optimal shape. Various combined steel plate dampers are calculated by finite element simulation, the results indicate that the initial stiffness of the boundary optimized damper and interior optimized damper is lager, the hysteresis curves are full, and there is no stress concentration. These two types of optimization models made in different materials rations are studied by numerical simulation, and the adjustability of yield stress of these combined dampers is verified. The nonlinear dynamic responses, seismic capacity, and damping effect of steel frame structures with different combined dampers are analyzed. The results show that the boundary optimized damper has better energy-dissipation capacity and is suitable for engineering application.

  2. Acute exposure to UV-B sensitizes cucumber, tomato, and Arabidopsis plants to photooxidative stress by inhibiting thermal energy dissipation and antioxidant defense

    International Nuclear Information System (INIS)

    Moon, Yu-Ran; Lee, Min-Hee; Chung, Byung-Yeoup; Kim, Jin-Hong; Tovuu, Altanzaya; Lee, Choon-Hwan; Park, Youn-Il

    2011-01-01

    The purpose of this study was to characterize a change in Non-photochemical quenching (NPQ) upon exposure to ultraviolet-B (UV-B), the xanthophyll cycle-dependent and -independent NPQs were compared in Cucumis sativus, Lycopersicum esculentum, and Arabidopsis thaliana leaves. The xanthophyll cycle-dependent NPQ was dramatically but reversibly suppressed by UV-B radiation. This suppression was correlated more strongly with a marked decrease in photosynthetic electron transport rather than changes in xanthophyll cycle enzymes such as violaxanthin de-epoxidase and zeaxanthin epoxidase. Accordingly, the UV-B-induced suppression of NPQ cannot be attributed to changes in expressions of violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP). However, suppression of the xanthophyll cycle-dependent NPQ could only account for the 77 K fluorescence emission spectra of thylakoid membranes and the increased level of 1 O 2 production, but not for the decreased levels of hydroxyl radical O 2 - production and H 2 O 2 scavenging. These results suggest that a gradual reduction of H 2 O 2 scavenging activity as well as a transient and reversible suppression of thermal energy dissipation may contribute differentially to increased photooxidative damages in cucumber, tomato, and Arabidopsis plants after acute exposure to UV-B radiation. (author)

  3. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    Science.gov (United States)

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  4. Developing of a software for determining advanced brake failures in brakes test bench

    Directory of Open Access Journals (Sweden)

    Hakan Köylü

    2016-08-01

    Full Text Available At present time, the brake test bench conducts the braking and suspension tests of front or rear axles and the test results are evaluated through one axle. The purpose of the brake testing system is to determine braking force and damping coefficient dissymmetry of one axle. Thus, this test system evaluates the performance of service brake, hand brake and suspension systems by considering separately front and rear axle dissymmetry. For this reason, the effects of different braking and damping forces applied by right and left wheels of both axles on braking performance of all vehicle are not determined due to available algorithm of the test bench. Also, the other brake failures are not occurred due to the algorithm of brake test system. In this study, the interface has been developed to determine the other effects of dissymmetry and the other brake failures by using the one axle results of brake test bench. The interface has algorithm computing the parameters according to the interaction between front and rear axles by only using measured test results. Also, it gives the warnings by comparing changes in the parameters with braking performance rules. Braking and suspension tests of three different vehicles have been conducted by using brake test bench to determine the performance of the algorithm. Parameters based on the axle interaction have been calculated by transferring brake test results to the interface and the test results have been evaluated. As a result, the effects of brake and suspension failures on braking performance of both axle and vehicle have been determined thanks to the developed interface.

  5. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  6. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  7. IDEAL BRAKE FORCE DISTRIBUTION BETWEEN THE AXLES OF THE TWO-AXLE VEHICLE SERVICE BRAKE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Podryhalo

    2015-07-01

    Full Text Available The obtained analytical expressions allow us to evaluate the stability of two-axle vehicles at various slowdowns. An analytical expression for calculating the ideal according to condition stability ensuring of a two-axle vehicle at service brake applications of brake force distribution allows to offer automatic control devices for brake force adjucement. With decellerationg growth of the two-axle vehicle at service braking the braking force acting on the front axle should decrease relative to the brake force on the rear axle.

  8. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector

    International Nuclear Information System (INIS)

    Metivier, V.

