WorldWideScience

Sample records for brainstem response latencies

  1. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten

    2009-01-01

    response times. For the same listeners, auditory-filter bandwidths at 2 kHz were estimated using a behavioral notched-noise masking paradigm. Generally, shorter derived-band latencies were observed for the HI than for the NH listeners. Only at low click sensation levels, prolonged latencies were obtained...

  2. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    DEFF Research Database (Denmark)

    Mehraei, Golbarg; Paredes Gallardo, Andreu; Shinn-Cunningham, Barbara G.

    2017-01-01

    In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels...... and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave......-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low...

  3. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  4. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    DEFF Research Database (Denmark)

    Mehraei, Golbarg; Paredes Gallardo, Andreu; Shinn-Cunningham, Barbara G.

    2017-01-01

    -spontaneous rate fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker......-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low...

  5. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  6. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  7. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  8. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  9. Auditory Brainstem Responses and EMFs Generated by Mobile Phones.

    Science.gov (United States)

    Khullar, Shilpa; Sood, Archana; Sood, Sanjay

    2013-12-01

    There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.

  10. Abnormal Auditory Brainstem Response (ABR Findings in a Near-Normal Hearing Child with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Bahram Jalaei

    2017-01-01

    Full Text Available Introduction: Noonan syndrome (NS is a heterogeneous genetic disease that affects many parts of the body. It was named after Dr. Jacqueline Anne Noonan, a paediatric cardiologist.Case Report: We report audiological tests and auditory brainstem response (ABR findings in a 5-year old Malay boy with NS. Despite showing the marked signs of NS, the child could only produce a few meaningful words. Audiological tests found him to have bilateral mild conductive hearing loss at low frequencies. In ABR testing, despite having good waveform morphology, the results were atypical. Absolute latency of wave V was normal but interpeak latencies of wave’s I-V, I-II, II-III were prolonged. Interestingly, interpeak latency of waves III-V was abnormally shorter.Conclusion:Abnormal ABR results are possibly due to abnormal anatomical condition of brainstem and might contribute to speech delay.

  11. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Binaural interaction in the auditory brainstem response: a normative study.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M

    2015-04-01

    Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  14. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  15. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  16. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  17. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  18. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A review of the methods for neuronal response latency estimation

    DEFF Research Database (Denmark)

    Levakovaa, Marie; Tamborrino, Massimiliano; Ditlevsen, Susanne

    2015-01-01

    Neuronal response latency is usually vaguely defined as the delay between the stimulus onset and the beginning of the response. It contains important information for the understanding of the temporal code. For this reason, the detection of the response latency has been extensively studied in the ...... by the stimulation using interspike intervals and spike times. The aim of this paper is to present a review of the main techniques proposed in both classes, highlighting their advantages and shortcomings....

  20. Automatic hearing loss detection system based on auditory brainstem response

    International Nuclear Information System (INIS)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R

    2007-01-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory

  1. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.

    Science.gov (United States)

    Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M

    2013-01-01

    This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support

  2. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  3. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    Science.gov (United States)

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  4. Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio

    Directory of Open Access Journals (Sweden)

    Rosanna M. Giaffredo Angrisani

    2013-12-01

    Full Text Available OBJECTIVE: To investigate the influence of gender and weight/gestational age ratio on the Auditory Brainstem Response (ABR in preterm (PT and term (T newborns. METHODS: 176 newborns were evaluated by ABR; 88 were preterm infants - 44 females (22 small and 22 appropriate for gestational age and 44 males (22 small and 22 appropriate for gestational age. The preterm infants were compared to 88 term infants - 44 females (22 small and 22 appropriate for gestational age and 44 males (22 small and 22 appropriate for gestational age. All newborns had bilateral presence of transient otoacoustic emissions and type A tympanometry. RESULTS: No interaural differences were found. ABR response did not differentiate newborns regarding weight/gestational age in males and females. Term newborn females showed statistically shorter absolute latencies (except on wave I than males. This finding did not occur in preterm infants, who had longer latencies than term newborns, regardless of gender. CONCLUSIONS: Gender and gestational age influence term infants' ABR, with lower responses in females. The weight/gestational age ratio did not influence ABR response in either groups.

  5. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  6. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  7. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding.Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings.It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  8. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  9. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  10. Central and peripheral components of short latency vestibular responses in the chicken

    Science.gov (United States)

    Nazareth, A. M.; Jones, T. A.

    1998-01-01

    Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.

  11. Using Arduino microcontroller boards to measure response latencies.

    Science.gov (United States)

    Schubert, Thomas W; D'Ausilio, Alessandro; Canto, Rosario

    2013-12-01

    Latencies of buttonpresses are a staple of cognitive science paradigms. Often keyboards are employed to collect buttonpresses, but their imprecision and variability decreases test power and increases the risk of false positives. Response boxes and data acquisition cards are precise, but expensive and inflexible, alternatives. We propose using open-source Arduino microcontroller boards as an inexpensive and flexible alternative. These boards connect to standard experimental software using a USB connection and a virtual serial port, or by emulating a keyboard. In our solution, an Arduino measures response latencies after being signaled the start of a trial, and communicates the latency and response back to the PC over a USB connection. We demonstrated the reliability, robustness, and precision of this communication in six studies. Test measures confirmed that the error added to the measurement had an SD of less than 1 ms. Alternatively, emulation of a keyboard results in similarly precise measurement. The Arduino performs as well as a serial response box, and better than a keyboard. In addition, our setup allows for the flexible integration of other sensors, and even actuators, to extend the cognitive science toolbox.

  12. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  13. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The auditory brainstem response in two lizard species.

    Science.gov (United States)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J

    2010-08-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.

  15. Detecting concealed information in less than a second: response latency-based measures

    NARCIS (Netherlands)

    Verschuere, B.; de Houwer, J.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.

    2011-01-01

    Concealed information can be accurately assessed with physiological measures. To overcome the practical limitations of physiological measures, an assessment using response latencies has been proposed. At first sight, research findings on response latency based concealed information tests seem

  16. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  17. Long latency postural responses are functionally modified by cognitive set.

    Science.gov (United States)

    Beckley, D J; Bloem, B R; Remler, M P; Roos, R A; Van Dijk, J G

    1991-10-01

    We examined how cognitive set influences the long latency components of normal postural responses in the legs. We disturbed the postural stability of standing human subjects with sudden toe-up ankle rotations. To influence the subjects' cognitive set, we varied the rotation amplitude either predictably (serial 4 degrees versus serial 10 degrees) or unpredictably (random mixture of 4 degrees and 10 degrees). The subjects' responses to these ankle rotations were assessed from the EMG activity of the tibialis anterior, the medial gastrocnemius, and the vastus lateralis muscles of the left leg. The results indicate that, when the rotation amplitude is predictable, only the amplitude of the long latency (LL) response in tibialis anterior and vastus lateralis varied directly with perturbation size. Furthermore, when the rotation amplitude is unpredictable, the central nervous system selects a default amplitude for the LL response in the tibialis anterior. When normal subjects are exposed to 2 perturbation amplitudes which include the potential risk of falling, the default LL response in tibialis anterior appropriately anticipates the larger amplitude perturbation rather than the smaller or an intermediate one.

  18. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.

    Science.gov (United States)

    Thai-Van, Hung; Cozma, Sebastian; Boutitie, Florent; Disant, François; Truy, Eric; Collet, Lionel

    2007-03-01

    Maturation of acoustically evoked brainstem responses (ABR) in hearing children is not complete at birth but rather continues over the first two years of life. In particular, it has been established that the decrease in ABR wave V latency can be modeled as the sum of two decaying exponential functions with respective time-constants of 4 and 50 weeks [Eggermont, J.J., Salamy, A., 1988a. Maturational time-course for the ABR in preterm and full term infants. Hear Res 33, 35-47; Eggermont, J.J., Salamy, A., 1988b. Development of ABR parameters in a preterm and a term born population. Ear Hear 9, 283-9]. Here, we investigated the maturation of electrically evoked auditory brainstem responses (EABR) in 55 deaf children who recovered hearing after cochlear implantation, and proposed a predictive model of EABR maturation depending on the onset of deafness. The pattern of EABR maturation over the first 2 years of cochlear implant use was compared with the normal pattern of ABR maturation in hearing children. Changes in EABR wave V latency over the 2 years following cochlear implant connection were analyzed in two groups of children. The first group (n=41) consisted of children with early-onset of deafness (mostly congenital), and the second (n=14) of children who had become profoundly deaf after 1 year of age. The modeling of changes in EABR wave V latency with time was based on the mean values from each of the two groups, allowing comparison of the rates of EABR maturation between groups. Differences between EABRs elicited at the basal and apical ends of the implant electrode array were also tested. There was no influence of age at implantation on the rate of wave V latency change. The main factor for EABR changes was the time in sound. Indeed, significant maturation was observed over the first 2 years of implant use only in the group with early-onset deafness. In this group maturation of wave V progressed as in the ABR model of [Eggermont, J.J., Salamy, A., 1988a

  19. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  20. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  1. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  2. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    Science.gov (United States)

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  3. Pupillary Response and Phenotype in ASD: Latency to Constriction Discriminates ASD from Typically Developing Adolescents.

    Science.gov (United States)

    Lynch, Georgina T F; James, Stephen M; VanDam, Mark

    2018-02-01

    Brain imaging data describe differences in the ASD brain, including amygdala overgrowth, neural interconnectivity, and a three-phase model of neuroanatomical changes from early post-natal development through late adolescence. The pupil reflex test (PRT), a noninvasive measure of brain function, may help improve early diagnosis and elucidate underlying physiology in expression of ASD endophenotype. Commonly observed characteristics of ASD include normal visual acuity but difficulty with eye gaze and photosensitivity, suggesting deficient neuromodulation of cranial nerves. Aims of this study were to confirm sensitivity of the PRT for identifying adolescents with ASD, determine if a phenotype for a subtype of ASD marked by pupil response is present in adolescence, and determine whether differences could be observed on a neurologic exam testing cranial nerves II and III (CNII; CNIII). Using pupillometry, constriction latency was measured serving as a proxy for recording neuromodulation of cranial nerves underlying the pupillary reflex. The swinging flashlight method, used to perform the PRT for measuring constriction latency and return to baseline, discriminated ASD participants from typically developing adolescents on 72.2% of trials. Results further confirmed this measure's sensitivity within a subtype of ASD in later stages of development, serving as a correlate of neural activity within the locus-coeruleus norepinephrine (LC-NE) system. A brainstem model of atypical PRT in ASD is examined in relation to modulation of cranial nerves and atypical arousal levels subserving the atypical pupillary reflex. Autism Res 2018, 11: 364-375. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Milder forms of autism spectrum disorder (ASD) can be difficult to diagnose based on behavioral testing alone. This study used eye-tracking equipment and a hand-held penlight to measure the pupil reflex in adolescents with "high functioning" ASD and in adolescents

  4. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  5. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  6. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    Science.gov (United States)

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  7. The absence of later wave components in auditory brainstem responses as an initial manifestation of type 2 Gaucher disease.

    Science.gov (United States)

    Okubo, Yusuke; Goto, Masahiro; Sakakibara, Hiroshi; Terakawa, Toshiro; Kaneko, Takashi; Miyama, Sahoko

    2014-12-01

    Type 2 Gaucher disease is the most severe neuronopathic form of Gaucher disease and is characterized by severe neurodegeneration with brainstem involvement and organ failure. Prediction or diagnosis of type 2 Gaucher disease before the development of neurological complications is difficult. A 5-month-old female infant presented with deafness without other neurological abnormalities. Auditory brainstem response analysis revealed the absence of later wave components. Two months later, muscular rigidity became evident, followed by the development of opisthotonus and strabismus. Rapid progression of splenomegaly led to the diagnosis of type 2 Gaucher disease. Abnormal auditory brainstem response findings may already exist before the development of severe brainstem abnormalities such as muscular rigidity and opisthotonus in type 2 Gaucher disease. When patients present with deafness and absent later wave components on auditory brainstem response, type 2 Gaucher disease should be included in the differential diagnosis even in the absence of other neurological abnormalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Potenciais evocados auditivos de tronco encefálico em frentistas Auditory brainstem response in gas station attendants

    Directory of Open Access Journals (Sweden)

    Lenita da Silva Quevedo

    2012-12-01

    Full Text Available A ototoxidade dos solventes orgânicos pode atingir o sistema auditivo a nível coclear e retrococlear. OBJETIVO: Avaliar a integridade neurofisiológica do sistema auditivo até tronco cerebral por meio do PEATE. MÉTODO: Estudo prospectivo. Estudados frentistas de três postos de gasolina da cidade de Santa Maria/RS. A amostra ficou composta por 21 sujeitos, que foram avaliados por meio de potenciais evocados auditivos de tronco encefálico. RESULTADOS: Alteração nas latências absolutas das ondas I e III e em todas as latências interpicos, na orelha direita. Na orelha esquerda houve alteração na latência absoluta de todas as ondas, e em todos os intervalos interpicos. Alteração na diferença interaural da onda V foi verificada em 19% dos sujeitos. No grupo exposto há mais de cinco anos, foram estatisticamente significantes o número de sujeitos com alteração: no intervalo interpico I-V da orelha direita; na latência absoluta da onda I e no intervalo interpico III-V da orelha esquerda. CONCLUSÃO: A exposição a combustíveis pode causar alterações no sistema auditivo central.Ototoxicity of organic solvents can affect the hearing system up to the cochlea level and the central structures of hearing. OBJECTIVE: To evaluate the neurophysiological integrity of the hearing system in subjects exposed to fuels using ABR. METHOD: Prospective study. We evaluated attendants from three gas stations in Santa Maria/RS. The sample had 21 subjects, who were evaluated by auditory brainstem response. RESULTS: We found an alteration in the absolute latencies of Waves I and III and in all the interpeak latencies, in the right ear. In the left ear there was a change in the absolute latencies of all Waves, and in all the interpeak intervals. A change in the interaural difference of Wave V was found in 19% of the individuals. In the group exposed for more than five years, there were subjects with a statistically significant changes: in the I

  9. Brainstem response audiometry in the determination of low-frequency hearing loss : a study of various methods for frequency-specific ABR-threshold assessment

    NARCIS (Netherlands)

    E.A.G.J. Conijn

    1992-01-01

    textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials

  10. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  11. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  12. Brainstem evoked response audiometry: an investigatory tool in detecting hepatic encephalopathy in decompensated chronic liver disease.

    Science.gov (United States)

    Kabali, Balasubramanian; Velayutham, Gowri; Kapali, Suresh Chander

    2014-01-01

    It is estimated that globally there is a marked increase in liver disease with reports of rising morbidity and mortality, particularly in younger age groups. Brainstem auditory evoked potential (BAEP) was recorded in 60 decompensated chronic liver disease (DCLD) subjects who fulfilled the selection criteria and compared to 60 age and gender matched healthy subjects with normal liver functions. DCLD subjects were divided into two inter groups based on presence or absence of hepatic encephalopathy (HE). Group 1 comprises of 30 subjects of grade- I HE and Group 2 included 30 subjects without hepatic encephalopathy (NHE). Absolute and interpeak wave latencies were measured. Results were analysed by student independent t- test using SPSS software 11 version. Statistical significance was tested using P value. From the present study it can be concluded that the central nervous system is involved in liver cirrhosis evidenced by an abnormal BAEP latencies parameters. This shows that there may be progressive demyelination occurring along with axonal loss or dysfunction in liver cirrhosis HE. This study suggests that periodic evaluation of cirrhotic individuals to such test will help in monitoring the progress of encephalopathy. The prime goal of this study is early diagnosis and initiation of treatment before the onset of coma can reduce the fatality rate.

  13. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    Science.gov (United States)

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  14. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  15. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9months in a cohort study of Chinese infants.

    Science.gov (United States)

    Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide

  16. Comparison of middle latency responses in presbycusis patients with two different speech recognition scores.

    Science.gov (United States)

    Kirkim, Gunay; Madanoglu, Nevma; Akdas, Ferda; Serbetcioglu, M Bulent

    2007-12-01

    The purpose of this study is to evaluate whether the middle latency responses (MLR) can be used for an objective differentiation of patients with presbycusis having relatively good (Group I) and relatively poor speech recognition scores (Group II). All the participants of these groups had high frequency down-sloping hearing loss with an average of 26-60 dB HL. Data were collected from two described study groups and a control group, using pure tone audiometry, monosyllabic phonetically balanced word and synthetic sentence identification, as well as MLR. The study groups were compared with the control group. When patients in Group I were compared with the control group, only ipsilateral Na latency of middle latency evoked response was statistically significant in the right ear whereas ipsilateral Na latency in the right ear, ipsilateral and contralateral Na latency in the left ear of the patients in Group II were statistically significant. Thus, as an objective complementary tool for the evaluation of the speech perception ability of the patients with presbycusis, Na latency of MLR may be used in combination with the speech discrimination tests.

  17. Double sliding-window technique: a new method to calculate the neuronal response onset latency.

    Science.gov (United States)

    Berényi, Antal; Benedek, György; Nagy, Attila

    2007-10-31

    Neuronal response onset latency provides important data on the information processing within the central nervous system. In order to enhance the quality of the onset latency estimation, we have developed a 'double sliding-window' technique, which combines the advantages of mathematical methods with the reliability of standard statistical processes. This method is based on repetitive series of statistical probes between two virtual time windows. The layout of the significance curve reveals the starting points of changes in neuronal activity in the form of break-points between linear segments. A second-order difference function is applied to determine the position of maximum slope change, which corresponds to the onset of the response. In comparison with Poisson spike-train analysis, the cumulative sum technique and the method of Falzett et al., this 'double sliding-window, technique seems to be a more accurate automated procedure to calculate the response onset latency of a broad range of neuronal response characteristics.

  18. Influence of ageing on carotid baroreflex peak response latency in humans

    DEFF Research Database (Denmark)

    Fisher, J.P.; Kim, A.; Young, C.N.

    2009-01-01

    The stability of a physiological control system, such as the arterial baroreflex, depends critically upon both the magnitude (i.e. gain or sensitivity) and timing (i.e. latency) of the effector response. Although studies have examined resting arterial baroreflex sensitivity in older subjects......, little attention has been given to the influence of ageing on the latency of peak baroreflex responses. First, we compared the temporal pattern of heart rate (HR) and mean arterial blood pressure (BP) responses to selective carotid baroreceptor (CBR) unloading and loading in 14 young (22 +/- 1 years......) and older (61 +/- 1 years) subjects, using 5 s pulses of neck pressure (NP, +35 Torr) and neck suction (NS, -80 Torr). Second, CBR latency was assessed following pharmacological blockade of cardiac parasympathetic nerve activity in eight young subjects, to better understand how known age-related reductions...

  19. Effects of analog and digital filtering on auditory middle latency responses in adults and young children.

    Science.gov (United States)

    Suzuki, T; Hirabayashi, M; Kobayashi, K

    1984-01-01

    Effects of analog high pass (HP) filtering were compared with those of zero phase-shift digital filtering on the auditory middle latency responses (MLR) from nine adults and 16 young children with normal hearing. Analog HP filtering exerted several prominent effects on the MLR waveforms in both adults and young children, such as suppression of Po (ABR), enhancement of Nb, enhancement or emergence of Pb, and latency decrements for Pa and the later components. Analog HP filtering at 20 Hz produced more pronounced waveform distortions in the responses from young children than from adults. Much greater latency decrements for Pa and Nb were observed for young children than for adults in the analog HP-filtered responses at 20 Hz. A large positive peak (Pb) emerged at about 65 ms after the stimulus onset. From these results, the use of digital HP filtering at 20 Hz is strongly recommended for obtaining unbiased and stable MLR in young children.

  20. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  1. Response Latency as a Function of Hypothesis-Testing Strategies in Concept Identification

    Science.gov (United States)

    Fink, Richard T.

    1972-01-01

    The ability of M. Levine's subset-sampling assumptions to account for the decrease in response latency following the trial of the last error was investigated by employing a distributed stimulus set composed of four binary dimensions and a procedure which required Ss to make an overt response in order to sample each dimension. (Author)

  2. Spike latency and response properties of an excitable micropillar laser

    Science.gov (United States)

    Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Erneux, T.; Barbay, S.

    2016-10-01

    We present experimental measurements concerning the response of an excitable micropillar laser with saturable absorber to incoherent as well as coherent perturbations. The excitable response is similar to the behavior of spiking neurons but with much faster time scales. It is accompanied by a subnanosecond nonlinear delay that is measured for different bias pump values. This mechanism provides a natural scheme for encoding the strength of an ultrafast stimulus in the response delay of excitable spikes (temporal coding). Moreover, we demonstrate coherent and incoherent perturbations techniques applied to the micropillar with perturbation thresholds in the range of a few femtojoules. Responses to coherent perturbations assess the cascadability of the system. We discuss the physical origin of the responses to single and double perturbations with the help of numerical simulations of the Yamada model and, in particular, unveil possibilities to control the relative refractory period that we recently evidenced in this system. Experimental measurements are compared to both numerical simulations of the Yamada model and analytic expressions obtained in the framework of singular perturbation techniques. This system is thus a good candidate to perform photonic spike processing tasks in the framework of novel neuroinspired computing systems.

  3. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  4. Auditory Middle Latency Responses in Chronic Smokers Compared to Nonsmokers: Differential Effects of Stimulus and Age

    Science.gov (United States)

    Ramkissoon, Ishara; Beverly, Brenda L.

    2014-01-01

    Purpose: Effects of clicks and tonebursts on early and late auditory middle latency response (AMLR) components were evaluated in young and older cigarette smokers and nonsmokers. Method: Participants ( n = 49) were categorized by smoking and age into 4 groups: (a) older smokers, (b) older nonsmokers, (c) young smokers, and (d) young nonsmokers.…

  5. Neuromagnetic Oscillations Predict Evoked-Response Latency Delays and Core Language Deficits in Autism Spectrum Disorders

    Science.gov (United States)

    Edgar, J. Christopher; Khan, Sarah Y.; Blaskey, Lisa; Chow, Vivian Y.; Rey, Michael; Gaetz, William; Cannon, Katelyn M.; Monroe, Justin F.; Cornew, Lauren; Qasmieh, Saba; Liu, Song; Welsh, John P.; Levy, Susan E.; Roberts, Timothy P. L.

    2015-01-01

    Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency…

  6. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  7. Memory-dependent adjustment of vocal response latencies in a territorial songbird.

    Science.gov (United States)

    Geberzahn, Nicole; Hultsch, Henrike; Todt, Dietmar

    2013-06-01

    Vocal interactions in songbirds can be used as a model system to investigate the interplay of intrinsic singing programmes (e.g. influences from vocal memories) and external variables (e.g. social factors). When characterizing vocal interactions between territorial rivals two aspects are important: (1) the timing of songs in relation to the conspecific's singing and (2) the use of a song pattern that matches the rival's song. Responses in both domains can be used to address a territorial rival. This study is the first to investigate the relation of the timing of vocal responses to (1) the vocal memory of a responding subject and (2) the selection of the song pattern that the subject uses as a response. To this end, we conducted interactive playback experiments with adult nightingales (Luscinia megarhynchos) that had been hand-reared and tutored in the laboratory. We analysed the subjects' vocal response latencies towards broadcast playback stimuli that they either had in their own vocal repertoire (songs shared with playback) or that they had not heard before (unknown songs). Likewise, we compared vocal response latencies between responses that matched the stimulus song and those that did not. Our findings showed that the latency of singing in response to the playback was shorter for shared versus unknown song stimuli when subjects overlapped the playback stimuli with their own song. Moreover birds tended to overlap faster when vocally matching the stimulus song rather than when replying with a non-matching song type. We conclude that memory of song patterns influenced response latencies and discuss possible mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.

    Science.gov (United States)

    Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M

    2016-07-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  10. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  11. Clinical Experience of Auditory Brainstem Response Testing on Pediatric Patients in the Operating Room

    Directory of Open Access Journals (Sweden)

    Guangwei Zhou

    2012-01-01

    Full Text Available Objectives. To review our experience of conducting auditory brainstem response (ABR test on children in the operating room and discuss the benefits versus limitations of this practice. Methods. Retrospective review study conducted in a pediatric tertiary care facility. A total of 267 patients identified with usable data, including ABR results, medical and surgical notes, and follow-up evaluation. Results. Hearing status successfully determined in all patients based on the ABR results form the operating room. The degrees and the types of hearing loss also documented in most of the cases. In addition, multiple factors that may affect the outcomes of ABR in the operating room identified. Conclusions. Hearing loss in children with complicated medical issues can be accurately evaluated via ABR testing in the operating room. Efforts should be made to eliminate adverse factors to ABR recording, and caution should be taken when interpreting ABR results from the operating room.

  12. Thresholds of Tone Burst Auditory Brainstem Responses for Infants and Young Children with Normal Hearing in Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    2007-10-01

    Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz.

  13. Comparison between chloral hydrate and propofol-ketamine as sedation regimens for pediatric auditory brainstem response testing.

    Science.gov (United States)

    Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer

    2017-10-28

    The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Emotional Response, Brand Recall and Response Latency to Visual Register for Food and Beverage Print Ads

    Directory of Open Access Journals (Sweden)

    Irma Puskarevic

    2013-12-01

    Full Text Available Understanding the nature of advertising principles or any other means of marketing communication that affects consume behavior has long been the subject of marketing research. The research of emotional response in relation to ad efficiency in this paper is an extension of the research previously conducted (Nedeljkovic et al., 2011. The aim of this research is to show how the ad content i.e. visual message in printed advertisements affects emotional response. Two hypotheses were postulated. First, we expected more positive response for ads with predominating iconic content. The second hypothesis sought to determine if greater response latency can be expected for ads with dominant tropological content. The method of research was SAM visual method of self-assessment. Emotional response and response latency of the participants were measured for advertisements for food and beverage products and services in order to determine how visual ad content influences emotional response of the participants, as well as the effectiveness of the advertising campaign. In an experiment the participants could rate their emotional response using the Self-assessment Manikin (SAM scale toward both types of advertisements. At the same time the response latency was measured. The results show that the main hypothesis was neither confirmed nor rejected, whereas the second hypothesis was confirmed. We conclude that the attitude towards the ad, as mediating variable, is a good indicator of advertising effectiveness.

  15. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  16. Age-Related Changes in Binaural Interaction at Brainstem Level.

    Science.gov (United States)

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M

    2016-01-01

    Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.

  17. The segment as the minimal planning unit in speech production: evidence based on absolute response latencies.

    Science.gov (United States)

    Kawamoto, Alan H; Liu, Qiang; Lee, Ria J; Grebe, Patricia R

    2014-01-01

    A minimal amount of information about a word must be phonologically and phonetically encoded before a person can begin to utter that word. Most researchers assume that the minimum is the complete word or possibly the initial syllable. However, there is some evidence that the initial segment is sufficient based on longer durations when the initial segment is primed. In two experiments in which the initial segment of a monosyllabic word is primed or not primed, we present additional evidence based on very short absolute response times determined on the basis of acoustic and articulatory onset relative to presentation of the complete target. We argue that the previous failures to find very short absolute response times when the initial segment is primed are due in part to the exclusive use of acoustic onset as a measure of response latency, the exclusion of responses with very short acoustic latencies, the manner of articulation of the initial segment (i.e., plosive vs. nonplosive), and individual differences. Theoretical implications of the segment as the minimal planning unit are considered.

  18. The sequence of cortical activity inferred by response latency variability in the human ventral pathway of face processing.

    Science.gov (United States)

    Lin, Jo-Fu Lotus; Silva-Pereyra, Juan; Chou, Chih-Che; Lin, Fa-Hsuan

    2018-04-11

    Variability in neuronal response latency has been typically considered caused by random noise. Previous studies of single cells and large neuronal populations have shown that the temporal variability tends to increase along the visual pathway. Inspired by these previous studies, we hypothesized that functional areas at later stages in the visual pathway of face processing would have larger variability in the response latency. To test this hypothesis, we used magnetoencephalographic data collected when subjects were presented with images of human faces. Faces are known to elicit a sequence of activity from the primary visual cortex to the fusiform gyrus. Our results revealed that the fusiform gyrus showed larger variability in the response latency compared to the calcarine fissure. Dynamic and spectral analyses of the latency variability indicated that the response latency in the fusiform gyrus was more variable than in the calcarine fissure between 70 ms and 200 ms after the stimulus onset and between 4 Hz and 40 Hz, respectively. The sequential processing of face information from the calcarine sulcus to the fusiform sulcus was more reliably detected based on sizes of the response variability than instants of the maximal response peaks. With two areas in the ventral visual pathway, we show that the variability in response latency across brain areas can be used to infer the sequence of cortical activity.

  19. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Auditory brainstem response screening for hearing loss in high risk neonates.

    Science.gov (United States)

    Watson, D R; McClelland, R J; Adams, D A

    1996-07-01

    The present paper reports the findings of a 7 year study evaluating the use of the auditory brainstem response (ABR) as the basis of a hearing screening procedure in a group of newborns at increased risk of hearing impairment. A Special Care Baby Unit (SCBU) population of 417 infants with diverse clinical backgrounds and treatment histories was tested for hearing impairment at birth using ABR audiometry. Some 332 passed the original screen at 30 dBnHL test level in both ears. Of the failure group, 18 did not survive and 32 had some degree of hearing impairment confirmed, nine of which were sensorineural in origin. An increased incidence of persistent middle ear disease was also noted in the failure group. A detailed operational analysis demonstrates that provided appropriate pass/fail criteria are adopted, the ABR technique offers excellent sensitivity and specificity for the detection of significant hearing loss in the test population. Furthermore, the study establishes that implementation of an ABR-based screening programme could reduce the average age at detection of permanent hearing loss by 7 months. A cost assessment shows that the introduction of such a targetted screening procedure could be done at a reasonable outlay.

  1. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  2. Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, Daniel M., E-mail: daniel.trifiletti@gmail.com [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia (United States); Lee, Cheng-Chia [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Kano, Hideyuki; Cohen, Jonathan [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Janopaul-Naylor, James; Alonso-Basanta, Michelle; Lee, John Y.K. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Simonova, Gabriela; Liscak, Roman [Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague (Czech Republic); Wolf, Amparo; Kvint, Svetlana [Department of Neurosurgery, New York University Lagone Medical Center, New York, New York (United States); Grills, Inga S.; Johnson, Matthew [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Liu, Kang-Du; Lin, Chung-Jung [Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan (China); Mathieu, David; Héroux, France [Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec (Canada); Silva, Danilo; Sharma, Mayur [Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (United States); Cifarelli, Christopher P. [Departments of Neurosurgery and Radiation Oncology, West Virginia University, Morgantown, West Virginia (United States); and others

    2016-10-01

    Purpose: To pool data across multiple institutions internationally and report on the cumulative experience of brainstem stereotactic radiosurgery (SRS). Methods and Materials: Data on patients with brainstem metastases treated with SRS were collected through the International Gamma Knife Research Foundation. Clinical, radiographic, and dosimetric characteristics were compared for factors prognostic for local control (LC) and overall survival (OS) using univariate and multivariate analyses. Results: Of 547 patients with 596 brainstem metastases treated with SRS, treatment of 7.4% of tumors resulted in severe SRS-induced toxicity (grade ≥3, increased odds with increasing tumor volume, margin dose, and whole-brain irradiation). Local control at 12 months after SRS was 81.8% and was improved with increasing margin dose and maximum dose. Overall survival at 12 months after SRS was 32.7% and impacted by age, gender, number of metastases, tumor histology, and performance score. Conclusions: Our study provides additional evidence that SRS has become an option for patients with brainstem metastases, with an excellent benefit-to-risk ratio in the hands of experienced clinicians. Prior whole-brain irradiation increases the risk of severe toxicity in brainstem metastasis patients undergoing SRS.

