WorldWideScience

Sample records for brainstem circuitry regulating

  1. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    Full Text Available BACKGROUND: Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. METHODOLOGY/PRINCIPAL FINDINGS: To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. CONCLUSIONS/SIGNIFICANCE: These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2

  2. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Directory of Open Access Journals (Sweden)

    Maria Di Bonito

    Full Text Available Rhombomeres (r contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN, and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  3. Brainstem Circuits Regulating Gastric Function

    Science.gov (United States)

    Travagli, R. Alberto; Hermann, Gerlinda E.; Browning, Kirsteen N.; Rogers, Richard C.

    2011-01-01

    Brainstem parasympathetic circuits that modulate digestive functions of the stomach are comprised of afferent vagal fibers, neurons of the nucleus tractus solitarius (NTS), and the efferent fibers originating in the dorsal motor nucleus of the vagus (DMV). A large body of evidence has shown that neuronal communications between the NTS and the DMV are plastic and are regulated by the presence of a variety of neurotransmitters and circulating hormones as well as the presence, or absence, of afferent input to the NTS. These data suggest that descending central nervous system inputs as well as hormonal and afferent feedback resulting from the digestive process can powerfully regulate vago-vagal reflex sensitivity. This paper first reviews the essential “static” organization and function of vago-vagal gastric control neurocircuitry. We then present data on the opioidergic modulation of NTS connections with the DMV as an example of the “gating” of these reflexes, i.e., how neurotransmitters, hormones, and vagal afferent traffic can make an otherwise static autonomic reflex highly plastic. PMID:16460274

  4. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.

    Science.gov (United States)

    Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A

    2016-07-01

    Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc. PMID:27104478

  5. Developmental changes in brainstem neurons regulating lower airway caliber

    OpenAIRE

    Kohn, Amitai Z; Hoxha, Zana; Balan, Kannan V; Martin, Richard J.; Haxhiu, Musa A.; Wilson, Christopher G; Mayer, Catherine A.; Kc, Prabha

    2009-01-01

    Premature infants are at risk for lower airway obstruction; however, maturation of reflex pathways regulating lower airway patency is inadequately studied. We hypothesized that postnatal maturation causes developmental change in brainstem efferent airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) that project to the airways, and in pulmonary afferent fibers that terminate in the nucleus tractus solitarius (NTS). Ferrets aged 7, 14, 21 and 42 days rec...

  6. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    Science.gov (United States)

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  7. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    Science.gov (United States)

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  8. Phytochemical regulation of Fyn and AMPK signaling circuitry.

    Science.gov (United States)

    Lee, Chan Gyu; Koo, Ja Hyun; Kim, Sang Geon

    2015-12-01

    During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries. PMID:25951818

  9. Unraveling a new circuitry for sleep regulation in Parkinson's disease.

    Science.gov (United States)

    Targa, Adriano D S; Rodrigues, Lais S; Noseda, Ana Carolina D; Aurich, Mariana F; Andersen, Monica L; Tufik, Sergio; da Cunha, Cláudio; Lima, Marcelo M S

    2016-09-01

    Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology. PMID:27091486

  10. Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study.

    Science.gov (United States)

    Sclocco, Roberta; Beissner, Florian; Desbordes, Gaelle; Polimeni, Jonathan R; Wald, Lawrence L; Kettner, Norman W; Kim, Jieun; Garcia, Ronald G; Renvall, Ville; Bianchi, Anna M; Cerutti, Sergio; Napadow, Vitaly; Barbieri, Riccardo

    2016-05-13

    Central autonomic control nuclei in the brainstem have been difficult to evaluate non-invasively in humans. We applied ultrahigh-field (7 T) functional magnetic resonance imaging (fMRI), and the improved spatial resolution it affords (1.2 mm isotropic), to evaluate putative brainstem nuclei that control and/or sense pain-evoked cardiovagal modulation (high-frequency heart rate variability (HF-HRV) instantaneously estimated through a point-process approach). The time-variant HF-HRV signal was used to guide the general linear model analysis of neuroimaging data. Sustained (6 min) pain stimulation reduced cardiovagal modulation, with the most prominent reduction evident in the first 2 min. Brainstem nuclei associated with pain-evoked HF-HRV reduction were previously implicated in both autonomic regulation and pain processing. Specifically, clusters consistent with the rostral ventromedial medulla, ventral nucleus reticularis (Rt)/nucleus ambiguus (NAmb) and pontine nuclei (Pn) were found when contrasting sustained pain versus rest. Analysis of the initial 2-min period identified Rt/NAmb and Pn, in addition to clusters consistent with the dorsal motor nucleus of the vagus/nucleus of the solitary tract and locus coeruleus. Combining high spatial resolution fMRI and high temporal resolution HF-HRV allowed for a non-invasive characterization of brainstem nuclei, suggesting that nociceptive afference induces pain-processing brainstem nuclei to function in concert with known premotor autonomic nuclei in order to affect the cardiovagal response to pain. PMID:27044996

  11. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression. PMID:27069381

  12. Neuroanatomy of cardiac activity-regulating circuitry : A transneuronal retrograde viral labelling study in the rat

    NARCIS (Netherlands)

    TerHorst, GJ; Hautvast, RWM; DeJongste, MJL; Korf, J

    1996-01-01

    The anatomy of cardiac activity-regulating circuitry was studied with retrograde transneuronal viral labelling after pseudorabies virus injections into different parts of the rat heart. Transection of the spinal cord at Th1 was used to reveal selectively the parasympathetic neuronal networks. Virus-

  13. Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement.

    Science.gov (United States)

    Ikeda, Hiroko; Adachi, Kazunori; Fujita, Satoshi; Tomiyama, Katsunori; Saigusa, Tadashi; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

    2015-02-01

    Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective. PMID:25485640

  14. Regulation of dietary choice by the decision-making circuitry

    OpenAIRE

    Rangel, Antonio

    2013-01-01

    To advance our understanding of how the brain makes food decisions, it is essential to combine knowledge from two fields that have not yet been well integrated: the neuro-computational basis of decision-making and the homeostatic regulators of feeding. This Review integrates these two literatures from a neuro-computational perspective, with an emphasis in describing the variables computed by different neural systems and how they affect dietary choice. We highlight what is unique about feeding...

  15. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Elisa M. Nabel

    2013-11-01

    Full Text Available Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development –the preeminent model of experience-dependent critical period plasticity- actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins– endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  16. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation.

    Science.gov (United States)

    Cansell, Celine; Luquet, Serge

    2016-01-01

    In both developed and emerging countries, sedentary life style and over exposition to high energy dense foods has led to a thermodynamic imbalance and consequently obesity. Obesity often involves a behavioural component in which, similar to drugs abuse, compulsive consumption of palatable food rich in lipids and sugar drives energy intake far beyond metabolic demands. The hypothalamus is one of the primary integration sites of circulating energy-related signals like leptin or ghrelin and is therefore considered as one of the main central regulators of energy balance. However, food intake is also modulated by sensory inputs, such as tastes and odours, as well as by affective or emotional states. The mesolimbic pathway is well established as a key actor of the rewarding aspect of feeding. Particularly, the hedonic and motivational aspects of food are closely tied to the release of the neurotransmitter dopamine (DA) in striatal structure such as the Nucleus Accumbens (Nacc). In both rodent and humans several studies shows an attenuated activity of dopaminergic signal associated with obesity and there is evidence that consumption of palatable food per se leads to DA signalling alterations. Furthermore impaired cognition in obese mice is improved by selectively lowering triglycerides (TG) and intracerebroventricular administration of TG induces by itself acquisition impairment in several cognitive paradigms in normal body weight mice. Together, these observations raise the possibility that nutritional lipids, particularly TG, directly affect cognitive and reward processes by modulating the mesolimbic pathway and might contribute to the downward spiral of compulsive consumption of palatable food and obesity. This review is an attempt to capture recent evolution in the field that might point toward a direct action of nutritional lipid in the reward circuitry. PMID:26159487

  17. Brainstem Cavernous Angioma

    Science.gov (United States)

    ... in significant, and potentially life-threatening, symptoms. The nerves that transverse the brainstem control basic, involuntary functions such as respiration, gag reflex, heartbeat regulation, body temperature, pain and heat sensation, ...

  18. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  19. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry.

    Science.gov (United States)

    La Fata, Giorgio; Gärtner, Annette; Domínguez-Iturza, Nuria; Dresselaers, Tom; Dawitz, Julia; Poorthuis, Rogier B; Averna, Michele; Himmelreich, Uwe; Meredith, Rhiannon M; Achsel, Tilmann; Dotti, Carlos G; Bagni, Claudia

    2014-12-01

    Deficiencies in fragile X mental retardation protein (FMRP) are the most common cause of inherited intellectual disability, fragile X syndrome (FXS), with symptoms manifesting during infancy and early childhood. Using a mouse model for FXS, we found that Fmrp regulates the positioning of neurons in the cortical plate during embryonic development, affecting their multipolar-to-bipolar transition (MBT). We identified N-cadherin, which is crucial for MBT, as an Fmrp-regulated target in embryonic brain. Furthermore, spontaneous network activity and high-resolution brain imaging revealed defects in the establishment of neuronal networks at very early developmental stages, further confirmed by an unbalanced excitatory and inhibitory network. Finally, reintroduction of Fmrp or N-cadherin in the embryo normalized early postnatal neuron activity. Our findings highlight the critical role of Fmrp in the developing cerebral cortex and might explain some of the clinical features observed in patients with FXS, such as alterations in synaptic communication and neuronal network connectivity. PMID:25402856

  20. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain.

    Science.gov (United States)

    Salomons, Tim V; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J

    2015-02-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion. PMID:25208742

  1. Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection.

    Science.gov (United States)

    Li, Ze-Yuan; Xia, Jing; Chen, Zheng; Yu, Yang; Li, Quan-Feng; Zhang, Yu-Chan; Zhang, Jin-Ping; Wang, Cong-Ying; Zhu, Xiao-Yuan; Zhang, Weixiong; Chen, Yue-Qin

    2016-01-01

    Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants. PMID:27150822

  2. Brainstem disconnection

    OpenAIRE

    Duffield, Curtis; Jocson, Jennifer; Wootton-Gorges, Sandra L.

    2009-01-01

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies ass...

  3. Brainstem disconnection

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, Curtis; Wootton-Gorges, Sandra L. [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Radiology, Sacramento, CA (United States); Jocson, Jennifer [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Pediatrics, Sacramento, CA (United States)

    2009-12-15

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  4. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Matsuo

    innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.

  5. Neural circuitry and immunity.

    Science.gov (United States)

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine. PMID:26512000

  6. Pain inhibits pain; human brainstem mechanisms.

    Science.gov (United States)

    Youssef, A M; Macefield, V G; Henderson, L A

    2016-01-01

    Conditioned pain modulation is a powerful analgesic mechanism, occurring when a painful stimulus is inhibited by a second painful stimulus delivered at a different body location. Reduced conditioned pain modulation capacity is associated with the development of some chronic pain conditions and the effectiveness of some analgesic medications. Human lesion studies show that the circuitry responsible for conditioned pain modulation lies within the caudal brainstem, although the precise nuclei in humans remain unknown. We employed brain imaging to determine brainstem sites responsible for conditioned pain modulation in 54 healthy individuals. In all subjects, 8 noxious heat stimuli (test stimuli) were applied to the right side of the mouth and brain activity measured using functional magnetic resonance imaging. This paradigm was then repeated. However, following the fourth noxious stimulus, a separate noxious stimulus, consisting of an intramuscular injection of hypertonic saline into the leg, was delivered (conditioning stimulus). During this test and conditioning stimulus period, 23 subjects displayed conditioned pain modulation analgesia whereas 31 subjects did not. An individual's analgesic ability was not influenced by gender, pain intensity levels of the test or conditioning stimuli or by psychological variables such as pain catastrophizing or fear of pain. Brain images were processed using SPM8 and the brainstem isolated using the SUIT toolbox. Significant increases in signal intensity were determined during each test stimulus and compared between subjects that did and did not display CPM analgesia (pmechanisms responsible for the maintenance of persistent pain conditions thought to involve altered analgesic circuitry. PMID:26343321

  7. NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jason C Campbell

    2016-05-01

    Full Text Available C. elegans inhabit environments that require detection of diverse stimuli to modulate locomotion in order to avoid unfavourable conditions. In a mammalian context, a failure to appropriately integrate environmental signals can lead to Parkinson's, Alzheimer's, and epilepsy. Provided that the circuitry underlying mammalian sensory integration can be prohibitively complex, we analyzed nematode behavioral responses in differing environmental contexts to evaluate the regulation of context dependent circuit reconfiguration and sensorimotor control. Our work has added to the complexity of a known parallel circuit, mediated by interneurons AVA and AIB, that integrates sensory cues and is responsible for the initiation of backwards locomotion. Our analysis of the galanin-like G-protein coupled receptor NPR-9 in C. elegans revealed that upregulation of galanin signaling impedes the integration of sensory evoked neuronal signals. Although the expression pattern of npr-9 is limited to AIB, upregulation of the receptor appears to impede AIB and AVA circuits to broadly prevent backwards locomotion, i.e. reversals, suggesting that these two pathways functionally interact. Galanin signaling similarly plays a broadly inhibitory role in mammalian models. Moreover, our identification of a mutant, which rarely initiates backwards movement, allowed us to interrogate locomotory mechanisms underlying chemotaxis. In support of the pirouette model of chemotaxis, organisms that did not exhibit reversal behavior were unable to navigate towards an attractant peak. We also assessed ionotropic glutamate receptor GLR-1 cell-specifically within AIB and determined that GLR-1 fine-tunes AIB activity to modify locomotion following reversal events. Our research highlights that signal integration underlying the initiation and fine-tuning of backwards locomotion is AIB and NPR-9 dependent, and has demonstrated the suitability of C. elegans for analysis of multisensory integration

  8. Pediatric brainstem oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Sandeep Mohindra

    2012-01-01

    Full Text Available The authors present the first report of pediatric brainstem oligodendroglioma, infiltrating midbrain, and medulla oblongata. The report details clinical features, radiological findings, and surgical steps. As this entity is exceedingly uncommon, the overall epidemiology, prognosis, and long-term outcome remain far from established.

  9. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension.

    Directory of Open Access Journals (Sweden)

    Nadia A Congo Carbajosa

    Full Text Available Aberrations in the ubiquitin-proteasome system (UPS are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86 ± 15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2 ± 8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92 ± 22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7 ± 0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasome activity. Proteasome activity was significantly reduced by 67 ± 4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.