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, 'proximity effect' and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author)

  9. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  10. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

    2017-08-20

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  11. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  12. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  13. Space shuttle wheels and brakes

    Science.gov (United States)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  14. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  15. Carbon nanotube torsional springs for regenerative braking systems

    International Nuclear Information System (INIS)

    Liu, Sanwei; Martin, Corbin; Livermore, Carol; Lashmore, David; Schauer, Mark

    2015-01-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg −1   ±  1.2 kJ kg −1 and 3.4 kJ kg −1   ±  0.4 kJ kg −1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg −1 and 0.67 kW kg −1 , respectively, with maximum measured values of up to 4.7 kJ kg −1 and 1.2 kW kg −1 , respectively. A slightly lower energy density of up to 1.2 kJ kg −1 and a 0.29 kW kg −1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism. (paper)

  16. Carbon nanotube torsional springs for regenerative braking systems

    Science.gov (United States)

    Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol

    2015-10-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1  ±  1.2 kJ kg-1 and 3.4 kJ kg-1  ±  0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.

  17. Dissipation and accumulation of energy during plastic deformation of Armco -iron and 12Cr18Ni10Ti stainless steel irradiated by neutrons

    International Nuclear Information System (INIS)

    Toktogulova, D.; Maksimkin, O.; Gusev, M.; Garner, F.

    2007-01-01

    Full text of publication follows: Much attention is currently being paid in the fusion materials community to modeling of radiation damage and its consequences in structural alloys on mechanical properties. Such activities are best guided with experimental data on the fundamental microstructural and thermodynamic processes involved. This report addresses such fundamental concerns. During plastic deformation of metals some fraction of the externally-applied mechanical energy is converted into heat and is partially accumulated in the form of crystal lattice defects. The thermal release arises from gliding dislocations, their various interactions, their annihilation etc. With respect to irradiated material, one might expect additional heat release caused by interactions of dislocation and radiation-induced defects. To explore this possibility flat mini-tensile specimens of Armco-iron and 12Cr18Ni10Ti stainless steel, both in the annealed condition, were irradiated in the range 2x10 18 to 1.3x10 20 n/cm 2 (E>0.1 MeV) in the WWR-K reactor at T≤350 K. Mechanical tests of both irradiated and non-irradiated specimens were conducted at room temperature in a facility that was a combination of a Calvet calorimeter and a micro-tensile device. This allows simultaneous measurement of mechanical properties and thermodynamic parameters such as deformation work, dissipated heat and latent energy during deformation. The authors derived the kinetics of changes in thermodynamic characteristics versus the deformation level. As the neutron fluence rises, the material's capability to accumulate energy appears to be declining. For example, 12Cr18Ni10Ti irradiated to 1.3x10 20 n/cm 2 did not show any energy accumulation under deformation. In Armco-iron at 1.4x10 19 n/cm 2 the heat release considerably exceeded the deformation work value. The authors assume that such effects might be related with annihilation of point defects and their complexes introduced during irradiation. To test this

  18. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  19. Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-07-01

    Full Text Available A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety.

  20. Performance Analysis of Regenerative Braking in Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Andrew Adib

    2018-02-01

    Full Text Available This paper describes the design and analysis of a regenerative braking system for a permanent magnet synchronous motor (PMSM drive for electric vehicle (EV applications. First studied is the principle for electric braking control of a PMSM motor under field-oriented control (FOC. Next, the maximum braking torque in the regeneration mode as well as the braking torque for the maximum regeneration power, respectively, are deduced. Additionally, an optimum switching scheme for the inverter is developed with the objective of maximizing energy recovery during regenerative braking to the DC-bus capacitor. The integration of an ultra-capacitor module with the battery allows for the efficient and high power transfer under regenerative braking. It was important to manage the power flow to the DC-bus as this is a key issue that affects the efficiency of the overall system. Finally, the amounts of braking energy that can be recovered, and the efficiency with which it can be returned to the battery/ultra-capacitor, is analyzed for a PMSM coupled with a DC motor as the load. The results of the analysis are validated through experimentation.

  1. Experimental Method for Analyzing Friction Phenomenon Related to Drum Brake Squeal

    Directory of Open Access Journals (Sweden)

    J. GLIŠOVIĆ

    2010-12-01

    Full Text Available Automobile brakes have been intensively developed during past few decades, but the maximum motor’s power, that should amortized in vehicle brakes, has been significantly increased also. Most of the kinetic energy of the moving vehicles is transforming into heat through friction. But the small part of kinetic energy transforms into sound pressure and makes noise. Low frequency squeal of drum brakes is very intense and can lead to customers’ complain. The interaction between the brake system and the vehicle framework and suspension is often very substantial during occurrence of brake noise. Unfortunately, to solve this type of squeal problem is also difficult because of the large number of components involved. The other cause is attributed to self-excited vibration that is induced when the friction material has a negative slope in relation to the relative velocity. This paper illustrates an approach to experimental studies of drum brakes in road conditions in order to monitor changes in the coefficient of friction that can generate drum brake squeal at low frequencies.