  3. Middle latency response correlates of single and double deviant stimuli in a multi-feature paradigm.

    Science.gov (United States)

    Althen, H; Huotilainen, M; Grimm, S; Escera, C

    2016-01-01

    This study aimed to test single and double deviance-related modulations of the middle latency response (MLR) and the applicability of the optimum-2 multi-feature paradigm. The MLR and the MMN to frequency, intensity and double-feature deviants of an optimum-2 multi-feature paradigm and the MMN to double-feature deviants of an oddball paradigm were recorded in young adults. Double deviants elicited significant enhancements of the Nb and Pb MLR waves compared with the waves elicited by standard stimuli. These enhancements equalled approximately the sum of the numerical amplitude differences elicited by the single deviants. In contrast, the MMN to double deviants did not show such additivity. MMNs elicited by double deviants of the multi-feature and the oddball paradigm showed no significant difference in amplitude or latency. The optimum-2 multi-feature paradigm is suitable for recording double deviance-related modulations of the MLR. Interspersed intensity and frequency deviants in the standard trace of the optimum-2 condition multi-feature paradigm did not weaken the double MMN. The optimum-2 multi-feature paradigm could be especially beneficial for clinical studies on early deviance-related modulations in the MLR, due to its optimized utilization of the recording time. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Combined laryngeal inflammation and trauma mediate long-lasting immunoreactivity response in the brainstem sensory nuclei in the rat

    Directory of Open Access Journals (Sweden)

    Kristina eSimonyan

    2012-11-01

    Full Text Available Somatosensory feedback from the larynx plays a critical role in regulation of normal upper airway functions, such as breathing, deglutition and voice production, while altered laryngeal sensory feedback is known to elicit a variety of pathological reflex responses, including persistent coughing, dysphonia and laryngospasm. Despite its clinical impact, the central mechanisms underlying the development of pathological laryngeal responses remain poorly understood. We examined the effects of persistent vocal fold (VF inflammation and trauma, as frequent causes of long-lasting modulation of laryngeal sensory feedback, on brainstem immunoreactivity in the rat. Combined VF inflammation and trauma were induced by injection of lipopolysaccharide (LPS solution and compared to VF trauma alone from injection of vehicle solution and to controls without any VF manipulations. Using a c-fos marker, we found significantly increased Fos-like immunoreactivity (FLI in the bilateral intermediate/parvicellular reticular formation (IRF/PCRF with a trend in the left solitary tract nucleus (NTS only in animals with LPS-induced VF inflammation and trauma. Further, FLI in the right NTS was significantly correlated with the severity of LPS-induced VF changes. However, increased brainstem FLI response was not associated with FLI changes in the first-order neurons of the laryngeal afferents located in the nodose and jugular ganglia in either group. Our data indicate that complex VF alterations (i.e., inflammation/trauma vs. trauma alone may cause prolonged excitability of the brainstem nuclei receiving a direct sensory input from the larynx, which, in turn, may lead to (malplastic changes within the laryngeal central sensory control.

  5. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  6. Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status: an experimental parametric study.

    Science.gov (United States)

    Akhoun, Idrick; Moulin, Annie; Jeanvoine, Arnaud; Ménard, Mikael; Buret, François; Vollaire, Christian; Scorretti, Riccardo; Veuillet, Evelyne; Berger-Vachon, Christian; Collet, Lionel; Thai-Van, Hung

    2008-11-15

    Speech elicited auditory brainstem responses (Speech ABR) have been shown to be an objective measurement of speech processing in the brainstem. Given the simultaneous stimulation and recording, and the similarities between the recording and the speech stimulus envelope, there is a great risk of artefactual recordings. This study sought to systematically investigate the source of artefactual contamination in Speech ABR response. In a first part, we measured the sound level thresholds over which artefactual responses were obtained, for different types of transducers and experimental setup parameters. A watermelon model was used to model the human head susceptibility to electromagnetic artefact. It was found that impedances between the electrodes had a great effect on electromagnetic susceptibility and that the most prominent artefact is due to the transducer's electromagnetic leakage. The only artefact-free condition was obtained with insert-earphones shielded in a Faraday cage linked to common ground. In a second part of the study, using the previously defined artefact-free condition, we recorded speech ABR in unilateral deaf subjects and bilateral normal hearing subjects. In an additional control condition, Speech ABR was recorded with the insert-earphones used to deliver the stimulation, unplugged from the ears, so that the subjects did not perceive the stimulus. No responses were obtained from the deaf ear of unilaterally hearing impaired subjects, nor in the insert-out-of-the-ear condition in all the subjects, showing that Speech ABR reflects the functioning of the auditory pathways.

  7. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    Science.gov (United States)

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    Science.gov (United States)

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  9. The construction of categorization judgments: using subjective confidence and response latency to test a distributed model.

    Science.gov (United States)

    Koriat, Asher; Sorka, Hila

    2015-01-01

    The classification of objects to natural categories exhibits cross-person consensus and within-person consistency, but also some degree of between-person variability and within-person instability. What is more, the variability in categorization is also not entirely random but discloses systematic patterns. In this study, we applied the Self-Consistency Model (SCM, Koriat, 2012) to category membership decisions, examining the possibility that confidence judgments and decision latency track the stable and variable components of categorization responses. The model assumes that category membership decisions are constructed on the fly depending on a small set of clues that are sampled from a commonly shared population of pertinent clues. The decision and confidence are based on the balance of evidence in favor of a positive or a negative response. The results confirmed several predictions derived from SCM. For each participant, consensual responses to items were more confident than non-consensual responses, and for each item, participants who made the consensual response tended to be more confident than those who made the nonconsensual response. The difference in confidence between consensual and nonconsensual responses increased with the proportion of participants who made the majority response for the item. A similar pattern was observed for response speed. The pattern of results obtained for cross-person consensus was replicated by the results for response consistency when the responses were classified in terms of within-person agreement across repeated presentations. These results accord with the sampling assumption of SCM, that confidence and response speed should be higher when the decision is consistent with what follows from the entire population of clues than when it deviates from it. Results also suggested that the context for classification can bias the sample of clues underlying the decision, and that confidence judgments mirror the effects of context on

  10. Brainstem disconnection

    International Nuclear Information System (INIS)

    Duffield, Curtis; Wootton-Gorges, Sandra L.; Jocson, Jennifer

    2009-01-01

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  11. Brainstem disconnection

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, Curtis; Wootton-Gorges, Sandra L. [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Radiology, Sacramento, CA (United States); Jocson, Jennifer [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Pediatrics, Sacramento, CA (United States)

    2009-12-15

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  12. Low Latency DESDynI Data Products for Disaster Response, Resource Management and Other Applications

    Science.gov (United States)

    Doubleday, Joshua R.; Chien, Steve A.; Lou, Yunling

    2011-01-01

    We are developing onboard processor technology targeted at the L-band SAR instrument onboard the planned DESDynI mission to enable formation of SAR images onboard opening possibilities for near-real-time data products to augment full data streams. Several image processing and/or interpretation techniques are being explored as possible direct-broadcast products for use by agencies in need of low-latency data, responsible for disaster mitigation and assessment, resource management, agricultural development, shipping, etc. Data collected through UAVSAR (L-band) serves as surrogate to the future DESDynI instrument. We have explored surface water extent as a tool for flooding response, and disturbance images on polarimetric backscatter of repeat pass imagery potentially useful for structural collapse (earthquake), mud/land/debris-slides etc. We have also explored building vegetation and snow/ice classifiers, via support vector machines utilizing quad-pol backscatter, cross-pol phase, and a number of derivatives (radar vegetation index, dielectric estimates, etc.). We share our qualitative and quantitative results thus far.

  13. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    -chirp, was based on estimates of human basilar membrane (BM) group delays derived from stimulus-frequency otoacoustic emissions (SFOAE) at a sound pressure level of 40 dB [Shera and Guinan, in Recent Developments in Auditory Mechanics (2000)]. The other chirp, referred to as the A-chirp, was derived from latency...

  14. Investigation of auditory brainstem function in elderly diabetic patients with presbycusis.

    Science.gov (United States)

    Kovacií, Jelena; Lajtman, Zoran; Ozegović, Ivan; Knezević, Predrag; Carić, Tomislav; Vlasić, Ana

    2009-01-01

    We performed brainstem auditory evoked potential (BAEP) examinations in 100 patients older than 60 years and having type I diabetes mellitus and presbycusis. The aim of our investigation was to compare the BAEP results of this group with those of healthy controls with presbycusis and to look for possible correlations between alteration of the auditory brainstem function and the aging of elderly diabetic patients. Absolute and interpeak latencies of all waves were prolonged significantly in the study group of diabetic patients. The amplitudes of all waves I through V were diminished in the study group as compared to those in the control group, with statistical significance present for all waves. Analysis of the latencies (waves I, II, I, and V), interpeak latencies (I-V), and amplitudes (I, II, III, and V) of BAEP revealed a significant difference between those of diabetics and those of healthy elderly controls with presbycusis. These data support a hypothesis that there is a brainstem neuropathy in diabetes mellitus that can be assessed with auditory brainstem response testing even in the group of elderly patients with sensorineural hearing loss.

  15. Fetal MEG evoked response latency from beamformer with random field theory.

    Science.gov (United States)

    McCubbin, J; Vrba, J; Murphy, P; Temple, J; Eswaran, H; Lowery, C L; Preissl, H

    2010-01-01

    Analysis of fetal magnetoencephalographic brain recordings is restricted by low signal to noise ratio (SNR) and non-stationarity of the sources. Beamformer techniques have been applied to improve SNR of fetal evoked responses. However, until now the effect of non-stationarity was not taken into account in detail, because the detection of evoked responses is in most cases determined by averaging a large number of trials. We applied a windowing technique to improve the stationarity of the data by using short time segments recorded during a flash-evoked study. In addition, we implemented a random field theory approach for more stringent control of false-positives in the statistical parametric map of the search volume for the beamformer. The search volume was based on detailed individual fetal/maternal biometrics from ultrasound scans and fetal heart localization. Average power over a sliding window within the averaged evoked response against a randomized average background power was used as the test z-statistic. The significance threshold was set at 10% over all members of a contiguous cluster of voxels. There was at least one significant response for 62% of fetal and 95% of newborn recordings with gestational age (GA) between 28 and 45 weeks from 29 subjects. We found that the latency was either substantially unchanged or decreased with increasing GA for most subjects, with a nominal rate of about -11 ms/week. These findings support the anticipated neurophysiological development, provide validation for the beamformer model search as a methodology, and may lead to a clinical test for fetal cognitive development.

  16. Correlation of augmented startle reflex with brainstem electrophysiological responses in Tay-Sachs disease.

    Science.gov (United States)

    Nakamura, Sadao; Saito, Yoshiaki; Ishiyama, Akihiko; Sugai, Kenji; Iso, Takashi; Inagaki, Masumi; Sasaki, Masayuki

    2015-01-01

    To clarify the evolution of an augmented startle reflex in Tay-Sachs disease and compare the temporal relationship between this reflex and brainstem evoked potentials. Clinical and electrophysiological data from 3 patients with Tay-Sachs disease were retrospectively collected. The augmented startle reflex appeared between the age of 3 and 17 months and disappeared between the age of 4 and 6 years. Analysis of brainstem auditory evoked potentials revealed that poor segregation of peak I, but not peak III, coincided with the disappearance of the augmented startle reflex. A blink reflex with markedly high amplitude was observed in a patient with an augmented startle reflex. The correlation between the augmented startle reflex and the preservation of peak I but not peak III supports the theory that the superior olivary nucleus is dispensable for this reflex. The blink reflex with high amplitudes may represent augmented excitability of reticular formation at the pontine tegmentum in Tay-Sachs disease, where the pattern generators for the augmented startle and blink reflexes may functionally overlap. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Those who hesitate lose: the relationship between assertiveness and response latency.

    Science.gov (United States)

    Collins, L H; Powell, J L; Oliver, P V

    2000-06-01

    Individuals who are low in assertiveness may take longer to sort out, process, and state their own perceptions, attitudes and priorities, which puts them at a disadvantage in getting their needs met. The reason for this may not be inhibition in social situations or cognitive ability, but a lack of clarity regarding their own attitudes, opinions, preferences, goals, and priorities. 101 undergraduate students (57% women and 43% men) completed a demographics questionnaire, the Wonderlic Personnel Test, a self-monitoring scale, the Marlowe-Crowne Social Desirability Scale, the Rosenberg Self-esteem Scale, the College Self-expression Scale, and a test of the false-consensus effect. Response latencies to questions were measured. Individuals with higher scores on the Wonderlic Personnel Test answered items more quickly but, even when cognitive ability was controlled, individuals low in assertiveness still took significantly longer to respond to questions about themselves, their opinions, and their preferences. If individuals fall behind at this early step in the process of asserting themselves, then they may be more likely to miss opportunities to be assertive.

  18. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies

    Directory of Open Access Journals (Sweden)

    Jerzy J. Karylowski

    2017-04-01

    Full Text Available Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective were faster than trait judgments regarding observable self-aspects (external perspective. Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses nor by its desirability (highly desirable vs. moderately desirable traits. Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  19. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies.

    Science.gov (United States)

    Karylowski, Jerzy J; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  20. Emotional Response, Brand Recall and Response Latency to Visual Register for Food and Beverage Print Ads

    OpenAIRE

    Puškarević, Irma; Nedeljković, Uroš; Novaković, Dragoljub

    2013-01-01

    Understanding the nature of advertising principles or any other means of marketing communication that affects consume behavior has long been the subject of marketing research. The research of emotional response in relation to ad efficiency in this paper is an extension of the research previously conducted (Nedeljkovic et al., 2011). The aim of this research is to show how the ad content i.e. visual message in printed advertisements affects emotional response. Two hypotheses were postulated. F...

  1. Fast response electromagnetic follow-ups from low latency GW triggers

    International Nuclear Information System (INIS)

    Howell, E J; Chu, Q; Rowlinson, A; Wen, L; Gao, H; Zhang, B; Tingay, S J; Boër, M

    2016-01-01

    We investigate joint low-latency gravitational wave (GW) detection and prompt electromagnetic (EM) follow-up observations of coalescing binary neutron stars (BNSs). Assuming that BNS mergers are associated with short duration gamma ray bursts (SGRBs), we evaluate if rapid EM follow-ups can capture the prompt emission, early engine activity or reveal any potential by-products such as magnetars or fast radio bursts. To examine the expected performance of extreme low-latency search pipelines, we simulate a population of coalescing BNSs and use these to estimate the detectability and localisation efficiency at different times before merger. Using observational SGRB flux data corrected to the range of the advanced GW interferometric detectors, we determine what EM observations could be achieved from low-frequency radio up to high energy γ-ray. We show that while challenging, breakthrough multi-messenger science is possible through low latency pipelines. (paper)

  2. Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing

    DEFF Research Database (Denmark)

    Harte, James; Rønne, Filip Munch; Dau, Torsten

    2010-01-01

    . To generate AEPs recorded at remote locations, a convolution was made on an empirically obtained elementary unit waveform with the instantaneous discharge rate function for the corresponding AN unit. AEPs to click-trains, as well as to tone pulses at various frequencies, were both modelled and recorded...... at different stimulation levels and repetition rates. The observed nonlinearities in the recorded potential patterns, with respect to ABR wave V latencies and amplitudes, could be largely accounted for by level-dependent BM processing as well as effects of short-term neural adaptation. The present study...

  3. Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses.

    Directory of Open Access Journals (Sweden)

    Kelly B McClellan

    2006-06-01

    Full Text Available B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68 latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.

  4. Contribution of resolved and unresolved harmonic regions to brainstem speech-evoked responses in quiet and in background noise

    Directory of Open Access Journals (Sweden)

    M. Laroche

    2011-03-01

    Full Text Available Speech auditory brainstem responses (speech ABR reflect activity that is phase-locked to the harmonics of the fundamental frequency (F0 up to at least the first formant (F1. Recent evidence suggests that responses at F0 in the presence of noise are more robust than responses at F1, and are also dissociated in some learning-impaired children. Peripheral auditory processing can be broadly divided into resolved and unresolved harmonic regions. This study investigates the contribution of these two regions to the speech ABR, and their susceptibility to noise. We recorded, in quiet and in background white noise, evoked responses in twelve normal hearing adults in response to three variants of a synthetic vowel: i Allformants, which contains all first three formants, ii F1Only, which is dominated by resolved harmonics, and iii F2&F3Only, which is dominated by unresolved harmonics. There were no statistically significant differences in the response at F0 due to the three variants of the stimulus in quiet, nor did the noise affect this response with the Allformants and F1Only variants. On the other hand, the response at F0 with the F2&F3Only variant was significantly weaker in noise than with the two other variants (p<0.001. With the response at F1, there was no difference with the Allformants and F1Only variants in quiet, but was expectedly weaker with the F2&F3Only variant (p<0.01. The addition of noise significantly weakened the response at F1 with the F1Only variant (p<0.05, but this weakening only tended towards significance with the Allformants variant (p=0.07. The results of this study indicate that resolved and unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. The results also support earlier work on the differential susceptibility of responses at F0 and F1 to added noise.

  5. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    Science.gov (United States)

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (pwave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from

  6. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  7. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  8. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    NARCIS (Netherlands)

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to

  9. Short-latency crossed responses in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  10. Bilateral electromyogram response latency following platform perturbation in unilateral transtibial prosthesis users: influence of weight distribution and limb position.

    Science.gov (United States)

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2013-01-01

    Appropriate muscular response following an external perturbation is essential in preventing falls. Transtibial prosthesis users lack a foot-ankle complex and associated sensorimotor structures on the side with the prosthesis. The effect of this lack on rapid responses of the lower limb to external surface perturbations is unknown. The aim of the present study was to compare electromyogram (EMG) response latencies of otherwise healthy, unilateral, transtibial prosthesis users (n = 23, mean +/- standard deviation [SD] age = 48 +/- 14 yr) and a matched control group (n = 23, mean +/- SD age = 48 +/- 13 yr) following sudden support-surface rotations in the pitch plane (toes-up and toes-down). Perturbations were elicited in various weight-bearing and limb-perturbed conditions. The results indicated that transtibial prosthesis users have delayed responses of multiple muscles of the lower limb following perturbation, both in the intact and residual limbs. Weight-bearing had no influence on the response latency in the residual limb, but did on the intact limb. Which limb received the perturbation was found to influence the muscular response, with the intact limb showing a significantly delayed response when the perturbation was received only on the side with a prosthesis. These delayed responses may represent an increased risk of falling for individuals who use transtibial prostheses.

  11. Craniofacial Pain: Brainstem Mechanisms

    Directory of Open Access Journals (Sweden)

    Barry J Sessle

    1996-01-01

    Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of

  12. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Erika Matsumura

    Full Text Available Abstract Introduction Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. Objective To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. Methods The sample consisted of 38 adult males, mean age of 35.8 (±7.2, divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n = 10, mild obstructive sleep apnea (n = 11 moderate obstructive sleep apnea (n = 8 and severe obstructive sleep apnea (n = 9. All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. Results There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p = 0.03. There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p = 0.01. Conclusion The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem

  13. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    Science.gov (United States)

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de

  14. Short-term pressure induced suppression of the short-latency response: a new methodology for investigating stretch reflexes

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Gruber, Markus

    2009-01-01

    During experiments involving ischemic nerve block, we noticed that the short-latency response (SLR) of evoked stretches in m. soleus decreased immediately following inflation of a pneumatic cuff surrounding the lower leg. The present study aimed to investigate this short-term effect of pressure......) were recorded. Additionally, stretches were applied with different velocities and amplitudes. Finally, the SLR was investigated during hopping and in two protocols that modified the ability of the muscle-tendon complex distal to the cuff to stretch. All measurements were performed with deflated...

  15. The influence of cochlear traveling wave and neural adaptation on auditory brainstem responses

    DEFF Research Database (Denmark)

    Junius, D.; Dau, Torsten

    2005-01-01

    of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed...... by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL......), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz...

  16. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    Science.gov (United States)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  17. Piracetam-induced changes on the brainstem auditory response in anesthetized juvenile rhesus monkeys (Macaca mulatta). Report of two clinical cases.

    Science.gov (United States)

    Durand-Rivera, A; Gonzalez-Pina, R; Hernandez-Godinez, B; Ibanez-Contreras, A; Bueno-Nava, A; Alfaro-Rodriguez, A

    2012-10-01

    We describe two clinical cases and examine the effects of piracetam on the brainstem auditory response in infantile female rhesus monkeys (Macaca mulatta). We found that the interwave intervals show a greater reduction in a 3-year-old rhesus monkey compared to a 1-year-old rhesus monkey. In this report, we discuss the significance of these observations. © 2012 John Wiley & Sons A/S.

  18. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    Science.gov (United States)

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  20. Prediction of thresholds and latency on the basis of experimentally determined impulse responses

    NARCIS (Netherlands)

    Blommaert, F.J.J.; Roufs, J.A.J.

    As was shown before (Roufs and Blommaert 1981), temporal impluse responsses and step responses can be obtained psychophysically using a driftcorrecting perturbation technique. In this paper, experimentally determined impulse responses are given for eight subjects using different experimental

  1. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol.

    Science.gov (United States)

    Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf

    2015-02-12

    Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and

  2. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  3. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  4. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Hansen, Lars Kai; Parnas, Josef

    2008-01-01

    as an indication of increased readiness. This is achieved through detailed analysis of both evoked and induced responses in the time-frequency domain. Electroencephalography in a 64 channels montage was recorded in four-teen healthy subjects. Two paradigms were explored: A Regular alternation between hand......). After initial exploration of the AvVVT and Induced collapsed files of all subjects using two-way factor analyses (Non-Negative Matrix Factorization), further data decomposition was performed in restricted windows of interest (WOI). Main effects of side of stimulation, onset or offset, regularity...

  5. An implicit measure of associations with mental illness versus physical illness: response latency decomposition and stimuli differential functioning in relation to IAT order of associative conditions and accuracy.

    Science.gov (United States)

    Mannarini, Stefania; Boffo, Marilisa

    2014-01-01

    The present study aimed at the definition of a latent measurement dimension underlying an implicit measure of automatic associations between the concept of mental illness and the psychosocial and biogenetic causal explanatory attributes. To this end, an Implicit Association Test (IAT) assessing the association between the Mental Illness and Physical Illness target categories to the Psychological and Biologic attribute categories, representative of the causal explanation domains, was developed. The IAT presented 22 stimuli (words and pictures) to be categorized into the four categories. After 360 university students completed the IAT, a Many-Facet Rasch Measurement (MFRM) modelling approach was applied. The model specified a person latency parameter and a stimulus latency parameter. Two additional parameters were introduced to denote the order of presentation of the task associative conditions and the general response accuracy. Beyond the overall definition of the latent measurement dimension, the MFRM was also applied to disentangle the effect of the task block order and the general response accuracy on the stimuli response latency. Further, the MFRM allowed detecting any differential functioning of each stimulus in relation to both block ordering and accuracy. The results evidenced: a) the existence of a latency measurement dimension underlying the Mental Illness versus Physical Illness - Implicit Association Test; b) significant effects of block order and accuracy on the overall latency; c) a differential functioning of specific stimuli. The results of the present study can contribute to a better understanding of the functioning of an implicit measure of semantic associations with mental illness and give a first blueprint for the examination of relevant issues in the development of an IAT.

  6. Using response-time latencies to measure athletes’ doping attitudes: the brief implicit attitude test identifies substance abuse in bodybuilders

    Science.gov (United States)

    2014-01-01

    Background Knowing and, if necessary, altering competitive athletes’ real attitudes towards the use of banned performance-enhancing substances is an important goal of worldwide doping prevention efforts. However athletes will not always be willing to reporting their real opinions. Reaction time-based attitude tests help conceal the ultimate goal of measurement from the participant and impede strategic answering. This study investigated how well a reaction time-based attitude test discriminated between athletes who were doping and those who were not. We investigated whether athletes whose urine samples were positive for at least one banned substance (dopers) evaluated doping more favorably than clean athletes (non-dopers). Methods We approached a group of 61 male competitive bodybuilders and collected urine samples for biochemical testing. The pictorial doping Brief Implicit Association Test (BIAT) was used for attitude measurement. This test quantifies the difference in response latencies (in milliseconds) to stimuli representing related concepts (i.e. doping–dislike/like–[health food]). Results Prohibited substances were found in 43% of all tested urine samples. Dopers had more lenient attitudes to doping than non-dopers (Hedges’s g = -0.76). D-scores greater than -0.57 (CI95 = -0.72 to -0.46) might be indicative of a rather lenient attitude to doping. In urine samples evidence of administration of combinations of substances, complementary administration of substances to treat side effects and use of stimulants to promote loss of body fat was common. Conclusion This study demonstrates that athletes’ attitudes to doping can be assessed indirectly with a reaction time-based test, and that their attitudes are related to their behavior. Although bodybuilders may be more willing to reveal their attitude to doping than other athletes, these results still provide evidence that the pictorial doping BIAT may be useful in athletes from other sports

  7. Using response-time latencies to measure athletes' doping attitudes: the brief implicit attitude test identifies substance abuse in bodybuilders.

    Science.gov (United States)

    Brand, Ralf; Wolff, Wanja; Thieme, Detlef

    2014-09-10

    Knowing and, if necessary, altering competitive athletes' real attitudes towards the use of banned performance-enhancing substances is an important goal of worldwide doping prevention efforts. However athletes will not always be willing to reporting their real opinions. Reaction time-based attitude tests help conceal the ultimate goal of measurement from the participant and impede strategic answering. This study investigated how well a reaction time-based attitude test discriminated between athletes who were doping and those who were not. We investigated whether athletes whose urine samples were positive for at least one banned substance (dopers) evaluated doping more favorably than clean athletes (non-dopers). We approached a group of 61 male competitive bodybuilders and collected urine samples for biochemical testing. The pictorial doping Brief Implicit Association Test (BIAT) was used for attitude measurement. This test quantifies the difference in response latencies (in milliseconds) to stimuli representing related concepts (i.e. doping-dislike/like-[health food]). Prohibited substances were found in 43% of all tested urine samples. Dopers had more lenient attitudes to doping than non-dopers (Hedges's g = -0.76). D-scores greater than -0.57 (CI95 = -0.72 to -0.46) might be indicative of a rather lenient attitude to doping. In urine samples evidence of administration of combinations of substances, complementary administration of substances to treat side effects and use of stimulants to promote loss of body fat was common. This study demonstrates that athletes' attitudes to doping can be assessed indirectly with a reaction time-based test, and that their attitudes are related to their behavior. Although bodybuilders may be more willing to reveal their attitude to doping than other athletes, these results still provide evidence that the pictorial doping BIAT may be useful in athletes from other sports, perhaps as a complementary measure in evaluations of

  8. Contribuição do potencial evocado auditivo em pacientes com vertigem Results of brainstem evoked response in patients with vestibular complaints

    Directory of Open Access Journals (Sweden)

    Gisiane Munaro

    2010-06-01

    -sectional, retrospective, observational study, held with 56 dizzy patients assessed by means of audiometry, vecto-electronystagmography and brainstem evoked auditory potential, broken down into Group A, with 31 normal-hearing individuals and Group B with 25 hearing loss patients, compared to the control group made up of ten normal-hearing asymptomatic individuals. RESULTS: Patients from groups A and B were compared to the Control Group, although with values within the normal range. A common finding for both groups was the lack of wave I at 80 dBHL and it happened bilaterally in four individuals (12.9% and unilaterally in three (9.6% for Group A; and bilaterally in eight individuals from Group B (32%. In the two cases in which vecto-electronystagmography showed central vestibular alteration, there were no changes to the evoked potential parameters. CONCLUSION: patients with vertigo, normal-hearing and hearing loss individuals had increased absolute latencies when compared to the Control Group

  9. Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; Van Der Kogel, A.J.; Stephens, L.C.

    1994-01-01

    Investigation of the age dependent single-dose radiation tolerance, latency to radiation myelopathy, and the histopathological changes after irradiation of the rat cervical spinal cord is presented. Rats were irradiated with graded single doses of 4 MV photons to the cervical spinal cord. When the rats showed definite signs of paresis of the forelegs, they were killed and processed for histological examination. The radiation dose resulting in paresis due to white matter damage in 50% of the animals (ED 50 ) after single dose irradiation was about 21.5 Gy at all ages ≥ 2 weeks. Only the Ed 50 at 1 week was significantly lower. The latency to the development of paresis clearly changed with the age at irradiation, from about 2 weeks after irradiation at 1 week to 6-8 months after irradiation at age ≥ 8 weeks. The white matter damage was similar in all symptomatic animals studied. The most prominent were areas with diffuse demyelination and swollen axons, often with focal necrosis, accompanied by glial reaction. This was observed in all symptomatic animals, irrespective of the age at irradiation. Expression of vascular damage appeared to depend on the age at irradiation. Although the latency to myelopathy is clearly age dependent, single dose tolerance is not age dependent at age ≥ 2 weeks in the rat cervical spinal cord. The white matter damage is similar in all symptomatic animals studied, but the vasculopathies appear to be influenced by the age at irradiation. It is concluded that white matter damage and vascular damage are separate phenomena contributing to the development of radiation myelopathy, expression of which may depend on the radiation dose applied and the age at irradiation. 28 refs., 5 figs., 3 tabs

  10. A brainstem anosognosia of hemiparesis

    Directory of Open Access Journals (Sweden)

    Kazuo Abe

    2009-10-01

    Full Text Available A woman had anosognosia for hemiplegia as a manifestation of brainstem infarction. She had no mental or neuropsychological disturbances, and had involvement of the brainstem in the frontal/parietal-subcortical circuits to the right cerebral hemisphere. Brainstem lesions that disrupt frontal/parietal-subcortical areas may affect anosognosia for hemiplegia.

  11. Pediatric brainstem oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Sandeep Mohindra

    2012-01-01

    Full Text Available The authors present the first report of pediatric brainstem oligodendroglioma, infiltrating midbrain, and medulla oblongata. The report details clinical features, radiological findings, and surgical steps. As this entity is exceedingly uncommon, the overall epidemiology, prognosis, and long-term outcome remain far from established.

  12. Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise.

    Directory of Open Access Journals (Sweden)

    Ekaterina Vinnik

    2011-02-01

    Full Text Available Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

  13. Pursuit Latency for Chromatic Targets

    Science.gov (United States)

    Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)

    1998-01-01

    The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.

  14. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Directory of Open Access Journals (Sweden)

    Xiujuan Fu

    2017-12-01

    Full Text Available Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III, Montreal Cognitive Assessment Chinese version (MoCA, trail-making test (TMT, Symbol Digit Modalities Test (SDMT, Wechsler Adult Intelligence Scale-Digit Spans (DS, Stroop test, Self Rating Depression Scale (SDS, and Self Rating Anxiety Scale (SAS. Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI, and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment.