  10. Science and Teachers: Cardboard Circuitry

    Science.gov (United States)

    Science and Children, 1977

    1977-01-01

    Diagrams a quick, improvised cardboard circuitry for battery holder, bulb socket, and switches. Materials include corrugated cardboard, paper clips, and rubber bands. Assembly useful in determining the electrical conductivity of substances. (CS)

  11. Panic and the brainstem: clues from neuroimaging studies.

    Science.gov (United States)

    Perna, Giampaolo; Guerriero, Giuseppe; Brambilla, Paolo; Caldirola, Daniela

    2014-01-01

    One of the most influential theories has conceived unexpected panic attack (PA) as a primal defensive reaction to threat within the internal milieu of the body. This theory is based on findings suggesting the involvement of dysfunctional respiratory regulation and/or abnormally sensitive central neural network of carbon dioxide (CO2)/hydrogen ion (H+) chemoreception in PA. Thus, unexpected PA may be related to phylogenetically older brain structures, including the brainstem areas, which process basic functions related to the organism's internal milieu. The brainstem represents a crucial area for homeostatic regulation, including chemoreception and cardio-respiratory control. In addition, the midbrain dorsal periaqueductal gray may be involved in the unconditioned defense reactions to proximal threats, including internal physical stimuli. Our aim was to specifically consider the potential involvement of the brainstem in panic disorder (PD) by a comprehensive review of the available neuroimaging studies. Available data are limited and potentially affected by several limitations. However, preliminary evidence of a role of the brainstem in PD can be found and, secondly, the brainstem serotonergic system seems to be involved in panic modulation with indications of both altered serotonergic receptors and 5-HT transporter bindings. In conclusion, our review suggests that the brainstem may be involved in psychopathology of PD and supports the relevant role of subcortical serotonergic system in panic pathogenesis. PMID:24923341

  12. Pediatric brainstem glioma

    International Nuclear Information System (INIS)

    Thirty-four pediatric patients, twenty with presumed and fourteen with biopsy or autopsy proven brainstem gliomas were imaged by CT and MR before radiation therapy. Twenty-eight patients received radiotherapy. Of these, eighteen fit the protocol for combined clinical and MR post-treatment evaluation. No cases of radionecrosis were seen at autopsy. This study shows that MR can demonstrate tumor response to radiation therapy, tumor progression prior to clinical deterioration, post-treatment cyst formation and hemorrhage. Although MR clinical correlation was not optimal on six week post-treatment evaluation, 4-10 months post-treatment MR scanning correlated well with clinical evaluation. MR appears useful in post-therapeutic monitoring of tumor response. (orig.)

  13. Evidence for Altered Basal Ganglia-Brainstem Connections in Cervical Dystonia

    OpenAIRE

    Kuster, John K.; Woodman, Sandra C.; Kirlic, Namik; Multhaupt-Buell, Trisha J.; Makris, Nikos; Parent, Martin; Sjalander, Greta; Breiter, Henry; Blood, Anne J.; Makhlouf, Miriam Louise; Sudarsky, Lewis Richard; Breiter, Hans Charles; Sharma, Nutan

    2012-01-01

    Background: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is onl...

  14. A slave interface circuitry facing to VMEbus

    International Nuclear Information System (INIS)

    A slave interface circuitry facing to VMEbus will be introduced briefly. This interface circuitry was developed for the multi-event selection electronics MUSE used for the medium energy nuclear action experiment system. This interface circuitry can support 32 bit single cycle data transfer and Chained Block Data Transfer (i.e. CB LT)

  15. Cystic hemangioblastoma of the brainstem

    Directory of Open Access Journals (Sweden)

    Amit Agrawal

    2010-01-01

    Full Text Available Hemangioblastomas are very highly vascular neoplasm with benign characteristics and; in comparison to cerebellar hemangioblastoma; cases of cystic hemangioblastoma of the brain stem are rare with only a few case reports available in the literature. We report the case of a 43-year-old-female with cystic hemagioblastoma of the brainstem managed successfully and review the relevant literature.

  16. Cystic hemangioblastoma of the brainstem

    OpenAIRE

    Amit Agrawal; Anand Kakani; Vagh, Sunita J; Hiwale, Kishore M; Gaurav Kolte

    2010-01-01

    Hemangioblastomas are very highly vascular neoplasm with benign characteristics and; in comparison to cerebellar hemangioblastoma; cases of cystic hemangioblastoma of the brain stem are rare with only a few case reports available in the literature. We report the case of a 43-year-old-female with cystic hemagioblastoma of the brainstem managed successfully and review the relevant literature.

  17. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available BACKGROUND: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  18. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  19. Brainstem reflexes and brainstem auditory evoked responses in Huntington's chorea.

    OpenAIRE

    Bollen, E; Arts, R.J.; Roos, R A; van der Velde, E A; Buruma, O J

    1986-01-01

    Blink reflex, corneal reflex, jaw reflex, exteroceptive suppression in masseter muscles and brainstem auditory evoked potentials were measured in 20 patients with Huntington's chorea and 12 controls. A significantly increased latency of the second component of the homolateral and heterolateral blink reflex was found in the patient group as compared with the controls. The other investigations revealed no significant differences between patients and controls except for some facilitation of the ...

  20. Activity Dependent Regulation of Inhibitory Circuitry

    OpenAIRE

    Sharma, Nikhil

    2015-01-01

    Inhibition controls information flow through a neural circuit by modulating synaptic integration, restricting action potentials, and coordinating the activity of ensembles of neurons. These functions are mediated by a diverse array of inhibitory neuron subtypes that synapse on defined domains of a postsynaptic neuron. Activity-dependent transcription controls inhibitory synapse number and function, but how this transcription program affects the inhibitory inputs that form on di...

  1. Lyme disease of the brainstem

    International Nuclear Information System (INIS)

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  2. Lyme disease of the brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Peter [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Decker, Andrew [Northern Westchester Hospital Center, Department of Neurology, Mt. Kisco, NY (United States); Kornel, Ezriel [Northern Westchester Hospital Center, Division of Neurosurgery, Mt. Kisco, NY (United States); Halperin, John J. [North Shore University Hospital, Department of Neurology, Manhasset, NY (United States)

    2005-12-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  3. Pilomyxoid astrocytoma of the brainstem

    Directory of Open Access Journals (Sweden)

    Marco Antonio Zanini

    2013-04-01

    Full Text Available A pilomyxoid astrocytoma is a recently described tumor that occurs predominantly in the hypothalamic-chiasmatic region and is rarely found elsewhere. It has similar features as pilocytic astrocytomas, but has distinct histological characteristics and a poorer prognosis. A pilomyxoid astrocytoma is an aggressive tumor, and increased awareness is necessary with a suspect case. We present the first case of a pilomyxoid astrocytoma of the brainstem described after the newest World Health Organization classification of central nervous system tumors.

  4. Pilomyxoid astrocytoma of the brainstem

    OpenAIRE

    Marco Antonio Zanini; Ducati Gustavo Luis; Roberto Colichio Gabarra; Adriana Yuki Mello; Ismael Augusto Lombardi; Flavio Ramalho Romero; Francisco Otavio Pereira

    2013-01-01

    Abstract A pilomyxoid astrocytoma is a recently described tumor that occurs predominantly in the hypothalamic-chiasmatic region and is rarely found elsewhere. It has similar features as pilocytic astrocytomas, but has distinct histological characteristics and a poorer prognosis. A pilomyxoid astrocytoma is an aggressive tumor, and increased awareness is necessary with a suspect case. We present the first case of a pilomyxoid astrocytoma of the brainstem described after the newest World Health...

  5. Brainstem evoked potentials in panic disorder.

    OpenAIRE

    Knott, V J; Bakish, D; Barkley, J.

    1994-01-01

    Patient reports and laboratory tests support the notion that panic attacks are generated by stimulation of brainstem nuclei. Scalp-recorded brainstem auditory evoked potentials may serve as a unique measurement strategy for the noninvasive assessment of the role of brainstem functioning in panic disorder. Ipsilateral and contralateral BSAEP recordings were examined in response to separate left and right ear click stimulation in 28 patients with a diagnosis of panic disorder and in 18 normal c...

  6. Gamma Knife Treatment of Brainstem Metastases

    OpenAIRE

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K; Mackay, Alexander R.; Lamoreaux, Wayne T.; Call, Jason A.; Carlson, Jonathan D.; Ling, Benjamin C; Demakas, John J.; Cooke, Barton S; Ben Peressini; Lee, Christopher M

    2014-01-01

    The management of brainstem metastases is challenging. Surgical treatment is usually not an option, and chemotherapy is of limited utility. Stereotactic radiosurgery has emerged as a promising palliative treatment modality in these cases. The goal of this study is to assess our single institution experience treating brainstem metastases with Gamma Knife radiosurgery (GKRS). This retrospective chart review studied 41 patients with brainstem metastases treated with GKRS. The most common primary...

  7. Bayesian segmentation of brainstem structures in MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka;

    2015-01-01

    In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, w...... is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer....

  8. Brainstem haematoma due to presumed cryptic telangiectasia.

    OpenAIRE

    Howard, R S

    1986-01-01

    Three patients with primary brainstem haematoma are reported. The clinical presentation suggested an initial diagnosis of pontine tumour in two and demyelination in one patient. The subacute course is characteristic of brainstem haematoma due to presumed cryptic telangiectasia, the abnormal vessels being destroyed by the haemorrhage. These findings emphasise the importance of considering haematoma due to cryptic telangiectasia in the differential diagnosis of subacute brainstem lesions.

  9. Auditory brainstem response in dolphins.

    OpenAIRE

    Ridgway, S. H.; Bullock, T H; Carder, D.A.; Seeley, R L; Woods, D.; Galambos, R

    1981-01-01

    We recorded the auditory brainstem response (ABR) in four dolphins (Tursiops truncatus and Delphinus delphis). The ABR evoked by clicks consists of seven waves within 10 msec; two waves often contain dual peaks. The main waves can be identified with those of humans and laboratory mammals; in spite of a much longer path, the latencies of the peaks are almost identical to those of the rat. The dolphin ABR waves increase in latency as the intensity of a sound decreases by only 4 microseconds/dec...

  10. Surgical management of spontaneous hypertensive brainstem hemorrhage

    Directory of Open Access Journals (Sweden)

    Bal Krishna Shrestha

    2015-09-01

    Full Text Available Spontaneous hypertensive brainstem hemorrhage is the spontaneous brainstem hemorrhage associated with long term hypertension but not having definite focal or objective lesion. It is a catastrophic event which has a poor prognosis and usually managed conservatively. It is not uncommon, especially in eastern Asian populations, accounting approximately for 10% of the intracerebral hemorrhage. Before the advent of computed tomography, the diagnosis of brainstem hemorrhage was usually based on the clinical picture or by autopsy and believed to be untreatable via surgery. The introduction of computed tomography permitted to categorize the subtypes of brainstem hemorrhage with more predicted outcome. Continuous ongoing developments in the stereotactic surgery and microsurgery have added more specific surgical management in these patients. However, whether to manage conservatively or promptly with surgical evacuation of hematoma is still a controversy. Studies have shown that an accurate prognostic assessment based on clinical and radiological features on admission is critical for establishing a reasonable therapeutic approach. Some authors have advocate conservative management, whereas others have suggested the efficacy of surgical treatment in brainstem hemorrhage. With the widening knowledge in microsurgical techniques as well as neuroimaging technology, there seems to have more optimistic hope of surgical management of spontaneous hypertensive brainstem hemorrhage for better prognosis. Here we present five cases of severe spontaneous hypertensive brainstem hemorrhage patients who had undergone surgery; and explore the possibilities of surgical management in patients with the spontaneous hypertensive brainstem hemorrhage.

  11. Imaging of adult brainstem gliomas

    International Nuclear Information System (INIS)

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as 18F-fluoro-ethyl-tyrosine positron emission tomography (18F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours

  12. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  13. Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes).

    Science.gov (United States)

    Baizer, Joan S; Paolone, Nicholas A; Sherwood, Chet C; Hof, Patrick R

    2013-11-01

    Chimpanzees are one of the closest living relatives of humans. However, the cognitive and motor abilities of chimpanzees and humans are quite different. The fact that humans are habitually bipedal and chimpanzees are not implies different uses of vestibular information in the control of posture and balance. Furthermore, bipedal locomotion permits the development of fine motor skills of the hand and tool use in humans, suggesting differences between species in the structures and circuitry for manual control. Much motor behavior is mediated via cerebro-cerebellar circuits that depend on brainstem relays. In this study, we investigated the organization of the vestibular brainstem in chimpanzees to gain insight into whether these structures differ in their anatomy from humans. We identified the four nuclei of vestibular nuclear complex in the chimpanzee and also looked at several other precerebellar structures. The size and arrangement of some of these nuclei differed between chimpanzees and humans, and also displayed considerable inter-individual variation. We identified regions within the cytoarchitectonically defined medial vestibular nucleus visualized by immunoreactivity to the calcium-binding proteins calretinin and calbindin as previously shown in other species including human. We have found that the nucleus paramedianus dorsalis, which is identified in the human but not in macaque monkeys, is present in the chimpanzee brainstem. However, the arcuate nucleus, which is present in humans, was not found in chimpanzees. The present study reveals major differences in the organization of the vestibular brainstem among Old World anthropoid primate species. Furthermore, in chimpanzees, as well as humans, there is individual variability in the organization of brainstem nuclei. PMID:23179862

  14. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    OpenAIRE

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J.; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M.; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p

  15. Brainstem involvement in subacute sclerosing panencephalitis

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    2011-01-01

    Full Text Available The parieto-occipital region of the brain is most frequently and severely affected in subacute sclerosing panencephalitis (SSPE. The basal ganglia, cerebellum and corpus callosum are less commonly involved. Brainstem involvement is rarely described in SSPE, and usually there is involvement of other regions of the brain. We describe a patient with subacute sclerosing panencephalitis with brain magnetic resonance imaging showing extensive brainstem involvement without significant involvement of other cortical structures. Though rarely described in SSPE, one should be aware of such brainstem and cerebellum involvement, and SSPE should be kept in mind when brainstem signal changes are seen in brain MRI with or without involvement of other regions of brain to avoid erroneous reporting.