  2. 49 CFR 230.77 - Foundation brake gear.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall be...

  3. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.

  4. Talking about the Automobile Braking System

    Science.gov (United States)

    Xu, Zhiqiang

    2017-12-01

    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  5. Fatal accidental inhalation of brake cleaner aerosols.

    Science.gov (United States)

    Veit, F; Martz, W; Birngruber, C G; Dettmeyer, R B

    2018-04-23

    Brake cleaner liquid is commonly used for cleaning of engines and motor parts. The commercially available products usually contain mainly volatile organic compounds. As a consequence brake cleaner evaporates fast and almost completely from the cleaned surface. This case report presents a fatal accidental inhalation of brake cleaner liquid aerosols due to the attempted cleaning of a boat engine. A 16year old boy was found lifeless in the engine compartment of a boat engine. In close proximity to the body, the police found cleanings wipes soaked with brake cleaner as well as a pump spray bottle filled with brake cleaner. Essentially the autopsy revealed a cerebral oedema with encephalomalacia, no coagulated blood as well as increased blood and tissue fluid content of the lung. Toxicological analysis revealed brake cleaner fluid in the lung, gastric content and heart blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  7. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  8. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Wang, Guoshun; Fu, Rong

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  9. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  10. Dissipative fluid mechanics of nuclei

    International Nuclear Information System (INIS)

    Morgenstern, B.

    1987-11-01

    With the aim to describe nucleus-nucleus collisions at low energies in the present thesis for the first time dissipative fluid dynamics for large-amplitude nuclear motion have been formulated. Thereby the collective dynamics are described in a scaling approximation in which the wave function of the system is distorted by a vortex-free velocity field. For infintely extended nuclear matter this scaling of the wave functions leads to a deformation of the Fermi sphere. Two-body collisions destroy the collective deformation of the Fermi sphere and yield so the dissipative contribution of the motion. Equations of motion for a finite set of collective variables and a field equation for the collective velocity potential in the limit of infinitely many degrees of freedom were developed. In the elastic limit oscillations around the equilibrium position are described. For small collective amplitudes and vortex-free velocity fields the integrodifferential equation for the velocity potential in the elastic limit could be transformed to the divergence of the field equation of fluid dynamics. In the dissipative limit an equation results which is similar to the Navier-Stokes equation and transforms to the divergence of the Navier-Stokes equation for vortex-free fields. It was shown that generally the dynamics of the many-body system is described by non-Markovian equations. (orig./HSI) [de

  11. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  12. Dissipative hidden sector dark matter

    Science.gov (United States)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  13. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  14. Brake noise measurements on mixed freight trains with composite brake blocks

    NARCIS (Netherlands)

    Jansen, E.H.W.; Dittrich, M.G.; Sikma, E.L.

    2008-01-01

    Brake noise is known to be a major contributor to the total sound emission of railway yards and areas near stations. It has been established that composite brake blocks reduce rolling noise, but it is not known if this is also the case for braking noise. Therefore, in order to investigate this,

  15. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating?

    Science.gov (United States)

    Shin, H S; Ingram, J R; McGill, A-T; Poppitt, S D

    2013-08-15

    The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake

  16. Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake

    Science.gov (United States)

    Seki, Hirokazu; Takahashi, Yoshiaki

    This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.

  17. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  18. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Liu, S; Martin, C; Livermore, C; Lashmore, D; Schauer, M

    2014-01-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems

  19. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    Science.gov (United States)

    Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.

    2014-11-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.

  20. Effect of dissipation on dynamical fusion thresholds

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1986-01-01

    The existence of dynamical thresholds to fusion in heavy nuclei (A greater than or equal to 200) due to the nature of the potential-energy surface is shown. These thresholds exist even in the absence of dissipative forces, due to the coupling between the various collective deformation degrees of freedom. Using a macroscopic model of nuclear shape dynamics, It is shown how three different suggested dissipation mechanisms increase by varying amounts the excitation energy over the one-dimensional barrier required to cause compound-nucleus formation. The recently introduced surface-plus-window dissipation may give a reasonable representation of experimental data on fusion thresholds, in addition to properly describing fission-fragment kinetic energies and isoscalar giant multipole widths. Scaling of threshold results to asymmetric systems is discussed. 48 refs., 10 figs