  15. A Clinical Research Study of Cognitive Dysfunction and Affective Impairment after Isolated Brainstem Stroke

    Science.gov (United States)

    Fu, Xiujuan; Lu, Zuneng; Wang, Yan; Huang, Lifang; Wang, Xi; Zhang, Hong; Xiao, Zheman

    2017-01-01

    Although the function of the cerebellum in neurocognition has been well-documented, the similar role of the brainstem has yet to be fully elucidated. This clinical research study aimed to combine data relating to neuropsychological assessments and P300 to explore cognitive dysfunction and affective impairment following brainstem stroke. Thirty-four patients with isolated brainstem stroke and twenty-six healthy controls were recruited; for each patient, we collated data pertaining to the P300, Addenbrooke's Cognitive Examination III (ACE-III), Montreal Cognitive Assessment Chinese version (MoCA), trail-making test (TMT), Symbol Digit Modalities Test (SDMT), Wechsler Adult Intelligence Scale-Digit Spans (DS), Stroop test, Self Rating Depression Scale (SDS), and Self Rating Anxiety Scale (SAS). Significance was analyzed using an independent T-test or the Mann-Whitney U-test. Correlation was analyzed using Pearson's correlation analysis or Spearman's correlation analysis. Collectively, data revealed that brainstem stroke caused mild cognitive impairment (MCI), and that visuospatial, attention, linguistic, and emotional disturbances may occur after isolated brainstem stroke. Cognitive decline was linked to P300 latency, ACE-III, and MoCA; P300 latency was correlated with ACE-III. Patients with right brainstem lesions were more likely to suffer memory decline. The present study provides initial data relating to the role of the brainstem in neurocognition, and will be useful for further understanding of vascular cognitive and affective impairment. PMID:29311895

  16. The maturational process of the auditory system in the first year of life characterized by brainstem auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Raquel Beltrão Amorim

    2009-01-01

    Full Text Available The study of brainstem auditory evoked potentials (BAEP allows obtaining the electrophysiological activity generated in the cochlear nerve to the inferior colliculus. In the first months of life, a period of greater neuronal plasticity, important changes are observed in the absolute latency and inter-peak intervals of BAEP, which occur up to the completion of the maturational process, around 18 months of life in full-term newborns, when the response is similar to that of adults. OBJECTIVE: The goal of this study was to establish normal values of absolute latencies for waves I, III and V and inter-peak intervals I-III, III-V and I-V of the BAEP performed in full-term infants attending the Infant Hearing Health Program of the Speech-Language Pathology and Audiology Course at Bauru School of Dentistry, Brazil, with no risk history for hearing impairment. MATERIAL AND METHODS: The stimulation parameters were: rarefaction click stimulus presented by the 3ª insertion phone, intensity of 80 dBnHL and a rate of 21.1 c/s, band-pass filter of 30 and 3,000 Hz and average of 2,000 stimuli. A sample of 86 infants was first divided according to their gestational age in preterm (n=12 and full-term (n=74, and then according to their chronological age in three periods: P1: 0 to 29 days (n=46, P2: 30 days to 5 months 29 days (n=28 and P3: above 6 months (n= 12. RESULTS: The absolute latency of wave I was similar to that of adults, generally in the 1st month of life, demonstrating a complete process maturity of the auditory nerve. For waves III and V, there was a gradual decrease of absolute latencies with age, characterizing the maturation of axons and synaptic mechanisms in the brainstem level. CONCLUSION: Age proved to be a determining factor in the absolute latency of the BAEP components, especially those generated in the brainstem, in the first year of life.

  17. Brainstem Tuberculoma in Pregnancy

    Directory of Open Access Journals (Sweden)

    Dana A. Muin

    2015-01-01

    Full Text Available We report a case of a Somali refugee who presented in the second trimester of her first pregnancy with a four-week history of gradual right-sided sensomotoric hemisyndrome including facial palsy and left-sided paresis of the oculomotorius nerve causing drooping of the left eyelid and double vision. Cranial magnetic resonance imaging revealed a solitary brainstem lesion. Upon detection of hilar lymphadenopathy on chest X-ray (CXR, the diagnosis of disseminated tuberculosis with involvement of the central nervous system was confirmed by PCR and treatment induced with rifampicin, isoniazid, pyrazinamide, and ethambutol. The patient had a steady neurological improvement and a favorable pregnancy outcome.

  18. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    Science.gov (United States)

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hatton

    2012-01-01

    Full Text Available The bone-conduction (BC tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears and (ii the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears. Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz. A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%. A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing.

  20. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Science.gov (United States)

    Hatton, Jennifer L.; Janssen, Renée M.; Stapells, David R.

    2012-01-01

    The bone-conduction (BC) tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i) whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears) and (ii) the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears). Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz). A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level) had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%). A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing. PMID:22988461

  1. MR findings of brainstem injury

    Energy Technology Data Exchange (ETDEWEB)

    Park, Man Soo; Hwang, Woo Cheol; Park, Choong Ki [Hallym University College of Medicine, Seoul (Korea, Republic of); Suh, Dae Chul [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Joon [Dankook University of College of Medicine, Cheonan (Korea, Republic of)

    1995-02-15

    To analyze the characteristics of traumatic brainstem injury by CT and MR. CT and MR studies of 10 patients with traumatic brainstem lesion in MR were retrospectively reviewed, particularly attended to location, signal intensity and associated lesions. CT failed to depict 8 of 10 brainstem lesions. All lesions were detected in MR images with T2-weighted images showing higher detection rate (n = 10) (100%) than T1-weighted images (n = 3) (30%) or CT (n = 2) (20%). The brainstem lesions located in the dorsolateral aspects of the rostral brainstem (mid brain and upper pons) in 7 (70%) cases, in ventral aspects of rostral brain in 2 (20%) cases and in median portion of pons in 1 (10%) case. Corpus callosal (n = 5), lobar white matter (n = 5) diffuse axonal injury, and 2 hemorrhagic lesions in basal ganglia were the associated findings. MR imaging is more helpful than CT in the detection of brainstem injury, especially T2 weighted images. Primary brainstem lesions were typically located in the dorsolateral aspect of rostral brainstem (midbrain and upper pons). Corpus callosum and white matter lesions were frequently associated.

  2. Response probability and latency: a straight line, an operational definition of meaning and the structure of short term memory

    OpenAIRE

    Tarnow, Dr. Eugen

    2008-01-01

    The functional relationship between response probability and time is investigated in data from Rubin, Hinton and Wenzel (1999) and Anderson (1981). Recall/recognition probabilities and search times are linearly related through stimulus presentation lags from 6 seconds to 600 seconds in the former experiment and for repeated learning of words in the latter. The slope of the response time vs. probability function is related to the meaningfulness of the items used. The Rubin et al data sugges...

  3. Priors engaged in long-latency responses to mechanical perturbations suggest a rapid update in state estimation.

    Directory of Open Access Journals (Sweden)

    Frédéric Crevecoeur

    Full Text Available In every motor task, our brain must handle external forces acting on the body. For example, riding a bike on cobblestones or skating on irregular surface requires us to appropriately respond to external perturbations. In these situations, motor predictions cannot help anticipate the motion of the body induced by external factors, and direct use of delayed sensory feedback will tend to generate instability. Here, we show that to solve this problem the motor system uses a rapid sensory prediction to correct the estimated state of the limb. We used a postural task with mechanical perturbations to address whether sensory predictions were engaged in upper-limb corrective movements. Subjects altered their initial motor response in ∼60 ms, depending on the expected perturbation profile, suggesting the use of an internal model, or prior, in this corrective process. Further, we found trial-to-trial changes in corrective responses indicating a rapid update of these perturbation priors. We used a computational model based on Kalman filtering to show that the response modulation was compatible with a rapid correction of the estimated state engaged in the feedback response. Such a process may allow us to handle external disturbances encountered in virtually every physical activity, which is likely an important feature of skilled motor behaviour.

  4. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  5. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds

  6. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo

    Science.gov (United States)

    Fisher, Jonathan A. N.; Gumenchuk, Iryna

    2018-06-01

    Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  7. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.

    Science.gov (United States)

    Fisher, Jonathan A N; Gumenchuk, Iryna

    2018-02-13

    The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  8. Latency of Modern Vandalism

    Directory of Open Access Journals (Sweden)

    Карина Анатоліївна Бочарова

    2017-03-01

    Existence latent crimes create a formation of wrong conception of its scales and condition. It causes faults in prognostication of criminality, in planning of its countermeasures. Latency of crimes connected with vandalism causes serious consequences either to state or to people.

  9. Herpetic brainstem encephalitis: report of a post-mortem case studied electron microscopically and immunohisiochemically

    Directory of Open Access Journals (Sweden)

    José Eymard Homem Pitella

    1987-03-01

    Full Text Available A post-mortem examined case of herpetic brainstem encephalitis is presented. Clinically, the patient had cephalea followed by ataxia, drowsiness and multiple palsies of some cranial nerves, developing into death in eight days. The pathologic examination of the brain showed necrotizing encephalitis in multiple foci limited to the brainstem, more distinctly in the pons and medula oblongata. The technique of immunoperoxidase revealed rare glial cells with intranuclear immunoreactivity for herpes antigen. Rare viral particles with the morphological characteristics of the herpesvirus were identified in the nuclei of neurons in 10% formol fixed material. This is the second reported case of herpetic brainstem encephalitis confirmed by post-mortem examination. The pathway used by the virus to reach the central nervous system and its posterior dissemination to the oral cavity, the orbitofrontal region and the temporal lobes as well as to the brainstem, after a period of latency and reactivation, are discussed.

  10. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  11. Telemetry System Data Latency

    Science.gov (United States)

    2017-07-13

    latencies will be measured. DATS Network TM Antenna TM ReceiverMCS System IOPlex IOPlexIADS CDS IADS Client TM Transmitter Sensors Signal Conditioning...TIME Figure 1-2 Mission Control System (MCS) / Interactive Analysis and Display System (IADS) Overview IADS CDSIADS Client TELEMETRY SYSTEM DATA...Sim GPS Signal Combiner MCS system Oscilloscope IADS Client IADS CDS Figure 13-1 IADS Data Flow 13.2. Test Results The results of the data test at

  12. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  13. Electroretinogram (ERG) to photic stimuli should be carefully distinct from photic brainstem reflex in patients with deep coma.

    Science.gov (United States)

    Mitsuhashi, Masahiro; Hitomi, Takefumi; Aoyama, Akihiro; Kaido, Toshimi; Ikeda, Akio; Takahashi, Ryosuke

    2017-08-31

    Patient 1: A 35-year-old woman became deep coma because of intracranial hemorrhage after pulmonary surgery. Patient 2: A 39-year-old woman became deep coma because of cerebellar hemorrhage after hepatic surgery. Scalp-recorded digital electroencephalography (EEG) showed electrocerebral inactivity in both cases. In addition, both EEG showed repetitive discharges at bilateral frontopolar electrodes in response to photic stimuli. The amplitude and latency of the discharges was 17 μV and 24 msec in case 1, and 9 μV and 27 msec in case 2 respectively. The activity at left frontopolar electrode disappeared after coverage of the ipsilateral eye. Based on these findings, we could exclude the possibility of brainstem response and judged it as electroretinogram (ERG). Photic stimulation is a useful activation method in EEG recording, and we can also evaluate brainstem function by checking photic blink reflex if it is evoked. However, we should be cautious about the distinction of ERG from photic blink reflex when brain death is clinically suspected.

  14. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  15. The combined effects of forward masking by noise and high click rate on monaural and binaural human auditory nerve and brainstem potentials.

    Science.gov (United States)

    Pratt, Hillel; Polyakov, Andrey; Bleich, Naomi; Mittelman, Naomi

    2004-07-01

    To study effects of forward masking and rapid stimulation on human monaurally- and binaurally-evoked brainstem potentials and suggest their relation to synaptic fatigue and recovery and to neuronal action potential refractoriness. Auditory brainstem evoked potentials (ABEPs) were recorded from 12 normally- and symmetrically hearing adults, in response to each click (50 dB nHL, condensation and rarefaction) in a train of nine, with an inter-click interval of 11 ms, that followed a white noise burst of 100 ms duration (50 dB nHL). Sequences of white noise and click train were repeated at a rate of 2.89 s(-1). The interval between noise and first click in the train was 2, 11, 22, 44, 66 or 88 ms in different runs. ABEPs were averaged (8000 repetitions) using a dwell time of 25 micros/address/channel. The binaural interaction components (BICs) of ABEPs were derived and the single, centrally located equivalent dipoles of ABEP waves I and V and of the BIC major wave were estimated. The latencies of dipoles I and V of ABEP, their inter-dipole interval and the dipole magnitude of component V were significantly affected by the interval between noise and clicks and by the serial position of the click in the train. The latency and dipole magnitude of the major BIC component were significantly affected by the interval between noise and clicks. Interval from noise and the click's serial position in the train interacted to affect dipole V latency, dipole V magnitude, BIC latencies and the V-I inter-dipole latency difference. Most of the effects were fully apparent by the first few clicks in the train, and the trend (increase or decrease) was affected by the interval between noise and clicks. The changes in latency and magnitude of ABEP and BIC components with advancing position in the click train and the interactions of click position in the train with the intervals from noise indicate an interaction of fatigue and recovery, compatible with synaptic depletion and replenishing

  16. Lyme disease of the brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Peter [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Decker, Andrew [Northern Westchester Hospital Center, Department of Neurology, Mt. Kisco, NY (United States); Kornel, Ezriel [Northern Westchester Hospital Center, Division of Neurosurgery, Mt. Kisco, NY (United States); Halperin, John J. [North Shore University Hospital, Department of Neurology, Manhasset, NY (United States)

    2005-12-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  17. Lyme disease of the brainstem

    International Nuclear Information System (INIS)

    Kalina, Peter; Decker, Andrew; Kornel, Ezriel; Halperin, John J.

    2005-01-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  18. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    Science.gov (United States)

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  19. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    Directory of Open Access Journals (Sweden)

    Domenico Bucci

    2017-11-01

    Full Text Available Catecholamine nuclei within the brainstem reticular formation (RF play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH immune-positive cells of the brainstem correspond to dopamine (DA-, norepinephrine (NE-, and epinephrine (E-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  20. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Fobe, Lisete Pessoa de Oliveira

    1999-01-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  1. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  2. Brainstem pathology in spasmodic dysphonia

    Science.gov (United States)

    Simonyan, Kristina; Ludlow, Christy L.; Vortmeyer, Alexander O.

    2009-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal and ambigual nuclei, inferior olive and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD. PMID:19795469

  3. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  4. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    International Nuclear Information System (INIS)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Johansson, Reijo; Jaeaeskelaeinen, Satu K.; Kujari, Harry; Haataja, Leena

    2009-01-01

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  5. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Surgical management of spontaneous hypertensive brainstem hemorrhage

    Directory of Open Access Journals (Sweden)

    Bal Krishna Shrestha

    2015-09-01

    Full Text Available Spontaneous hypertensive brainstem hemorrhage is the spontaneous brainstem hemorrhage associated with long term hypertension but not having definite focal or objective lesion. It is a catastrophic event which has a poor prognosis and usually managed conservatively. It is not uncommon, especially in eastern Asian populations, accounting approximately for 10% of the intracerebral hemorrhage. Before the advent of computed tomography, the diagnosis of brainstem hemorrhage was usually based on the clinical picture or by autopsy and believed to be untreatable via surgery. The introduction of computed tomography permitted to categorize the subtypes of brainstem hemorrhage with more predicted outcome. Continuous ongoing developments in the stereotactic surgery and microsurgery have added more specific surgical management in these patients. However, whether to manage conservatively or promptly with surgical evacuation of hematoma is still a controversy. Studies have shown that an accurate prognostic assessment based on clinical and radiological features on admission is critical for establishing a reasonable therapeutic approach. Some authors have advocate conservative management, whereas others have suggested the efficacy of surgical treatment in brainstem hemorrhage. With the widening knowledge in microsurgical techniques as well as neuroimaging technology, there seems to have more optimistic hope of surgical management of spontaneous hypertensive brainstem hemorrhage for better prognosis. Here we present five cases of severe spontaneous hypertensive brainstem hemorrhage patients who had undergone surgery; and explore the possibilities of surgical management in patients with the spontaneous hypertensive brainstem hemorrhage.

  7. Glomerular latency coding in artificial olfaction.

    Science.gov (United States)

    Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique

    2011-01-01

    Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.

  8. Latency and User Performance in Virtual Environments and Augmented Reality

    Science.gov (United States)

    Ellis, Stephen R.

    2009-01-01

    System rendering latency has been recognized by senior researchers, such as Professor Fredrick Brooks of UNC (Turing Award 1999), as a major factor limiting the realism and utility of head-referenced displays systems. Latency has been shown to reduce the user's sense of immersion within a virtual environment, disturb user interaction with virtual objects, and to contribute to motion sickness during some simulation tasks. Latency, however, is not just an issue for external display systems since finite nerve conduction rates and variation in transduction times in the human body's sensors also pose problems for latency management within the nervous system. Some of the phenomena arising from the brain's handling of sensory asynchrony due to latency will be discussed as a prelude to consideration of the effects of latency in interactive displays. The causes and consequences of the erroneous movement that appears in displays due to latency will be illustrated with examples of the user performance impact provided by several experiments. These experiments will review the generality of user sensitivity to latency when users judge either object or environment stability. Hardware and signal processing countermeasures will also be discussed. In particular the tuning of a simple extrapolative predictive filter not using a dynamic movement model will be presented. Results show that it is possible to adjust this filter so that the appearance of some latencies may be hidden without the introduction of perceptual artifacts such as overshoot. Several examples of the effects of user performance will be illustrated by three-dimensional tracking and tracing tasks executed in virtual environments. These experiments demonstrate classic phenomena known from work on manual control and show the need for very responsive systems if they are indented to support precise manipulation. The practical benefits of removing interfering latencies from interactive systems will be emphasized with some

  9. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  10. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  11. Delayed neuronal cell death in brainstem after transient brainstem ischemia in gerbils

    Directory of Open Access Journals (Sweden)

    Hakuba Nobuhiro

    2010-09-01

    Full Text Available Abstract Background Because of the lack of reproducible brainstem ischemia models in rodents, the temporal profile of ischemic lesions in the brainstem after transient brainstem ischemia has not been evaluated intensively. Previously, we produced a reproducible brainstem ischemia model of Mongolian gerbils. Here, we showed the temporal profile of ischemic lesions after transient brainstem ischemia. Results Brainstem ischemia was produced by occlusion of the bilateral vertebral arteries just before their entry into the transverse foramina of the cervical vertebrae of Mongolian gerbils. Animals were subjected to brainstem ischemia for 15 min, and then reperfused for 0 d (just after ischemia, 1 d, 3 d and 7 d (n = 4 in each group. Sham-operated animals (n = 4 were used as control. After deep anesthesia, the gerbils were perfused with fixative for immunohistochemical investigation. Ischemic lesions were detected by immunostaining for microtubule-associated protein 2 (MAP2. Just after 15-min brainstem ischemia, ischemic lesions were detected in the lateral vestibular nucleus and the ventral part of the spinal trigeminal nucleus, and these ischemic lesions disappeared one day after reperfusion in all animals examined. However, 3 days and 7 days after reperfusion, ischemic lesions appeared again and clusters of ionized calcium-binding adapter molecule-1(IBA-1-positive cells were detected in the same areas in all animals. Conclusion These results suggest that delayed neuronal cell death took place in the brainstem after transient brainstem ischemia in gerbils.

  12. Processamento auditivo: comparação entre potenciais evocados auditivos de média latência e testes de padrões temporais Auditory processing: comparision between auditory middle latency response and temporal pattern tests

    Directory of Open Access Journals (Sweden)

    Eliane Schochat

    2009-06-01

    Full Text Available OBJETIVO: verificar a concordância entre os resultados da avaliação do Potencial Evocado Auditivo de Média Latência e testes de padrões temporais. MÉTODOS: foram avaliados 155 sujeitos de ambos os sexos, idade entre sete e 16 anos, com audição periférica normal. Os sujeitos foram submetidos aos testes de Padrão de Frequência e Duração e Potenciais Evocados auditivos de Média Latência. RESULTADOS: os sujeitos foram distribuídos em dois grupos: normal ou alterado para o processamento auditivo. O índice de alteração foi em torno de 30%, exceto para Potencial Evocado Auditivo de Média Latência que foi pouco menor (17,4%. Os padrões de frequência e duração foram concordantes até 12 anos. A partir dos 13 anos, observou-se maior ocorrência de alteração no padrão de frequência que no padrão de duração. Os padrões de frequência e duração (orelhas direita e esquerda e Potencial Evocado Auditivo de Média Latência não foram concordantes. Para 7 e 8 anos a combinação padrão de frequência e duração normal / Média Latência alterado tem maior ocorrência que a combinação padrão de frequência e duração alterada / Média Latência normal. Nas demais idades, ocorreu o contrário. Não houve diferença estatística entre as faixas etárias quanto à distribuição de normal e alterado no padrão de frequência (orelhas direita e esquerda, nem para o Potencial Evocado Auditivo de Média Latência, com exceção do padrão de duração para o grupo de 9 e 10 anos. CONCLUSÃO: não houve concordância entre os resultados do Potencial Evocado Auditivo de Média Latência e os testes de padrões temporais aplicados.PURPOSE: to check the concordance between the Middle Latency Response and temporal processing tests. METHODS: 155 normal hearing subjects of both genders (age group range between 7 to 16 years were evaluated with the Pitch and Duration Pattern Tests (behavioral and Middle Latency Response

  13. Audiometria de tronco encefálico (abr: o uso do mascaramento na avaliação de indivíduos portadores de perda auditiva unilateral Auditory brainstem response (abr: use of masking in unilateral hearing loss patients

    Directory of Open Access Journals (Sweden)

    Melissa M. T. Toma

    2003-06-01

    Full Text Available A necessidade do mascaramento na avaliação da audição por meio da ABR ainda é um assunto consideravelmente debatido (Durrant & Ferraro, 2001. OBJETIVO: O presente estudo propôs investigar a necessidade do mascaramento contralateral, empregado na orelha normal, ao realizar a ABR em indivíduos portadores de perda auditiva neurossensorial unilateral. FORMA DE ESTUDO: Clínico prospectivo. MATERIAL E MÉTODO: A amostra constituiu-se de 22 indivíduos portadores de perda auditiva neurossensorial unilateral de grau profundo, sendo 10 do sexo feminino e 12 do sexo masculino, com idades variando entre 9 e 44 anos. Todos os indivíduos foram submetidos a: audiometria tonal liminar, logoaudiometria (SRT, IPRF e SDT, medidas de imitância acústica (incluindo a pesquisa dos reflexos acústicos - modo ipsilateral e contralateral e audiometria de tronco encefálico na ausência e na presença do mascaramento. RESULTADOS: Todos os indivíduos apresentaram perda auditiva neurossensorial unilateral de grau profundo e curvas timpanométricas do tipo A bilateralmente. Na avaliação da ABR, 100% da amostra apresentou presença da Onda V na orelha comprometida, sendo que ao introduzir o mascaramento contralateral tais respostas não foram observadas. CONCLUSÕES: O mascaramento é um procedimento necessário para a avaliação da audição por meio da ABR em indivíduos portadores de perdas auditivas unilaterais, visando a obtenção de resultados fidedignos. Na ABR, a atenuação interaural para clicks foi maior (65 dB do que a observada na audiometria tonal liminar, sendo necessário, portanto, uma menor intensidade de mascaramento para eliminar a resposta da via auditiva contralateral.The need of masking in auditory brainstem response (ABR evaluation is still considerably debated issue (Durrant and Ferraro, 2001. AIM: In addition, the present study was to investigate the need of masking in ABR with unilateral hearing loss. STUDY DESIGN: Clinical

  14. Methodology for Calculating Latency of GPS Probe Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Zhongxiang [University of Maryland; Hamedi, Masoud [University of Maryland

    2017-10-01

    Crowdsourced GPS probe data, such as travel time on changeable-message signs and incident detection, have been gaining popularity in recent years as a source for real-time traffic information to driver operations and transportation systems management and operations. Efforts have been made to evaluate the quality of such data from different perspectives. Although such crowdsourced data are already in widespread use in many states, particularly the high traffic areas on the Eastern seaboard, concerns about latency - the time between traffic being perturbed as a result of an incident and reflection of the disturbance in the outsourced data feed - have escalated in importance. Latency is critical for the accuracy of real-time operations, emergency response, and traveler information systems. This paper offers a methodology for measuring probe data latency regarding a selected reference source. Although Bluetooth reidentification data are used as the reference source, the methodology can be applied to any other ground truth data source of choice. The core of the methodology is an algorithm for maximum pattern matching that works with three fitness objectives. To test the methodology, sample field reference data were collected on multiple freeway segments for a 2-week period by using portable Bluetooth sensors as ground truth. Equivalent GPS probe data were obtained from a private vendor, and their latency was evaluated. Latency at different times of the day, impact of road segmentation scheme on latency, and sensitivity of the latency to both speed-slowdown and recovery-from-slowdown episodes are also discussed.

  15. Stereotactic radiosurgery for deep intracranial arteriovenous malformations, part 1: Brainstem arteriovenous malformations.

    Science.gov (United States)

    Cohen-Inbar, Or; Ding, Dale; Chen, Ching-Jen; Sheehan, Jason P

    2016-02-01

    The management of brainstem arteriovenous malformations (AVM) are one of the greatest challenges encountered by neurosurgeons. Brainstem AVM have a higher risk of hemorrhage compared to AVM in other locations, and rupture of these lesions commonly results in devastating neurological morbidity and mortality. The potential morbidity associated with currently available treatment modalities further compounds the complexity of decision making for affected patients. Stereotactic radiosurgery (SRS) has an important role in the management of brainstem AVM. SRS offers acceptable obliteration rates with lower risks of hemorrhage occurring during the latency period. Complex nidal architecture requires a multi-disciplinary treatment approach. Nidi partly involving subpial/epipial regions of the dorsal midbrain or cerebellopontine angle should be considered for a combination of endovascular embolization, micro-surgical resection and SRS. Considering the fact that incompletely obliterated lesions (even when reduced in size) could still cause lethal hemorrhages, additional treatment, including repeat SRS and surgical resection should be considered when complete obliteration is not achieved by first SRS. Patients with brainstem AVM require continued clinical and radiological observation and follow-up after SRS, well after angiographic obliteration has been confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  17. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  18. Estimating latency from inhibitory input

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Ditlevsen, S.; Lánský, Petr

    2014-01-01

    Roč. 108, č. 4 (2014), s. 475-493 ISSN 0340-1200 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : neuronal activity * latency * information coding * inhibition Subject RIV: ED - Physiology Impact factor: 1.713, year: 2014

  19. HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model.

    Science.gov (United States)

    Honeycutt, Jenna B; Wahl, Angela; Archin, Nancie; Choudhary, Shailesh; Margolis, David; Garcia, J Victor

    2013-10-24

    The major targets of HIV infection in humans are CD4⁺ T cells. CD4⁺ T cell depletion is a hallmark of AIDS. Previously, the SCID-hu thy/liv model was used to study the effect of HIV on thymopoeisis in vivo. However, these mice did not develop high levels of peripheral T cell reconstitution and required invasive surgery for infection and analysis. Here, we describe a novel variant of this model in which thy/liv implantation results in systemic reconstitution with human T cells in the absence of any other human hematopoietic lineages. NOD/SCID-hu thy/liv and NSG-hu thy/liv mice were created by implanting human fetal thymus and liver tissues under the kidney capsule of either NOD/SCID or NSG mice. In contrast to NOD/SCID-hu thy/liv mice that show little or no human cells in peripheral blood or tissues, substantial systemic human reconstitution occurs in NSG-hu thy/liv. These mice are exclusively reconstituted with human T cells (i.e. T-cell only mice or TOM). Despite substantial levels of human T cells no signs of graft-versus-host disease (GVHD) were noted in these mice over a period of 14 months. TOM are readily infected after parenteral exposure to HIV-1. HIV replication is sustained in peripheral blood at high levels and results in modest reduction of CD4⁺ T cells. HIV-1 replication in TOM responds to daily administration of combination antiretroviral therapy (ART) resulting in strong suppression of virus replication as determined by undetectable viral load in plasma. Latently HIV infected resting CD4⁺ T cells can be isolated from suppressed mice that can be induced to express HIV ex-vivo upon activation demonstrating the establishment of latency in vivo. NSG-hu thy/liv mice are systemically reconstituted with human T cells. No other human lymphoid lineages are present in these mice (i.e. monocytes/macrophages, B cells and DC are all absent). These T cell only mice do not develop GVHD, are susceptible to HIV-1 infection and can efficiently maintain virus

  20. Estudo das latências e amplitudes dos potenciais evocados auditivos de média latência em indivíduos audiologicamente normais Middle latency response study of auditory evoked potentials’ amplitudes and lantencies audiologically normal individuals

    Directory of Open Access Journals (Sweden)

    Ivone Ferreira Neves

    2007-02-01

    Full Text Available Estudo de coorte contemporânea com corte transversal. O Potencial Evocado Auditivo de Média Latência (PEAML é gerado entre 10 e 80ms e possui múltiplos geradores, com maior contribuição da região tálamo-cortical. O estabelecimento de critérios de normalidade para os valores de latência e amplitude é necessário para uso clínico. OBJETIVOS: Analisar a latência e amplitude do PEAML em indivíduos sem alterações audiológicas, e verificar a confiabilidade da amplitude Pa-Nb. MATERIAL E MÉTODO: Foram coletados os PEAML de 25 indivíduos durante o ano de 2005 e analisados os componentes Na, Pa, Nb para cada orelha testada (A1 e A2, e posicionamento de eletrodo (C3 e C4. RESULTADOS: Observou-se diferença estatisticamente significante entre os valores médios de latência para C3A1 e C4A1 com relação aos componentes Na e Pa, não sendo encontrada esta diferença para o componente Nb e valores médios das amplitudes Na-Pa e Pa-Nb. CONCLUSÃO: Foram estabelecidos os valores das médias e desvios padrão para os parâmetros latência e amplitude dos componentes Na, Pa, Nb, e Na-Pa e Pa-Nb, nas condições C3A1, C4A1, C3A2, C4A2, proporcionando os parâmetros para a análise e interpretação deste potencial.Contemporary cohort cross-sectional study. Introduction: The auditory middle latency response (AMLR is generated between 10 and 80 ms and has multiple generators, with a greater contribution from the thalamus-cortical pathways. The establishment of normality criteria for latency and amplitude values is necessary for clinical use. AIM: to analyze the latency and amplitude of the AMLR in individuals without audiological disorders, and verify the reliability of Pa-Nb amplitude. MATERIALS AND METHODS: The AMLR of 25 individuals was collected during 2005 and the Na, Pa, Nb components were analyzed for each tested ear (A1 and A2, and electrode positioning (C3 and C4. RESULTS: A statistically significant difference was noticed among middle

  1. Detection of brainstem involvemetn in multiple sclerosis

    International Nuclear Information System (INIS)

    Martinelli, V.; Comi, G.; Filippi, M.; Sora, M.G.N.; Magnani, G.; Locatelli, T.; Visciani, A.; Scotti, G.; Canal, N.