  16. Detection of brainstem involvemetn in multiple sclerosis

    International Nuclear Information System (INIS)

    The Gradient Refocusing Technique, which seppresses the influence of cerebrospinal fluis (GSF) and vascular motion artifact on MRI sensitivity, is applied combined with Brainstem Auditory Evoked Potentials (BAEPs) and median Somatosensory Evoked Potentials (SEPs) in the evaluation of the brainstem in 30 MS patients with clinical signs of involvement of this structure in order to reevaluate the sensitivity of these techniques. (Author). 2 refs.; 1 tab

  17. GLIA DETERMINE THE COURSE OF BDNF-MEDIATED DENDRITOGENESIS AND PROVIDE A SOLUBLE INHIBITORY CUE TO DENDRITIC GROWTH IN THE BRAINSTEM

    OpenAIRE

    Martin, Jessica L.; Brown, Alexandra L.; Balkowiec, Agnieszka

    2012-01-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neur...

  18. IMAGING WHITE MATTER IN HUMAN BRAINSTEM

    Directory of Open Access Journals (Sweden)

    Anastasia A Ford

    2013-07-01

    Full Text Available The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted MRI may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging (HARDI of an intact excised human brainstem performed at 11.1T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST, superior (SCP and middle cerebellar peduncle (MCP, and medial lemniscus (ML pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

  19. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    Science.gov (United States)

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  20. [Fisher Syndrome and Bickerstaff Brainstem Encephalitis].

    Science.gov (United States)

    Kuwabara, Satoshi

    2015-11-01

    Fisher syndrome has been regarded as a peculiar inflammatory neuropathy with ophthalmoplegia, ataxia, and areflexia, whereas Bickerstaff brainstem encephalitis has been considered a pure central nervous system disease characterized by ophthalmoplegia, ataxia, and consciousness disturbance. Both disorders share common features including preceding infection, albumin-cytological dissociation, and association with Guillain-Barré syndrome. The discovery of anti-GQ1b IgG antibodies further supports the view that the two disorders represent a single disease spectrum. The lesions in Fisher syndrome and Bickerstaff brainstem encephalitis are presumably determined by the expression of ganglioside GQ1b in the human peripheral and central nervous systems. Bickerstaff brainstem encephalitis is likely to represent a variant of Fisher syndrome with central nervous system involvement. PMID:26560952

  1. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  2. Mapping of mitochondrial ferritin in the brainstem of Macaca fascicularis.

    Science.gov (United States)

    Yang, Mingchun; Yang, Hongkuan; Guan, Hongpeng; Bellier, Jean-Pierre; Zhao, Shiguang; Tooyama, Ikuo

    2016-07-22

    Mitochondrial ferritin (FtMt), a recently-studied iron storage protein, which we suspect is an important defense against oxidative stress in neurons and elsewhere. The 242-amino acid FtMt precursor protein is cleaved to mature protein (of molecular weight about 22-kDa) in the mitochondrial matrix. Compared with the ubiquitously expressed traditional ferritin (H-ferritin and L-ferritin), FtMt has been found in fewer locations including the testis, heart and brain. Previous studies have reported that the expression of FtMt in mouse and human brain is predominantly localized to neurons and partly to glial cells, and FtMt exerts protective effects on neurons by maintaining normal function and regulates apoptosis in Alzheimer's disease and Parkinson's disease. To find out the function of FtMt in neurodegenerative disease, we had a novel antibody made against human FtMt and characterized it via Western blot analysis, immunoabsorption testing, and double immunofluorescence histochemistry. Then we used this new FtMt antibody to map the distribution of FtMt in the monkey brainstem. We demonstrated widespread distribution of FtMt immunoreactivity throughout the monkey brainstem, with variable staining intensity. FtMt immunoreactivity was observed in the extrapyramidal system, sensory trigeminal nerve nuclei, some motor nuclei including ambiguous nucleus, dorsal motor nucleus of the vagus and hypoglossal nucleus, and some dorsal column nuclei such as the gracile nucleus and cuneate nucleus. In addition, double immunohistochemical stainings confirmed that FtMt immunoreactivity was co-localized with catecholaminergic neurons in the locus coeruleus (63.64%), substantia nigra pars compacta (69.18%), and ventral tegmental area (56.89%). The distribution of FtMt which we found in the brainstem implies possible involvement of FtMt in several physiological mechanisms, especially in the catecholaminergic neurons, and the possibility of significant involvement in neurodegenerative

  3. Central mechanisms II: pharmacology of brainstem pathways.

    Science.gov (United States)

    Bolser, D C

    2009-01-01

    Following systemic administration, centrally acting antitussive drugs are generally assumed to act in the brainstem to inhibit cough. However, recent work in humans has raised the possibility of suprapontine sites of action for cough suppressants. For drugs that may act in the brainstem, the specific locations, types of neurones affected, and receptor specificities of the compounds represent important issues regarding their cough-suppressant actions. Two medullary areas that have received the most attention regarding the actions of antitussive drugs are the nucleus of the tractus solitarius (NTS) and the caudal ventrolateral respiratory column. Studies that have implicated these two medullary areas have employed both microinjection and in vitro recording methods to control the location of action of the antitussive drugs. Other brainstem regions contain neurones that participate in the production of cough and could represent potential sites of action of antitussive drugs. These regions include the raphe nuclei, pontine nuclei, and rostral ventrolateral medulla. Specific receptor subtypes have been associated with the suppression of cough at central sites, including 5-HT1A, opioid (mu, kappa, and delta), GABA-B, tachykinin neurokinin-1 (NK-1) and neurokinin-2, non-opioid (NOP-1), cannabinoid, dopaminergic, and sigma receptors. Aside from tachykinin NK-1 receptors in the NTS, relatively little is known regarding the receptor specificity of putative antitussive drugs in particular brainstem regions. Our understanding of the mechanisms of action of antitussive drugs would be significantly advanced by further work in this area. PMID:18825342

  4. Ondine′s curse after brainstem infarction

    OpenAIRE

    Pedroso Jose; Baiense Robson; Scalzaretto Ana; Neto Pedro; Teixeira de Gois Aecio; Ferraz Maria

    2009-01-01

    This report describes a rare case of acquired Ondine′s curse. The patient developed central sleep apnea syndrome named Ondine′s curse after a brainstem infarction. Lesions involving the descending medullocervical pathways that subserve automatic breathing can result in this syndrome.

  5. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  6. Brainstem Encephalitis and ADEM Following Mumps

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-03-01

    Full Text Available Clinical manifestations of brainstem encephalitis (BSE with fever, decreased level of consciousness, and left facial and abducens paralysis developed 1 week after bilateral parotitis and mumps in a 4 year-old female child and were followed by symptoms of acute disseminated encephalomyelitis (ADEM within 20 days of recovery from BSE.

  7. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    Science.gov (United States)

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  8. A genetic time-delay circuitry in mammalian cells.

    Science.gov (United States)

    Weber, Wilfried; Kramer, Beat P; Fussenegger, Martin

    2007-11-01

    Gene expression circuitries with time-delayed expression profiles regulate key events, such as oscillating systems, noise elimination, and coordinated multi-step processes, in all organisms from bacteria to mammalian cells. We present the rational synthesis of a genetic circuit displaying time-delayed expression in silico and in mammalian cells. The network is based on a time-delay circuit, where the tetracycline-responsive transactivator (tTA) induces expression of the pristinamycin-responsive repressor PIP-KRAB, which silences expression of the terminal human placental secreted alkaline phosphatase (SEAP). While the addition of pristinamycin I inactivates PIP-KRAB and results in the immediate resumption of SEAP expression, addition of tetracycline abolishes PIP-KRAB synthesis. Consequently, SEAP production remains repressed until the PIP-KRAB buffer in the cell is eliminated. We characterized in silico and in vivo the time-delayed expression properties and analyzed the impact of the size and stability of the PIP-KRAB buffer on fine-tuning of the response kinetics. This tunable time-delay circuitry represents a biologic building block for emulating a fundamental circuit topology in integrated artificial synthetic gene networks for the design of tailor-made cell types and organisms. PMID:17461420

  9. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Directory of Open Access Journals (Sweden)

    Dunzhu Xia

    2014-01-01

    Full Text Available This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs, piezoelectric vibrating gyroscopes (PVGs, surface acoustic wave (SAW gyroscopes, bulk acoustic wave (BAW gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs, magnetically suspended gyroscopes (MSGs, micro fiber optic gyroscopes (MFOGs, micro fluid gyroscopes (MFGs, micro atom gyroscopes (MAGs, and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  10. Processing circuitry for single channel radiation detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  11. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  12. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  13. Functional maps of neocortical local circuitry

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2007-10-01

    Full Text Available This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.

  14. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders

    OpenAIRE

    Doo-SupChoi; Jun HyunPark

    2014-01-01

    Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use...

  15. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    Science.gov (United States)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  16. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  17. Integrator Circuitry for Single Channel Radiation Detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  18. Brainstem: neglected locus in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    LeaTGrinberg

    2011-07-01

    Full Text Available The most frequent neurodegenerative diseases (NDs are Alzheimer’s disease (AD, Parkinson’s disease (PD, and frontotemporal lobar degeneration associated with protein TDP-43 (FTLD-TDP. Neuropathologically, NDs are characterized by abnormal intracellular and extracellular protein deposits and by disease-specific neuronal death. Practically all terminal stages of NDs are clinically associated with dementia. Therefore, major attention was directed to protein deposits and neuron loss in supratentorial (telencephalic brain regions in the course of NDs. This was also true for PD, although the pathological hallmark of PD is degeneration of pigmented neurons of the brainstem’s substantia nigra. However, PD pathophysiology was explained by dopamine depletion in the telencephalic basal ganglia due to insufficiency and degeneration of the projection neurons located in substantia nigra. In a similar line of argumentation AD- and FTLD-related clinical deficits were exclusively explained by supratentorial allo- and neocortical laminar neuronal necrosis. Recent comprehensive studies in AD and PD early stages found considerable and unexpected involvement of brainstem nuclei, which could have the potential to profoundly change our present concepts on origin, spread, and early clinical diagnosis of these diseases. In contrast with PD and AD, few studies addressed brainstem involvement in the course of the different types of FTLD-TDP. Some of the results, including ours, disclosed a higher and more widespread pathology than anticipated. The present review will focus mainly on the impact of brainstem changes during the course of the most frequent NDs including PD, AD, and FTLD-TDP, with special emphasis on the need for more comprehensive research on FTLDs.

  19. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    Directory of Open Access Journals (Sweden)

    Paul F Mcculloch

    2016-04-01

    Full Text Available This research was designed to investigate the role of the anterior ethmoidal nerve (AEN during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N=24 were trained to swim and dive through a 5 m underwater maze. Some rats (N=12 had bilateral sectioning of the AEN, others a Sham surgery (N=12. Twelve rats (6 AEN cut and 6 Sham had 24 post-surgical dive trials over 2 hrs to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus the AENs are not required for initiation of the diving response. Other nerve(s that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.

  20. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    International Nuclear Information System (INIS)

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury

  1. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiwei [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Dong, Yushu [Department of Neurosurgery, 463rd Hospital of PLA, Shenyang 110042 (China); Xu, Chun; Jiang, Liming; Chen, Yongjie; Jiang, Cheng [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Hou, Wugang, E-mail: gangwuhou@163.com [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China); Li, Wei, E-mail: liweipepeyato@163.com [Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi’an 710032 (China)

    2013-11-01

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury.

  2. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    OpenAIRE

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.

  3. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding

    OpenAIRE

    Blouet, Clemence; Schwartz, Gary J.

    2012-01-01

    Direct detection of circulating nutrients by the central nervous system has been implicated in the regulation of energy balance, and the mediobasal hypothalamus is considered the primary sensing site mediating these effects. Neurons sensitive to energy-related signals have also been identified outside the hypothalamus, particularly within the caudomedial nucleus of the solitary tract (cmNTS) in brainstem, but the consequences of direct NTS nutrient detection on energy balance remain poorly ch...

  4. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem

    Directory of Open Access Journals (Sweden)

    Štefan Holiga

    2015-01-01

    Full Text Available During implantation of deep-brain stimulation (DBS electrodes in the target structure, neurosurgeons and neurologists commonly observe a “microlesion effect” (MLE, which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD. Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC, to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.

  5. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders

    Directory of Open Access Journals (Sweden)

    Doo-SupChoi

    2014-09-01

    Full Text Available Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD. In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. MRI findings of multiple sclerosis involving the brainstem

    International Nuclear Information System (INIS)

    To describe MRI findings of multiple sclerosis involving the brainstem. Among 35 cases of clinically definite multiple sclerosis, the authors retrospectively analysed 20 in which the brainstem was involved. MR images were analysed with regard to involvement sites in the brainstem or other locations, signal intensity, multiplicity, shape, enhancement pattern, and contiguity of brainstem lesions with cisternal or ventricular CSF space. The brainstem was the only site of involvement in five cases (25%), while simultaneous involvement of the brainstem and other sites was observed in 15 cases (75%). No case involved only the midbrain or medulla oblongata, and simultaneous involvement of the midbrain, pons and medulla oblongata was noted in 12 cases (60%). The most frequently involved region of the brainstem was the medulla oblongata (n=13; 90%), followed by the pons (n=17; 85%) and the midbrain (n=16; 80%). Compared with normal white matter, brainstem lesions showed low signal intensity on T1 weighted images, and high signal intensity on T2 weighted, proton density weighted, and FLAIR images. In 17 cases (85%), multiple intensity was observed, and the shape of lesions varied: oval, round, elliptical, patchy, crescentic, confluent or amorphous were seen on axial MR images, and in 14 cases (82%), coronal or sagittal scanning showed that lesions were long and tubular. Contiguity between brainstem lesions and cisternal or ventricular CSF space was seen in all cases (100%) involving midbrain (16/16) and medulla oblongata (18/18) and in 15 of 17 (88%) involving the pons. Contrast enhancement was apparent in 7 of 12 cases (58%). In the brainstem, MRI demonstrated partial or total contiguity between lesions and cisternal or ventricular CSF space, and coronal or sagittal images showed that lesions were long and tubuler

  8. Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem.

    Science.gov (United States)

    Martin, J L; Brown, A L; Balkowiec, A

    2012-04-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neurons, as a candidate mediator of NTS dendritogenesis. In the current study, we used neonatal rat NTS neurons in vitro to examine the role of BDNF in the dendritic development of neurochemically identified subpopulations of NTS neurons. In the presence of abundant glia, BDNF promoted NTS dendritic outgrowth and complexity, with the magnitude of the BDNF effect dependent on neuronal phenotype. Surprisingly, BDNF switched from promoting to inhibiting NTS dendritogenesis upon glia depletion. Moreover, glia depletion alone led to a significant increase in NTS dendritic outgrowth. Consistent with this result, astrocyte-conditioned medium (ACM), which promoted hippocampal dendritogenesis, inhibited dendritic growth of NTS neurons. The latter effect was abolished by heat-inactivation of ACM, pointing to a diffusible astrocyte-derived negative regulator of NTS dendritic growth. Together, these data demonstrate a role for BDNF in the postnatal development of NTS neurons, and reveal novel effects of glia on this process. Moreover, previously documented dramatic increases in NTS glial proliferation in victims of sudden infant death syndrome (SIDS) underscore the importance of our findings and the need to better understand the role of glia and their interactions with BDNF during NTS circuit maturation. Furthermore, while it has previously been demonstrated that the specific effects of BDNF on dendritic growth are context-dependent, the role of glia in this process is unknown. Thus, our data

  9. GLIA DETERMINE THE COURSE OF BDNF-MEDIATED DENDRITOGENESIS AND PROVIDE A SOLUBLE INHIBITORY CUE TO DENDRITIC GROWTH IN THE BRAINSTEM

    Science.gov (United States)

    Martin, Jessica L.; Brown, Alexandra L.; Balkowiec, Agnieszka

    2012-01-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neurons, as a candidate mediator of NTS dendritogenesis. In the current study, we used neonatal rat NTS neurons in vitro to examine the role of BDNF in the dendritic development of neurochemically-identified subpopulations of NTS neurons. In the presence of abundant glia, BDNF promoted NTS dendritic outgrowth and complexity, with the magnitude of the BDNF effect dependent on neuronal phenotype. Surprisingly, BDNF switched from promoting to inhibiting NTS dendritogenesis upon glia depletion. Moreover, glia depletion alone led to a significant increase in NTS dendritic outgrowth. Consistent with this result, astrocyte-conditioned medium (ACM), which promoted hippocampal dendritogenesis, inhibited dendritic growth of NTS neurons. The latter effect was abolished by heat-inactivation of ACM, pointing to a diffusible astrocyte-derived negative regulator of NTS dendritic growth. Together, these data demonstrate a role for BDNF in the postnatal development of NTS neurons, and reveal novel effects of glia on this process. Moreover, previously documented dramatic increases in NTS glial proliferation in victims of sudden infant death syndrome (SIDS) underscore the importance of our findings and the need to better understand the role of glia and their interactions with BDNF during NTS circuit maturation. Furthermore, while it has previously been demonstrated that the specific effects of BDNF on dendritic growth are context-dependent, the role of glia in this process is unknown. Thus, our data

  10. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  11. Oxytonergic circuitry sustains and enables creative cognition in humans.

    Science.gov (United States)

    De Dreu, Carsten K W; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J; Ebstein, Richard P; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G

    2014-08-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3-6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications. PMID:23863476

  12. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  13. Nanocantilever based mass sensor integrated with cmos circuitry

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Campabadal, F.;

    2003-01-01

    We have demonstrated the successful integration of a cantilever based mass detector with standard CMOS circuitry. The purpose of the circuitry is to facilitate the readout of the cantilever's deflection in order to measure resonant frequency shifts of the cantilever. The principle and design of the...... mass detector are presented showing that miniaturization of such cantilever based resonant devices leads to highly sensitive mass sensors, which have the potential to detect single molecules. The design of the readout circuitry used for the first electrical characterization of an integrated cantilever...... integrated with CMOS circuitry is demonstrated. The electrical characterization of the device shows that the resonant behavior of the cantilever depends on the applied voltages, which corresponds to theory....

  14. Isolated Brainstem Involvement in Posterior Reversible Encephalopathy Syndrome

    Directory of Open Access Journals (Sweden)

    Tarkan Ergün

    2013-09-01

    Full Text Available Posterior reversible encephalopathy syndrome (PRES is a clinical and radiologic entity characterized by headache, variable mental status, epilepsy, visual disturbances, and typical transient changes in the posterior cerebral perfusion. Parieto-occipital region the most commonly involved site. Less commonly, brainstem, basal ganglia, and cerebellum are involved besides the supratentorial white matter areas. However, isolated brainstem involvement is very rare. We here present a case of isolated brainstem involvement in posterior reversible encephalopathy syndrome which was diagnosed by diffusion-weighted MR imaging.

  15. Nanocantilever based mass sensor integrated with cmos circuitry

    OpenAIRE

    Davis, Zachary James; Abadal, G.; Campabadal, F; Figueras, E.; Esteve, J.; Verd, J.; Perez-Murano, F.; Borrise, X.; Nilsson, S. G.; Miximov, I.; Montelius, L.; Barniol, N.; Boisen, Anja

    2003-01-01

    We have demonstrated the successful integration of a cantilever based mass detector with standard CMOS circuitry. The purpose of the circuitry is to facilitate the readout of the cantilever's deflection in order to measure resonant frequency shifts of the cantilever. The principle and design of the mass detector are presented showing that miniaturization of such cantilever based resonant devices leads to highly sensitive mass sensors, which have the potential to detect single molecules. The d...

  16. Circuitry, systems and methods for detecting magnetic fields

    Science.gov (United States)

    Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  17. Enterovirus 71 Brainstem Encephalitis and Cognitive and Motor Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Follow-up studies were conducted in 63 previously healthy children with enterovirus 71 brainstem encephalitis (49 stage II, 7 stage Ilia, and 7 stage Illb at National Cheng Kung University Hospital, Tainan, Taiwan.

  18. Geometric scaling factors for the pediatric brainstem.

    Science.gov (United States)

    Danelson, Kerry A; Yu, Mao; Gayzik, F Scott; Geer, Carol P; Slice, Dennis E; Stitzel, Joel D

    2008-01-01

    Injuries caused by motor vehicle crashes (MVCs) are the leading cause of death for children in the United States as well as the leading cause of head injury. Improved finite element models that integrate the correct shape of the pediatric brain with current injury prediction metrics would improve occupant response prediction for the pediatric occupant. The focus of this study is the improvement of geometric scaling factors for the brainstem to adapt current adult brain models to a pediatric model. The method used to assess shape change for this study was a geometric morphometric analysis technique. A sliding landmark form of a general Procrustes analysis was selected for its ability to compare curved structures with few true landmarks. The dataset consisted of fifty-nine individuals ranging in age from newborn to twenty-one years of age with groups specified at newborn, three months, six months, one year, three years, six years, ten years, fifteen years, and twenty-one years of age. Data was collected by outlining the structure on transverse and sagittal scans of magnetic resonance images and then creating a landmark dataset with a user-defined number of points for each individual. Once all individuals had the same number of landmarks, these points are allowed to slide on planes tangent to the surface until a value described as bending energy is minimized relative to an iteratively computed mean configuration from a Generalized Procrustes Analysis. A General Procrustes Analysis was completed for this data set to determine the shape differences between the age groups. Then, the coordinate locations were regressed onto age, and this analysis resulted in a model that predicted landmark locations based on age. From this model, the dimensions of the brainstem were calculated using the specified age groups. The final step was taking the dimensions of the predicted twenty-one year old model as the base and calculating a geometric scaling factor for shape, without

  19. Self-organizing circuitry and emergent computation in mouse embryonic stem cells.

    Science.gov (United States)

    Halley, J D; Smith-Miles, K; Winkler, D A; Kalkan, T; Huang, S; Smith, A

    2012-03-01

    Pluripotency is a cellular state of multiple options. Here, we highlight the potential for self-organization to contribute to stem cell fate computation. A new way of considering regulatory circuitry is presented that describes the expression of each transcription factor (TF) as a branching process that propagates through time, interacting and competing with others. In a single cell, the interactions between multiple branching processes generate a collective process called 'critical-like self-organization'. We explain how this phenomenon provides a valid description of whole genome regulatory circuit dynamics. The hypothesis of exploratory stem cell decision-making proposes that critical-like self-organization (also called rapid self-organized criticality) provides the backbone for cell fate computation in regulative embryos and pluripotent stem cells. Unspecific amplification of TF expression is predicted to initiate this self-organizing circuitry, where cascades of gene expression propagate and may interact either synergistically or antagonistically. The emergent and highly dynamic circuitry is affected by various sources of selection pressure, such as the expression of TFs with disproportionate influence over other genes, and extrinsic biological and physical stimuli that differentially modulate particular gene expression cascades. Extrinsic conditions continuously trigger waves of transcription that ripple throughout regulatory networks on multiple spatiotemporal scales, providing the context within which circuitry self-organizes. In this framework, a distinction between instructive and selective mechanisms of fate determination is misleading because it is the 'interference pattern', rather than any single instructing or selecting factor, that is ultimately responsible for computing and directing cell fate. Using this framework, we consider whether the idea of a naïve ground state of pluripotency and that of a fluctuating transcriptome are compatible, and

  20. [How does the brain control eye movements? Motor and premotor neurons of the brainstem].

    Science.gov (United States)

    Coubard, O A

    2015-04-01

    Knowledge of cognitive and neural architecture and processes that control eye movements has advanced enough to allow precise and quantitative analysis of hitherto unsolved phenomena. In this review, we revisit from a neuropsychological viewpoint Hering vs. Helmholtz' hypotheses on binocular coordination. Specifically, we reexamine the behavior and the neural bases of saccade-vergence movement, to move the gaze in both direction and depth under natural conditions. From the psychophysical viewpoint, neo-Heringian and neo-Helmholtzian authors have accumulated arguments favoring distinct conjugate (for saccades) and disconjugate (for vergence) systems, as well as advocating for monocularly programmed eye movements. From the neurophysiological viewpoint, which reports brain cell recordings during the execution of a given task, neo-Heringian and neo-Helmholtzian physiologists have also provided arguments in favor of both hypotheses at the level of the brainstem premotor circuitry. Bridging the two, we propose that Hering and Helmholtz were both right. The emphasis placed by the latter on adaptive processes throughout life cycle is compatible with the importance of neurobiological constraints pointed out by the former. In the meanwhile, the study of saccade-vergence eye movements recalls how much the psychophysical definition of the task determines the interpretation that is made from neurophysiological data. PMID:25600699

  1. GLP-1 and weight loss: unraveling the diverse neural circuitry.

    Science.gov (United States)

    Kanoski, Scott E; Hayes, Matthew R; Skibicka, Karolina P

    2016-05-15

    Glucagon-like peptide-1 (GLP-1) is currently one of the most promising biological systems for the development of effective obesity pharmacotherapies. Long-acting GLP-1 analogs potently reduce food intake and body weight, and recent discoveries reveal that peripheral administration of these drugs reduces food intake largely through humoral pathways involving direct action on brain GLP-1 receptors (GLP-1R). Thus, it is of critical importance to understand the neural systems through which GLP-1 and long-acting GLP-1 analogs reduce food intake and body weight. In this review, we discuss several neural, physiological, cellular and molecular, as well as behavioral mechanisms through which peripheral and central GLP-1R signaling reduces feeding. Particular attention is devoted to discussion regarding the numerous neural substrates through which GLP-1 and GLP-1 analogs act to reduce food intake and body weight, including various hypothalamic nuclei (arcuate nucleus of the hypothalamus, periventricular hypothalamus, lateral hypothalamic area), hindbrain nuclei (parabrachial nucleus, medial nucleus tractus solitarius), hippocampus (ventral subregion; vHP), and nuclei embedded within the mesolimbic reward circuitry [ventral tegmental area (VTA) and nucleus accumbens (NAc)]. In some of these nuclei [VTA, NAc, and vHP], GLP-1R activation reduces food intake and body weight without concomitant nausea responses, suggesting that targeting these specific pathways may be of particular interest for future obesity pharmacotherapy. The widely distributed neural systems through which GLP-1 and GLP-1 analogs act to reduce body weight highlight the complexity of the neural systems regulating energy balance, as well as the challenges for developing effective obesity pharmacotherapies that reduce feeding without producing parallel negative side effects. PMID:27030669

  2. Auditory Brainstem Response Improvements in Hyperbillirubinemic Infants

    Science.gov (United States)

    Abdollahi, Farzaneh Zamiri; Manchaiah, Vinaya; Lotfi, Yones

    2016-01-01

    Background and Objectives Hyperbillirubinemia in infants have been associated with neuronal damage including in the auditory system. Some researchers have suggested that the bilirubin-induced auditory neuronal damages may be temporary and reversible. This study was aimed at investigating the auditory neuropathy and reversibility of auditory abnormalities in hyperbillirubinemic infants. Subjects and Methods The study participants included 41 full term hyperbilirubinemic infants (mean age 39.24 days) with normal birth weight (3,200-3,700 grams) that admitted in hospital for hyperbillirubinemia and 39 normal infants (mean age 35.54 days) without any hyperbillirubinemia or other hearing loss risk factors for ruling out maturational changes. All infants in hyperbilirubinemic group had serum bilirubin level more than 20 milligram per deciliter and undergone one blood exchange transfusion. Hearing evaluation for each infant was conducted twice: the first one after hyperbilirubinemia treatment and before leaving hospital and the second one three months after the first hearing evaluation. Hearing evaluations included transient evoked otoacoustic emission (TEOAE) screening and auditory brainstem response (ABR) threshold tracing. Results The TEOAE and ABR results of control group and TEOAE results of the hyperbilirubinemic group did not change significantly from the first to the second evaluation. However, the ABR results of the hyperbilirubinemic group improved significantly from the first to the second assessment (p=0.025). Conclusions The results suggest that the bilirubin induced auditory neuronal damage can be reversible over time so we suggest that infants with hyperbilirubinemia who fail the first hearing tests should be reevaluated after 3 months of treatment. PMID:27144228

  3. Brain circuitry outside the synaptic cleft

    OpenAIRE

    Rusakov, Dmitri A.; Alexander E Dityatev

    2014-01-01

    A growing body of experimental evidence suggests that astroglia, and possibly microglia, play an important part in regulating synaptic networking of the brain. It has also emerged that extracellular matrix (ECM) structures that enwrap synaptic connections can generate molecular signals affecting both neuronal and glial activity. Thus it appears that the mechanism of information processing in the brain, which has hitherto been associated almost exclusively with neural circuits, could also invo...

  4. Automatic quadrature control and measuring system. [using optical coupling circuitry

    Science.gov (United States)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  5. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior.