    1989-01-01

    The Gradient Refocusing Technique, which seppresses the influence of cerebrospinal fluis (GSF) and vascular motion artifact on MRI sensitivity, is applied combined with Brainstem Auditory Evoked Potentials (BAEPs) and median Somatosensory Evoked Potentials (SEPs) in the evaluation of the brainstem in 30 MS patients with clinical signs of involvement of this structure in order to reevaluate the sensitivity of these techniques. (Author). 2 refs.; 1 tab

  2. Data latency and the user community

    Science.gov (United States)

    Escobar, V. M.; Brown, M. E.; Carroll, M.

    2013-12-01

    The community using NASA Earth science observations in applications has grown significantly, with increasing sophistication to serve national interests. The National Research Council's Earth Science Decadal Survey report stated that the planning for applied and operational considerations in the missions should accompany the acquisition of new knowledge about Earth (NRC, 2007). This directive has made product applications at NASA an integral part of converting the data collected into actionable knowledge that can be used to inform policy. However, successfully bridging scientific research with operational decision making in different application areas requires looking into user data requirements and operational needs. This study was conducted to determine how users are incorporating NASA data into applications and operational processes. The approach included a review of published materials, direct interviews with mission representatives, and an online professional review, which was distributed to over 6000 individuals. We provide a complete description of the findings with definitions and explanations of what goes into measuring latency as well as how users and applications utilize NASA data products. We identified 3 classes of users: operational (need data in 3 hours or less), near real time (need data within a day of acquisition), and scientific users (need highest quality data, time independent). We also determined that most users with applications are interested in specific types of products that may come from multiple missions. These users will take the observations when they are available, however the observations may have additional applications value if they are available either by a certain time of day or within a period of time after acquisition. NASA has supported the need for access to low latency data on an ad-hoc basis and more substantively in stand-alone systems such as the MODIS Rapid Response system and more recently with LANCE. The increased level

  3. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Neck Vibration Proprioceptive Postural Response Intact in Progressive Supranuclear Palsy unlike Idiopathic Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-12-01

    Full Text Available Progressive supranuclear palsy (PSP and late-stage idiopathic Parkinson’s disease (IPD are neurodegenerative movement disorders resulting in different postural instability and falling symptoms. IPD falls occur usually forward in late stage, whereas PSP falls happen in early stages, mostly backward, unprovoked, and with high morbidity. Postural responses to sensory anteroposterior tilt illusion by bilateral dorsal neck vibration were probed in both groups versus healthy controls on a static recording posture platform. Three distinct anteroposterior body mass excursion peaks (P1–P3 were observed. 18 IPD subjects exhibited well-known excessive response amplitudes, whereas 21 PSP subjects’ responses remained unaltered to 22 control subjects. Neither IPD nor PSP showed response latency deficits, despite brainstem degeneration especially in PSP. The observed response patterns suggest that PSP brainstem pathology might spare the involved proprioceptive pathways and implies viability of neck vibration for possible biofeedback and augmentation therapy in PSP postural instability.

  5. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    Science.gov (United States)

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.

  7. Aplicação da audiometria troncoencefálica na detecção de perdas auditivas retrococleares em trabalhadores de manutenção hospitalar expostos a ruído Auditory brainstem responses evaluation of retrocochlear disease in workers from a general hospital exposed to noise

    Directory of Open Access Journals (Sweden)

    Victor Luiz da Silveira

    2011-02-01

    Full Text Available O objetivo principal deste estudo seccional foi averiguar a presença de comprometimento auditivo retrococlear num grupo de trabalhadores de manutenção de um hospital de grande porte com histórico de exposição a ruído. Foram avaliados 31 trabalhadores de três setores da divisão de engenharia entre 25 e 60 anos e com exposição contínua a ruído entre 2 e 45 anos. O processo avaliativo contou com triagem audiométrica ocupacional e audiometria troncoencefálica (ATE. Foram detectadas anormalidades na ATE em sete pacientes (22,6%, caracterizadas por aumento de latências de ondas III (14,3% e V (28,6%; prolongamento dos interpicos I-III (71,4%, III-V (28,6% e I-V (85,7%. Das 35 orelhas com audição normal (três unilateralmente e 32 bilateralmente, quatro (11,4% apresentaram comprometimento retrococlear. A alta prevalência de comprometimento retrococlear no grupo induz supor que tal distúrbio seja mais frequente que o encontrado e esteja sendo subestimado na investigação diagnóstica desses trabalhadores. A ocorrência desses resultados sem a presença de alterações audiométricas sugere que a ATE seja mais sensível que a audiometria tonal na investigação de perda auditiva provocada por ruído, por isso sua utilização deva ser incentivada.The main purpose of this cross-seccional study was to investigate the presence of retrocochlear disease in a group of maintenance workers from a general hospital, who presents a history of noise exposure. Thirty one workers of three engineering sections with age range from 25 to 60 years and continuous noise exposure from 2 and 45 years, were examined. The evaluation included an audiometric occupational selection and auditory brainstem responses (ABR. ABR abnormalities were detected in seven patients (22.6% and it was found latency increase of waves III (14.3% and V (28.6%, and interpeak prolongation I-III (71.4%, III-V (28.6% and I-V (85.7%. Among 35 ears with normal audition right, left or

  8. Shrapnel: Latency, Mourning and the Suicide of a Parent

    Science.gov (United States)

    Bisagni, Francesco

    2012-01-01

    The aim of this paper is to describe some acute responses to the suicide of a parent, through the account of the analytic psychotherapy of a latency child who found the body of his dead father. The acute traumatic responses of the child show that the perceptual apparatus, time and space are subverted, while the functioning of the contact barrier…

  9. Gamma Knife Treatment of Brainstem Metastases

    Science.gov (United States)

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; MacKay, Alexander R.; Lamoreaux, Wayne T.; Call, Jason A.; Carlson, Jonathan D.; Ling, Benjamin C.; Demakas, John J.; Cooke, Barton S.; Peressini, Ben; Lee, Christopher M.

    2014-01-01

    The management of brainstem metastases is challenging. Surgical treatment is usually not an option, and chemotherapy is of limited utility. Stereotactic radiosurgery has emerged as a promising palliative treatment modality in these cases. The goal of this study is to assess our single institution experience treating brainstem metastases with Gamma Knife radiosurgery (GKRS). This retrospective chart review studied 41 patients with brainstem metastases treated with GKRS. The most common primary tumors were lung, breast, renal cell carcinoma, and melanoma. Median age at initial treatment was 59 years. Nineteen (46%) of the patients received whole brain radiation therapy (WBRT) prior to or concurrent with GKRS treatment. Thirty (73%) of the patients had a single brainstem metastasis. The average GKRS dose was 17 Gy. Post-GKRS overall survival at six months was 42%, at 12 months was 22%, and at 24 months was 13%. Local tumor control was achieved in 91% of patients, and there was one patient who had a fatal brain hemorrhage after treatment. Karnofsky performance score (KPS) >80 and the absence of prior WBRT were predictors for improved survival on multivariate analysis (HR 0.60 (p = 0.02), and HR 0.28 (p = 0.02), respectively). GKRS was an effective treatment for brainstem metastases, with excellent local tumor control. PMID:24886816

  10. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    Science.gov (United States)

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  11. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  12. Is enhanced MRI helpful in brainstem infarction?

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Shin, G. H.; Choi, W. S. [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1994-12-15

    To determine the role of MR contrast enhancement in evaluating time course of brainstem infarction. MR imaging with IV administration of gadopentetate dimeglumine was retrospectively reviewed in 43 patients with clinically and radiologically documented brainstem infarctions. The pattern of infarction was classified into spotty and patchy. Presence of parenchymal enhancement in infarction was evaluated. By location, there were 34 pontine, 3 midbrain, 6 medullary infarctions. The age of the infarctions ranged from 1 day to 9 months, with 5 patients scanned within 3 days and 10 scanned within 2 weeks of clinical ictus. Abnormalities on T2-weighted images were encountered in every case, with spotty pattern in 14 cases and patchy pattern in 29 cases. Parenchymal contrast enhancement was seen in 9 cases(20%), primarily occurring between days 8 and 20. MR contrast enhancement in brainstem infarction was infrequent that it may not be useful in the estimation of the age of infarction.

  13. Giant tubercular brainstem abscess: A case report

    Directory of Open Access Journals (Sweden)

    Pragati Chigurupati

    2014-01-01

    Full Text Available Tubercular brain abscesses are uncommon and tubercular brainstem abscesses are rarely reported. Most of these cases occur in immunocompromised patients. We report a case of giant brainstem abscess in a 5-year-old human immunodeficiency virus-seronegative female child who presented with complaints of headache, diplopia and unsteadiness of gait since 6 months. Diagnosis was made by a magnetic resonance imaging scan of brain. The patient demonstrated a remarkable clinical recovery after microsurgery combined with a course of antituberculous therapy. Microbiological and histological findings confirmed the diagnosis of a tuberculous abscess.

  14. Potenciais Evocados Auditivos de Média Latência: estudo em crianças saudáveis Auditory Middle Latency Responses: a study of healthy children

    Directory of Open Access Journals (Sweden)

    Ana Claudia Figueiredo Frizzo

    2007-06-01

    Full Text Available OBJETIVO: Investigar os componentes dos PEAMLs em crianças saudáveis para determinar suas propriedades. MATERIAL E MÉTODOS: 32 crianças, de ambos os sexos, 10 a 13 anos de idade, sem doenças neurológicas, participaram do estudo. Os dados foram analisados pela estatística descritiva (média e desvio padrão e por análise de variância (teste F. PEAMLs foram pesquisadas usando estímulo tom burst nas intensidades de 50, 60 e 70 dB NA. RESULTADOS E CONCLUSÃO: A média de latência dos componentes foi Na = 20.79ms, Pa = 35.34ms, Nb = 43.27ms e Pb = 53.36ms, a 70dB NA. A média dos valores de amplitude NaPa variou de 0.2 a 1.9 uV (M = 1.0 uV. A amplitude aumentou e a latência diminuiu com o aumento da intensidade sonora. A inclinação do complexo de ondas NaPa esteve presente em alguns casos, o que merece atenção em estudos semelhantes ou em mesmo em populações de crianças com dificuldade de fala e linguagem e do processamento auditivo. CONCLUSÃO: O presente trabalho trouxe informações adicionais sobre as AMLRs e pode servir como referência para outros estudos clínicos ou experimentais em crianças.AIM: To examine the components of auditory middle latency responses (AMLRs in a sample of healthy children to establish their properties. METHODS: Thirty-two children of both genders aged between 10 to 13 years, with no neurological disorders, were included in the study. Data were analyzed statistically by descriptive statistics (mean + SD and by analysis of variance using the F test. AMLRs were investigated with toneburst stimuli at 50, 60 and 70 dB HL. RESULTS AND CONCLUSIONS: The mean latencies of the components were Na = 20.79 ms, Pa = 35.34 ms, Nb = 43.27 ms, and Pb = 53.36 ms, in 70 dB HL. The mean values for the NaPa amplitude ranged from 0.2 to 1.9 mV (M = 1.0 mV. The amplitude increased and latency decreased with increasing sound intensity. Inclination of the NaPa wave complex was present in some cases, which deserves

  15. Bayesian segmentation of brainstem structures in MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka

    2015-01-01

    the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy...

  16. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  17. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Mechanisms of Kaposi's Sarcoma-Associated Herpesvirus Latency and Reactivation

    Directory of Open Access Journals (Sweden)

    Fengchun Ye

    2011-01-01

    Full Text Available The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS. The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.

  19. CpG methylation controls reactivation of HIV from latency.

    Directory of Open Access Journals (Sweden)

    Jana Blazkova

    2009-08-01

    Full Text Available DNA methylation of retroviral promoters and enhancers localized in the provirus 5' long terminal repeat (LTR is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5' LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5' LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5' LTR in viremic patients. However, even dense methylation of the HIV-1 5'LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-alpha, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by Cp

  20. A template-free approach for determining the latency of single events of auditory evoked M100

    Energy Technology Data Exchange (ETDEWEB)

    Burghoff, M [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Link, A [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Salajegheh, A [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Elster, C [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Poeppel, D [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Trahms, L [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2005-02-07

    The phase of the complex output of a narrow band Gaussian filter is taken to define the latency of the auditory evoked response M100 recorded by magnetoencephalography. It is demonstrated that this definition is consistent with the conventional peak latency. Moreover, it provides a tool for reducing the number of averages needed for a reliable estimation of the latency. Single-event latencies obtained by this procedure can be used to improve the signal quality of the conventional average by latency adjusted averaging. (note)

  1. Cerebral and brainstem electrophysiologic activity during euthanasia with pentobarbital sodium in horses.

    Science.gov (United States)

    Aleman, M; Williams, D C; Guedes, A; Madigan, J E

    2015-01-01

    An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Interictal dysfunction of a brainstem descending modulatory center in migraine patients.

    Directory of Open Access Journals (Sweden)

    Eric A Moulton

    Full Text Available The brainstem contains descending circuitry that can modulate nociceptive processing (neural signals associated with pain in the dorsal horn of the spinal cord and the medullary dorsal horn. In migraineurs, abnormal brainstem function during attacks suggest that dysfunction of descending modulation may facilitate migraine attacks, either by reducing descending inhibition or increasing facilitation. To determine whether a brainstem dysfunction could play a role in facilitating migraine attacks, we measured brainstem function in migraineurs when they were not having an attack (i.e. the interictal phase.Using fMRI (functional magnetic resonance imaging, we mapped brainstem activity to heat stimuli in 12 episodic migraine patients during the interictal phase. Separate scans were collected to measure responses to 41 degrees C and noxious heat (pain threshold+1 degrees C. Stimuli were either applied to the forehead on the affected side (as reported during an attack or the dorsum of the hand. This was repeated in 12 age-gender-matched control subjects, and the side tested corresponded to that in the matched migraine patients. Nucleus cuneiformis (NCF, a component of brainstem pain modulatory circuits, appears to be hypofunctional in migraineurs. 3 out of the 4 thermal stimulus conditions showed significantly greater NCF activation in control subjects than the migraine patients.Altered descending modulation has been postulated to contribute to migraine, leading to loss of inhibition or enhanced facilitation resulting in hyperexcitability of trigeminovascular neurons. NCF function could potentially serve as a diagnostic measure in migraine patients, even when not experiencing an attack. This has important implications for the evaluation of therapies for migraine.

  3. EBV Latency Types Adopt Alternative Chromatin Conformations

    Science.gov (United States)

    Tempera, Italo; Klichinsky, Michael; Lieberman, Paul M.

    2011-01-01

    Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. PMID:21829357

  4. EBV latency types adopt alternative chromatin conformations.

    Directory of Open Access Journals (Sweden)

    Italo Tempera

    2011-07-01

    Full Text Available Epstein-Barr Virus (EBV can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp or type III (Cp gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.

  5. Advanced LIGO low-latency searches

    Science.gov (United States)

    Kanner, Jonah; LIGO Scientific Collaboration, Virgo Collaboration

    2016-06-01

    Advanced LIGO recently made the first detection of gravitational waves from merging binary black holes. The signal was first identified by a low-latency analysis, which identifies gravitational-wave transients within a few minutes of data collection. More generally, Advanced LIGO transients are sought with a suite of automated tools, which collectively identify events, evaluate statistical significance, estimate source position, and attempt to characterize source properties. This low-latency effort is enabling a broad multi-messenger approach to the science of compact object mergers and other transients. This talk will give an overview of the low-latency methodology and recent results.

  6. Magnetic resonance imaging in the evaluation of the brainstem

    International Nuclear Information System (INIS)

    Han, J.S.; Bonstelle, C.T.; Kaufman, B.; Benson, J.E.; Alfidi, R.J.; Clampitt, M.; Van Dyke, C.; Huss, R.G.

    1984-01-01

    Magnetic resonance (MR) images of the brainstem region from 100 normal or asymptomatic individuals were reviewed in addition to those of 17 patients with intra-axial brainstem lesions and 15 patients with extra-axial masses around the brainstem. MR was able to demonstrate consistently the normal anatomy of the brainstem and adjacent cisterns, though the distinction between gray and white matter was seldom possible with the present technology. Masses in and around the brainstem were all accurately identified on MR and its sensitivity was superior to that of x-ray computed tomography (CT). These study results show that despite its technical limitations, MR is presently the examination of choice for the evaluation of brainstem abnormalities and eventually it will undoubtedly replace metrizamide CT cisternography

  7. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Cumulative latency advance underlies fast visual processing in desynchronized brain state.

    Science.gov (United States)

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-07

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.

  9. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  10. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

    Science.gov (United States)

    Cerritelli, Serena; Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, pneurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.

  11. Latency in Distributed Acquisition and Rendering for Telepresence Systems.

    Science.gov (United States)

    Ohl, Stephan; Willert, Malte; Staadt, Oliver

    2015-12-01

    Telepresence systems use 3D techniques to create a more natural human-centered communication over long distances. This work concentrates on the analysis of latency in telepresence systems where acquisition and rendering are distributed. Keeping latency low is important to immerse users in the virtual environment. To better understand latency problems and to identify the source of such latency, we focus on the decomposition of system latency into sub-latencies. We contribute a model of latency and show how it can be used to estimate latencies in a complex telepresence dataflow network. To compare the estimates with real latencies in our prototype, we modify two common latency measurement methods. This presented methodology enables the developer to optimize the design, find implementation issues and gain deeper knowledge about specific sources of latency.

  12. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding.

    Science.gov (United States)

    Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine

    2010-06-18

    Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.

  13. Primary display latency criteria based on flying qualities and performance data

    Science.gov (United States)

    Funk, John D., Jr.; Beck, Corin P.; Johns, John B.

    1993-01-01

    With a pilots' increasing use of visual cue augmentation, much requiring extensive pre-processing, there is a need to establish criteria for new avionics/display design. The timeliness and synchronization of the augmented cues is vital to ensure the performance quality required for precision mission task elements (MTEs) where augmented cues are the primary source of information to the pilot. Processing delays incurred while transforming sensor-supplied flight information into visual cues are unavoidable. Relationships between maximum control system delays and associated flying qualities levels are documented in MIL-F-83300 and MIL-F-8785. While cues representing aircraft status may be just as vital to the pilot as prompt control response for operations in instrument meteorological conditions, presently, there are no specification requirements on avionics system latency. To produce data relating avionics system latency to degradations in flying qualities, the Navy conducted two simulation investigations. During the investigations, flying qualities and performance data were recorded as simulated avionics system latency was varied. Correlated results of the investigation indicates that there is a detrimental impact of latency on flying qualities. Analysis of these results and consideration of key factors influencing their application indicate that: (1) Task performance degrades and pilot workload increases as latency is increased. Inconsistency in task performance increases as latency increases. (2) Latency reduces the probability of achieving Level 1 handling qualities with avionics system latency as low as 70 ms. (3) The data suggest that the achievement of desired performance will be ensured only at display latency values below 120 ms. (4) These data also suggest that avoidance of inadequate performance will be ensured only at display latency values below 150 ms.

  14. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  15. Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms

    Science.gov (United States)

    Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.

    2018-04-01

    Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.

  16. Clinical Approach to Supranuclear Brainstem Saccadic Gaze Palsies

    Directory of Open Access Journals (Sweden)

    Alexandra Lloyd-Smith Sequeira

    2017-08-01

    Full Text Available Failure of brainstem supranuclear centers for saccadic eye movements results in the clinical presence of a brainstem-mediated supranuclear saccadic gaze palsy (SGP, which is manifested as slowing of saccades with or without range of motion limitation of eye movements and as loss of quick phases of optokinetic nystagmus. Limitation in the range of motion of eye movements is typically worse with saccades than with smooth pursuit and is overcome with vestibular–ocular reflexive eye movements. The differential diagnosis of SGPs is broad, although acute-onset SGP is most often from brainstem infarction and chronic vertical SGP is most commonly caused by the neurodegenerative condition progressive supranuclear palsy. In this review, we discuss the brainstem anatomy and physiology of the brainstem saccade-generating network; we discuss the clinical features of SGPs, with an emphasis on insights from quantitative ocular motor recordings; and we consider the broad differential diagnosis of SGPs.

  17. Frequency-dependent effects of background noise on subcortical response timing.

    Science.gov (United States)

    Tierney, A; Parbery-Clark, A; Skoe, E; Kraus, N

    2011-12-01

    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. MRI findings of multiple sclerosis involving the brainstem

    International Nuclear Information System (INIS)

    Park, Jeong Hoon; Jeong, Hae Woong; Kim, Hyun Jin; Cho, Jae Kwoeng; Kim, Chang Soo

    2001-01-01

    To describe MRI findings of multiple sclerosis involving the brainstem. Among 35 cases of clinically definite multiple sclerosis, the authors retrospectively analysed 20 in which the brainstem was involved. MR images were analysed with regard to involvement sites in the brainstem or other locations, signal intensity, multiplicity, shape, enhancement pattern, and contiguity of brainstem lesions with cisternal or ventricular CSF space. The brainstem was the only site of involvement in five cases (25%), while simultaneous involvement of the brainstem and other sites was observed in 15 cases (75%). No case involved only the midbrain or medulla oblongata, and simultaneous involvement of the midbrain, pons and medulla oblongata was noted in 12 cases (60%). The most frequently involved region of the brainstem was the medulla oblongata (n=13; 90%), followed by the pons (n=17; 85%) and the midbrain (n=16; 80%). Compared with normal white matter, brainstem lesions showed low signal intensity on T1 weighted images, and high signal intensity on T2 weighted, proton density weighted, and FLAIR images. In 17 cases (85%), multiple intensity was observed, and the shape of lesions varied: oval, round, elliptical, patchy, crescentic, confluent or amorphous were seen on axial MR images, and in 14 cases (82%), coronal or sagittal scanning showed that lesions were long and tubular. Contiguity between brainstem lesions and cisternal or ventricular CSF space was seen in all cases (100%) involving midbrain (16/16) and medulla oblongata (18/18) and in 15 of 17 (88%) involving the pons. Contrast enhancement was apparent in 7 of 12 cases (58%). In the brainstem, MRI demonstrated partial or total contiguity between lesions and cisternal or ventricular CSF space, and coronal or sagittal images showed that lesions were long and tubuler

  19. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intracranial neurenteric cyst traversing the brainstem

    Directory of Open Access Journals (Sweden)

    Jasmit Singh

    2015-01-01

    Full Text Available Neurenteric cysts (NECs, also called enterogenous cysts, are rare benign endodermal lesions of the central nervous system that probably result from separation failure of the notochord and upper gastrointestinal tract. Most frequently they are found in the lower cervical spine or the upper thoracic spine. Intracranial occurrence is rare and mostly confined to infratentorial compartment, in prepontine region [51%]. Other common locations are fourth ventricle and cerebellopontine angle. There are few reports of NEC in medulla or the cerebellum. Because of the rarity of the disease and common radiological findings, they are misinterpreted as arachnoid or simple cysts until the histopathological confirmation, unless suspected preoperatively. We herein report a rare yet interesting case of intracranial NEC traversing across the brainstem.

  1. BRAINSTEM AUDITORY EVOKED POTENTIAL AS AN INDEX OF CNS DEMYELINATION IN GUILLAIN -BARRÉ SYNDROME (GBS

    Directory of Open Access Journals (Sweden)

    Smita Singh

    2016-01-01

    Full Text Available Background: Guillain-Barré Syndrome (GBS is an acute, frequently severe and fulminant polyradicular neuropathy that is autoimmune in nature. GBS manifest as rapidly evolving areflexic motor paralysis with or without sensory disturbances. It mainly involves peripheral nervous system and autonomic nervous system. There are rare evidences about the involvement of central nervous system (CNS in GBS. Aims: The main objective of the study was to assess the CNS involvement in GBS using the Brainstem Auditory Evoked Potential (BAEP. Methods & Material: The study was conducted in the clinical neurophysiology lab in the department of physiology, CSMMU Lucknow. Study group involved 26 subjects (n=26 having GBS and control group involved 30 normal subjects (n=30. BAEPS were recorded by Neuroperfect- EMG 2000 EMG/NCV/EPsytem. The data so obtained were subjected to analysis using Statistical Package for Social Sciences (SPSS Version 13.0. Results & Conclusions: There was significant increase in PIII & PV peak latencies and PI-PIII & PI-PV interpeak latencies in both left and right ear in the study group, which showed the CNS involvement in GBS which can be assessed using BAEP.

  2. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.; Tomimoto, H.; Terada, K. [Kyoto University, Department of Neurology, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Miki, Y.; Yamamoto, A. [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Satoi, H.; Kanda, M. [Ijinkai Takeda General Hospital, Department of Neurology, Fushimi-ku, Kyoto (Japan); Fukuyama, H. [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan)

    2005-09-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  3. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Kitaguchi, H.; Tomimoto, H.; Terada, K.; Miki, Y.; Yamamoto, A.; Satoi, H.; Kanda, M.; Fukuyama, H.

    2005-01-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  4. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-01-01

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless

  5. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-04-24

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless technology. Taking advantage of the significant decline in memory prices, industrialists equip the network devices with larger buffering capacities to improve the network throughput by limiting packets drops. Over-buffering results in increasing the time that packets spend in the queues and, thus, introducing more latency in networks. This phenomenon is known as “bufferbloat”. While throughput is the dominant performance metric, latency also has a huge impact on user experience not only for real-time applications but also for common applications like web browsing, which is sensitive to latencies in order of hundreds of milliseconds. Concerns have arisen about designing sophisticated queue management schemes to mitigate the effects of such phenomenon. My thesis research aims to solve bufferbloat problem in both traditional half-duplex and cutting-edge full-duplex wireless systems by reducing delay while maximizing wireless links utilization and fairness. Our work shed lights on buffer management algorithms behavior in wireless networks and their ability to reduce latency resulting from excessive queuing delays inside oversized static network buffers without a significant loss in other network metrics. First of all, we address the problem of buffer management in wireless full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD-MAC), an asynchronous media access control protocol designed for relay full-duplexing. Compared to the default case, our solution reduces the end-to-end delay by two orders of magnitude while achieving similar throughput in most of the cases. In the second part of this thesis

  6. Arterial territories of human brain: brainstem and cerebellum

    International Nuclear Information System (INIS)

    Tatu, L.; Moulin, T.; Bogousslavsky, J.; Duvernoy, H.

    1997-01-01

    The development of neuroimaging has allowed clinicians to improve clinico-anatomic correlations in patients with strokes. Brainstem and cerebellum structures are well delineated on MRI, but there is a lack of standardization in their arterial supply. We present a system of 12 brainstem and cerebellum axial sections, depicting the dominant arterial territories and the most important anatomic structures. These sections may be used as a practical tool to determine arterial territories on MRI, and may help establish consistent clinico-anatomic correlations in patients with brainstem and cerebellar ischemic strokes. (authors)

  7. Effectiveness of interferon-[beta], ACNU, and radiation therapy in pediatric patients with brainstem glioma

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Toshihiko; Yoshida, Jun; Mizuno, Masaaki; Sugita, Kenichiro [Nagoya Univ. (Japan). Faculty of Medicine; Kito, Akira

    1992-12-01

    Sixteen pediatric patients with brainstem glioma were treated with a combination of interferon-[beta], 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl -3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU), and radiation therapy (IAR therapy). All patients received 1-1.5 million IU/day of interferon-[beta] intravenously for 1 week of each 6-week cycle. In addition, ACNU (2-3 mg/kg) was given on the 2nd day of each cycle. Conventional focal irradiation (1.5-2 Gy/day for 5 days to a total dosage of 40-60 Gy) was administered beginning on day 3. Patients underwent at least two 6-week cycles. Adverse effects included nausea, vomiting, and myelosuppression, but were mild and transient. Response to treatment was evaluated by the reduction in tumor size measured on postcontrast computed tomographic scans and magnetic resonance images. Responses occurred in 10 of 11 patients with the intrinsic type of brainstem glioma, including three complete and seven partial responses. Two of the five patients with exophytic type gliomas partially responded. The median survival was 15.7 months, a remarkable improvement over the natural course of this disease. These results indicate that IAR therapy is a useful primary treatment for pediatric patients with brainstem gliomas. (author).

  8. Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state.

    Directory of Open Access Journals (Sweden)

    C Devin Brisson

    Full Text Available Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a 'persistent vegetative state' where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by 'higher' hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT imaging in response to 10 minutes of oxygen/glucose deprivation (OGD revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1-10 nM palytoxin which converts the pump into an open cationic channel. Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival

  9. Enterovirus 71 Brainstem Encephalitis and Cognitive and Motor Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Follow-up studies were conducted in 63 previously healthy children with enterovirus 71 brainstem encephalitis (49 stage II, 7 stage Ilia, and 7 stage Illb at National Cheng Kung University Hospital, Tainan, Taiwan.

  10. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  11. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  12. Musicians and Tone-Language Speakers Share Enhanced Brainstem Encoding but Not Perceptual Benefits for Musical Pitch

    Science.gov (United States)

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Behavioral and neurophysiological transfer effects from music experience to language processing are well-established but it is currently unclear whether or not linguistic expertise (e.g., speaking a tone language) benefits music-related processing and its perception. Here, we compare brainstem responses of English-speaking musicians/non-musicians…

  13. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    Science.gov (United States)

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  14. Brainstem encoding of speech and musical stimuli in congenital amusia: Evidence from Cantonese speakers

    Directory of Open Access Journals (Sweden)

    Fang eLiu

    2015-01-01

    Full Text Available Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB, and two cello tones in quiet while their frequency-following responses (FFRs to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  15. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R; Lau, Joseph C Y; Wong, Patrick C M

    2014-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  16. Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from Cantonese speakers

    Science.gov (United States)

    Liu, Fang; Maggu, Akshay R.; Lau, Joseph C. Y.; Wong, Patrick C. M.

    2015-01-01

    Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s) of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise) and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB), and two cello tones in quiet while their frequency-following responses (FFRs) to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise) and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise) than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain. PMID:25646077

  17. Arbitration in crossbar interconnect for low latency

    Science.gov (United States)

    Ohmacht, Martin; Sugavanam, Krishnan

    2013-02-05

    A system and method and computer program product for reducing the latency of signals communicated through a crossbar switch, the method including using at slave arbitration logic devices associated with Slave devices for which access is requested from one or more Master devices, two or more priority vector signals cycled among their use every clock cycle for selecting one of the requesting Master devices and updates the respective priority vector signal used every clock cycle. Similarly, each Master for which access is requested from one or more Slave devices, can have two or more priority vectors and can cycle among their use every clock cycle to further reduce latency and increase throughput performance via the crossbar.

  18. Targeting HIV latency: pharmacologic strategies toward eradication

    Science.gov (United States)

    Xing, Sifei; Siliciano, Robert F.