    Science.gov (United States)

    Baastrup, Cathrine; Maersk-Moller, Camilla Charlotte; Nyengaard, Jens Randel; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2010-12-01

    Pain is a frequent consequence of spinal cord injury (SCI) which may profoundly impair the patients' quality of life. Valid experimental models and methods are therefore desirable in the search for better treatments. Usually, experimental pain assays depend on stimulus-evoked withdrawal responses; however, this spinal-mediated reflex response may be particularly problematic when evaluating below-level SCI pain due to the development of hyperactive reflex circuitries. In this study, we applied and compared assays measuring cold (acetone), static (von Frey filaments), and dynamic mechanical (soft brush) hypersensitivity at different levels of the neuroaxis at and below the level of injury in a rat model of SCI. We induced an experimental SCI (MASCIS 25 mm weight-drop) and evaluated the development of spinal reflexes (withdrawal), spinal-brainstem-spinal reflexes (licking, guarding, struggling, vocalizing, jumping, and biting) and cerebral-dependent behavior (place escape/avoidance paradigm (PEAP)). We demonstrated increased brainstem reflexes and cerebrally mediated aversive reactions to stimuli applied at the level of SCI, suggesting development of at-level evoked pain behavior. Furthermore, stimulation below-level increased innate reflex responses without increasing brainstem reflexes or aversive behavior in the PEAP, suggesting development of the spasticity syndrome rather than pain-like behavior. While spinal reflex measures are acceptable for studying changes in the spinal reflex pathways and spinal cord, they are not suited as nociceptive behavioral measures. Measuring brainstem organized responses eliminates the bias associated with the spastic syndrome, but pain requires cortical involvement. Methods depending on cortical structures, as the PEAP, are therefore optimal endpoints in animal models of central pain. PMID:20863621

  6. The origin of behavioral bursts in decision-making circuitry.

    Directory of Open Access Journals (Sweden)

    Amanda Sorribes

    2011-06-01

    Full Text Available From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry.

  7. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity. PMID:24434608

  8. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  9. Clinical features of predominantly sensory stroke due to brainstem infarction

    International Nuclear Information System (INIS)

    We report 13 patients presenting with predominantly sensory strokes due to brainstem infarction, without any other brainstem symptoms such as hemiparesis, dysarthria or vertigo. All of them had lacunar infarctions localized at the medial lemniscus and/or spinothalamic tract, at the pontine (12 patients) or midbrain (1 patient) tegmentum. The presenting symptom was dysesthesia with a variety of distributions for all cases, and a thalamic-pain-like unpleasant dysesthesia persisted in 4 patients. The lesion on brain MRI was usually very small, and was sometimes overlooked by radiological evaluation, which led to a long delay in the correct diagnosis of a stroke in two cases. Median nerve somatosensory evoked potentials showed a depressed N20 amplitude or a loss of the P15 potential unilaterally with preserved P13/14 potential in 7 out of 10 cases examined, and was useful in localizing the lesion intracranially. During the 4-year study period, 10 patients with brainstem infarctions were admitted to our department as acute sensory stroke cases (2.1% of all acute strokes), whereas 11 patients with thalamic infarctions (2.3%) were admitted due to similar symptoms. Cases with brainstem infarctions had sensory symptoms localized below the neck more frequently (5/10) than cases with thalamic infarctions (1/11), thus would be more likely to be confused with cervical or peripheral nerve disorders. The relative frequency of brainstem infarction as compared to thalamic infarction was higher than that in previous reports, implying that some cases with brainstem infarction might have been overlooked due to difficulty in obtaining the correct diagnosis. One should always keep this syndrome in mind when assessing patients with acute-onset sensory symptoms. (author)

  10. Adaptations and pathologies linked to dynamic stabilization of neural circuitry.

    Science.gov (United States)

    Kavanau, J L

    1999-05-01

    Brain circuits for infrequently employed memories are reinforced largely during sleep by self-induced, electrical slow-waves, a process referred to as "dynamic stabilization" (DS). The essence of waking brain function in the absence of volitional activity is sensory input processing, an enormous amount of which is visual. These two functions: circuit reinforcement by DS and sensory information processing come into conflict when both occur at a high level, a conflict that may have been the selective pressure for sleep's origin. As brain waves are absent at the low temperatures of deep torpor, essential circuitry of hibernating small mammals would lose its competence if the animals did not warm up periodically to temperatures allowing sleep and circuit reinforcement. Blind, cave-dwelling vertebrates require no sleep because their sensory processing does not interfere with DS. Nor does such interference arise in continuously-swimming fishes, whose need to process visual information is reduced greatly by life in visually relatively featureless, pelagic habitats, and by schooling. Dreams are believed to have their origin in DS of memory circuits. They are thought to have illusory content when the circuits are partially degraded (incompetent), with synaptic efficacies weakened through infrequent use. Partially degraded circuits arise normally in the course of synaptic efficacy decay, or pathologically through abnormal regimens of DS. Organic delirium may result from breakdown of normal regimens of DS of circuitry during sleep, leaving many circuits incompetent. Activation of incompetent circuits during wakefulness apparently produces delirium and hallucinations. Some epileptic seizures may be induced by abnormal regimens of DS of motor circuitry. Regimens of remedial DS during seizures induced by electroconvulsive therapy (ECT) apparently produce temporary remission of delirium by restoring functional or 'dedicated' synaptic efficacies in incompetent circuitry. Sparing

  11. Brainstem Auditory Evoked Potentials Suggest a Role for the Ventral Cochlear Nucleus in Tinnitus

    OpenAIRE

    Gu, Jianwen Wendy; Herrmann, Barbara S.; Levine, Robert A.; Melcher, Jennifer R.

    2012-01-01

    Numerous studies have demonstrated elevated spontaneous and sound-evoked brainstem activity in animal models of tinnitus, but data on brainstem function in people with this common clinical condition are sparse. Here, auditory nerve and brainstem function in response to sound was assessed via auditory brainstem responses (ABR) in humans with tinnitus and without. Tinnitus subjects showed reduced wave I amplitude (indicating reduced auditory nerve activity) but enhanced wave V (reflecting eleva...

  12. Functional neuroimaging of the oculomotor brainstem network in humans.

    Science.gov (United States)

    Linzenbold, Walter; Lindig, Tobias; Himmelbach, Marc

    2011-08-01

    The cortical systems involved in eye movement control in humans have been investigated extensively using fMRI. In contrast, there is virtually no data concerning the functional status of the human oculomotor brainstem nuclei. This lack of evidence has usually been explained by technical constraints of EPI based imaging and anatomical characteristics of the brainstem. Against this assumption, we successfully localised nuclei of the oculomotor system using high-resolution fMRI based on standard EPI sequences in a group of healthy subjects executing reflexive horizontal saccades. A random-effects group analysis revealed task-related BOLD increases in the superior colliculus, the oculomotor nucleus, the abducens nucleus and in the paramedian pontine reticular formation. This group analysis was complemented by individual positive findings in up to 94% of single subject analyses. A visual control paradigm led to increased signal levels in the superior colliculus consistent with its visual properties but no corresponding signal changes in other brainstem nuclei. These results are consistent with findings in animal studies and demonstrate the feasibility to detect BOLD signal increases associated with oculomotor tasks even in the human brainstem using conventional EPI imaging techniques. PMID:21640192

  13. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  14. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong;

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... in most bird species....

  15. Auditory Brainstem Evoked Responses in Newborns with Down Syndrome

    Science.gov (United States)

    Kittler, Phyllis M.; Phan, Ha T. T.; Gardner, Judith M.; Miroshnichenko, Inna; Gordon, Anne; Karmel, Bernard Z.

    2009-01-01

    Auditory brainstem evoked responses (ABRs) were compared in 15 newborns with Down syndrome and 15 sex-, age-, and weight-matched control newborns. Participants had normal ABRs based upon values specific to 32- to 42-weeks postconceptional age. Although Wave III and Wave V component latencies and the Wave I-III interpeak latency (IPL) were shorter…

  16. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  17. Intraparenchymal papillary meningioma of brainstem: case report and literature review

    Directory of Open Access Journals (Sweden)

    Jiang Xiao-Bing

    2012-01-01

    Full Text Available Abstract Both intraparenchymal papillary meningioma and papillary meningioma with cyst formation of brainstem have never been reported. The authors present an extremely rare case of patient with intraparenchymal papillary meningioma of brainstem. A 23-year-old Chinese male presented with a 4-month history of progressive left upper limb and facial nerve palsy. Magnetic resonance imaging revealed a cystic-solid, heterogeneously enhancing mass in pons and right cerebral peduncle with no dural attachment. The tumor was totally removed via subtemporal approach. During surgery, the lesion was found to be completely intraparenchymal. Histological and immunohistochemical examinations were compatible with the diagnosis of papillary meningioma. The lesion recurred nine months after primary surgery, a second surgery followed by radiotherapy was performed. Till to now (nearly 2 years after the treatment, the patient is tumor free survival. Intraparenchymal meningioma of brainstem with cystic formation is very rare, however, it should be considered as a differential diagnosis of a brainstem neoplasm. The present case strongly recommended that postoperative radiotherapy was essential for the patients with papillary meningiomas.

  18. Preparation and Culture of Chicken Auditory Brainstem Slices

    OpenAIRE

    Sanchez, Jason T.; Seidl, Armin H.; Rubel, Edwin W.; Barria, Andres

    2011-01-01

    The chicken auditory brainstem is a well-established model system that has been widely used to study the anatomy and physiology of auditory processing at discreet periods of development 1-4 as well as mechanisms for temporal coding in the central nervous system 5-7.

  19. A rabbit model of graded primary mechanical injury to brainstem

    Directory of Open Access Journals (Sweden)

    YU Yong-min

    2012-12-01

    Full Text Available 【Abstract】Objective: To introduce a new animal model of graded mechanical primary brainstem injury (BSI. Methods: Altogether 45 rabbits were subjected to BSI by type II biological impact machine designed by the Third Military Medical University. The animals were divided into 4 experimental groups (n=10 and 1 control group (n=5 ac-cording to different magnitudes of impact pressure imposed on the occipital nodule: Group 1, 500-520 kPa; Group 2, 520-540 kPa; Group 3, 540-560 kPa; Group 4, 560-580 kPa and Group 5, 0 kPa with 20 kPa increase in each grade. The im-pact depth was a constant 0.5 cm. After injury, the clinical symptoms and signs as well as pathological changes were observed. Results: Rabbits in Group 1 revealed mild physiologi-cal reaction of BSI. They had localized cerebral contusion with punctate hemorrhage and subarachnoid hemorrhage (SAH was limited to the peripheral tissues at the impact area. In Group 2, obvious physiological reaction was observed. Local pathological lesions reached the superfi-cial layer of brainstem tissues; focal hemorrhage and girdle-shaped SAH in basilar pon were observed under microscope. In Group 3, BSI was more severe with a long respiratory depression. Pathological lesions reached the inner portion of brainstem with massive hemorrhage and the whole brainstem was wrapped by subarachnoid hematoma. In Group 4, most rabbits died due to severe BSI. Pathological lesions deepened to the central brainstem with wide patho-logical change, rapture of the medulla oblongata central canal. Group 5 was the control group, with normal brainstem structure and no lesion observed. Conclusion: This model successfully simulates differ-ent levels of brainstem mechanical injury and clearly shows the subsequent pathological changes following injury. It takes two external parameters (impact pressure and depth and has a similar injury mechanism to clinical accelerating BSI. Moreover it is reproducible and stable, thus being be

  20. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  1. Neural circuitry of stress-induced insomnia in rats

    OpenAIRE

    Cano, Georgina; Mochizuki, Takatoshi; Saper, Clifford B.

    2008-01-01

    Sleep architecture is often disturbed following a stressful event; nevertheless, little is known about the brain circuitry responsible for the sleep perturbations induced by stress. We exposed rats to a psychological stressor (cage exchange) that initially causes an acute stress response, but several hours later generates a pattern of sleep disturbances similar to that observed in stress-induced insomnia in humans: increased sleep latency, decreased nREM and REM sleep, increased fragmentation...

  2. The Origin of Behavioral Bursts in Decision-Making Circuitry

    OpenAIRE

    Amanda Sorribes; Armendariz, Beatriz G.; Diego Lopez-Pigozzi; Cristina Murga; de Polavieja, Gonzalo G.

    2011-01-01

    From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switche...

  3. Neural circuitry underlying affective response to peer feedback in adolescence

    OpenAIRE

    Guyer, Amanda E.; Choate, Victoria R.; Pine, Daniel S.; Nelson, Eric E.

    2011-01-01

    Peer feedback affects adolescents’ behaviors, cognitions and emotions. We examined neural circuitry underlying adolescents’ emotional response to peer feedback using a functional neuroimaging paradigm whereby, 36 adolescents (aged 9–17 years) believed they would interact with unknown peers postscan. Neural activity was expected to vary based on adolescents’ perceptions of peers and feedback type. Ventrolateral prefrontal cortex (vlPFC) activity was found when adolescents indicated how they fe...

  4. The neural circuitry of expertise: perceptual learning and social cognition

    OpenAIRE

    Michael Harre

    2013-01-01

    Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create ou...

  5. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    Directory of Open Access Journals (Sweden)

    Schaefer Ulf

    2009-12-01

    Full Text Available Abstract Background Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs. Current research suggests that microRNAs (miRNAs degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF→miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF→miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1 have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92, we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process.

  6. Age-related changes in hypocretin (orexin) immunoreactivity in the cat brainstem.

    Science.gov (United States)

    Zhang, Jian Hua; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2002-03-15

    Terminals of hypothalamic hypocretin-containing neurons are observed within brainstem nuclei involved in the control of sleep and wakefulness. Because aged humans, cats and other species exhibit changes in sleep and wakefulness in old age, we were interested in examining age-related changes in hypocretin/orexin projections to the following brainstem regions which are associated with the regulation of sleep and wakefulness: the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the pedunculo-pontine tegmental nucleus and the locus coeruleus. Based upon the results of immunohistochemical determinations, in all the regions examined, round or oval "spot-like" structures were observed in aged cats. Many of these "spot-like" structures resembled enlarged varicosities of a nature that would be expected to disrupt hypocretin neurotransmission. In addition, a site-specific decrease in immunostaining was observed in the locus coeruleus in old cats compared with adult controls; this result likely reflects a decrease in the number of labeled fibers, which indicates that there occurs a degeneration of hypocretinergic function in conjunction with old age. The proceeding changes may account for some of sleep-wake disturbance which are observed in aged animals as well as elderly humans. PMID:11879811

  7. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices.

    Directory of Open Access Journals (Sweden)

    Ekaterina Novozhilova

    Full Text Available Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN, forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN in the brainstem (BS. Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres were deposited adjacent to or on top of the BS slices or as a monoculture (control. The results demonstrate that co-cultured HNPCs compared to monocultures (1 survive better, (2 distribute over a larger area, (3 to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.