    2013-01-01

    The latent reservoir for HIV-1 in resting CD4+ T cells remains a major barrier to HIV-1 eradication, even though highly active antiretroviral therapy (HAART) can successfully reduce plasma HIV-1 levels to below the detection limit of clinical assays and reverse disease progression. Proposed eradication strategies involve reactivation of this latent reservoir. Multiple mechanisms are believed to be involved in maintaining HIV-1 latency, mostly through suppression of transcription. These include cytoplasmic sequestration of host transcription factors and epigenetic modifications such as histone deacetylation, histone methylation and DNA methylation. Therefore, strategies targeting these mechanisms have been explored for reactivation of the latent reservoir. In this review, we discuss current pharmacological approaches toward eradication, focusing on small molecule latency-reversing agents, their mechanisms, advantages and limitations. PMID:23270785

  19. Low-Latency Embedded Vision Processor (LLEVS)

    Science.gov (United States)

    2016-03-01

    algorithms, low-latency video processing, embedded image processor, wearable electronics, helmet-mounted systems, alternative night / day imaging...external subsystems and data sources with the device. The establishment of data interfaces in terms of data transfer rates, formats and types are...video signals from Near-visible Infrared (NVIR) sensor, Shortwave IR (SWIR) and Longwave IR (LWIR) is the main processing for Night Vision (NI) system

  20. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  1. Investigation of Koi Herpesvirus Latency in Koi▿

    Science.gov (United States)

    Eide, Kathleen E.; Miller-Morgan, Tim; Heidel, Jerry R.; Kent, Michael L.; Bildfell, Rob J.; LaPatra, Scott; Watson, Gregory; Jin, Ling

    2011-01-01

    Koi herpesvirus (KHV) has recently been classified as a member of the family of Alloherpesviridae within the order of Herpesvirales. One of the unique features of Herpesviridae is latent infection following a primary infection. However, KHV latency has not been recognized. To determine if latency occurs in clinically normal fish from facilities with a history of KHV infection or exposure, the presence of the KHV genome was investigated in healthy koi by PCR and Southern blotting. KHV DNA, but not infectious virus or mRNAs from lytic infection, was detected in white blood cells from investigated koi. Virus shedding was examined via tissue culture and reverse transcription-PCR (RT-PCR) testing of gill mucus and feces from six koi every other day for 1 month. No infectious virus or KHV DNA was detected in fecal secretion or gill swabs, suggesting that neither acute nor persistent infection was present. To determine if KHV latent infections can be reactivated, six koi were subjected to a temperature stress regime. KHV DNA and infectious virus were detected in both gill and fecal swabs by day 8 following temperature stress. KHV DNA was also detectable in brain, spleen, gills, heart, eye, intestine, kidney, liver, and pancreas in euthanized koi 1 month post-temperature stress. Our study suggests that KHV may become latent in leukocytes and other tissues, that it can be reactivated from latency by temperature stress, and that it may be more widespread in the koi population than previously suspected. PMID:21389134

  2. The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo.

    Directory of Open Access Journals (Sweden)

    Ole S Søgaard

    2015-09-01

    Full Text Available Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03. Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04. Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2 were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir.clinicaltrials.gov NTC02092116.

  3. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem

    Science.gov (United States)

    Jafri, Anjum; Belkadi, Abdelmadjid; Zaidi, Syed I. A.; Getsy, Paulina; Wilson, Christopher G.; Martin, Richard J.

    2013-01-01

    Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 µg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral pro-inflammatory stimulus. PMID:23648475

  4. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  5. Genetic variants in RBFOX3 are associated with sleep latency

    NARCIS (Netherlands)

    Amin, N.; Allebrandt, K.V.; Spek, A.; Müller-Myhsok, B.; Hek, K.; Teder-Laving, M.; Hayward, C.; Esko, T.; van Mill, J.G.; Mbarek, H.; Watson, N.F.; Melville, S.A.; Del Greco, M.F.; Byrne, E.M.; Oole, E.; Kolcic, I.; Chen, T.; Evans, D.S.; Coresh, J.; Vogelzangs, N.; Karjalainen, J.; Willemsen, G.; Gharib, S.A.; Zgaga, L.; Mihailov, E.; Stone, K.L.; Campbell, H.; Brouwer, R.W.W.; Demirkan, A.; Isaacs, A.; Dogas, Z.; Marciante, K.; Campbell, S.; Borovecki, F.; Luik, A.I.; Li, M.; Hottenga, J.J.; Huffman, J.E.; van den Hout, M.C.G.N.; Cummings, S.R.; Aulchenko, Y.S.; Gehrman, P.R.; Uitterlinden, A.G.; Wichmann, H.E.; Müller-Nurasyid, M.; Fehrmann, R.S.N.; Montgomery, G.W.; Hofman, A.; Hong, W.; Kao, L.; Oostra, B.A.; Wright, A.F.; Vink, J.M.; Wilson, J.F.; Pramstaller, P.P.; Hicks, A.A.; Polasek, O.; Punjabi, N.M.; Redline, S.; Psaty, B.M.; Heath, A.C.; Merrow, M.; Tranah, G.J.; Gottlieb, D.J.; Boomsma, D.I.; Martin, N.G.; Rudan, I.; Tiemeier, H.; van Ijcken, W.F.J.; Penninx, B.W.J.H.; Metspalu, A.; Meitinger, T.; Franke, L.; Roenneberg, T.; van Duijn, C.M.

    2016-01-01

    Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We

  6. Mobile Low Latency Services in 5G

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Chandramouli, Devaki; Sartori, Cinzia

    2015-01-01

    Networks beyond 2020 will experience 10000-fold increase in wireless traffic, connect 10-100 times more devices and support the most diverse use cases. Thus, the 5G architecture needs to be flexible and cater for both traffic volumes and diversity of service requirements. Among the set of new use...... cases, support of delay sensitive "mobile" applications, such as vehicular communications (V2X, where X stands for either Vehicle or Infrastructure), require architecture enhancements to natively offer low latency and high mobility. In this paper we propose the necessary technology enablers...

  7. Short latency compound action potentials from mammalian gravity receptor organs

    Science.gov (United States)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  8. Cortical and brainstem plasticity in Tourette syndrome and obsessive-compulsive disorder.

    Science.gov (United States)

    Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Berardelli, Isabella; Roselli, Valentina; Pasquini, Massimo; Cardona, Francesco; Berardelli, Alfredo

    2014-10-01

    Gilles de la Tourette syndrome is characterized by motor/vocal tics commonly associated with psychiatric disorders, including obsessive-compulsive disorder. We investigated primary motor cortex and brainstem plasticity in Tourette patients, exposed and unexposed to chronic drug treatment, with and without psychiatric disturbances. We also investigated primary motor cortex and brainstem plasticity in obsessive-compulsive disorder. We studied 20 Tourette patients with and without psychiatric disturbances, 15 with obsessive-compulsive disorder, and 20 healthy subjects. All groups included drug-naïve patients. We conditioned the left primary motor cortex with intermittent/continuous theta-burst stimulation and recorded motor evoked potentials. We conditioned the supraorbital nerve with facilitatory/inhibitory high-frequency stimulation and recorded the blink reflex late response area. In healthy subjects, intermittent theta-burst increased and continuous theta-burst stimulation decreased motor evoked potentials. Differently, intermittent theta-burst failed to increase and continuous theta-burst stimulation failed to decrease motor evoked potentials in Tourette patients, with and without psychiatric disturbances. In obsessive-compulsive disorder, intermittent/continuous theta-burst stimulation elicited normal responses. In healthy subjects and in subjects with obsessive-compulsive disorder, the blink reflex late response area increased after facilitatory high-frequency and decreased after inhibitory high-frequency stimulation. Conversely, in Tourette patients, with and without psychiatric disturbances, facilitatory/inhibitory high-frequency stimulation left the blink reflex late response area unchanged. Theta-burst and high-frequency stimulation elicited similar responses in drug-naïve and chronically treated patients. Tourette patients have reduced plasticity regardless of psychiatric disturbances. These findings suggest that abnormal plasticity contributes to the

  9. EOS Data Products Latency and Reprocessing Evaluation

    Science.gov (United States)

    Ramapriyan, H. K.; Wanchoo, L.

    2012-12-01

    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) program has been processing, archiving, and distributing EOS data since the launch of Terra platform in 1999. The EOSDIS Distributed Active Archive Centers (DAACs) and Science-Investigator-led Processing Systems (SIPSs) are generating over 5000 unique products with a daily average volume of 1.7 Petabytes. Initially EOSDIS had requirements to make process data products within 24 hours of receiving all inputs needed for generating them. Thus, generally, the latency would be slightly over 24 and 48 hours after satellite data acquisition, respectively, for Level 1 and Level 2 products. Due to budgetary constraints these requirements were relaxed, with the requirement being to avoid a growing backlog of unprocessed data. However, the data providers have been generating these products in as timely a manner as possible. The reduction in costs of computing hardware has helped considerably. It is of interest to analyze the actual latencies achieved over the past several years in processing and inserting the data products into the EOSDIS archives for the users to support various scientific studies such as land processes, oceanography, hydrology, atmospheric science, cryospheric science, etc. The instrument science teams have continuously evaluated the data products since the launches of EOS satellites and improved the science algorithms to provide high quality products. Data providers have periodically reprocessed the previously acquired data with these improved algorithms. The reprocessing campaigns run for an extended time period in parallel with forward processing, since all data starting from the beginning of the mission need to be reprocessed. Each reprocessing activity involves more data than the previous reprocessing. The historical record of the reprocessing times would be of interest to future missions, especially those involving large volumes of data and/or computational loads due to

  10. A new method to determine reflex latency induced by high rate stimulation of the nervous system

    Directory of Open Access Journals (Sweden)

    Ilhan eKaracan

    2014-07-01

    Full Text Available High rate stimulations of the neuromuscular system, such as continuous whole body vibration, tonic vibration reflex and high frequency electrical stimulation, are used in the physiological research with an increasing interest. In these studies, the neuronal circuitries underlying the reflex responses remain unclear due to the problem of determining the exact reflex latencies. We present a novel cumulated average method to determine the reflex latency during high rate stimulation of the nervous system which was proven to be significantly more accurate than the classical method. The classical method, cumulant density analysis, reveals the relationship between the two synchronously recorded signals as a function of the lag between the signals. The comparison of new method with the classical technique and their relative accuracy was tested using a computer simulation. In the simulated signals the EMG response latency was constructed to be exactly 40 ms. The new method accurately indicated the value of the simulated reflex latency (40 ms. However, the classical method showed that the lag time between the simulated triggers and the simulated signals was 49 ms. Simulation results illustrated that the cumulated average method is a reliable and more accurate method compared with the classical method. We therefore suggest that the new cumulated average method is able to determine the high rate stimulation induced reflex latencies more accurately than the classical method.

  11. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  12. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  13. Clinical and radiological features of hypertensive brainstem encephalopathy

    Directory of Open Access Journals (Sweden)

    Xiao-qiu LI

    2015-07-01

    Full Text Available Objective To discuss the diagnosis and treatment of hypertensive brainstem encephalopathy. Methods  The clinical and imaging data of 3 cases of hypertensive brainstem encephalopathy were summarized and analyzed for the purpose of improving the acumen in diagnosis and treatment. Results All the 3 patients showed relatively mild clinical symptoms, and they were misdiagnosed in different degrees during the treatment, but their clinical symptoms were improved by rapid and effective antihypertensive therapy. Cerebral CT and MRI scans revealed extensive abnormal signals in brain stem, with or without supratentorial lesions and brain stem hemorrhage. The lesions as revealed by imaging were improved significantly after treatment. Conclusions Clinical-radiographic dissociation is the classic feature of hypertensive brainstem encephalopathy. The clinical symptoms and lesions as shown by imaging could be improved after active treatment. DOI: 10.11855/j.issn.0577-7402.2015.06.03

  14. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  15. A model of curved saccade trajectories: spike rate adaptation in the brainstem as the cause of deviation away.

    Science.gov (United States)

    Kruijne, Wouter; Van der Stigchel, Stefan; Meeter, Martijn

    2014-03-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in behavioral, neurophysiological and computational studies. The mechanisms underlying deviation away, on the other hand, remain unclear. Behavioral findings suggest a mechanism of spatially focused, top-down inhibition in a saccade map, and deviation away has become a tool to investigate such inhibition. However, this inhibition hypothesis has little neuroanatomical or neurophysiological support, and recent findings go against it. Here, we propose that deviation away results from an unbalanced saccade drive from the brainstem, caused by spike rate adaptation in brainstem long-lead burst neurons. Adaptation to stimulation in the direction of the distractor results in an unbalanced drive away from it. An existing model of the saccade system was extended with this theory. The resulting model simulates a wide range of findings on saccade trajectories, including findings that have classically been interpreted to support inhibition views. Furthermore, the model replicated the effect of saccade latency on deviation away, but predicted this effect would be absent with large (400 ms) distractor-target onset asynchrony. This prediction was confirmed in an experiment, which demonstrates that the theory both explains classical findings on saccade trajectories and predicts new findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  17. Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents.

    Science.gov (United States)

    Gupta, Vipul; Dixit, Narendra M

    2018-02-01

    Eradicating HIV-1 infection is difficult because of the reservoir of latently infected cells that gets established soon after infection, remains hidden from antiretroviral drugs and host immune responses, and retains the capacity to reignite infection following the cessation of treatment. Drugs called latency-reversing agents (LRAs) are being developed to reactivate latently infected cells and render them susceptible to viral cytopathicity or immune killing. Whereas individual LRAs have failed to induce adequate reactivation, pairs of LRAs have been identified recently that act synergistically and hugely increase reactivation levels compared to individual LRAs. The maximum synergy achievable with LRA pairs is of clinical importance, as it would allow latency-reversal with minimal drug exposure. Here, we employed stochastic simulations of HIV-1 transcription and translation in latently infected cells to estimate this maximum synergy. We incorporated the predominant mechanisms of action of the two most promising classes of LRAs, namely, protein kinase C agonists and histone deacetylase inhibitors, and quantified the activity of individual LRAs in the two classes by mapping our simulations to corresponding in vitro experiments. Without any adjustable parameters, our simulations then quantitatively captured experimental observations of latency-reversal when the LRAs were used in pairs. Performing simulations representing a wide range of drug concentrations, we estimated the maximum synergy achievable with these LRA pairs. Importantly, we found with all the LRA pairs we considered that concentrations yielding the maximum synergy did not yield the maximum latency-reversal. Increasing concentrations to increase latency-reversal compromised synergy, unravelling a trade-off between synergy and efficacy in LRA combinations. The maximum synergy realizable with LRA pairs would thus be restricted by the desired level of latency-reversal, a constrained optimum we elucidated with

  18. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  19. Localization of the brainstem GABAergic neurons controlling paradoxical (REM sleep.

    Directory of Open Access Journals (Sweden)

    Emilie Sapin

    Full Text Available Paradoxical sleep (PS is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons are principally located in the ventrolateral periaqueductal gray (vlPAG and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe. Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.

  20. Effect of squatting velocity on hip muscle latency in women with patellofemoral pain syndrome.

    Science.gov (United States)

    Orozco-Chavez, Ignacio; Mendez-Rebolledo, Guillermo

    2018-03-01

    [Purpose] Neuromuscular activity has been evaluated in patellofemoral pain syndrome but movement velocity has not been considered. The aim was to determine differences in onset latency of hip and knee muscles between individuals with and without patellofemoral pain syndrome during a single leg squat, and whether any differences are dependent on movement velocity. [Subjects and Methods] Twenty-four females with patellofemoral pain syndrome and 24 healthy females participated. Onset latency of gluteus maximus, anterior and posterior gluteus medius, rectus femoris, vastus medialis, vastus lateralis and biceps femoris during a single leg squat at high and low velocity were evaluated. [Results] There was an interaction between velocity and diagnosis for posterior gluteus medius. Healthy subjects showed a later posterior gluteus medius onset latency at low velocity than high velocity; and also later than patellofemoral pain syndrome subjects at low velocity and high velocity. [Conclusion] Patellofemoral pain syndrome subjects presented an altered latency of posterior gluteus medius during a single leg squat and did not generate adaptations to velocity variation, while healthy subjects presented an earlier onset latency in response to velocity increase.

  1. Latency reduction in online multiplayer games using detour routing

    OpenAIRE

    Ly, Cong

    2010-01-01

    Long network latency negatively impacts the performance of online multiplayer games. In this thesis, we propose a novel approach to reduce the network latency in online gaming. Our approach employs application level detour routing in which game-state update messages between two players can be forwarded through other intermediate relay nodes in order to reduce network latency. We present results from an extensive measurement study to show the potential benefits of detour routing in online game...

  2. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  3. Intraparenchymal papillary meningioma of brainstem: case report and literature review

    Directory of Open Access Journals (Sweden)

    Jiang Xiao-Bing

    2012-01-01

    Full Text Available Abstract Both intraparenchymal papillary meningioma and papillary meningioma with cyst formation of brainstem have never been reported. The authors present an extremely rare case of patient with intraparenchymal papillary meningioma of brainstem. A 23-year-old Chinese male presented with a 4-month history of progressive left upper limb and facial nerve palsy. Magnetic resonance imaging revealed a cystic-solid, heterogeneously enhancing mass in pons and right cerebral peduncle with no dural attachment. The tumor was totally removed via subtemporal approach. During surgery, the lesion was found to be completely intraparenchymal. Histological and immunohistochemical examinations were compatible with the diagnosis of papillary meningioma. The lesion recurred nine months after primary surgery, a second surgery followed by radiotherapy was performed. Till to now (nearly 2 years after the treatment, the patient is tumor free survival. Intraparenchymal meningioma of brainstem with cystic formation is very rare, however, it should be considered as a differential diagnosis of a brainstem neoplasm. The present case strongly recommended that postoperative radiotherapy was essential for the patients with papillary meningiomas.

  4. Diffuse and focal presentations of brainstem tumors in children: the images and the prognostic value

    International Nuclear Information System (INIS)

    Menor, F.; Canete, A.; Romero, M. J.; Trilles, L.; Carvajal, E.; Marti-Bonmati, L.

    2000-01-01

    To determine whether the presentation of brainstem tumors as diffuse or focal lesions showed any prognostic value in children. A retrospective review was carried out of the neuroradiological findings in 43 children with brainstem tumors, all of whom underwent computed tomography (CT) and 31 of whom underwent magnetic resonance (MR). The diffuse tumors (n=20) were all located in the pons, spreading to mesencephalon in 6 cases and to medulla oblongata in 1, and exhibiting exophytic growth, preferentially to the prepontine cistern. They presented homogeneous low attenuation in CT (90%) and decrease/increased signal intensity in T1/T2-weighted MR images (91.6%). Contrast uptake was observed in 20% of cases, with agreement between CT and MR. The patients showed a good initial response to treatment (70%), a high rate of relapse (80%) and a 5-year survival of 12%. The focal tumors were located in the pons (11 cases, spreading to the medulla oblongata in 2), mesencephalon (11 cases, 9 tectal and 2 peduncular) and medulla oblongata (1 case), and exhibited exophytic growth predominantly to the pontocerebellar junction and to the cerebellar peduncles. They showed a certain tendency toward heterogeneity (21.7%), toward isoattenuation in CT (47.8%) and isointensity in T1-weighted MR images (26.3%). CT showed a rate of tumor uptake of 26%, while the rate of contrast iptake was 58% MR. Fifty percent of these lesions responded well to therapy, with a recurrence rate of 28% and 4-year survival of 63%. Neuroimaging helps to define two basic patterns in brainstem tumors that play a role in prognosis. The diffuse tumor, which characteristically shows a good initial response to therapy, has a worse prognosis, probably reflecting its histological aggressiveness. (Author) 21 refs

  5. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye.

    Science.gov (United States)

    Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A

    2015-05-01

    Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline-evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.

  6. Geographically Locating an Internet Node Using Network Latency Measurement

    National Research Council Canada - National Science Library

    Turnbaugh, Eugene

    2004-01-01

    .... The difficulties include accurate latency measure, network address translation (NAT) masking, service blocking, disparate physical configuration, dissimilar network hardware, and inaccurate and limited measuring tools...

  7. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  8. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  9. Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments.

    Science.gov (United States)

    Schultz, Benjamin G; van Vugt, Floris T

    2016-12-01

    Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.

  10. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    Science.gov (United States)

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  11. Detection of Perinatal Cytomegalovirus Infection and Sensorineural Hearing Loss in Belgian Infants by Measurement of Automated Auditory Brainstem Response▿

    OpenAIRE

    Verbeeck, Jannick; Van Kerschaver, Erwin; Wollants, Elke; Beuselinck, Kurt; Stappaerts, Luc; Van Ranst, Marc

    2008-01-01

    Since auditory disability causes serious problems in the development of speech and in the total development of a child, it is crucial to diagnose possible hearing impairment as soon as possible after birth. This study evaluates the neonatal hearing screening program in Flanders, Belgium. The auditory ability of 118,438 babies was tested using the automated auditory brainstem response. We selected 194 babies with indicative hearing impairment and 332 matched controls to investigate the associa...

  12. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad

    2018-05-15

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  13. Characterizing SPDY over High Latency Satellite Channels

    Directory of Open Access Journals (Sweden)

    Luca Caviglione

    2014-12-01

    Full Text Available The increasing complexity ofWeb contents and the growing diffusion of mobile terminals, which use wireless and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator, and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of Performance Enhancing Proxies usually deployed to isolate satellite trunks.

  14. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad; Shihada, Basem

    2018-01-01

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  15. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  16. Fundamental Tradeoffs among Reliability, Latency and Throughput in Cellular Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Mogensen, Preben; Pedersen, Klaus I.

    2014-01-01

    We address the fundamental tradeoffs among latency, reliability and throughput in a cellular network. The most important elements influencing the KPIs in a 4G network are identified, and the inter-relationships among them is discussed. We use the effective bandwidth and the effective capacity......, in which latency and reliability will be two of the principal KPIs....

  17. Genetic variants in RBFOX3 are associated with sleep latency

    NARCIS (Netherlands)

    N. Amin (Najaf); K.V. Allebrandt; A. van der Spek (Ashley); B. Müller-Myhsok (B.); K. Hek (Karin); M. Teder-Laving (Maris); C. Hayward (Caroline); T. Esko (Tõnu); J. van Mill; H. Mbarek; N.F. Watson (Nathaniel F); S.A. Melville (Scott); F.M. Del Greco (Fabiola); E.M. Byrne (Enda); E. Oole (Edwin); I. Kolcic (Ivana); T.H. Chen; D.S. Evans (Daniel); J. Coresh (Josef); N. Vogelzangs (Nicole); J. Karjalainen (Juha); G.A.H.M. Willemsen (Gonneke); S.A. Gharib (Sina); L. Zgaga (Lina); E. Mihailov (Evelin); K.L. Stone (Katie L); H. Campbell (Harry); R.W.W. Brouwer (Rutger); A. Demirkan (Ayşe); A.J. Isaacs (Aaron); Z. Dogas; K. Marciante (Kristin); S. Campbell (Susan); F. Borovecki (Fran); A.I. Luik (Annemarie I); M. Li (Man); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); M.C.G.N. van den hout (Mirjam); S.R. Cummings (Steven R.); Y.S. Aulchenko (Yurii); P.R. Gehrman (Philip); A.G. Uitterlinden (André); H.E. Wichmann (Heinz Erich); M. Müller-Nurasyid (Martina); R.S.N. Fehrmann (Rudolf); G.W. Montgomery (Grant); A. Hofman (Albert); W.H.L. Kao (Wen Hong Linda); B.A. Oostra (Ben); A. Wright (Alan); J.M. Vink (Jacqueline); J.F. Wilson (James F); P.P. Pramstaller (Peter Paul); A.A. Hicks (Andrew); O. Polasek (Ozren); N.M. Punjabi (Naresh); S. Redline (Susan); B.M. Psaty (Bruce); A.C. Heath (Andrew C.); M. Merrow; G.J. Tranah (Gregory); D.J. Gottlieb (Daniel J); D.I. Boomsma (Dorret); N.G. Martin (Nicholas); I. Rudan (Igor); H.W. Tiemeier (Henning); W.F.J. van IJcken (Wilfred); B.W.J.H. Penninx; A. Metspalu (Andres); T. Meitinger (Thomas); L. Franke (Lude); T. Roenneberg; C.M. van Duijn (Cornelia)

    2016-01-01

    textabstractTime to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep

  18. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  19. Latency-Based and Psychophysiological Measures of Sexual Interest Show Convergent and Concurrent Validity.

    Science.gov (United States)

    Ó Ciardha, Caoilte; Attard-Johnson, Janice; Bindemann, Markus

    2018-04-01

    Latency-based measures of sexual interest require additional evidence of validity, as do newer pupil dilation approaches. A total of 102 community men completed six latency-based measures of sexual interest. Pupillary responses were recorded during three of these tasks and in an additional task where no participant response was required. For adult stimuli, there was a high degree of intercorrelation between measures, suggesting that tasks may be measuring the same underlying construct (convergent validity). In addition to being correlated with one another, measures also predicted participants' self-reported sexual interest, demonstrating concurrent validity (i.e., the ability of a task to predict a more validated, simultaneously recorded, measure). Latency-based and pupillometric approaches also showed preliminary evidence of concurrent validity in predicting both self-reported interest in child molestation and viewing pornographic material containing children. Taken together, the study findings build on the evidence base for the validity of latency-based and pupillometric measures of sexual interest.

  20. Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency.

    Directory of Open Access Journals (Sweden)

    Franziska Dağ

    2014-02-01

    Full Text Available Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10 components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.

  1. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  2. Mosaic Evolution of Brainstem Motor Nuclei in Catarrhine Primates

    Directory of Open Access Journals (Sweden)

    Seth D. Dobson

    2011-01-01

    Full Text Available Facial motor nucleus volume coevolves with both social group size and primary visual cortex volume in catarrhine primates as part of a specialized neuroethological system for communication using facial expressions. Here, we examine whether facial nucleus volume also coevolves with functionally unrelated brainstem motor nuclei (trigeminal motor and hypoglossal due to developmental constraints. Using phylogenetically informed multiple regression analyses of previously published brain component data, we demonstrate that facial nucleus volume is not correlated with the volume of other motor nuclei after controlling for medulla volume. Our results show that brainstem motor nuclei can evolve independently of other developmentally linked structures in association with specific behavioral ecological conditions. This finding provides additional support for the mosaic view of brain evolution.

  3. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  4. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  5. First-spike latency in Hodgkin's three classes of neurons.

    Science.gov (United States)

    Wang, Hengtong; Chen, Yueling; Chen, Yong

    2013-07-07

    We study the first-spike latency (FSL) in Hodgkin's three classes of neurons with the Morris-Lecar neuron model. It is found that all the three classes of neurons can encode an external stimulus into FSLs. With DC inputs, the FSLs of all of the neurons decrease with input intensity. With input current decreased to the threshold, class 1 neurons show an arbitrary long FSL whereas class 2 and 3 neurons exhibit the short-limit FSLs. When the input current is sinusoidal, the amplitude, frequency and initial phase can be encoded by all the three classes of neurons. The FSLs of all of the neurons decrease with the input amplitude and frequency. When the input frequency is too high, all of the neurons respond with infinite FSLs. When the initial phase increases, the FSL decreases and then jumps to a maximal value and finally decreases linearly. With changes in the input parameters, the FSLs of the class 1 and 2 neurons exhibit similar properties. However, the FSL of the class 3 neurons became slightly longer and only produces responses for a narrow range of initial phase if input frequencies are low. Moreover, our results also show that the FSL and firing rate responses are mutually independent processes and that neurons can encode an external stimulus into different FSLs and firing rates simultaneously. This finding is consistent with the current theory of dual or multiple complementary coding mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of edaravone on acute brainstem-cerebellar infarction with vertigo and sudden hearing loss.

    Science.gov (United States)

    Inoue, Yuta; Yabe, Takao; Okada, Kazunari; Nakamura, Yuka

    2014-06-01

    We report 2 cases with acute brainstem and brainstem-cerebellar infarction showed improvement of their signs and symptoms after administration of edaravone. Case 1, a 74-year-old woman who experienced sudden vertigo, also had dysarthria and left hemiplegia. Magnetic resonance imaging (MRI) showed an abnormal region in the right ventrolateral medulla oblongata. The patient's vertigo and hemiplegia improved completely after treatment. Case 2, a 50-year-old man who experienced sudden vertigo and sensorineural hearing loss (SNHL), developed dysarthria after admission. MRI revealed acute infarction in the right cerebellar hemisphere. Magnetic resonance angiography revealed dissection of the basilar artery and occlusion of the right anterior inferior cerebellar artery. The patient's vertigo and hearing remarkably improved. We have described 2 patients whose early symptoms were vertigo and sudden SNHL, but who were later shown to have ischemic lesions of the central nervous system. Edaravone is neuroprotective drug with free radical-scavenging actions. Free radicals in the ear are responsible for ischemic damage. Edaravone, a free radical scavenger, may be useful in the treatment of vertigo and SNHL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Factors influencing the latency of simple reaction time

    Directory of Open Access Journals (Sweden)

    David L Woods

    2015-03-01

    Full Text Available Simple reaction time (SRT, the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by computer hardware and software used for SRT measurement. We developed a calibrated and temporally-precise SRT paradigm to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs. Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231 ms, 213 ms when corrected for hardware delays and increased significantly with age (0.55 ms/year, but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT was estimated by subtracting movement-initiation time, measured in a speeded finger-tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms. SRT latencies increased with age while SDT latencies did not. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in those from the Victorian era and that age-related increases in SRT latencies are due primarily to slowed motor output.

  8. Factors influencing the latency of simple reaction time

    Science.gov (United States)

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output. PMID:25859198

  9. Factors influencing the latency of simple reaction time.

    Science.gov (United States)

    Woods, David L; Wyma, John M; Yund, E William; Herron, Timothy J; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output.

  10. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials

    OpenAIRE

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-01-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion - midline nuchal ridge, left - right mastoids, vertex - midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re. human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (S...

  11. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  12. A review of the methods for neuronal response latency estimation

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Ditlevsen, S.; Lánský, Petr

    2015-01-01

    Roč. 136, Oct 2015 (2015), s. 23-34 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S; GA MŠk 7AMB15AT010 Institutional support: RVO:67985823 Keywords : change point analysis * evoked activity * maximum likelihood estimation * Bayesian analysis * spike trains * extracellular recordings in neurons Subject RIV: BD - Theory of Information Impact factor: 1.495, year: 2015

  13. Therapeutic strategies to fight HIV-1 latency: progress and challenges

    CSIR Research Space (South Africa)

    Manoto, Sello L

    2017-10-01

    Full Text Available —1112, 2017 Therapeutic strategies to fight HIV-1 latency: progress and challenges Sello Lebohang Manoto, Lebogang Thobakgale, Rudzani Malabi, Charles Maphanga, Saturnin Ombinda-Lemboumba, Patience Mthunzi-Kufa Abstract: The life...

  14. Automatic latency equalization in VHDL-implemented complex pipelined systems

    Science.gov (United States)

    Zabołotny, Wojciech M.

    2016-09-01

    In the pipelined data processing systems it is very important to ensure that parallel paths delay data by the same number of clock cycles. If that condition is not met, the processing blocks receive data not properly aligned in time and produce incorrect results. Manual equalization of latencies is a tedious and error-prone work. This paper presents an automatic method of latency equalization in systems described in VHDL. The proposed method uses simulation to measure latencies and verify introduced correction. The solution is portable between different simulation and synthesis tools. The method does not increase the complexity of the synthesized design comparing to the solution based on manual latency adjustment. The example implementation of the proposed methodology together with a simple design demonstrating its use is available as an open source project under BSD license.