  8. Non-Invasive Mapping of Human Trigeminal Brainstem Pathways

    OpenAIRE

    Upadhyay, Jaymin; Knudsen, Jamie; ANDERSON, Julie; Becerra, Lino; Borsook, David

    2008-01-01

    The human trigeminal system mediates facial pain and somatosensory processing. The anatomic location of neuronal substrates and axonal pathways of the trigeminal system have previously been characterized with conventional in vitro methods. The present investigation implemented diffusion tensor imaging (DTI) and probabilistic tractography to first segment the peripheral trigeminal circuitry; trigeminal nerve branches (ophthalmic, maxillary and mandibular nerves), ganglion and nerve root. Subse...

  9. Increased GABAergic Efficacy of Central Amygdala Projections to Neuropeptide S Neurons in the Brainstem During Fear Memory Retrieval.

    Science.gov (United States)

    Jüngling, Kay; Lange, Maren D; Szkudlarek, Hanna J; Lesting, Jörg; Erdmann, Frank S; Doengi, Michael; Kügler, Sebastian; Pape, Hans-Christian

    2015-11-01

    The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS neurons. We conclude that CeL and CeM neurons inhibit NPS neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping. PMID:25936641

  10. The Impact of Maternal Smoking on Fast Auditory Brainstem Responses

    OpenAIRE

    Kable, Julie A.; Coles, Claire D.; Lynch, Mary Ellen; Carroll, Julie

    2009-01-01

    Deficits in auditory processing have been posited as one of the underlying neurodevelopmental consequences of maternal smoking during pregnancy that leads to later language and reading deficits. Fast auditory brainstem responses were used to assess differences in the sensory processing of auditory stimuli among infants with varying degrees of prenatal cigarette exposure. Maternal report of consumption of cigarettes and blood samples were collected in the hospital to assess exposure levels and...

  11. Adaptive hypofractionated gamma knife radiosurgery for a large brainstem metastasis

    OpenAIRE

    Georges Sinclair; Jiri Bartek; Heather Martin; Pierre Barsoum; Ernest Dodoo

    2016-01-01

    Background: To demonstrate how adaptive hypofractionated radiosurgery by gamma knife (GK) can be successfully utilized to treat a large brainstem metastasis - a novel approach to a challenging clinical situation. Case Description: A 42-year-old woman, diagnosed with metastatic nonsmall cell lung cancer in July 2011, initially treated with chemotherapy and tyrosine kinase inhibitors, developed multiple brain metastases March 2013, with subsequent whole brain radiotherapy , after which a ma...

  12. Automatic hearing loss detection system based on auditory brainstem response

    Science.gov (United States)

    Aldonate, J.; Mercuri, C.; Reta, J.; Biurrun, J.; Bonell, C.; Gentiletti, G.; Escobar, S.; Acevedo, R.

    2007-11-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  13. Automatic hearing loss detection system based on auditory brainstem response

    International Nuclear Information System (INIS)

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory

  14. Functional imaging of the human brainstem during somatosensory input and autonomic output

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2013-09-01

    Full Text Available Over the past half a century, many experimental animal investigations have explored the role of various brainstem regions in a variety of conditions. Despite the accumulation of a considerable body of knowledge in primarily anaesthetized preparations, relatively few investigations have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images, has resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including during cutaneous and muscle pain, as well as during challenges that evoke increases in sympathetic activity. More recently we have successfully recorded sympathetic nerve activity concurrently with fMRI of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many conditions will involve changes in brainstem function and structure, defining brainstem changes will likely result in a greater ability to develop more effective treatment regimes.

  15. Brainstem evaluation in children with primary nocturnal enuresis.

    Directory of Open Access Journals (Sweden)

    Unal M

    2004-02-01

    Full Text Available We investigated the brainstem integrity in children with primary nocturnal enuresis (PNE using auditory brainstem responses (ABR, blink reflex and exteroceptive suppression of the masseter muscle. We examined 23 children with PNE (16 male, 7 female; mean age: 10.4 years and 19 control subjects (11 male, 8 female; mean age: 11.8 years. ABR parameters such as wave latencies, amplitudes and interpeak latencies and blink reflex parameters such as R1 and R2 amplitude and latencies were not significantly different between the 2 groups. Although S2 parameters of the exteroceptive suppression of the masseter muscle were easily and completely obtained from the control subjects, in the PNE group S2 onset latency and duration were not recorded in 26% of the study children (n = 6 (P = 0.01. S2 duration time was significantly lowered in the enuretic group (left side: P = 0.001 and right side: P = 0.003. S2 duration time changes in the enuretic group supports a possible brainstem dysfunction in children with PNE.

  16. Tongguan Liqiao acupuncture therapy improves dysphagia after brainstem stroke.

    Science.gov (United States)

    Zhang, Chun-Hong; Bian, Jin-Ling; Meng, Zhi-Hong; Meng, Li-Na; Ren, Xue-Song; Wang, Zhi-Lin; Guo, Xiao-Yan; Shi, Xue-Min

    2016-02-01

    Tongguan Liqiao acupuncture therapy has been shown to effectively treat dysphagia after stroke-based pseudobulbar paralysis. We presumed that this therapy would be effective for dysphagia after bulbar paralysis in patients with brainstem infarction. Sixty-four patients with dysphagia following brainstem infarction were recruited and divided into a medulla oblongata infarction group (n = 22), a midbrain and pons infarction group (n = 16), and a multiple cerebral infarction group (n = 26) according to their magnetic resonance imaging results. All patients received Tongguan Liqiao acupuncture for 28 days. The main acupoints were Neiguan (PC6), Renzhong (DU26), Sanyinjiao (SP6), Fengchi (GB20), Wangu (GB12), and Yifeng (SJ17). Furthermore, the posterior pharyngeal wall was pricked. Before and after treatment, patient swallowing functions were evaluated with the Kubota Water Test, Fujishima Ichiro Rating Scale, and the Standard Swallowing Assessment. The Barthel Index was also used to evaluate their quality of life. Results showed that after 28 days of treatment, scores on the Kubota Water Test and Standard Swallowing Assessment had decreased, but scores on the Fujishima Ichiro Rating Scale and Barthel Index had increased in each group. The total efficacy rate was 92.2% after treatment, and was most obvious in patients with medulla oblongata infarction (95.9%). These findings suggest that Tongguan Liqiao acupuncture therapy can repair the connection of upper motor neurons to the medulla oblongata motor nucleus, promote the recovery of brainstem infarction, and improve patient's swallowing ability and quality of life. PMID:27073382

  17. From Fibonacci to the mathematics of cows and quantum circuitry

    International Nuclear Information System (INIS)

    The Fibonacci sequence is a famously well-known integer sequence from the thirteenth century which has transcended its original motivation. It possesses many interested and varied applications within architecture, engineering and science. Less well known is the Narayana sequence which itself has interesting and wide-ranging Fibonacci-type connections. In this paper, we shall recall Narayana's original motivation that gives rise to the sequence bearing his name. We also provide an interesting application of this sequence to the construction to quantum gate circuitry used in quantum computation

  18. Implementing size-optimal discrete neural networks require analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  19. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    Science.gov (United States)

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. PMID:26721952

  20. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... low power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power...

  1. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model

    Directory of Open Access Journals (Sweden)

    Hideo Hagihara

    2016-03-01

    Full Text Available Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day cyclic activity levels in αCaMKII (Camk2a mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA. Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain.

  2. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model.

    Science.gov (United States)

    Hagihara, Hideo; Horikawa, Tomoyasu; Nakamura, Hironori K; Umemori, Juzoh; Shoji, Hirotaka; Kamitani, Yukiyasu; Miyakawa, Tsuyoshi

    2016-03-29

    Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA). Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain. PMID:27028761

  3. A rabbit model of graded primary mechanical injury to brainstem

    Institute of Scientific and Technical Information of China (English)

    YU Yong-min; WANG Xiao-wei; XUE Hai-bin; XIA Peng; LI Hong-wei; DAI Guo-xin; JI Xiao-yuan; ZHAO Hui; YIN Zhi-yong

    2012-01-01

    Objective:To introduce a new animal model of graded mechanical primary brainstem injury (BSI).Methods:Altogether 45 rabbits were subjected to BSI by type Ⅱ biological impact machine designed by the Third Military Medical University.The animals were divided into 4 experimental groups (n=10) and 1 control group (n=5) according to different magnitudes of impact pressure imposed on the occipital nodule:Group 1,500-520 kPa; Group 2,520-540 kPa; Group 3,540-560 kPa; Group 4,560-580 kPa and Group 5,0 kPa with 20 kPa increase in each grade.The impact depth was a constant 0.5 cm.After injury,the clinical symptoms and signs as well as pathological changes were observed.Results:Rabbits in Group 1 revealed mild physiological reaction of BSI.They had localized cerebral contusion with punctate hemorrhage and subarachnoid hemorrhage (SAH) was limited to the peripheral tissues at the impact area.In Group 2,obvious physiological reaction was observed.Local pathological lesions reached the superficial layer ofbrainstem tissues; focal hemorrhage and girdleshaped SAH in basilar pon were observed under microscope.In Group 3,BSI was more severe with a long respiratory depression.Pathological lesions reached the inner portion of brainstem with massive hemorrhage and the whole brainstem was wrapped by subarachnoid hematoma.In Group 4,most rabbits died due to severe BSI.Pathological lesions deepened to the central brainstem with wide pathological change,rapture of the medulla oblongata central canal.Group 5 was the control group,with normal brainstem structure and no lesion observed.Conclusion:This model successfully simulates different levels ofbrainstem mechanical injury and clearly shows the subsequent pathological changes following injury.It takes two external parameters (impact pressure and depth) and has a similar injury mechanism to clinical accelerating BSI.Moreover it is reproducible and stable,thus being beneficial for exploring pathophysiological mechanism,diagnosis and

  4. Advanced Data Acquisition Systems with Self-Healing Circuitry

    Science.gov (United States)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  5. Microglia disrupt mesolimbic reward circuitry in chronic pain.

    Science.gov (United States)

    Taylor, Anna M W; Castonguay, Annie; Taylor, Alison J; Murphy, Niall P; Ghogha, Atefeh; Cook, Christopher; Xue, Lihua; Olmstead, Mary C; De Koninck, Yves; Evans, Christopher J; Cahill, Catherine M

    2015-06-01

    Chronic pain attenuates midbrain dopamine (DA) transmission, as evidenced by a decrease in opioid-evoked DA release in the ventral striatum, suggesting that the occurrence of chronic pain impairs reward-related behaviors. However, mechanisms by which pain modifies DA transmission remain elusive. Using in vivo microdialysis and microinjection of drugs into the mesolimbic DA system, we demonstrate in mice and rats that microglial activation in the VTA compromises not only opioid-evoked release of DA, but also other DA-stimulating drugs, such as cocaine. Our data show that loss of stimulated extracellular DA is due to impaired chloride homeostasis in midbrain GABAergic interneurons. Treatment with minocycline or interfering with BDNF signaling restored chloride transport within these neurons and recovered DA-dependent reward behavior. Our findings demonstrate that a peripheral nerve injury causes activated microglia within reward circuitry that result in disruption of dopaminergic signaling and reward behavior. These results have broad implications that are not restricted to the problem of pain, but are also relevant to affective disorders associated with disruption of reward circuitry. Because chronic pain causes glial activation in areas of the CNS important for mood and affect, our findings may translate to other disorders, including anxiety and depression, that demonstrate high comorbidity with chronic pain. PMID:26041913

  6. Learning to breathe: Habituation of Hering–Breuer inflation reflex emerges with postnatal brainstem maturation

    Science.gov (United States)

    Dutschmann, Mathias; Bautista, Tara G.; Mörschel, Michael; Dick, Thomas E.

    2014-01-01

    The Hering–Breuer (HBR) reflex is considered a major regulatory feedback for the generation and patterning of respiratory activity. While HBR is important in neonates, its significance in adults is controversial. Previous experiments that investigated the plasticity of entrainment of the respiratory rhythm by vagal input demonstrated postnatal changes in HBR plasticity. Here we analyzed postnatal changes in the plasticity of HBR by mimicking the classic lung inflation tests with repetitive tonic vagal stimulation across different postnatal stages in an in situ perfused brainstem preparation of rat. The study shows that neonates stereotypically exhibit HBR stimulus-dependent prolongation of expiration while juvenile preparations (>postnatal day 16) showed significant habituation of HBR following repetitive stimulation. Subsequent experiments employing physiological lung inflation tests in situ confirmed HBR habituation in juveniles. We conclude that postnatal emergence of HBR habituation explains the weak contribution and high activation threshold of HBR in the regulation of eupnea. PMID:24566392

  7. Learning to breathe: habituation of Hering-Breuer inflation reflex emerges with postnatal brainstem maturation.

    Science.gov (United States)

    Dutschmann, Mathias; Bautista, Tara G; Mörschel, Michael; Dick, Thomas E

    2014-05-01

    The Hering-Breuer (HBR) reflex is considered a major regulatory feedback for the generation and patterning of respiratory activity. While HBR is important in neonates, its significance in adults is controversial. Previous experiments that investigated the plasticity of entrainment of the respiratory rhythm by vagal input demonstrated postnatal changes in HBR plasticity. Here we analyzed postnatal changes in the plasticity of HBR by mimicking the classic lung inflation tests with repetitive tonic vagal stimulation across different postnatal stages in an in situ perfused brainstem preparation of rat. The study shows that neonates stereotypically exhibit HBR stimulus-dependent prolongation of expiration while juvenile preparations (>postnatal day 16) showed significant habituation of HBR following repetitive stimulation. Subsequent experiments employing physiological lung inflation tests in situ confirmed HBR habituation in juveniles. We conclude that postnatal emergence of HBR habituation explains the weak contribution and high activation threshold of HBR in the regulation of eupnea. PMID:24566392

  8. [Involvement and plasticity of brainstem cholinergic neurons in cocaine-induced addiction].

    Science.gov (United States)

    Kaneda, Katsuyuki; Shinohara, Fumiya; Kurosawa, Ryo; Taoka, Naofumi; Ide, Soichiro; Minami, Masabumi

    2014-04-01

    Although the involvement and plasticity of the mesocorticolimbic dopamine (DA) system in cocaine-induced addiction have been studied extensively, the role of the brainstem cholinergic system in cocaine addiction remains largely unexplored. The laterodorsal tegmental nucleus (LDT) contains cholinergic neurons that innervate the ventral tegmental area (VTA) and is crucial for regulating the activity of VTA DA neurons, implying that LDT may also be associated with cocaine addiction. In this review, we summarize our recent findings showing that cholinergic transmission from the LDT to the VTA is involved in acquisition and expression of cocaine-induced conditioned place preference and that, after repeated cocaine exposures, these neurons exhibit synaptic plasticity, which is dependent on NMDA receptor activation, nitric oxide production, and the activity of medial prefrontal cortex. The findings strongly suggest that LDT cholinergic neurons may critically contribute to developing cocaine-induced addiction. PMID:24946392

  9. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Science.gov (United States)

    Sharma, Anil Kumar; Savardekar, Amey R.; Nandeesh, B. N.; Arivazhagan, A.; Rao, Malla Bhaskar

    2016-01-01

    Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma. PMID:27114669

  10. Intrinsic brainstem schwannoma - A rare clinical entity and a histological enigma.

    Science.gov (United States)

    Sharma, Anil Kumar; Savardekar, Amey R; Nandeesh, B N; Arivazhagan, A; Rao, Malla Bhaskar

    2016-01-01

    Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma. PMID:27114669

  11. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sharma

    2016-01-01

    Full Text Available Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma.