  15. Physiological Characterization of Vestibular Efferent Brainstem Neurons Using a Transgenic Mouse Model

    Science.gov (United States)

    Leijon, Sara; Magnusson, Anna K.

    2014-01-01

    The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596

  16. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  17. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sharma

    2016-01-01

    Full Text Available Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma.

  18. Understanding and Analyzing Latency of Near Real-time Satellite Data

    Science.gov (United States)

    Han, W.; Jochum, M.; Brust, J.

    2016-12-01

    Acquiring and disseminating time-sensitive satellite data in a timely manner is much concerned by researchers and decision makers of weather forecast, severe weather warning, disaster and emergency response, environmental monitoring, and so on. Understanding and analyzing the latency of near real-time satellite data is very useful and helpful to explore the whole data transmission flow, indentify the possible issues, and connect data providers and users better. The STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR) is a central repository to acquire, manipulate, and disseminate various types of near real-time satellite datasets to internal and external users. In this system, important timestamps, including observation beginning/end, processing, uploading, downloading, and ingestion, are retrieved and organized in the database, so the time length of each transmission phase can be figured out easily. Open source NoSQL database MongoDB is selected to manage the timestamp information because of features of dynamic schema, aggregation and data processing. A user-friendly user interface is developed to visualize and characterize the latency interactively. Taking the Himawari-8 HSD (Himawari Standard Data) file as an example, the data transmission phases, including creating HSD file from satellite observation, uploading the file to HimawariCloud, updating file link in the webpage, downloading and ingesting the file to SCDR, are worked out from the above mentioned timestamps. The latencies can be observed by time of period, day of week, or hour of day in chart or table format, and the anomaly latencies can be detected and reported through the user interface. Latency analysis provides data providers and users actionable insight on how to improve the data transmission of near real-time satellite data, and enhance its acquisition and management.

  19. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  20. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron

    Science.gov (United States)

    Maisel, Brenton; Lindenberg, Katja

    2017-02-01

    While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.

  1. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  2. The molecular basis of herpes simplex virus latency

    Science.gov (United States)

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  3. SDN Low Latency for Medical Big Data Using Wavelets

    Directory of Open Access Journals (Sweden)

    Fadia Shah

    2017-06-01

    Full Text Available New era is the age of 5G. The network has moved from the simple internet connection towards advanced LTE connections and transmission. The information and communication technology has reshaped telecommunication. For this, among many types of big data, Medical Big Data is one of the most sensitive forms of data. Wavelet is a technical tool to reduce the size of this data to make it available for the user for more time. It is also responsible for low latency and high speed data transmission over the network. The key concern is the Medical Big Data should be accurate and reliable enough so that the recommended treatment should be the concerned one. This paper proposed the scheme to support the concept of data availability without losing crucial information, via Wavelet the Medical Data compression and through SDN supportive architecture by making data availability over the wireless network. Such scheme is in favor of the efficient use of technology for the benefit of human beings in the support of medical treatments.

  4. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program

    Directory of Open Access Journals (Sweden)

    Svetlana Kozireva

    2018-05-01

    Full Text Available CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.

  5. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jer-Yuan; Crawley, Suzanne; Chen, Michael; Ayupova, Dina A.; Lindhout, Darrin A.; Higbee, Jared; Kutach, Alan; Joo, William; Gao, Zhengyu; Fu, Diana; To, Carmen; Mondal, Kalyani; Li, Betty; Kekatpure, Avantika; Wang, Marilyn; Laird, Teresa; Horner, Geoffrey; Chan, Jackie; McEntee, Michele; Lopez, Manuel; Lakshminarasimhan, Damodharan; White, Andre; Wang, Sheng-Ping; Yao, Jun; Yie, Junming; Matern, Hugo; Solloway, Mark; Haldankar, Raj; Parsons, Thomas; Tang, Jie; Shen, Wenyan D.; Alice Chen, Yu; Tian, Hui; Allan, Bernard B.

    2017-09-27

    Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure1,2. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand3. Recent studies have identified brain areas outside the hypothalamus that are activated under these ‘non-homeostatic’ conditions4,5,6, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the ‘emergency circuit’ that shapes feeding responses to stressful conditions7. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases8,9. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.

  6. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    -term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.

  7. Herpes simplex encephalitis with thalamic, brainstem and cerebellar involvement.

    Science.gov (United States)

    Garg, Meenal; Kulkarni, Shilpa; Udwadia Hegde, Anaita

    2018-04-01

    Herpes simplex virus encephalitis is a common and treatable cause of acute encephalitis in all age groups. Certain radiological features such as temporal parenchymal involvement facilitate the diagnosis. The use of herpes simplex virus polymerase chain reaction has expanded the clinical and imaging spectrum. We report the case of a young patient who presented with a movement disorder and predominant involvement of thalami, brainstem and cerebellum on magnetic resonance imaging, and was diagnosed with herpes simplex virus encephalitis. Differentiation from Japanese encephalitis may be difficult in these patients, especially in endemic areas, and may necessitate the use of relevant investigations in all patients.

  8. Descending Command Neurons in the Brainstem that Halt Locomotion

    DEFF Research Database (Denmark)

    Bouvier, Julien; Caggiano, Vittorio; Leiras, Roberto

    2015-01-01

    identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord....... Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic...

  9. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica.

    Science.gov (United States)

    Moussawi, Khaled; Lin, David J; Matiello, Marcelo; Chew, Sheena; Morganstern, Daniel; Vaitkevicius, Henrikas

    2016-01-01

    The spectrum of disorders associated with anti-neuromyelitis optica (NMO) antibody is being extended to include infrequent instances associated with cancer. We describe a patient with brainstem and limbic encephalitis from NMO-immunoglobulin G in serum and cerebrospinal fluid in the context of newly diagnosed breast cancer. The neurological features markedly improved with excision of her breast cancer and immune suppressive therapy. This case further broadens the NMO spectrum disorders (NMOSD) by an association between NMOSD and cancer and raises the question of coincidental occurrence and the appropriate circumstances to search for a tumor in certain instances of NMO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  11. Clinical analysis of the outcome of patients with brainstem hemorrhage

    International Nuclear Information System (INIS)

    Arimoto, Hirohiko; Takasato, Yoshio; Masaoka, Hiroyuki

    2008-01-01

    To identify prognostic factors in patients with brainstem hemorrhage, we analyzed their clinical symptoms and laboratory data on admission to our hospital. In 70 patients with brainstem hemorrhage (51 men and 19 women aged 29-93, with a mean of 59 gears) who had been admitted to our hospital from 1995 to 2000, we statistically evaluated the association of the outcome with their age and clinical symptoms on admission, blood glucose levels and white blood counts within 6 hours of admission, and the volume and extent of hematoma, concomitant hydrocephalus, and intraventricular perforation on admission CT scans. The mortality tended to be higher, but not significantly (P=0.07), in patients aged 70 years or older (83%) than in those aged less than 70 years (55%). Quadriplegia or decerebrate rigidity (P 2 or higher (P<0.01) on admission were significantly correlated with the prognosis. Hematoma volumes of 6 ml or larger on CT scans were most strongly correlated with the prognosis (P<0.001). Central hematoma and hematoma with extension to the midbrain, thalamus, or medulla oblongata (P<0.05), as well as hemorrhage complicated by hydrocephalus or intraventricular perforation (P<0.01), were correlated with the prognosis. (author)

  12. Brainstem encephalitis and acute polyneuropathy associated with hepatitis E infection.

    Science.gov (United States)

    Salim, Omar Jabbar; Davidson, Amy; Li, Kathy; Leach, John Paul; Heath, Craig

    2017-09-11

    A 59-year-old man presented with feverish illness. His Glasgow Coma Scale was 15, had reduced visual acuity in the left eye with partial left ptosis and mild left hemiparesis with an extensor left plantar. Over 48 hours, he accrued multiple cranial nerves palsies and progressed to a flaccid paralysis necessitating admission to an intensive care unit.Cerebrospinal fluid (CSF) study showed 20 lymphocytes and raised protein. Viral and bacterial PCRs were negative. Samples for Lyme, blood-borne viruses, syphilis and autoantibodies were also negative. MRI brain showed T2 abnormalities within the brainstem. Nerve conduction studies revealed an acute motor and sensory axonal neuropathy pattern of Guillian Barre Syndrome (GBS). The patient was treated for both infective and inflammatory causes of brainstem encephalitis and GBS.Retrospective studies confirmed the presence of hepatitis E virus (HEV) RNA in CSF and serum studies showed positive HEV IgG and IgM prior to intravenous infusion. After 3 months of intensive rehabilitation, the patient was discharged home walking with a frame. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Optimizing latency in Xilinx FPGA implementations of the GBT

    International Nuclear Information System (INIS)

    Muschter, S; Bohm, C; Baron, S; Soos, C; Cachemiche, J-P

    2010-01-01

    The GigaBit Transceiver (GBT) system has been developed to replace the Timing, Trigger and Control (TTC) system, currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation. This code was optimized for resource utilization, as the GBT protocol is very demanding. It was not, however, optimized for latency - which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.

  14. Optimizing latency in Xilinx FPGA implementations of the GBT

    Science.gov (United States)

    Muschter, S.; Baron, S.; Bohm, C.; Cachemiche, J.-P.; Soos, C.

    2010-12-01

    The GigaBit Transceiver (GBT) [1] system has been developed to replace the Timing, Trigger and Control (TTC) system [2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation [3]. This code was optimized for resource utilization [4], as the GBT protocol is very demanding. It was not, however, optimized for latency — which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The latency optimization results were compared with measurement results from a Virtex 6 ML605 development board [5] equipped with a XC6VLX240T with speedgrade-1 and the package FF1156. Bit error rate tests were also performed to ensure an error free operation. The two final optimizations were analyzed for utilization and compared with the original code, distributed in the Starter Kit.

  15. Latency in Visionic Systems: Test Methods and Requirements

    Science.gov (United States)

    Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.

    2005-01-01

    A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.

  16. Low-latency situational awareness for UxV platforms

    Science.gov (United States)

    Berends, David C.

    2012-06-01

    Providing high quality, low latency video from unmanned vehicles through bandwidth-limited communications channels remains a formidable challenge for modern vision system designers. SRI has developed a number of enabling technologies to address this, including the use of SWaP-optimized Systems-on-a-Chip which provide Multispectral Fusion and Contrast Enhancement as well as H.264 video compression. Further, the use of salience-based image prefiltering prior to image compression greatly reduces output video bandwidth by selectively blurring non-important scene regions. Combined with our customization of the VLC open source video viewer for low latency video decoding, SRI developed a prototype high performance, high quality vision system for UxV application in support of very demanding system latency requirements and user CONOPS.

  17. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  18. Scalla: Structured Cluster Architecture for Low Latency Access

    Energy Technology Data Exchange (ETDEWEB)

    Hanushevsky, Andrew; Wang, Daniel L.; /SLAC

    2012-03-20

    Scalla is a distributed low-latency file access system that incorporates novel techniques that minimize latency and maximize scalability over a large distributed system with a distributed namespace. Scalla's techniques have shown to be effective in nearly a decade of service for the high-energy physics community using commodity hardware and interconnects. We describe the two components used in Scalla that are instrumental in its ability to provide low-latency, fault-tolerant name resolution and load distribution, and enable its use as a high-throughput, low-latency communication layer in the Qserv system, the Large Synoptic Survey Telescope's (LSST's) prototype astronomical query system. Scalla arguably exceeded its three main design objectives: low latency, scaling, and recoverability. In retrospect, these objectives were met using a simple but effective design. Low latency was met by uniformly using linear or constant time algorithms in all high-use paths, avoiding locks whenever possible, and using compact data structures to maximize the memory caching efficiency. Scaling was achieved by architecting the system as a 64-ary tree. Nodes can be added easily and as the number of nodes increases, search performance increases at an exponential rate. Recoverability is inherent in that no permanent state information is maintained and whatever state information is needed it can be quickly constructed or reconstructed in real time. This allows dynamic changes in a cluster of servers with little impact on over-all performance or usability. Today, Scalla is being deployed in environments and for uses that were never conceived in 2001. This speaks well for the systems adaptability but the underlying reason is that the system can meet its three fundamental objectives at the same time.

  19. Specific brainstem and cortico-spinal reflex abnormalities in coexisting essential tremor and Parkinson's disease (ET-PD).

    Science.gov (United States)

    Yavuz, D; Gündüz, A; Ertan, S; Apaydın, H; Şifoğlu, A; Kiziltan, G; Kiziltan, M E

    2015-05-01

    We aimed to analyze functional changes at brainstem and spinal levels in essential tremor (ET), Parkinson's disease (PD) and coexisting essential tremor and Parkinson's disease (ET-PD). Age- and gender-matched patients with tremor (15 ET, 7 ET with resting tremor, 25 ET-PD and 10 PD) and 12 healthy subjects were enrolled in the study. Diagnosis was established according to standardized clinical criteria. Electrophysiological studies included blink reflex (BR), auditory startle reaction (ASR) and long latency reflex (LLR). Blink reflex was normal and similar in all groups. Probability of ASR was significantly lower in ET-PD group whereas it was similar to healthy subjects in ET and PD (PET, PD and ET-PD groups. LLR III was far more common in the PD group (n=3, 13.6% in ET; n=4, 16.0% in ET-PD and n=7, 46.7% in PD; p=0.037). Despite the integrity of BR pathways, ASR and LLR show distinctive abnormalities in ET-PD. In our opinion, our electrophysiological findings support the hypothesis that ET-PD is a distinct entity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Latency Performance of Encoding with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, René Rydhof; Lucani Rötter, Daniel Enrique

    2018-01-01

    the encoding process can be parallelized based on system requirements to reduce data access time within the system. Using a counting argument, we focus on predicting the effect of changes of generation (number of original packets) and symbol size (number of bytes per data packet) configurations on the encoding...... latency on full vector and on-the-fly algorithms. We show that the encoding latency doubles when either the generation size or the symbol size double and confirm this via extensive simulations. Although we show that the theoretical speed gain of on-the-fly over full vector is two, our measurements show...

  1. The determinants of spoken and written picture naming latencies.

    Science.gov (United States)

    Bonin, Patrick; Chalard, Marylène; Méot, Alain; Fayol, Michel

    2002-02-01

    The influence of nine variables on the latencies to write down or to speak aloud the names of pictures taken from Snodgrass and Vanderwart (1980) was investigated in French adults. The major determinants of both written and spoken picture naming latencies were image variability, image agreement and age of acquisition. To a lesser extent, name agreement was also found to have an impact in both production modes. The implications of the findings for theoretical views of both spoken and written picture naming are discussed.

  2. [EEG and brain-stem evoked potentials in 125 recent concussions].

    Science.gov (United States)

    Geets, W; Louette, N

    1983-12-01

    EEG and ipsi/contralateral BEPs have been recorded in 125 cases of concussion at most 48 h after the cerebral trauma. In 100 cases of minor concussion the temporary loss of consciousness lasted not more than 2 min. In 25 cases of mild concussion, the loss of consciousness lasted until their arrival at the hospital. In minor concussions an abnormal EEG was found in 17% of the cases and in mild concussions, in 56%. The abnormalities of the BEP, more often seen in mild concussions (60%) than in minor concussions (8%), are an increase of interpeak latencies or distorted responses with average to bad reproducibility. The results are discussed.

  3. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  4. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  5. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  6. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yun Ju C Song

    Full Text Available BACKGROUND: The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD. However, the brainstem's role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI, we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. METHODS: MDD patients (n = 95 and age- and gender-matched controls (n = 34 were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum, solitary tract (connecting brainstem to amygdala and corticospinal tract (connecting brainstem to precentral cortex. Fractional anisotropy (FA was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. RESULTS: MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test, which is a "bottom up" afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. CONCLUSIONS: The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.

  7. [Decrease in N170 evoked potential component latency during repeated presentation of face images].

    Science.gov (United States)

    Verkhliutov, V M; Ushakov, V L; Strelets, V B

    2009-01-01

    The 15 healthy volunteers EEG from 28 channels was recorded during the presentation of visual stimuli in the form of face and building images. The stimuli were presented in two series. The first series consisted of 60 face and 60 building images presented in random order. The second series consisted of 30 face and 30 building images. The second series began 1.5-2 min after the end of the first ore. No instruction was given to the participants. P1, N170 and VPP EP components were identified for both stimuli categories. These components were located in the medial parietal area (Brodmann area 40). P1 and N170 components were recorded in the superior temporal fissure (Brodmann area 21, STS region), the first component had the latency 120 ms, the second one--155 ms. VPP was recorded with the latency 190 ms (Brodmann area 19). Dynamic mapping of EP components with the latency from 97 to 242 ms revealed the removal of positive maximums from occipital to frontal areas through temporal ones and their subsequent returning to occipital areas through the central ones. During the comparison of EP components to face and building images the amplitude differences were revealed in the following areas: P1--in frontal, central and anterior temporal areas, N170--in frontal, central, temporal and parietal areas, VPP--in all areas. It was also revealed that N170 latency was 12 ms shorter for face than for building images. It was proposed that the above mentioned N170 latency decrease for face in comparison with building images is connected with the different space location of the fusiform area responsible for face and building images recognition. Priming--the effect that is revealed during the repetitive face images presentation is interpreted as the manifestation of functional heterogeneity of the fusiform area responsible for the face images recognition. The hypothesis is put forward that the parts of extrastriate cortex which are located closer to the central retinotopical

  8. Compounds producing an effective combinatorial regimen for disruption of HIV-1 latency.

    Science.gov (United States)

    Hashemi, Pargol; Barreto, Kris; Bernhard, Wendy; Lomness, Adam; Honson, Nicolette; Pfeifer, Tom A; Harrigan, P Richard; Sadowski, Ivan

    2018-02-01

    Highly active antiretroviral therapy (HAART) has improved the outlook for the HIV epidemic, but does not provide a cure. The proposed "shock-and-kill" strategy is directed at inducing latent HIV reservoirs, which may then be purged via boosted immune response or targeting infected cells. We describe five novel compounds that are capable of reversing HIV latency without affecting the general T-cell activation state. The new compounds exhibit synergy for reactivation of latent provirus with other latency-reversing agents (LRAs), in particular ingenol-3-angelate/PEP005. One compound, designated PH02, was efficient at reactivating viral transcription in several cell lines bearing reporter HIV-1 at different integration sites. Furthermore, it was capable of reversing latency in resting CD4 + T lymphocytes from latently infected aviremic patient cells on HAART, while producing minimal cellular toxicity. The combination of PH02 and PEP005 produces a strong synergistic effect for reactivation, as demonstrated through a quantitative viral outgrowth assay (qVOA), on CD4 + T lymphocytes from HIV-1-infected individuals. We propose that the PH02/PEP005 combination may represent an effective novel treatment for abrogating persistent HIV-1 infection. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep.

    Science.gov (United States)

    Longbottom, David; Livingstone, Morag; Maley, Stephen; van der Zon, Arjan; Rocchi, Mara; Wilson, Kim; Wheelhouse, Nicholas; Dagleish, Mark; Aitchison, Kevin; Wattegedera, Sean; Nath, Mintu; Entrican, Gary; Buxton, David

    2013-01-01

    Latency is a key feature of the animal pathogen Chlamydia abortus, where infection remains inapparent in the non-pregnant animal and only becomes evident during a subsequent pregnancy. Often the first sign that an animal is infected is abortion occurring late in gestation. Despite this, little is understood of the underlying mechanisms that control latency or the recrudescence of infection that occurs during subsequent pregnancy. The aim of this study was to develop an experimental model of latency by mimicking the natural route of infection through the intranasal inoculation of non-pregnant sheep with C. abortus. Three groups of sheep (groups 1, 2 and 3) were experimentally infected with different doses of C. abortus (5×10(3), 5×10(5) and 5×10(7) inclusion forming units (IFU), respectively) prior to mating and monitored over 2 breeding cycles for clinical, microbiological, pathological, immunological and serological outcomes. Two further groups received either negative control inoculum (group 4a,b) or were inoculated subcutaneously on day 70 of gestation with 2×10(6) IFU C. abortus (group 5). Animals in groups 1, 2 and 5 experienced an abortion rate of 50-67%, while only one animal aborted in group 3 and none in group 4a,b. Pathological, microbiological, immunological and serological analyses support the view that the maternal protective immune response is influenced by initial exposure to the bacterium. The results show that intranasal administration of non-pregnant sheep with a low/medium dose of C. abortus results in a latent infection that leads in a subsequent pregnancy to infection of the placenta and abortion. In contrast a high dose stimulates protective immunity, resulting in a much lower abortion rate. This model will be useful in understanding the mechanisms of infection underlying latency and onset of disease, as well as in the development of novel therapeutics and vaccines for controlling infection.

  10. Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep.

    Directory of Open Access Journals (Sweden)

    David Longbottom

    Full Text Available Latency is a key feature of the animal pathogen Chlamydia abortus, where infection remains inapparent in the non-pregnant animal and only becomes evident during a subsequent pregnancy. Often the first sign that an animal is infected is abortion occurring late in gestation. Despite this, little is understood of the underlying mechanisms that control latency or the recrudescence of infection that occurs during subsequent pregnancy. The aim of this study was to develop an experimental model of latency by mimicking the natural route of infection through the intranasal inoculation of non-pregnant sheep with C. abortus.Three groups of sheep (groups 1, 2 and 3 were experimentally infected with different doses of C. abortus (5×10(3, 5×10(5 and 5×10(7 inclusion forming units (IFU, respectively prior to mating and monitored over 2 breeding cycles for clinical, microbiological, pathological, immunological and serological outcomes. Two further groups received either negative control inoculum (group 4a,b or were inoculated subcutaneously on day 70 of gestation with 2×10(6 IFU C. abortus (group 5. Animals in groups 1, 2 and 5 experienced an abortion rate of 50-67%, while only one animal aborted in group 3 and none in group 4a,b. Pathological, microbiological, immunological and serological analyses support the view that the maternal protective immune response is influenced by initial exposure to the bacterium.The results show that intranasal administration of non-pregnant sheep with a low/medium dose of C. abortus results in a latent infection that leads in a subsequent pregnancy to infection of the placenta and abortion. In contrast a high dose stimulates protective immunity, resulting in a much lower abortion rate. This model will be useful in understanding the mechanisms of infection underlying latency and onset of disease, as well as in the development of novel therapeutics and vaccines for controlling infection.

  11. Monitoring data transfer latency in CMS computing operations

    CERN Document Server

    Bonacorsi, D; Magini, N; Sartirana, A; Taze, M; Wildish, T

    2015-01-01

    During the first LHC run, the CMS experiment collected tens of Petabytes of collision and simulated data, which need to be distributed among dozens of computing centres with low latency in order to make efficient use of the resources. While the desired level of throughput has been successfully achieved, it is still common to observe transfer workflows that cannot reach full completion in a timely manner due to a small fraction of stuck files which require operator intervention.For this reason, in 2012 the CMS transfer management system, PhEDEx, was instrumented with a monitoring system to measure file transfer latencies, and to predict the completion time for the transfer of a data set. The operators can detect abnormal patterns in transfer latencies while the transfer is still in progress, and monitor the long-term performance of the transfer infrastructure to plan the data placement strategy.Based on the data collected for one year with the latency monitoring system, we present a study on the different fact...

  12. Optimizing latency in Xilinx FPGA implementations of the GBT

    CERN Document Server

    Muschter, S; Bohm, C; Cachemiche, J-P; Baron, S

    2010-01-01

    The GigaBit Transceiver (GBT) {[}1] system has been developed to replace the Timing, Trigger and Control (TTC) system {[}2], currently used by LHC, as well as to provide data transmission between on-detector and off-detector components in future sLHC detectors. A VHDL version of the GBT-SERDES, designed for FPGAs, was released in March 2010 as a GBT-FPGA Starter Kit for future GBT users and for off-detector GBT implementation {[}3]. This code was optimized for resource utilization {[}4], as the GBT protocol is very demanding. It was not, however, optimized for latency - which will be a critical parameter when used in the trigger path. The GBT-FPGA Starter Kit firmware was first analyzed in terms of latency by looking at the separate components of the VHDL version. Once the parts which contribute most to the latency were identified and modified, two possible optimizations were chosen, resulting in a latency reduced by a factor of three. The modifications were also analyzed in terms of logic utilization. The la...

  13. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    Science.gov (United States)

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  14. Do estudo dos potenciais de média latência eliciados por logon em sujeitos do sexo feminino com audição normal A study of logon-evoked middle latency responses in female subjects with normal hearing

    Directory of Open Access Journals (Sweden)

    Erika Maria Fukushima

    2007-06-01

    Full Text Available Os potenciais de média latência são potenciais auditivos que ocorrem entre 10ms a 80ms, formados por ondas polifásicas positivas e negativas denominadas de N0, P0, Na, Pa, Nb e Pb. O logon é um estímulo acústico que permite eliciar respostas de média latência ativando regiões específicas da cóclea. Sua vantagem sobre o clique é a possibilidade avaliar as áreas de baixa freqüência (abaixo de 1kHz. OBJETIVO: O objetivo deste trabalho foi verificar a resposta eletrofisiológica das MLR estimulados por logon nas freqüências de 500, 1000 e 2000 Hz. CASUÍSTICA E MÉTODO: Forma de estudo prospectivo e descritivo de uma amostra de 14 voluntárias do sexo feminino, normais dos pontos de vista otológico e audiológico convencional. O estímulo foi monoaural e ipsilateral à derivação de captação dos potenciais (Cz/A1-2. RESULTADOS: O complexo NaPa foi o mais facilmente identificado e esteve presente em 100% dos exames realizados a 2000 Hz e em 96,4% a 500 e 1000 Hz. CONCLUSÕES: As MLR podem se eliciadas pelo logon nas freqüências de 500, 1000 e 2000 Hz; o complexo NaPa foi o evento prevalente das MLR e o estímulo logon a 2000 Hz eliciou maior número de respostas do que as outras freqüências.The middle latency response (MLR to an acoustic stimulus occurs between 10 and 80 ms. The waveform is characterized by a series of peaks and troughs labeled N0, P0, Na, Pa, Nb and Pb. Certain acoustic stimuli may excite specific cochlear areas in contrast with clicks, that activate the cochlea between 1000 and 4000 Hz. The logon stimulus activates segmentar areas of the cochlea and has advantages over clicks when assessing low frequency areas of the cochlea (below 1 kHz. AIM: The aim of this paper was to study the MLR electrophysiologic response when activated by logon stimuli at 500, 1000 and 2000 Hz. Method- a prospective and descriptive study. 14 female volunteers had normal otology and conventional audiology results. The stimulus was

  15. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    Science.gov (United States)

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  16. The role of eABR with intracochlear test electrode in decision making between cochlear and brainstem implants: preliminary results.

    Science.gov (United States)

    Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent

    2017-09-01

    The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.

  17. Brainstem auditory evoked potential testing in Dalmatian dogs in Brazil

    Directory of Open Access Journals (Sweden)

    M.I.P. Palumbo

    2014-04-01

    Full Text Available The brain stem auditory-evoked potential (BAEP is an electrophysiologic test that detects and records the electrical activity in the auditory system from cochlea to midbrain, generated after an acoustic stimulus applied to the external ear. The aim of this study is to obtain normative data for BAEP in Dalmatian dogs in order to apply this to the evaluation of deafness and other neurologic disorders. BAEP were recorded from 30 Dalmatian dogs for a normative Brazilian study. Mean latencies for waves I, III, and V were 1.14 (±0.09, 2.62 (±0.10, and 3.46 (±0.14 ms, respectively. Mean inter-peak latencies for I-III, III-V, and I-V intervals were 1.48 (±0.17, 0.84 (±0.12, and 2.31 (±0.18 ms, respectively. Unilateral abnormalities were found in 16.7% of animals and bilateral deafness was seen in one dog. The normative data obtained in this paper is compatible with other published data. As far as we know this is the first report of deafness occurrence in Dalmatian dogs in Brazil.

  18. Reflex reticular myoclonus: relationship to some brainstem pathophysiological mechanisms.

    Science.gov (United States)

    Rektor, I; Kadanka, Z; Bednarik, J

    1991-04-01

    Two patients with reflex reticular myoclonus [RRM] were tested electrophysiologically and pharmacologically. In one of the cases the underlying disease was chronic Lyme borreliosis. In the other, the RRM attacks may have been associated with procarbazine therapy applied for Hodgkin's disease. No cortical lesion could be demonstrated either clinically or electrophysiologically [EEG, averaged EEg preceeding the jerks, SSEP]. An EMG analysis of the jerks revealed the shortest latency in the muscles innervated by the accessory nerve. The latencies became longer in a more rostral muscle [masseter], as well as in a more caudal one, the muscles innervated by the facial nerve were spared. it is presumed that the complete movement pattern of the myoclonus residues in the jerk generating structure. RRM in the described cases differs from the startle by sparing the facial nerve and from the Papio papio baboon non-epileptic myoclonus by the activating effect of physostigmine. A partial therapeutic effect was achieved with a serotonine precursor, but a GABAergic therapy proved to be the most effective.

  19. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Hua Chiaho; Merchant, Thomas E.; Gajjar, Amar; Broniscer, Alberto; Zhang, Yong; Li Yimei; Glenn, George R.; Kun, Larry E.; Ogg, Robert J.

    2012-01-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  20. Rewards modulate saccade latency but not exogenous spatial attention.

    Directory of Open Access Journals (Sweden)

    Stephen eDunne

    2015-07-01

    Full Text Available The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behaviour induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor IOR. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for 3 blocks of extinction trials. However this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  1. Rewards modulate saccade latency but not exogenous spatial attention.

    Science.gov (United States)

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  2. Hipster: hybrid task manager for latency-critical cloud workloads

    OpenAIRE

    Nishtala, Rajiv; Carpenter, Paul M.; Petrucci, Vinicius; Martorell Bofill, Xavier

    2017-01-01

    In 2013, U. S. data centers accounted for 2.2% of the country's total electricity consumption, a figure that is projected to increase rapidly over the next decade. Many important workloads are interactive, and they demand strict levels of quality-of-service (QoS) to meet user expectations, making it challenging to reduce power consumption due to increasing performance demands. This paper introduces Hipster, a technique that combines heuristics and reinforcement learning to manage latency-crit...

  3. Program of radiological monitoring environmental a nuclear facility in latency

    International Nuclear Information System (INIS)

    Blas, A. de; Riego, A.; Batalla, E.; Tapia, C.; Garcia, R.; Sanchez, J.; Toral, J.

    2013-01-01

    This paper presents the Radiological Environmental Monitoring program of the Vandellos I nuclear power plant in the latency period. This facility was dismantled to level 2, as defined by the International Atomic Energy Agency. The program is an adaptation of the implanted one during the dismantling, taking into account the isotopes that may be present, as well as the main transfer routes. Along with the description of the program the results obtained in the latent period from 2005 until 2012 are presented.

  4. Long release latencies are increased by acetylcholine at frog endplate

    Czech Academy of Sciences Publication Activity Database

    Samigullin, D.; Bukharaeva, E. A.; Nikolsky, E.; Adámek, S.; Vyskočil, František

    2003-01-01

    Roč. 52, č. 4 (2003), s. 475-480 ISSN 0862-8408 R&D Projects: GA ČR GA305/02/1333; GA ČR GA202/02/1213 Grant - others:RFBR(RU) 02/04/48901 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : quantal release * acetylcholine * synaptic latency Subject RIV: ED - Physiology Impact factor: 0.939, year: 2003

  5. HyspIRI Low Latency Concept and Benchmarks

    Science.gov (United States)

    Mandl, Dan

    2010-01-01

    Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.

  6. CpG methylation controls reactivation of HIV from latency

    Czech Academy of Sciences Publication Activity Database

    Blažková, Jana; Trejbalová, Kateřina; Gondois-Rey, F.; Halfon, P.; Philibert, P.; Guiguen, A.; Verdin, E.; Olive, D.; Van Lint, C.; Hejnar, Jiří; Hirsch, I.

    2009-01-01

    Roč. 5, č. 8 (2009), e1000554-e1000554 E-ISSN 1553-7374 R&D Projects: GA ČR GA204/05/0939; GA ČR GP204/08/P616 Institutional research plan: CEZ:AV0Z50520514 Keywords : HIV-1 * proviral latency * CpG methylation * histone modifications * HAART * epigenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.978, year: 2009

  7. Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging

    NARCIS (Netherlands)

    Steenweg, M.E.; Pouwels, P.J.W.; Wolf, N.I.; van Wieringen, W.N.; Barkhof, F.; van der Knaap, M.S.

    2011-01-01

    Leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is a white matter disorder caused by DARS2 mutations. The pathology is unknown. We observed striking discrepancies between improvement on longitudinal conventional magnetic resonance images and clinical deterioration

  8. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat

    NARCIS (Netherlands)

    Luiten, Paul G.M.; Kuipers, Folkert; Schuitmaker, Hans

    1982-01-01

    Ascending diencephalic and brainstem afferents to the lateral septal column were studied by retrograde transport of horseradish peroxidase following microiontophoretic injections in the various subdivisions of the lateral septal area. Predominantly ispilateral cells, of which several coincide with

  9. A probabilistic atlas of human brainstem pathways based on connectome imaging data.

    Science.gov (United States)

    Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang

    2018-04-01

    The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles

  10. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  11. Combined CMV- and HSV-1 brainstem encephalitis restricted to medulla oblongata.

    Science.gov (United States)

    Katchanov, J; Branding, G; Stocker, H

    2014-04-15

    We report a very rare case of a combined CMV- and HSV-1 isolated brainstem encephalitis restricted to medulla oblongata in a patient with advanced HIV disease. Neither limbic nor general ventricular involvement was detected on neuroimaging. The case highlights the importance of testing for HSV-1 and CMV in HIV-infected patients presenting with an isolated brainstem syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  13. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    Science.gov (United States)

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  14. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  15. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice.

    Science.gov (United States)

    Miller, V M; Zhu, Y; Bucher, C; McGinnis, W; Ryan, L K; Siegel, A; Zalcman, S

    2013-10-01

    The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p≤0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p≤0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p≤0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p≤0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure

  16. Analysis of diffuse brain injury with primary brainstem lesion on MRI

    International Nuclear Information System (INIS)

    Shibata, Masayoshi; Matsumae, Mitsunori; Shimoda, Masami; Ishizaka, Hideo; Shiramizu, Hideki; Morita, Seiji; Tsugane, Ryuichi

    2003-01-01

    It has been reported that diffuse brain injury patients with primary brainstem lesions have a poor prognosis. Predicting the existence of brainstem injury at hospital arrival is problematic in actual clinical practice. We conducted magnetic resonance imaging (MRI), to visualize brainstem lesions clearly, and retrospectively analyzed predictive factors of brainstem lesions by stepwise multiple logistic regression analysis of patient characteristics, neurological findings, laboratory data, and CT findings at arrival in each case. We compared 24 patients with brainstem lesion and 60 without using MRI obtained less than 3 weeks after admission. Items investigated were blood pressure immediately after hospital arrival, arterial blood gas analysis, existence of abnormal respiration, blow direction, Glasgow coma scale (GCS), light reflex, oculocephalic reflex, corneal reflex, intracranial pressure, jugular venous oxygen saturation, and CT findings such as existence of subarachnoid hemorrhage at the suprasellar cistern, perimesencephalic cistern and convexity, lesions on the thalamus and basal ganglia, gliding contusion, intraventricular hemorrhage and Traumatic Coma Data Bank classification. Independent predictive factors of primary brainstem lesion included impaired light reflex (odds ratio: 2.269), subarachnoid hemorrhage at convexity (odds ratio: 3.592) and suprasellar cistern (odds ratio: 2.458), and Traumatic Coma Data Bank group III (odds ratio: 11.062). (author)

  17. A clinical study of brainstem infarction identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-04-01

    We conducted a clinical study of 155 cases that were confirmed to have brainstem infarctions on MRI (T[sub 1]-weighted image showed a low signal and T[sub 2]-weighted image showed a high signal, measuring in excess of 2 x 2 mm). The majority of the brainstem infarction was located in the pontine base in 132 cases (85.2%). Of these, 19 cases had double lesions including infarctions in the pontine base. Second infarctions frequently occurred in the cerebral peduncle or medical medulla oblongata, unilateral to the pontine infarctions. In addition to 98 symptomatic cases, there were 57 cases of 'asymptomatic' brainstem infarction. They comprised 24 cases accompanying other symptomatic cerebrovascular diseases in the supratentorium and 33 cases of transient subjective complaints such as headache or vertigo-dizziness. Complication by supratentorial infarctions was significantly frequent in cases of brainstem infarction (p<0.001), 122 of 155 cases (78.7%), especially in the pontine base (88.6%); while in the control cases (without brainstem infarction) only 65 of 221 cases (29.4%). These findings are considered to show the widespread progress of arteriosclerosis in brainstem infarction, especially in ones in the pontine base. (author).

  18. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  19. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  20. Potenciais Evocados Auditivos de Estado Estável no diagnóstico audiológico infantil: uma comparação com os Potenciais Evocados Auditivos de Tronco Encefálico Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2010-02-01

    Full Text Available Os Potenciais Evocados Auditivos de Estado Estável (PEAEE têm sido apontados como uma técnica promissora na avaliação audiológica infantil. OBJETIVO: Investigar o nível de concordância entre os resultados dos PEAEE e dos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE-clique em um grupo de crianças com perda auditiva sensorioneural, averiguando assim a aplicabilidade clínica desta técnica na avaliação audiológica infantil. FORMA DE ESTUDO: Clínico prospectivo de coorte transversal. MATERIAL E MÉTODO: 15 crianças com idade entre dois e 36 meses e diagnóstico de perda auditiva sensorioneural. A concordância entre as respostas dos dois testes foi avaliada por meio do coeficiente de correlação intraclasse e o teste de McNemar comparou os dois testes quanto à probabilidade de ocorrência de resposta. RESULTADOS: Os coeficientes de correlação encontrados foram 0,70; 0,64; 0,49; 0,69; 0,63 e 0,68 respectivamente para as frequências de 1, 2, 4, 1-2, 2-4 e 1-2-4kHz. No teste de McNemar foi obtido p=0.000, indicando que a probabilidade de se obter resposta presente nos dois testes não é igual, sendo maior nos PEAEE. CONCLUSÃO: A boa concordância observada entre as técnicas sugere que um exame pode ser complementar ao outro. Os PEAEE, entretanto, promoveram informações adicionais nos casos de perdas severas e profundas, acrescentando dados importantes para a reabilitação destas crianças e proporcionando maior precisão no diagnóstico audiológico.Auditory Steady-State Responses (ASSR are being recognized as a promising technique in the assessment of hearing in children. AIM: To investigate the agreement level between results obtained from ASSR and click-ABR in a group of children with sensorineural hearing loss, in order to study the clinical applicability of this technique to evaluate the hearing status in young children. STUDY DESIGN: clinical prospective with a cross-sectional cohort. MATERIALS AND METHODS

  1. The effect of mastication on reaction latency to unanticipated external disturbances in the standing position.

    Science.gov (United States)

    Kaji, Keisuke; Katoh, Munenori; Isozaki, Koji; Aizawa, Junya; Masuda, Tadashi; Morita, Sadao

    2012-12-03

    Previous research has shown that mastication reduces shifts in the center of gravity of persons standing still. The present research was conducted to determine whether mastication improves reactive balance in the standing position in response to unanticipated external disturbances. The subjects were 32 healthy male adults (mean age 21.1 years, standard deviation (SD) 0.7 years). Latency data determined with the Motor Control Test of Computerized Dynamic Posturography (CDP) were compared for the three conditions of mastication status, the direction of translation, and the magnitude of translation, using three-way repeated measures ANOVA and lower-order ANOVA with the three conditions separated. Latency was significantly shorter with mastication than with the lower jaw relaxed (P Mastication alone, however, cannot be considered significant because of the complex interactions involved among the three conditions. Mastication increases not only static balance but also reactive balance in response to unanticipated external disturbances. Gum chewing may therefore reduce falls among elderly persons with impaired balance.

  2. Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions.

    Science.gov (United States)

    Khan, Mehak Zahoor; Bhaskar, Ashima; Upadhyay, Sandeep; Kumari, Pooja; Rajmani, Raju S; Jain, Preeti; Singh, Amit; Kumar, Dhiraj; Bhavesh, Neel Sarovar; Nandicoori, Vinay Kumar

    2017-09-29

    Protein kinase G (PknG), a thioredoxin-fold-containing eukaryotic-like serine/threonine protein kinase, is a virulence factor in Mycobacterium tuberculosis , required for inhibition of phagolysosomal fusion. Here, we unraveled novel functional facets of PknG during latency-like conditions. We found that PknG mediates persistence under stressful conditions like hypoxia and abets drug tolerance. PknG mutant displayed minimal growth in nutrient-limited conditions, suggesting its role in modulating cellular metabolism. Intracellular metabolic profiling revealed that PknG is necessary for efficient metabolic adaptation during hypoxia. Notably, the PknG mutant exhibited a reductive shift in mycothiol redox potential and compromised stress response. Exposure to antibiotics and hypoxic environment resulted in higher oxidative shift in mycothiol redox potential of PknG mutant compared with the wild type. Persistence during latency-like conditions required kinase activity and thioredoxin motifs of PknG and is mediated through phosphorylation of a central metabolic regulator GarA. Finally, using a guinea pig model of infection, we assessed the in vivo role of PknG in manifestation of disease pathology and established a role for PknG in the formation of stable granuloma, hallmark structures of latent tuberculosis. Taken together, PknG-mediated GarA phosphorylation is important for maintenance of both mycobacterial physiology and redox poise, an axis that is dispensable for survival under normoxic conditions but is critical for non-replicating persistence of mycobacteria. In conclusion, we propose that PknG probably acts as a modulator of latency-associated signals. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring.

    Science.gov (United States)

    Ferreira, Diorginis Soares; Liu, Yuri; Fernandes, Mariana Pinheiro; Lagranha, Claudia Jacques

    2016-10-01

    Studies in humans and animal models have established a close relationship between early environment insult and subsequent risk of development of non-communicable diseases, including the cardiovascular. Whereas experimental evidences highlight the early undernutrition and the late cardiovascular disease relation, the central mechanisms linking the two remain unknown. Owing to the oxidative balance influence in several pathologies, the aim of the present study was to evaluate the effects of maternal undernutrition (i.e. a low-protein (LP) diet) on oxidative balance in the brainstem. Male rats from mothers fed with an LP diet (8% casein) throughout the perinatal period (i.e. gestation and lactation) showed 10× higher lipid peroxidation levels than animals treated with normoprotein (17% casein) at 100 days of age. In addition, we observed the following reductions in enzymatic activities: superoxide dismutase, 16%; catalase, 30%; glutathione peroxidase, 34%; glutathione-S-transferase, 51%; glutathione reductase, 23%; glucose-6-phosphate dehydrogenase, 31%; and in non-enzymatic glutathione system, 46%. This study is the first to focus on the role of maternal LP nutrition in oxidative balance in a central nervous system structure responsible for cardiovascular control in adult rats. Our data observed changes in oxidative balance in the offspring, therefore, bring a new concept related to early undernutrition and can help in the development of a new clinical strategy to combat the effects of nutritional insult. Wherein the central oxidative imbalance is a feasible mechanism underlying the hypertension risk in adulthood triggered by maternal LP diet.

  4. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem

    Directory of Open Access Journals (Sweden)

    Eduardo Bondan

    Full Text Available ABSTRACT Recent studies have demonstrated that curcumin (Cur has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB injections into the central nervous system (CNS are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP. This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.

  5. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients.

    Science.gov (United States)

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge

    2016-01-01

    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.

  7. CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp

    Science.gov (United States)

    Tempera, Italo; Wiedmer, Andreas; Dheekollu, Jayaraju; Lieberman, Paul M.

    2010-01-01

    The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection. PMID:20730088

  8. Latency in vitro using irradiated Herpes simplex virus

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Human embryonic fibroblasts infected with u.v.-irradiated herpes simplex virus type 2 (HSV-2, strain 186) and maintained at 40.5 0 C did not yield detectable virus. Virus synthesis was induced by temperature shift-down to 36.5 0 C. The induced virus grew very poorly and was inactivated very rapidly at 40.5 0 C. Non-irradiated virus failed to establish latency at 40.5 0 C in infected cells. Enhanced reactivation of HSV-2 was observed when latently infected cultures were superinfected with human cytomegalovirus (HCMV) or irradiated with a small dose of u.v. light at the time of temperature shift-down. HCMV did not enhance synthesis of HSV-2 during a normal growth cycle but did enhance synthesis of u.v.-irradiated HSV-2. These observations suggest that in this in vitro latency system, some HSV genomes damaged by u.v. irradiation were maintained in a non-replicating state without being destroyed or significantly repaired. (author)

  9. Global EOS: exploring the 300-ms-latency region

    Science.gov (United States)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.

    2017-10-01

    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  10. CLAS: A Novel Communications Latency Based Authentication Scheme

    Directory of Open Access Journals (Sweden)

    Zuochao Dou

    2017-01-01

    Full Text Available We design and implement a novel communications latency based authentication scheme, dubbed CLAS, that strengthens the security of state-of-the-art web authentication approaches by leveraging the round trip network communications latency (RTL between clients and authenticators. In addition to the traditional credentials, CLAS profiles RTL values of clients and uses them to defend against password compromise. The key challenges are (i to prevent RTL manipulation, (ii to alleviate network instabilities, and (iii to address mobile clients. CLAS addresses the first challenge by introducing a novel network architecture, which makes it extremely difficult for attackers to simulate legitimate RTL values. The second challenge is addressed by outlier removal and multiple temporal profiling, while the last challenge is addressed by augmenting CLAS with out-of-band-channels or other authentication schemes. CLAS restricts login to profiled locations while demanding additional information for nonprofiled ones, which highly reduces the attack surface even when the legitimate credentials are compromised. Additionally, unlike many state-of-the-art authentication mechanisms, CLAS is resilient to phishing, pharming, man-in-the-middle, and social engineering attacks. Furthermore, CLAS is transparent to users and incurs negligible overhead. The experimental results show that CLAS can achieve very low false positive and false negative rates.

  11. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    International Nuclear Information System (INIS)

    Tu, Yi-Fang; Chen, Cheng-Yu; Lin, Yuh-Jey; Chang, Ying-Chao; Huang, Chao-Ching

    2005-01-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  12. Neonatal neurological disorders involving the brainstem: neurosonographic approaches through the squamous suture and the foramen magnum

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yi-Fang [National Cheng Kung University Hospital, Department of Emergency Medicine, Tainan (Taiwan); Chen, Cheng-Yu [National Defense Medical Center, Department of Radiology, Taipei (Taiwan); Lin, Yuh-Jey [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); Chang, Ying-Chao [Kaohsiung Chang Gung Children Hospital, Department of Pediatrics, Kaohsiung (Taiwan); Huang, Chao-Ching [National Cheng Kung University Hospital, Department of Pediatrics, Tainan (Taiwan); National Cheng Kung University Hospital, Department of Institute of Molecular Medicine, Tainan (Taiwan)

    2005-09-01

    Brainstem damage which often indicates a critical condition is usually underestimated by trans-anterior-fontanel neurosonography (NS) owing to the far-field limitations. Instead, NS alternately scanning through the squamous suture of the temporal bones and the foramen magnum could provide a better visualization of the brainstem structures. The NS characteristics of brainstem lesions caused by various neonatal neurological disorders, such as hypoxic-ischemic encephalopathy (HIE), metabolic encephalopathy, birth trauma and bacterial meningoencephalitis, can be depicted at the acute stage. An echogenic change in the midbrain was found in patients with HIE or metabolic encephalopathy. In addition to the echogenic change, bilateral transtentorial temporal lobe herniation distorting the contour of the midbrain was observed in a patient with group B streptococcus meningoencephalitis, whereas echogenic changes at the level of the pons and/or the medulla oblongata, mainly localized in the dorsal part, could be observed in newborns with severe HIE, maple syrup urine disease or birth trauma. In this pictorial assay, we demonstrate the feasibility of NS imaging in evaluating the entire brainstem structure of critically ill neonates in the near field and illustrate the characteristic features of brainstem involvement in various neonatal neurological disorders along with computed tomography or magnetic resonance imaging correlation. (orig.)

  13. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients.These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  14. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem.

    Science.gov (United States)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and linear accelerator is only 1 modality can to establish for SRS treatment. Based on statistical evidence retrospectively, we recommend VMAT as the optimal technique for delivering treatment to tumors adjacent to brainstem. Copyright © 2016 American Association of Medical Dosimetrists. All rights reserved.

  15. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation.

    Science.gov (United States)

    Wang, Jun Yi; Hessl, David; Hagerman, Randi J; Simon, Tony J; Tassone, Flora; Ferrer, Emilio; Rivera, Susan M

    2017-07-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Correlation of Acute and Late Brainstem Toxicities With Dose-Volume Data for Pediatric Patients With Posterior Fossa Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Ronica H., E-mail: rhazari@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Ganju, Rohit G.; Schreibmann, Edward [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Chen, Zhengjia; Zhang, Chao [Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia (United States); Jegadeesh, Naresh; Cassidy, Richard; Deng, Claudia; Eaton, Bree R.; Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States)

    2017-06-01

    Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstem receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide

  17. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  18. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Hui Hong

    2018-06-01

    Full Text Available In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM, an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV conductances, unique combination of KV subunits and specialized sodium (NaV channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.

  19. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  20. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Segment scheduling method for reducing 360° video streaming latency

    Science.gov (United States)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video

  2. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg.

    Science.gov (United States)

    Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju

    2014-08-01

    The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region

  3. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    Science.gov (United States)

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-10-01

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  4. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis

    Science.gov (United States)

    Kiiski, Hanni S. M.; Ní Riada, Sinéad; Lalor, Edmund C.; Gonçalves, Nuno R.; Nolan, Hugh; Whelan, Robert; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Ó Donnchadha, Seán; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B.

    2016-01-01

    Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis. PMID:26726800

  5. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis.

    Directory of Open Access Journals (Sweden)

    Hanni S M Kiiski

    Full Text Available Conduction along the optic nerve is often slowed in multiple sclerosis (MS. This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis.

  6. Measurement errors in voice-key naming latency for Hiragana.

    Science.gov (United States)

    Yamada, Jun; Tamaoka, Katsuo

    2003-12-01

    This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.

  7. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  8. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  9. The Effect of Consuming Ambon Banana (Musa paradisiaca Var. Sapientum on Sleep Latency of Elderly Hypertension

    Directory of Open Access Journals (Sweden)

    Selvi Ria Ristania

    2017-08-01

    Full Text Available Elderly hypertension often reported that their latency elongated was less compared to healthy elderly. The increase of latency impact on health, it causes susceptibility to illness, stress, confusion, disorientation, mood disorders, less fresh, decrease ability to make decisions. The aim of this research was to explain the effect of consuming Ambon banana on sleep latency of elderly hypertension in Mulyorejo, Surabaya. Time series one group pre-test post test design was used in this research. Affordable population in this research was elderly hypertension in RW 2 and RW 3 Mulyorejo Surabaya. Total sample was 15 respondents and taken by total sampling technique. The independent variable was consuming Ambon banana, and dependent variable was sleep latency of elderly hypertension. Every day the latency and blood pressure on elderly was monitored. Data was collected using questionnaire, and then analyzed using Wilcoxon Signed Rank Test. The result showed that consuming Ambon banana affect sleep latency (p=0.009.

  10. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    Minimal latency is important for augmented reality systems and teleoperation interfaces as even small increases in latency can affect user performance. Previously, we have developed an augmented reality system that can overlay stereoscopic video streams with computer graphics in order to improve....... The latency of the da Vinci S surgical system was on average 62 ms. None of the components of our overlay system (separately or combined) significantly affected the latency. However, the latency of the assistant's monitor increased by 14 ms. Passing the video streams through CPU or GPU memory increased...... visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...

  11. Fault latency in the memory - An experimental study on VAX 11/780

    Science.gov (United States)

    Chillarege, Ram; Iyer, Ravishankar K.

    1986-01-01

    Fault latency is the time between the physical occurrence of a fault and its corruption of data, causing an error. The measure of this time is difficult to obtain because the time of occurrence of a fault and the exact moment of generation of an error are not known. This paper describes an experiment to accurately study the fault latency in the memory subsystem. The experiment employs real memory data from a VAX 11/780 at the University of Illinois. Fault latency distributions are generated for s-a-0 and s-a-1 permanent fault models. Results show that the mean fault latency of a s-a-0 fault is nearly 5 times that of the s-a-1 fault. Large variations in fault latency are found for different regions in memory. An analysis of a variance model to quantify the relative influence of various workload measures on the evaluated latency is also given.

  12. Integer-valued Lévy processes and low latency financial econometrics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Pollard, David G.; Shephard, Neil

    Motivated by features of low latency data in financial econometrics we study in detail integervalued Lévy processes as the basis of price processes for high frequency econometrics. We propose using models built out of the difference of two subordinators. We apply these models in practice to low...... latency data for a variety of different types of futures contracts.futures markets, high frequency econometrics, low latency data, negative binomial, Skellam, tempered stable...

  13. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Science.gov (United States)

    Ubiali, Thalita; Sanfins, Milaine Dominici; Borges, Leticia Reis; Colella-Santos, Maria Francisca

    2016-01-01

    The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing. P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation. P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values. Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  14. Long-latency TMS-evoked potentials during motor execution and inhibition

    Directory of Open Access Journals (Sweden)

    Kentaro eYamanaka

    2013-11-01

    Full Text Available Transcranial magnetic stimulation (TMS has often been used in conjunction with electroencephalography (EEG, which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs. However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial. Single-pulse TMS to the left (contralateral or right (ipsilateral motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around the TMS site peaking at approximately 100 ms post-TMS (N100, and a less pronounced later positive component (LPC over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested that TMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor

  15. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Directory of Open Access Journals (Sweden)

    Thalita Ubiali

    Full Text Available The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing.P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation.P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values.Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  16. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  17. Auditory Brainstem Implantation in Chinese Patients With Neurofibromatosis Type II: The Hong Kong Experience.

    Science.gov (United States)

    Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F

    2016-08-01

    To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.

  18. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.

    Directory of Open Access Journals (Sweden)

    Phillip A Swanson

    2016-12-01

    Full Text Available Cerebral malaria (CM is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM, we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs, where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4 therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  19. Gain modulation of the middle latency cutaneous reflex in patients with chronic joint instability after ankle sprain.

    Science.gov (United States)

    Futatsubashi, Genki; Sasada, Shusaku; Tazoe, Toshiki; Komiyama, Tomoyoshi

    2013-07-01

    To investigate the neural alteration of reflex pathways arising from cutaneous afferents in patients with chronic ankle instability. Cutaneous reflexes were elicited by applying non-noxious electrical stimulation to the sural nerve of subjects with chronic ankle instability (n=17) and control subjects (n=17) while sitting. Electromyographic (EMG) signals were recorded from each ankle and thigh muscle. The middle latency response (MLR; latency: 70-120 ms) component was analyzed. In the peroneus longus (PL) and vastus lateralis (VL) muscles, linear regression analyses between the magnitude of the inhibitory MLR and background EMG activity showed that, compared to the uninjured side and the control subjects, the gain of the suppressive MLR was increased in the injured side. This was also confirmed by the pooled data for both groups. The degree of MLR alteration was significantly correlated to that of chronic ankle instability in the PL. The excitability of middle latency cutaneous reflexes in the PL and VL is modulated in subjects with chronic ankle instability. Cutaneous reflexes may be potential tools to investigate the pathological state of the neural system that controls the lower limbs in subjects with chronic ankle instability. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

    Directory of Open Access Journals (Sweden)

    Benjamin A. Krishna

    2017-12-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR, which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells.

  1. Developmental study of vitamin C distribution in children's brainstems by immunohistochemistry.

    Science.gov (United States)

    Coveñas, R; González-Fuentes, J; Rivas-Infante, E; Lagartos-Donate, M J; Mangas, A; Geffard, M; Arroyo-Jiménez, M M; Cebada-Sánchez, S; Insausti, R; Marcos, P

    2015-09-01

    Vitamin C (Vit C) is an important antioxidant, exerts powerful neuroprotective brain effects and plays a role in neuronal development and maturation. Vit C is present in brain tissue at higher concentrations than in other organs, but its detailed distribution in brain is unknown. Immunohistochemical detection of this vitamin has been performed by using a highly specific antibody against Vit C. The aim of the present work was to analyze the distribution of Vit C in children's brainstems during postnatal development, comparing two groups of ages: younger and older than one year of life. In general, the same areas showing neurons with Vit C in young cases are also immunostained at older ages. The distribution of neurons containing Vit C was broader in the brainstems of older children, suggesting that brainstem neurons maintain or even increase their ability to retain Vit C along the life span. Immunohistochemical labeling revealed only cell bodies containing this vitamin, and no immunoreactive fibers were observed. The distribution pattern of Vit C in children's brainstems suggests a possible role of Vit C in brain homeostatic regulation. In addition, the constant presence of Vit C in neurons of locus coeruleus supports the important role of Vit C in noradrenaline synthesis, which seemed to be maintained along postnatal development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes

    International Nuclear Information System (INIS)

    Hussain, Aamir; Brown, Paul D.; Stafford, Scott L.; Pollock, Bruce E.

    2007-01-01

    Purpose: Patients with brainstem metastases have limited treatment options. In this study, we reviewed outcomes after stereotactic radiosurgery (SRS) in the management of patients with brainstem metastases. Methods and Materials: Records were reviewed of 22 consecutive patients presenting with brainstem metastases who underwent SRS. The most frequent primary malignancy was the lung (n = 11), followed by breast (n = 3) and kidney (n = 2). Three patients (14%) also underwent whole-brain radiation therapy (WBRT). The median tumor volume was 0.9 mL (range, 0.1-3.3 mL); the median tumor margin dose was 16 Gy (range, 14-23 Gy). Results: Median survival time after SRS was 8.5 months. Although local tumor control was achieved in all patients with imaging follow-up (n = 19), 5 patients died from development and progression of new brain metastases. Two patients (9%) had symptom improvement after SRS, whereas 1 patient (5%) developed a new hemiparesis after SRS. Conclusions: Radiosurgery is safe and provides a high local tumor control rate for patients with small brainstem metastases. Patients with limited systemic disease and good performance status should be strongly considered for SRS

  3. Two oculomotor-related areas of the brainstem project to the dorsolateral periaqueductal gray.

    NARCIS (Netherlands)

    Klop, E.M.; Mouton, Leonora J.; Holstege, Gert

    2005-01-01

    The dorsolateral column of the periaqueductal gray (PAGdl) is usually associated with defensive behavior, but how this is brought about is not yet fully understood. In order to elucidate the function of PAGdl, its afferents from the brainstem were investigated in cats. Retrograde tracing results

  4. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kutomi, Kimiko [Teikyo Univ., Tokyo (Japan). Faculty of Medicine

    2005-05-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  5. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    International Nuclear Information System (INIS)

    Kutomi, Kimiko

    2005-01-01

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  6. Effects of brainstem lesions on the masseter inhibitory reflex. Functional mechanisms of reflex pathways

    NARCIS (Netherlands)

    Ongerboer de Visser, B. W.; Cruccu, G.; Manfredi, M.; Koelman, J. H.

    1990-01-01

    The masseter inhibitory reflex (MIR) was investigated in 16 patients with localized brainstem lesions involving the trigeminal system. The MIR consists of two phases of EMG silence (S1 and S2) evoked by stimulation of the mental nerve during maximal clenching of the teeth. The extent of the lesions

  7. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  8. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Patrick Grabher

    2017-01-01

    Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials.

  9. Identification of clinical target areas in the brainstem of prion‐infected mice

    Science.gov (United States)

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  10. Boxing sparring complicated by an acute subdural haematoma and brainstem haemorrhage.

    Science.gov (United States)

    Hart, Michael G; Trivedi, Rikin A; Hutchinson, Peter J

    2012-10-01

    A professional boxer developed an acute subdural haematoma after boxing sparring. Despite timely surgical decompression, he had a poor overall outcome predominantly from a delayed brainstem haematoma. Magnetic resonance imaging (MRI) was used to elucidate the pathophysiology of the patients' injury and clinical condition.

  11. Premature ejaculation: bother and intravaginal ejaculatory latency time in Iran.

    Science.gov (United States)

    Zargooshi, Javaad

    2009-12-01

    Complaints of premature ejaculation (PE) and its repercussions are culture-dependent. To report the measured intravaginal ejaculatory latency time (IELT) and the impact of PE in Kermanshah, Iran. From November 1996 through October 2008, 3,458 patients presented to us with self-diagnosed PE. In the first visit, after obtaining a psychosocial and sexual history, PE-specific bother was self-rated by the patients and the patients were advised to measure their IELTs over the next 2-3 weeks. In the second visit, the measured IELTs were reported by the patients. Patients' measured IELT and bother score. Age range was 17-80 years (mean 34.1, standard deviation [SD] 9.1, median 32). Sixty-five percent were married. Primary and secondary PE was reported by 2,105 (60.8%) and 1,353 (39.1%) patients, respectively. Occasional PE was reported by 36 (0.01%). Of those with multiple partners, 6% had partner-specific PE. IELT distribution was positively skewed. Anteportal ejaculation was reported by 97 (2.8%). In 3,458 self-reported PE patients, IELT was 1-15 seconds in 542 (15.7%), 16-30 seconds in 442 (12.8%), 31-60 seconds in 978 (28.3%), > 1 2 5 minutes in 136 (3.9%). IELTs of IELT and bother (r = -0.607) was highly negative, with shorter IELTs being correlated with more bother. Six hundred forty-three patients (18.6%) always consumed opium to lengthen their IELTs. All 21 patients who started to use Tramadol as a PE treatment became addicted to it. Of 168 divorced couples due to PE, 23 divorced because the sexually dissatisfied wives became involved in extramarital affairs. Applying the Diagnostic and Statistical Manual of Mental Disorders criteria for PE and a cutoff IELT point of IELTs of longer than 2 minutes, the patients with occasional PE, and the patients who reported no personal bother, of 3,458 self-reported PE patients, 2,571 (74.3%) had PE. Including the 97 patients with anteportal ejaculation, arithmetic mean IELT in 2,571 patients was 45.87 seconds, SD 36.1, median

  12. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    International Nuclear Information System (INIS)

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-01

    Research highlights: → CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. → CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. → HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. → H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. → HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56 Lck , ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56 Lck , ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.