  12. SPARCL1-containing neurons in the human brainstem and sensory ganglion.

    Science.gov (United States)

    Hashimoto, Naoya; Sato, Tadasu; Yajima, Takehiro; Fujita, Masatoshi; Sato, Ayumi; Shimizu, Yoshinaka; Shimada, Yusuke; Shoji, Noriaki; Sasano, Takashi; Ichikawa, Hiroyuki

    2016-06-01

    Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean ± SD, 39.9 ± 2.4%) was higher than in the DRG (30.6 ± 2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean ± SD, 1494.5 ± 708.3 μm(2); range, 320.4-4353.4 μm(2)) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean ± SD, 1291.2 ± 532.8 μm(2); range, 209.3-4326.4 μm(2)). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems. PMID:27357901

  13. Focusing on optic tectum circuitry through the lens of genetics

    Directory of Open Access Journals (Sweden)

    Nevin Linda M

    2010-09-01

    Full Text Available Abstract The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.

  14. New materials strategies for creating hybrid electronic circuitry (Presentation Video)

    Science.gov (United States)

    Marks, Tobin J.

    2013-09-01

    This lecture focuses on the challenging design and realization of new materials for creating unconventional electronic circuitry. Fabrication methodologies to achieve these goals include high-throughput, large-area printing techniques. Materials design topics to be discussed include: 1. Rationally designed high-mobility p- and n-type organic semiconductors for printed organic CMOS, 2. Polycrystalline and amorphous oxide semiconductors for transparent and mechanically flexible electronics, 3) Self-assembled and printable high-k nanodielectrics enabling ultra-large capacitance, low leakage, high breakdown fields, minimal trapped interfacial charge, and device radiation hardness. 4) Combining these materials sets to fabricate a variety of high-performance thin-film transistor-based devices.

  15. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists.

    Science.gov (United States)

    Abdala, Ana P; Bissonnette, John M; Newman-Tancredi, Adrian

    2014-01-01

    Rett syndrome is a neurological disorder caused by loss of function of methyl-CpG-binding protein 2 (MeCP2). Reduced function of this ubiquitous transcriptional regulator has a devastating effect on the central nervous system. One of the most severe and life-threatening presentations of this syndrome is brainstem dysfunction, which results in autonomic disturbances such as breathing deficits, typified by episodes of breathing cessation intercalated with episodes of hyperventilation or irregular breathing. Defects in numerous neurotransmitter systems have been observed in Rett syndrome both in animal models and patients. Here we dedicate special attention to serotonin due to its role in promoting regular breathing, increasing vagal tone, regulating mood, alleviating Parkinsonian-like symptoms and potential for therapeutic translation. A promising new symptomatic strategy currently focuses on regulation of serotonergic function using highly selective serotonin type 1A (5-HT1A) "biased agonists." We address this newly emerging therapy for respiratory brainstem dysfunction and challenges for translation with a holistic perspective of Rett syndrome, considering potential mood and motor effects. PMID:24910619

  16. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  17. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Barnden, Leighton R; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  18. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    Science.gov (United States)

    Barnden, Leighton R.; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  19. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Leighton R. Barnden

    2016-01-01

    Full Text Available Autonomic changes are often associated with the chronic fatigue syndrome (CFS, but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP and heart rate (HR. In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w brain MRI in 25 CFS subjects and 25 normal controls (NC. Steady state BP (systolic, diastolic and pulse pressure and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1 MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS, and (2 MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D. Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015. Strong correlations were also detected in isolated NC regressions.

  20. Transcerebellar stereotactic biopsy for brainstem lesions in children

    Directory of Open Access Journals (Sweden)

    Purav Patel

    2009-01-01

    Full Text Available Brain stem lesions are pathologically heterogeneous. Pre-operative radiological diagnoses prove to be wrong in 10 to 20% of cases. It is therefore imperative to have a tissue diagnosis for appropriate therapeutic measures. We report a series of 24 patients (14 males, ten females, age range: 6-17 years CT guided stereotactic biopsy for brain stem lesions approached via the suboccipital transcerebellar route in semi sitting position with principle used to violate only one pial plane with the biopsy probe not entering the ventral surface of the cerebellum. The inclusion and exclusion criteria with detailed material and method are discussed. Histological diagnosis was established in 23 patients (96% with no procedure-related mortality. Our results indicate that stereotaxic approach to brain-stem lesions provides a high yield of positive histological diagnoses with a low incidence of morbidity. Awake CT-guided stereotactic biopsy via the suboccipital transcerebellar route in a semi-sitting position is a safe, reliable, and effective method for brainstem lesions that can obtain adequate tissue for histological diagnosis, thus providing each patient with the best available treatment.

  1. A case of Bickerstaff's brainstem encephalitis in childhood

    Directory of Open Access Journals (Sweden)

    Ji Youn Kim

    2010-04-01

    Full Text Available Bickerstaff's brainstem encephalitis (BBE is a rare disease diagnosed by specific clinical features such as 'progressive, relatively symmetric external ophthalmoplegia and ataxia by 4 weeks' and 'disturbance of consciousness or hyperreflexia' after the exclusion of other diseases involving the brain stem. Anti-ganglioside antibodies (GM, GD and GQ in the serum or cerebrospinal fluid (CSF are sometimes informative for the diagnosis of BBE because of the rarity of positive findings in other diagnositic methods: brain magnetic resonance imaging (MRI, routine CSF examination, motor nerve conduction study, and needle electromyography. We report a rare case of childhood BBE with elevated anti-GM1 antibodies in the serum, who had specific clinical symptoms such as a cranial polyneuropathy presenting as ophthalmoplegia, dysarthria, dysphagia, and facial weakness; progressive motor weakness; altered mental status; and ataxia. However, the brain MRI, routine CSF examination, nerve conduction studies, electromyography, somatosensory evoked potentials, and brainstem auditory evoked potentials were normal. BBE was suspected and the patient was successfully treated with intravenous immunoglobulins.

  2. Brainstem auditory evoked potential abnormalities in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2013-01-01

    Full Text Available Background: Diabetes mellitus represents a syndrome complex in which multiple organ systems, including the central nervous system, are affected. Aim: The study was conducted to determine the changes in the brainstem auditory evoked potentials in type 2 diabetes mellitus. Materials and Methods: A cross sectional study was conducted on 126 diabetic males, aged 35-50 years, and 106 age-matched, healthy male volunteers. Brainstem auditory evoked potentials were recorded and the results were analyzed statistically using student′s unpaired t-test. The data consisted of wave latencies I, II, III, IV, V and interpeak latencies I-III, III-V and I-V, separately for both ears. Results: The latency of wave IV was significantly delayed only in the right ear, while the latency of waves III, V and interpeak latencies III-V, I-V showed a significant delay bilaterally in diabetic males. However, no significant difference was found between diabetic and control subjects as regards to the latency of wave IV unilaterally in the left ear and the latencies of waves I, II and interpeak latency I-III bilaterally. Conclusion: Diabetes patients have an early involvement of central auditory pathway, which can be detected with fair accuracy with auditory evoked potential studies.

  3. Mapping the Brain’s Metaphor Circuitry:Is Abstract Thought Metaphorical Thought?

    OpenAIRE

    George eLakoff

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.

  4. Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations.

    Science.gov (United States)

    Párraga, Richard Gonzalo; Possatti, Lucas Loss; Alves, Raphael Vicente; Ribas, Guilherme Carvalhal; Türe, Uğur; de Oliveira, Evandro

    2016-05-01

    OBJECT Brainstem surgery remains a challenge for the neurosurgeon despite recent improvements in neuroimaging, microsurgical techniques, and electrophysiological monitoring. A detailed knowledge of the microsurgical anatomy of the brainstem surface and its internal architecture is mandatory to plan appropriate approaches to the brainstem, to choose the safest point of entry, and to avoid potential surgical complications. METHODS An extensive review of the literature was performed regarding the brainstem surgical approaches, and their correlations with the pertinent anatomy were studied and illustrated through dissection of human brainstems properly fixed with 10% formalin. The specimens were dissected using the fiber dissection technique, under ×6 to ×40 magnification. 3D stereoscopic photographs were obtained (anaglyphic 3D) for better illustration of this study. RESULTS The main surgical landmarks and their relationship with the cerebellum and vascular structures were identified on the surface of the brainstem. The arrangements of the white matter (ascending and descending pathways as well as the cerebellar peduncles) were demonstrated on each part of the brainstem (midbrain, pons, and medulla oblongata), with emphasis on their relationships with the surface. The gray matter, constituted mainly by nuclei of the cranial nerves, was also studied and illustrated. CONCLUSIONS The objective of this article is to review the microsurgical anatomy and the surgical approaches pertinent to the brainstem, providing a framework of its external and internal architecture to guide the neurosurgeon during its related surgical procedures. PMID:26517774

  5. Endoscopic approaches to brainstem cavernous malformations: Case series and review of the literature

    Directory of Open Access Journals (Sweden)

    Nikhil R Nayak

    2015-01-01

    Conclusion: The endoscope is a promising adjunct to the neurosurgeon′s ability to approach difficult to access brainstem cavernous malformations. It allows the surgeon to achieve well-illuminated, panoramic views, and by combining approaches, can provide minimally invasive access to most regions of the brainstem.

  6. Effects of Hyperbilirubinemia on Auditory Brainstem Response of Neonates Treated with Phototherapy

    Directory of Open Access Journals (Sweden)

    Negin Salehi

    2016-01-01

    Conclusion:  The results of this study underline the importance of the Auditory Brainstem Response Test as an efficient tool for monitoring the auditory brainstem pathway in neonates who are at risk of neurotoxicity and for diagnosing the earliest stages of auditory damage caused by high levels of bilirubin.

  7. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  8. Tractography of the brainstem in major depressive disorder using diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yun Ju C Song

    Full Text Available BACKGROUND: The brainstem is the main region that innervates neurotransmitter release to the Hypothalamic-Pituitary Adrenal (HPA axis and fronto-limbic circuits, two key brain circuits found to be dysfunctional in Major Depressive Disorder (MDD. However, the brainstem's role in MDD has only been evaluated in limited reports. Using Diffusion Tensor Imaging (DTI, we investigated whether major brainstem white matter tracts that relate to these two circuits differ in MDD patients compared to healthy controls. METHODS: MDD patients (n = 95 and age- and gender-matched controls (n = 34 were assessed using probabilistic tractography of DTI to delineate three distinct brainstem tracts: the nigrostriatal tract (connecting brainstem to striatum, solitary tract (connecting brainstem to amygdala and corticospinal tract (connecting brainstem to precentral cortex. Fractional anisotropy (FA was used to measure the white matter integrity of these tracts, and measures were compared between MDD and control participants. RESULTS: MDD participants were characterized by a significant and specific decrease in white matter integrity of the right solitary tract (p<0.009 using independent t-test, which is a "bottom up" afferent pathway that connects the brainstem to the amygdala. This decrease was not related to symptom severity. CONCLUSIONS: The results provide new evidence to suggest that structural connectivity between the brainstem and the amygdala is altered in MDD. These results are interesting in light of predominant theories regarding amygdala-mediated emotional reactivity observed in functional imaging studies of MDD. The characterization of altered white matter integrity in the solitary tract in MDD supports the possibility of dysfunctional brainstem-amygdala connectivity impacting vulnerable circuits in MDD.

  9. Vagal nerve stimulation attenuates IL-6 and TNFα expression in respiratory regions of the developing rat brainstem.

    Science.gov (United States)

    Johnson, Rhaya L; Murray, Samuel T; Camacho, David K; Wilson, Christopher G

    2016-07-15

    Pre-term infants are at greater risk for systemic infection due to an underdeveloped immune system. Airway infection results in immune up-regulation of early pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) in the brainstem. Current treatment for neonatal infection involves antibiotic administration. We previously showed that LPS injected into the trachea of neonatal rats causes changes in breathing and in IL-1β expression in the nucleus tractus solitarii (NTS) and hypoglossal motor nucleus (XII). We hypothesize that lipopolysaccharide (LPS) instilled in the trachea also causes the up-regulation of IL-6 and TNFα in the brainstem autonomic control regions. To test this hypothesis we injected LPS into the trachea of rat pups (postnatal ages 10-12days) and then assessed changes in IL-6 and TNFα. Vagal nerve stimulation has been used in the treatment of many inflammatory disorders, including sepsis. Our experiments show that VNS attenuates the upregulation of IL-6 and TNFα caused by LPS and may be a viable alternative to antibiotics. PMID:27049312

  10. A computational framework for ultrastructural mapping of neural circuitry.

    Directory of Open Access Journals (Sweden)

    James R Anderson

    2009-03-01

    Full Text Available Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM, mosaicking and registration (ir-tools, and large slice viewers (MosaicBuilder, Viking can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina, terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally

  11. The impact of severity of hypertension on auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Gurdev Lal Goyal

    2014-07-01

    Full Text Available Background: Auditory brainstem response is an objective electrophysiological method for assessing the auditory pathways from the auditory nerve to the brainstem. The aim of this study was to correlate and to assess the degree of involvement of peripheral and central regions of brainstem auditory pathways with increasing severity of hypertension, among the patients of essential hypertension. Method: This study was conducted on 50 healthy age and sex matched controls (Group I and 50 hypertensive patients (Group II. Later group was further sub-divided into - Group IIa (Grade 1 hypertension, Group IIb (Grade 2 hypertension, and Group IIc (Grade 3 hypertension, as per WHO guidelines. These responses/potentials were recorded by using electroencephalogram electrodes on a root-mean-square electromyography, EP MARC II (PC-based machine and data were statistically compared between the various groups by way of one-way ANOVA. The parameters used for analysis were the absolute latencies of Waves I through V, interpeak latencies (IPLs and amplitude ratio of Wave V/I. Result: The absolute latency of Wave I was observed to be significantly increased in Group IIa and IIb hypertensives, while Wave V absolute latency was highly significantly prolonged among Group IIb and IIc, as compared to that of normal control group. All the hypertensives, that is, Group IIa, IIb, and IIc patients were found to have highly significant prolonged III-V IPL as compared to that of normal healthy controls. Further, intergroup comparison among hypertensive patients revealed a significant prolongation of Wave V absolute latency and III-V IPL in Group IIb and IIc patients as compared to Group IIa patients. These findings suggest a sensory deficit along with synaptic delays, across the auditory pathways in all the hypertensives, the deficit being more markedly affecting the auditory processing time at pons to midbrain (IPL III-V region of auditory pathways among Grade 2 and 3