  13. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Chang [National Institute of Health, Chungbuk (Korea, Republic of); School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Hyeon Guk [National Institute of Health, Chungbuk (Korea, Republic of); Roh, Tae-Young [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Park, Jihwan [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Jung, Kyung-Min; Lee, Joo-Shil [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Sang-Yun [School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Sung Soon [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Byeong-Sun, E-mail: byeongsun@korea.kr [National Institute of Health, Chungbuk (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  14. Comparison of Sleep Latency and Number of SOREMPs in the Home and Hospital With a Modified Multiple Sleep Latency Test: A Randomized Crossover Study.

    Science.gov (United States)

    Beiske, Kornelia K; Sand, Trond; Rugland, Eyvind; Stavem, Knut

    2017-05-01

    Comparison of mean sleep latencies and number of sleep-onset rapid eye movement periods (SOREMPs) between modified multiple sleep latency test (MSLT) performed in the unattended home and in-hospital laboratory setting. A randomized crossover single-blinded design. Thirty-four subjects referred to MSLT for suspected hypersomnia or narcolepsy were included. Participants were randomized to perform modified MSLT in the unattended home or in the hospital first. Scores in the two settings were compared using Wilcoxon signed-rank test or exact McNemar test. Agreement between home and hospital categorized mean sleep latency and number of SOREMPs was assessed using simple kappa (κ) and proportion agreement. Agreement between home and hospital mean sleep latency was assessed using a Bland-Altman plot and an intraclass correlation coefficient. There was no difference between home and hospital assessment of mean sleep latency (P = 0.86). Two or more SOREMPs were found more frequently on modified MSLTs performed at home compared with those at the hospital (7 and 2, respectively; P = 0.025). Agreement was moderate for categorized sleep latency (κ = 0.53) and fair for categorized SOREMPs (κ = 0.39) in the 2 settings. Analysis of mean sleep latency using intraclass correlation coefficient showed a very good agreement between the two settings. Group mean sleep latency for home modified MSLTs seems to be reliable compared with that for the attended sleep-laboratory setting. Higher rate of SOREMP in the unattended home suggests that napping in a familiar environment facilitates the transition into REM sleep. Further studies are needed to assess the normal limit, sensitivity, and specificity for SOREMP at home before the clinical utility of home-based napping can be determined.

  15. A multinational population survey of intravaginal ejaculation latency time.

    Science.gov (United States)

    Waldinger, Marcel D; Quinn, Paul; Dilleen, Maria; Mundayat, Rajiv; Schweitzer, Dave H; Boolell, Mitradev

    2005-07-01

    Intravaginal ejaculation latency time (IELT), defined as the time between the start of vaginal intromission and the start of intravaginal ejaculation, is increasingly used in clinical trials to assess the amount of selective serotonin reuptake inhibitor-induced ejaculation delay in men with premature ejaculation. Prospectively, stopwatch assessment of IELTs has superior accuracy compared with retrospective questionnaire and spontaneous reported latency. However, the IELT distribution in the general male population has not been previously assessed. To determine the stopwatch assessed-IELT distribution in large random male cohorts of different countries. A total of 500 couples were recruited from five countries: the Netherlands, United Kingdom, Spain, Turkey, and the United States. Enrolled men were aged 18 years or older, had a stable heterosexual relationship for at least 6 months, with regular sexual intercourse. The surveyed population were not included or excluded by their ejaculatory status and comorbidities. This survey was performed on a "normal" general population. Sexual events and stopwatch-timed IELTs during a 4-week period were recorded, as well as circumcision status and condom use. The IELT, circumcision status, and condom use. The distribution of the IELT in all the five countries was positively skewed, with a median IELT of 5.4 minutes (range, 0.55-44.1 minutes). The median IELT decreased significantly with age, from 6.5 minutes in the 18-30 years group, to 4.3 minutes in the group older than 51 years (PIELT varied between countries, with the median value for Turkey being the lowest, i.e., 3.7 minutes (0.9-30.4 minutes), which was significantly different from each of the other countries. Comparison of circumcised (N=98) and not-circumcised (N=261) men in countries excluding Turkey resulted in median IELT values of 6.7 minutes (0.7-44.1 minutes) in circumcised compared with 6.0 minutes (0.5-37.4 minutes) in not-circumcised men (not significant). The

  16. Characterising Ageing in the Human Brainstem Using Quantitative Multimodal MRI Analysis

    Directory of Open Access Journals (Sweden)

    Christian eLambert

    2013-08-01

    Full Text Available Ageing is ubiquitous to the human condition. The MRI correlates of healthy ageing have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI and DTI. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analysing this region. By utilising a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of ageing within the human brainstem in vivo. Using quantitative MRI (qMRI, tensor based morphometry (TBM and voxel based quantification (VBQ, the volumetric and quantitative changes across healthy adults between 19-75 years were characterised. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetisation transfer (MT and increase in proton density (PD, accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterised, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterised by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases.

  17. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as

  18. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  19. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    Science.gov (United States)

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Macrovascular Decompression of the Brainstem and Cranial Nerves: Evolution of an Anteromedial Vertebrobasilar Artery Transposition Technique.

    Science.gov (United States)

    Choudhri, Omar; Connolly, Ian D; Lawton, Michael T

    2017-08-01

    Tortuous and dolichoectatic vertebrobasilar arteries can impinge on the brainstem and cranial nerves to cause compression syndromes. Transposition techniques are often required to decompress the brainstem with dolichoectatic pathology. We describe our evolution of an anteromedial transposition technique and its efficacy in decompressing the brainstem and relieving symptoms. To present the anteromedial vertebrobasilar artery transposition technique for macrovascular decompression of the brainstem and cranial nerves. All patients who underwent vertebrobasilar artery transposition were identified from the prospectively maintained database of the Vascular Neurosurgery service, and their medical records were reviewed retrospectively. The extent of arterial displacement was measured pre- and postoperatively on imaging. Vertebrobasilar arterial transposition and macrovascular decompression was performed in 12 patients. Evolution in technique was characterized by gradual preference for the far-lateral approach, use of a sling technique with muslin wrap, and an anteromedial direction of pull on the vertebrobasilar artery with clip-assisted tethering to the clival dura. With this technique, mean lateral displacement decreased from 6.6 mm in the first half of the series to 3.8 mm in the last half of the series, and mean anterior displacement increased from 0.8 to 2.5 mm, with corresponding increases in satisfaction and relief of symptoms. Compressive dolichoectatic pathology directed laterally into cranial nerves and posteriorly into the brainstem can be corrected with anteromedial transposition towards the clivus. Our technique accomplishes this anteromedial transposition from an inferolateral surgical approach through the vagoaccessory triangle, with sling fixation to clival dura using aneurysm clips. Copyright © 2017 by the Congress of Neurological Surgeons

  1. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Sugata, Hisato; Hanaie, Ryuzo; Nagatani, Fumiyo; Yamamoto, Tomoka; Tachibana, Masaya; Tominaga, Koji; Hirata, Masayuki; Mohri, Ikuko; Taniike, Masako

    2017-01-01

    Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD), the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG) to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz) in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years) and 13 typically developing boys (mean age, 9.45 ± 1.51 years). We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  2. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  3. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  4. The latency complex: the dead hand of anti-development.

    Science.gov (United States)

    Proner, Barry D

    2017-09-01

    It is common knowledge that the same phenomena can be viewed in a variety of ways. This paper considers the implications of a constellation observed in some adult patients who have increasingly reminded the author of some of the children of latency age with whom he has also worked. In the literature these patients may also have been thought about in terms of 'defences of the self' (Fordham), patients who are 'difficult to reach' (Joseph), 'psychic retreats' (Steiner), and those who make 'attacks on linking' (Bion). They may equally be considered in terms of schizoid, narcissistic or borderline personalities, or as showing features on the autistic spectrum, such as mindlessness and extreme obsessionality. Writers such as Helene Deutsch with her concept of an 'as-if personality', Winnicott with his 'false self', and Rosenfeld, discussing the split-off parts of the personality in narcissistic patients, have also offered much to think about in their consideration of some of these phenomena. This paper proposes yet another vertex - the author's own imaginative conjecture - that is by no means mutually exclusive of any of these others. © 2017, The Society of Analytical Psychology.

  5. Role of Frenular Web Preservation on Ejaculation Latency Time

    Directory of Open Access Journals (Sweden)

    Alborz Salavati

    2012-10-01

    Full Text Available Premature ejaculation (PE is one of prevalent male sexual dysfunctions worldwide. Despite many psychiatric backgrounds, yet there are speculations about organic etiologies considering both anatomic and physiologic points of view. This survey assesses effect of frenular web preservation on premature ejaculation. One thousand and forty otherwise healthy men being visited for urolithiasis (asymptomatic patients were asked for PE according to the International Society of Sexual Medicine definition criteria as intravaginal ejaculation latency time (IELT less than a minute according to stop watch checked by patients' partner and were examined for presence of frenular web. Frenular web defined as a residual of frenulum after a circumcision. Overall prevalence of PE was 18.2% (n=102. We found the presence of frenulum at physical examination in 255 out of 560 (45.5%. Prevalence of PE was 20.7% (n=53 and 16% (n=49 in patients with frenular web preserved and without it, respectively. PE was higher among the men with frenulum preserved; but no statistically significant differences were seen (P=0.70. We did not find any relationship between frenular web and PE, and concerns about this, during circumcision, may not be justified. PE is a not only a problem of local anatomical condition but many psychological and neurological factors could interact with it.

  6. Low Latency Audio Video: Potentials for Collaborative Music Making through Distance Learning

    Science.gov (United States)

    Riley, Holly; MacLeod, Rebecca B.; Libera, Matthew

    2016-01-01

    The primary purpose of this study was to examine the potential of LOw LAtency (LOLA), a low latency audio visual technology designed to allow simultaneous music performance, as a distance learning tool for musical styles in which synchronous playing is an integral aspect of the learning process (e.g., jazz, folk styles). The secondary purpose was…

  7. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved

    DEFF Research Database (Denmark)

    Jendroszek, Agnieszka; Sønnichsen, Malene; Chana Munoz, Andres

    2017-01-01

    relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1...

  8. Subtle role of latency for information diffusion in online social networks

    International Nuclear Information System (INIS)

    Xiong Fei; Wang Xi-Meng; Cheng Jun-Jun

    2016-01-01

    Information diffusion in online social networks is induced by the event of forwarding information for users, and latency exists widely in user spreading behaviors. Little work has been done to reveal the effect of latency on the diffusion process. In this paper, we propose a propagation model in which nodes may suspend their spreading actions for a waiting period of stochastic length. These latent nodes may recover their activity again. Meanwhile, the mechanism of forwarding information is also introduced into the diffusion model. Mean-field analysis and numerical simulations indicate that our model has three nontrivial results. First, the spreading threshold does not correlate with latency in neither homogeneous nor heterogeneous networks, but depends on the spreading and refractory parameter. Furthermore, latency affects the diffusion process and changes the infection scale. A large or small latency parameter leads to a larger final diffusion extent, but the intrinsic dynamics is different. Large latency implies forwarding information rapidly, while small latency prevents nodes from dropping out of interactions. In addition, the betweenness is a better descriptor to identify influential nodes in the model with latency, compared with the coreness and degree. These results are helpful in understanding some collective phenomena of the diffusion process and taking measures to restrain a rumor in social networks. (paper)

  9. Latency Analysis of Systems with Multiple Interfaces for Ultra-Reliable M2M Communication

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Popovski, Petar

    2016-01-01

    One of the ways to satisfy the requirements of ultra-reliable low latency communication for mission critical Machine-type Communications (MTC) applications is to integrate multiple communication interfaces. In order to estimate the performance in terms of latency and reliability of such an integr...

  10. Analysis of methods to determine the latency of online movement adjustments

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Brenner, E.; Smeets, J.B.J.

    2014-01-01

    When studying online movement adjustments, one of the interesting parameters is their latency. We set out to compare three different methods of determining the latency: the threshold, confidence interval, and extrapolation methods. We simulated sets of movements with different movement times and

  11. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  12. Achieving low latency and energy consumption by 5G TDD mode optimization

    DEFF Research Database (Denmark)

    Lähetkangas, Eeva; Pajukoski, Kari; Vihriälä, Jaakko

    2014-01-01

    and discussing on the consequent frame length limits. We then provide a description on how the achieved short TDD latency can further be utilized to enable remarkably low energy consumption. A numerical analysis comparing the battery life time of the suggested 5G TDD air interface and LTE is provided, showing......The target for a new 5G radio access technology is to support multi-Gbps and ms latency connectivity simultaneously at noticeably lower energy consumption and cost compared to the existing 4G technologies, such as LTE-Advanced. Extremely short air interface latency is required to achieve...... these requirements in a TDD-based local area network. In this paper, we discuss how the required short TDD latency can be achieved and further utilized in 5G physical air interface. First, we investigate the enablers and limits of TDD latency by analyzing the performance of OFDM in different channel environments...

  13. On the influence of latency estimation on dynamic group communication using overlays

    Science.gov (United States)

    Vik, Knut-Helge; Griwodz, Carsten; Halvorsen, Pål

    2009-01-01

    Distributed interactive applications tend to have stringent latency requirements and some may have high bandwidth demands. Many of them have also very dynamic user groups for which all-to-all communication is needed. In online multiplayer games, for example, such groups are determined through region-of-interest management in the application. We have investigated a variety of group management approaches for overlay networks in earlier work and shown that several useful tree heuristics exist. However, these heuristics require full knowledge of all overlay link latencies. Since this is not scalable, we investigate the effects that latency estimation techqniues have ton the quality of overlay tree constructions. We do this by evaluating one example of our group management approaches in Planetlab and examing how latency estimation techqniues influence their quality. Specifically, we investigate how two well-known latency estimation techniques, Vivaldi and Netvigator, affect the quality of tree building.

  14. Detailed analysis of latencies in image-based dynamic MLC tracking

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2010-01-01

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals ΔT image from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For ΔT image =150 ms, the total time from image acquisition to completed MLC adjustment was 380±9 ms for MV and 420±12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms), MLC position

  15. Detailed analysis of latencies in image-based dynamic MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Oncology and Department of Medical Physics, Aarhus University Hospital, 8000 Aarhus (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2010-09-15

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals {Delta}T{sub image} from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For {Delta}T{sub image}=150 ms, the total time from image acquisition to completed MLC adjustment was 380{+-}9 ms for MV and 420{+-}12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms

  16. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants

    Science.gov (United States)

    Joubert, Fanny; Loiseau, Camille; Perrin-Terrin, Anne-Sophie; Cayetanot, Florence; Frugière, Alain; Voituron, Nicolas; Bodineau, Laurence

    2016-01-01

    We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants. PMID:28018238

  17. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT

    2016-12-01

    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  18. The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.

    Science.gov (United States)

    Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin

    2018-02-01

    Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and event-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optimal technique of linear accelerator–based stereotactic radiosurgery for tumors adjacent to brainstem

    International Nuclear Information System (INIS)

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)–based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups—1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5 cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1 cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2 cm 3 to 21.9 cm 3 . Regarding the dose homogeneity index (HI ICRU ) and conformity index (CI ICRU ) were without significant difference between techniques statistically. However, the average CI ICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V 4 Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V 2 Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better

  20. Pharyngeal mis-sequencing in dysphagia: characteristics, rehabilitative response, and etiological speculation.

    Science.gov (United States)

    Huckabee, Maggie-Lee; Lamvik, Kristin; Jones, Richard

    2014-08-15

    Clinical data are submitted as documentation of a pathophysiologic feature of dysphagia termed pharyngeal mis-sequencing and to encourage clinicians and researchers to adopt more critical approaches to diagnosis and treatment planning. Recent clinical experience has identified a cohort of patients who present with an atypical dysphagia not specifically described in the literature: mis-sequenced constriction of the pharynx when swallowing. As a result, they are unable to coordinate streamlined bolus transfer from the pharynx into the esophagus. This mis-sequencing contributes to nasal redirection, aspiration, and, for some, the inability to safely tolerate an oral diet. Sixteen patients (8 females, 8 males), with a mean age of 44 years (range=25-78), had an average time post-onset of 23 months (range=2-72) at initiation of intensive rehabilitation. A 3-channel manometric catheter was used to measure pharyngeal pressure. The average peak-to-peak latency between nadir pressures at sensor-1 and sensor-2 was 15 ms (95% CI, -2 to 33 ms), compared to normative mean latency of 239 ms (95% CI, 215 to 263 ms). Rehabilitative responses are summarized, along with a single detailed case report. It is unclear from these data if pharyngeal mis-sequencing is (i) a pathological feature of impaired motor planning from brainstem damage or (ii) a maladaptive compensation developed in response to chronic dysphagia. Future investigation is needed to provide a full report of pharyngeal mis-sequencing, and the implications on our understanding of underlying neural control of swallowing. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Neurodegenerative changes in the brainstem and olfactory bulb in people older than 50 years old: a descriptive study

    Directory of Open Access Journals (Sweden)

    Francine Hehn de Oliveira

    2015-07-01

    Full Text Available With the increase in life expectancy in Brazil, concerns have grown about the most prevalent diseases in elderly people. Among these diseases are neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Protein deposits related to the development of these diseases can pre-date the symptomatic phases by years. The tau protein is particularly interesting: it might be found in the brainstem and olfactory bulb long before it reaches the limbic cortex, at which point symptoms occur. Of the 14 brains collected in this study, the tau protein was found in the brainstems of 10 (71.42% and in olfactory bulbs of 3 out 11. Of the 7 individuals who had a final diagnosis of Alzheimer’s disease (AD, 6 presented tau deposits in some region of the brainstem. Our data support the idea of the presence of tau protein in the brainstem and olfactory bulb in the earliest stages of AD.

  2. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  3. Sequential change in MRI in two cases with small brainstem infarctions

    International Nuclear Information System (INIS)

    Masuda, Ryoichi; Fukuda, Osamu; Endoh, Shunro; Takaku, Akira; Suzuki, Takashi; Satoh, Shuji

    1987-01-01

    Magnetic resonance imaging (MRI) has been found to be very useful for the diagnosis of a small brainstem infarction. However, most reported cases have shown the changes at only the chronic stage. In this report, sequential changes in the MRI in two cases with small brainstem infarctions are presented. In Case 1, a 67-year-old man with a pure sensory stroke on the right side, a small infarcted area was observed at the left medial side of the pontomedullary junction on MRI. In Case 2, a 62-year-old man with a pure motor hemiparesis of the left side, MRI revealed a small infarcted area on the right ventral of the middle pons. The initial changes were confirmed 5 days (Case 1) and 18 hours (Case 2) after the onset of the completed stroke. No abnormal findings could be found in the computed tomography in either case. (author)

  4. Hypertensive brainstem encephalopathy involving deep supratentorial regions: does only blood pressure matter?

    Directory of Open Access Journals (Sweden)

    Jong-Ho Park

    2010-04-01

    Full Text Available We report on a 42-year-old female patient who presented with high arterial blood pressure of 245/150 mmHg and hypertensive brainstem encephalopathy that involved the brainstem and extensive supratentorial deep gray and white matter. The lesions were nearly completely resolved several days after stabilization of the arterial blood pressure. Normal diffusion-weighted imaging findings and high apparent diffusion coefficient values suggested that the main pathomechanism was vasogenic edema owing to severe hypertension. On the basis of a literature review, the absolute value of blood pressure or whether the patient can control his/her blood pressure seems not to be associated with the degree of the lesions evident on magnetic resonance imaging. It remains to be determined if the acceleration rate and the duration of elevated arterial blood pressure might play a key role in the development of the hypertensive encephalopathy pattern.

  5. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  6. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Costanza Casiraghi

    Full Text Available Epstein-Barr virus (EBV has been identified as a putative environmental trigger of multiple sclerosis (MS, yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68, the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases.

  7. Host genetics of Epstein-Barr virus infection, latency and disease.

    Science.gov (United States)

    Houldcroft, Charlotte J; Kellam, Paul

    2015-03-01

    Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction. © 2014 The Authors Reviews in Medical Virology published by John Wiley & Sons Ltd.

  8. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  9. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    Science.gov (United States)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  10. Modeling Parkinson’s Disease Falls Associated With Brainstem Cholinergic Systems Decline

    OpenAIRE

    Kucinski, Aaron; Sarter, Martin

    2015-01-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson’s disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from t...

  11. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex.

    Science.gov (United States)

    de Matos, Nuno M P; Hock, Andreas; Wyss, Michael; Ettlin, Dominik A; Brügger, Mike

    2017-11-15

    The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of 1 H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  13. Somatotopic Arrangement and Location of the Corticospinal Tract in the Brainstem of the Human Brain

    OpenAIRE

    Jang, Sung Ho

    2011-01-01

    The corticospinal tract (CST) is the most important motor pathway in the human brain. Detailed knowledge of CST somatotopy is important in terms of rehabilitative management and invasive procedures for patients with brain injuries. In this study, I conducted a review of nine previous studies of the somatotopical location and arrangement at the brainstem in the human brain. The results of this review indicated that the hand and leg somatotopies of the CST are arranged medio-laterally in the mi...

  14. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Reithmeier, Thomas; Kuzeawu, Aanyo; Hentschel, Bettina; Loeffler, Markus; Trippel, Michael; Nikkhah, Guido

    2014-01-01

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival

  15. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  16. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...... affect the overall latency. To measure the photon-to-photon latency, we used a microcontroller to determine the time between the activation of a lightemitting diode in front of the endoscopic camera and the corresponding increase in intensity of the surgeon's display as measured by a phototransistor...

  17. Latency and Jitter Analysis for IEEE 802.11e Wireless LANs

    Directory of Open Access Journals (Sweden)

    Sungkwan Youm

    2013-01-01

    Full Text Available This paper presents a numerical analysis of latency and jitter for IEEE 802.11e wireless local area networks (WLANs in a saturation condition, by using a Markov model. We use this model to explicate how the enhanced distributed coordination function (EDCF differentiates classes of service and to characterize the probability distribution of the medium access control (MAC layer packet latency and jitter, on which the quality of the voice over Internet protocol (VoIP calls is dependent. From the proposed analytic model, we can estimate the available number of nodes determining the system performance, in order to satisfy user demands on the latency and jitter.

  18. A primary cell model of HIV-1 latency that uses activation through the T cell receptor and return to quiescence to establish latent infection

    Science.gov (United States)

    Kim, Michelle; Hosmane, Nina N.; Bullen, C. Korin; Capoferri, Adam; Yang, Hung-Chih; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    A mechanistic understanding of HIV-1 latency depends upon a model system that recapitulates the in vivo condition of latently infected, resting CD4+ T lymphocytes. Latency appears to be established after activated CD4+ T cells, the principal targets of HIV-1 infection, become productively infected and survive long enough to return to a resting memory state in which viral expression is inhibited by changes in the cellular environment. This protocol describes an ex vivo primary cell system that is generated under conditions that reflect the in vivo establishment of latency. Creation of these latency model cells takes 12 weeks and, once established, the cells can be maintained and used for several months. The resulting cell population contains both uninfected and latently infected cells. This primary cell model can be used to perform drug screens, study CTL responses to HIV-1, compare viral alleles, or to expand the ex vivo lifespan of cells from HIV-1 infected individuals for extended study. PMID:25375990

  19. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    Science.gov (United States)

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  20. Features of the brainstem and tentorial foramen relationship and their practical value

    Directory of Open Access Journals (Sweden)

    O. V. Redyakina

    2016-11-01

    Full Text Available Objective. Establish the morphological features and practical significance of the tentorial-stem relationship from the position of individual anatomical variability. Methods: head morphometry, macro and microscopic examination of the brainstem, morphometry of the brainstem and its departments, tentorial aperture morphometry, foramen magnum craniometry, manufacture of corrosion molds of the posterior cranial fossa, statistical processing of the results, computer-graphic modeling of the brainstem and surrounding formations. Results.  In the course of the study, the features of the individual variability of the tentorial foramen form were established, namely: shortened-expanded and oval-convex forms were defined in brachycephalic; in dolichocephalic - oblong-narrowed and elongated-conical. At the same time, a number of existing sizes and forms of the tentorial-stem spaces were noted. Among them, four main ones are described: front, side (right and left and rear. They have individual characteristics. Thus, in the brachycephalic we define lateral holes, due to the convexity of the tentorial margins. In dolichocephalic - front and back gaps, depending on the characteristics of their elongations. The obtained data are of great importance for the craniotopographic justification of the tentorial-stem wedges, which are formed with tumors which located here. In our opinion, tumors have the greatest possibility of passage through the left or right lateral intervals in people with a brachymorph form of the head, and through the anterior and posterior intervals - in people with meso- and dolichomorph forms of the head.

  1. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  2. Gamma Knife Radiosurgery Treatment for Metastatic Melanoma of the Trigeminal Nerve and Brainstem: A Case Report and a Review of the Literature

    Science.gov (United States)

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; Lamoreaux, Wayne T.; Mackay, Alexander R.; Call, Jason A.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.

    2013-01-01

    Objective and Importance. Brainstem metastases (BSMs) are uncommon but serious complications of some cancers. They cause significant neurological deficit, and options for treatment are limited. Stereotactic radiosurgery (SRS) has been shown to be a safe and effective treatment for BSMs that prolongs survival and can preserve or in some cases improve neurological function. This case illustrates the use of repeated SRS, specifically Gamma Knife radiosurgery (GKRS) for management of a unique brainstem metastasis. Clinical Presentation. This patient presented 5 years after the removal of a lentigo maligna melanoma from her left cheek with left sided facial numbness and paresthesias with no reported facial weakness. Initial MRI revealed a mass on the left trigeminal nerve that appeared to be a trigeminal schwannoma. Intervention. After only limited response to the first GKRS treatment, a biopsy of the tumor revealed it to be metastatic melanoma, not schwannoma. Over the next two years, the patient would receive 3 more GKRS treatments. These procedures were effective in controlling growth in the treated areas, and the patient has maintained a good quality of life. Conclusion. GKRS has proven in this case to be effective in limiting the growth of this metastatic melanoma without acute adverse effects. PMID:24194991

  3. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (pmaterial in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  4. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  5. Multi-User Preemptive Scheduling For Critical Low Latency Communications in 5G Networks

    DEFF Research Database (Denmark)

    Abdul-Mawgood Ali Ali Esswie, Ali; Pedersen, Klaus

    2018-01-01

    5G new radio is envisioned to support three major service classes: enhanced mobile broadband (eMBB), ultrareliable low-latency communications (URLLC), and massive machine type communications. Emerging URLLC services require up to one millisecond of communication latency with 99.999% success...... probability. Though, there is a fundamental trade-off between system spectral efficiency (SE) and achievable latency. This calls for novel scheduling protocols which cross-optimize system performance on user-centric; instead of network-centric basis. In this paper, we develop a joint multi-user preemptive...... scheduling strategy to simultaneously cross-optimize system SE and URLLC latency. At each scheduling opportunity, available URLLC traffic is always given higher priority. When sporadic URLLC traffic appears during a transmission time interval (TTI), proposed scheduler seeks for fitting the URLLC-eMBB traffic...

  6. Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling

    KAUST Repository

    Reda, Waleed; Canini, Marco; Suresh, Lalith; Kostić, Dejan; Braithwaite, Sean

    2017-01-01

    the composition of aggregate requests and by carefully scheduling bottleneck operations that can otherwise create excessive queues. We design and implement a system called Rein, which reduces latency via inter-multiget scheduling using low overhead techniques. We

  7. Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling

    KAUST Repository

    Reda, Waleed

    2017-04-17

    We tackle the problem of reducing tail latencies in distributed key-value stores, such as the popular Cassandra database.We focus on workloads of multiget requests, which batch together access to several data elements and parallelize read operations across the data store machines. We first analyze a production trace of a real system and quantify the skew due to multiget sizes, key popularity, and other factors. We then proceed to identify opportunities for reduction of tail latencies by recognizing the composition of aggregate requests and by carefully scheduling bottleneck operations that can otherwise create excessive queues. We design and implement a system called Rein, which reduces latency via inter-multiget scheduling using low overhead techniques. We extensively evaluate Rein via experiments in Amazon Web Services (AWS) and simulations. Our scheduling algorithms reduce the median, 95, and 99 percentile latencies by factors of 1.5, 1.5, and 1.9, respectively.

  8. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2011-08-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.

  9. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2012-01-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases. PMID:21861620

  10. Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance?

    Directory of Open Access Journals (Sweden)

    Andrew J Latham

    Full Text Available Increasing behavioural evidence suggests that expert video game players (VGPs show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years. Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented. IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction.

  11. Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance?

    Science.gov (United States)

    Latham, Andrew J; Patston, Lucy L M; Westermann, Christine; Kirk, Ian J; Tippett, Lynette J

    2013-01-01

    Increasing behavioural evidence suggests that expert video game players (VGPs) show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG) recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT) in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years). Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented). IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction.

  12. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-12-01

    Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.

  13. Long-latency auditory evoked potentials with verbal and nonverbal stimuli.

    Science.gov (United States)

    Oppitz, Sheila Jacques; Didoné, Dayane Domeneghini; Silva, Débora Durigon da; Gois, Marjana; Folgearini, Jordana; Ferreira, Geise Corrêa; Garcia, Michele Vargas

    2015-01-01

    Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000Hz - frequent and 4000Hz - rare); and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare). Considering the component N2 for tone burst, the lowest latency found was 217.45ms for the BA/DI stimulus; the highest latency found was 256.5ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation

    Science.gov (United States)

    Yang, Hung-Chih; Xing, Sifei; Shan, Liang; O’Connell, Karen; Dinoso, Jason; Shen, Anding; Zhou, Yan; Shrum, Cynthia K.; Han, Yefei; Liu, Jun O.; Zhang, Hao; Margolick, Joseph B.; Siliciano, Robert F.

    2009-01-01

    The development of highly active antiretroviral therapy (HAART) to treat individuals infected with HIV-1 has dramatically improved patient outcomes, but HAART still fails to cure the infection. The latent viral reservoir in resting CD4+ T cells is a major barrier to virus eradication. Elimination of this reservoir requires reactivation of the latent virus. However, strategies for reactivating HIV-1 through nonspecific T cell activation have clinically unacceptable toxicities. We describe here the development of what we believe to be a novel in vitro model of HIV-1 latency that we used to search for compounds that can reverse latency. Human primary CD4+ T cells were transduced with the prosurvival molecule Bcl-2, and the resulting cells were shown to recapitulate the quiescent state of resting CD4+ T cells in vivo. Using this model system, we screened small-molecule libraries and identified a compound that reactivated latent HIV-1 without inducing global T cell activation, 5-hydroxynaphthalene-1,4-dione (5HN). Unlike previously described latency-reversing agents, 5HN activated latent HIV-1 through ROS and NF-κB without affecting nuclear facto