  12. The brainstem efferent acoustic chiasm in pigmented and albino rats.

    Science.gov (United States)

    Reuss, Stefan; Closhen-Gabrisch, Stefanie; Closhen, Christina

    2016-02-01

    The present study examined whether structural peculiarities in the brain-efferent pathway to the organ of Corti may underlie functional differences in hearing between pigmented and albino individuals of the same mammalian species. Pigmented Brown-Norway rats and albino Wistar rats received unilateral injections of an aqueous solution of the retrograde neuronal tracer Fluorogold (FG) into the scala tympani of the cochlea to identify olivocochlear neurons (OCN) in the brainstem superior olivary complex. After five days, brains were perfusion-fixed and brainstem sections were cut and analyzed with respect to retrogradely labeled neurons. Intrinsic neurons of the lateral system were located exclusively in the ipsilateral lateral superior olive (LSO) in both groups. Shell neurons surrounding the LSO and in periolivary regions, which made up only 5-8% of all OCN, were more often contralaterally located in albino than in pigmented animals. A striking difference was observed in the laterality of neurons of the medial olivocochlear (MOC) system, which provided more than one third of all OCN. These neurons, located in the rostral periolivary region and in the ventral nucleus of the trapezoid body, were observed contralateral to 45% in pigmented and to 68% in albino animals. Our study, the first to compare the origin of the olivocochlear bundle in pigmented and albino rats, provides evidence for differences in the crossing pattern of the olivocochlear pathway. These were found predominantly in the MOC system providing the direct efferent innervation of cochlear outer hair cells. Our findings may account for the alterations in auditory perception observed in albino mammals including man. PMID:26657095

  13. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies

    Science.gov (United States)

    Kay, Seidel; Josefine, Mahlke; Siswanto, Sonny; Reijko, Krüger; Helmut, Heinsen; Georg, Auburger; Mohamed, Bouzrou; Grinberg, LT; Helmut, Wicht; Horst-Werner, Korf; Wilfred, den Dunnen; Udo, Rüb

    2015-01-01

    Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are among the human synucleinopathies, which share the neuropathological features of alpha-synuclein immunoreactive neuronal and/or glial aggregations, as well as progressive neuronal loss in select brain regions (e.g. dopaminergic substantia nigra and ventral tegmental area, cholinergic pedunculopontine nucleus). Despite a number of studies about brainstem pathologies in PD and DLB, there is currently no detailed information available regarding the presence of alpha-synuclein immunoreactive inclusions (a) in the cranial nerve, precerebellar, vestibular and oculomotor brainstem nuclei and (b) in brainstem fiber tracts and oligodendroctyes. Therefore, we performed a detailed analysis of the alpha-synuclein immunoreactive inclusion pathologies in the brainstem nuclei (Lewy bodies, LB; Lewy neurites, LN; coiled bodies, CB) and fiber tracts (LN, CB) of clinically diagnosed and neuropathologically confirmed PD and DLB patients. As also reported in previous studies, LB and LN were most prevalent in the substantia nigra, ventral tegmental area, pedunculopontine and raphe nuclei, periaqueductal gray, locus coeruleus, parabrachial nuclei, reticular formation, prepositus hypoglossal, dorsal motor vagal, and solitary nuclei. However, we for the first time demonstrated LB and LN in all cranial nerve nuclei, premotor oculomotor, precerebellar and vestibular brainstem nuclei, as well as LN in all brainstem fiber tracts. CB were present in nearly all brainstem nuclei and brainstem fiber tracts containing LB and/or LN. These novel brainstem findings can account for or contribute to a large variety of less well-explained PD and DLB symptoms (e.g. gait and postural instability, impaired balance and postural reflexes, falls, ingestive and oculomotor dysfunctions), and point to the occurrence of disturbances of intra-axonal transport processes and a transneuronal spread of the underlying pathological processes of PD and

  14. Smoking Increases Risk of Pain Chronification Through Shared Corticostriatal Circuitry

    Science.gov (United States)

    Petre, Bogdan; Torbey, Souraya; Griffith, James W.; De Oliveira, Gildasio; Herrmann, Kristine; Mansour, Ali; Baria, Alex T.; Baliki, Marwan N.; Schnitzer, Thomas J.; Apkarian, Apkar Vania

    2016-01-01

    Smoking is associated with increased incidence of chronic pain. However, the evidence is cross-sectional in nature, and underlying mechanisms remain unclear. In a longitudinal observational study, we examined the relationship between smoking, transition to chronic pain, and brain physiology. In 160 subjects with subacute back pain (SBP: back pain lasting 4–12 weeks, and no prior back pain [BP] for at least 1 year) pain characteristics, smoking status, and brain functional properties were measured repeatedly over 1 year. Sixty-eight completed the study, subdivided into recovering (SBPr, n = 31) and persisting (SBPp, n = 37), based on >20% decrease in BP over the year. Thirty-two chronic back pain (CBP: duration > 5 years) and 35 healthy controls were similarly monitored. Smoking prevalence was higher in SBP and CBP but not related to intensity of BP. In SBP, smoking status at baseline was predictive of persistence of BP 1 year from symptom onset (differentiating SBPp and SBPr with 0.62 accuracy). Smoking status combined with affective properties of pain and medication use improved prediction accuracy (0.82). Mediation analysis indicated the prediction of BP persistence by smoking was largely due to synchrony of fMRI activity between two brain areas (nucleus accumbens and medial prefrontal cortex, NAc-mPFC). In SBP or CBP who ceased smoking strength of NAc-mPFC decreased from precessation to postcessation of smoking. We conclude that smoking increases risk of transitioning to CBP, an effect mediated by corticostriatal circuitry involved in addictive behavior and motivated learning. PMID:25307796

  15. Altered reward circuitry in the norepinephrine transporter knockout mouse.

    Directory of Open Access Journals (Sweden)

    Joseph J Gallagher

    Full Text Available Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET, using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT knockout mouse, but dissimilar from work with serotonin transporter (SERT knockout mice where Mn(2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely

  16. Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries

    Directory of Open Access Journals (Sweden)

    Giorgio eScita

    2015-02-01

    Full Text Available The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and posttranslational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among them, loss of cell polarity represents the nearly invariable feature of EMT that precedes the other traits or might even occur in their absence.Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and – unexpectedly – membrane trafficking. These results have highlighted a picture of great complexity. First the EMT transition is not an all-or-none response but rather a gradual process. Second EMT events are dynamic and frequently reversible, involving cell-autonomous and non-autonomous mechanisms. Endocytic circuitries have emerged as complex connectivity infrastructures for cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling certain aspects of EMT. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to microenvironmental cues, ultimately impacting on physiological and pathological processes

  17. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation.

    Science.gov (United States)

    Gili, Tommaso; Saxena, Neeraj; Diukova, Ana; Murphy, Kevin; Hall, Judith E; Wise, Richard G

    2013-02-27

    Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered consciousness. We investigated the effects of propofol, at a dose that produced mild sedation without loss of consciousness, on spontaneous cerebral activity of 15 healthy volunteers using functional magnetic resonance imaging (fMRI), exploiting oscillations (data as a graph, or complex network of nodes and links, and used eigenvector centrality (EC) to characterize brain network properties. The EC mapping of fMRI data in healthy humans under propofol mild sedation demonstrated a decrease of centrality of the thalamus versus an increase of centrality within the pons of the brainstem, highlighting the important role of these two structures in regulating consciousness. Specifically, the decrease of thalamus centrality results from its disconnection from a widespread set of cortical and subcortical regions, while the increase of brainstem centrality may be a consequence of its increased influence, in the mildly sedated state, over a few highly central cortical regions key to the default mode network such as the posterior and anterior cingulate cortices. PMID:23447611

  18. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Russ

    2013-09-01

    Full Text Available During perinatal development, corticospinal tract (CST projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65. In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of descending spinal pathways, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.

  19. THE NEURAL CIRCUITRY UNDERLYING REINSTATEMENT OF HEROIN-SEEKING BEHAVIOR IN AN ANIMAL MODEL OF RELAPSE

    OpenAIRE

    Rogers, J. L.; GHEE, S.; SEE, R.E.

    2007-01-01

    Reinstatement of extinguished drug-seeking has been utilized in the study of the neural substrates of relapse to drugs of abuse, particularly cocaine. However, limited studies have examined the circuitry that drives the reinstatement of heroin-seeking behavior in the presence of conditioned cues, or by heroin itself. In order to test the hypothesis that the circuitry underlying reinstatement in heroin-experienced animals would show overlapping, yet distinct differences from cocaine-experience...

  20. Mapping of somatostatin-28 (1-12) in the alpaca (Lama pacos) brainstem.

    Science.gov (United States)

    De Souza, Eliana; Sánchez, Manuel Lisardo; Aguilar, Luís Ángel; Díaz-Cabiale, Zaida; Narváez, José Ángel; Coveñas, Rafael

    2015-05-01

    Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin-28 (1-12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin-28 (1-12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin-28 (1-12) is involved in multiple physiological actions in the alpaca brainstem. PMID:25754727

  1. Herpetic brainstem encephalitis: report of a post-mortem case studied electron microscopically and immunohisiochemically

    Directory of Open Access Journals (Sweden)

    José Eymard Homem Pitella

    1987-03-01

    Full Text Available A post-mortem examined case of herpetic brainstem encephalitis is presented. Clinically, the patient had cephalea followed by ataxia, drowsiness and multiple palsies of some cranial nerves, developing into death in eight days. The pathologic examination of the brain showed necrotizing encephalitis in multiple foci limited to the brainstem, more distinctly in the pons and medula oblongata. The technique of immunoperoxidase revealed rare glial cells with intranuclear immunoreactivity for herpes antigen. Rare viral particles with the morphological characteristics of the herpesvirus were identified in the nuclei of neurons in 10% formol fixed material. This is the second reported case of herpetic brainstem encephalitis confirmed by post-mortem examination. The pathway used by the virus to reach the central nervous system and its posterior dissemination to the oral cavity, the orbitofrontal region and the temporal lobes as well as to the brainstem, after a period of latency and reactivation, are discussed.

  2. Studying respiratory rhythm generation in a developing bird: Hatching a new experimental model using the classic in vitro brainstem-spinal cord preparation.

    Science.gov (United States)

    Vincen-Brown, Michael A; Whitesitt, Kaitlyn C; Quick, Forrest G; Pilarski, Jason Q

    2016-04-01

    It has been more than thirty years since the in vitro brainstem-spinal cord preparation was first presented as a method to study automatic breathing behaviors in the neonatal rat. This straightforward preparation has led to an incredible burst of information about the location and coordination of several spontaneously active microcircuits that form the ventrolateral respiratory network of the brainstem. Despite these advances, our knowledge of the mechanisms that regulate central breathing behaviors is still incomplete. Investigations into the nature of spontaneous breathing rhythmicity have almost exclusively focused on mammals, and there is a need for comparative experimental models to evaluate several unresolved issues from a different perspective. With this in mind, we sought to develop a new avian in vitro model with the long term goal to better understand questions associated with the ontogeny of respiratory rhythm generation, neuroplasticity, and whether multiple, independent oscillators drive the major phases of breathing. The fact that birds develop in ovo provides unparalleled access to central neuronal networks throughout the prenatal period - from embryo to hatchling - that are free from confounding interactions with mother. Previous studies using in vitro avian models have been strictly limited to the early embryonic period. Consequently, the details and even the presence of brainstem derived breathing-related rhythmogenesis in birds have never been described. In the present study, we used the altricial zebra finch (Taeniopygia guttata) and show robust spontaneous motor outflow through cranial motor nerve IX, which is first detectable on embryonic day four and continues through prenatal and early postnatal development without interruption. We also show that brainstem oscillations change dramatically over the course of prenatal development, sometimes within hours, which suggests rapid maturational modifications in growth and connectivity. We propose

  3. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  4. Effects of Hyperbilirubinemia on Auditory Brainstem Response of Neonates Treated with Phototherapy

    OpenAIRE

    Salehi, Negin; Bagheri, Fereshte; Ramezani Farkhani, Hamid

    2016-01-01

    Introduction: One of the most common pathologies in neonates is hyperbilirubinemia, which is a good marker for damage to the central nervous system. The sensitivity of the auditory system to bilirubin has been previously documented, with much discrepancy in its effects on Auditory Brainstem Response results. Thus the objective of this study was to evaluate the effects of hyperbilirubinemia on Auditory Brainstem Response of neonates treated with phototherapy. Materials and Methods: Forty-two t...

  5. Brainstem infarction in a patient with internal carotid dissection and persistent trigeminal artery: a case report

    Science.gov (United States)

    2010-01-01

    Background The primitive trigeminal artery (PTA) is the most commonly described fetal anastomosis between the carotid and vertebrobasilar circulations. Case presentation We report a 42-year-old patient presenting with internal carotid dissection, and imaging features of brainstem infarction. Conclusion Based on the imaging studies we presume occlusive carotid dissection with extensive thrombosis within a persistent trigeminal artery as the cause of this brainstem ischemia. PMID:20598138

  6. Brainstem infarction in a patient with internal carotid dissection and persistent trigeminal artery: a case report

    Directory of Open Access Journals (Sweden)

    Iancu Daniela

    2010-07-01

    Full Text Available Abstract Background The primitive trigeminal artery (PTA is the most commonly described fetal anastomosis between the carotid and vertebrobasilar circulations. Case presentation We report a 42-year-old patient presenting with internal carotid dissection, and imaging features of brainstem infarction. Conclusion Based on the imaging studies we presume occlusive carotid dissection with extensive thrombosis within a persistent trigeminal artery as the cause of this brainstem ischemia.

  7. A CASE REPORT OF ISOLATED BRAINSTEM TUBERCULOMA WITHOUT ANY FOCAL NEUOLOGIC DEFICIT

    OpenAIRE

    Ramesh; De Rahul

    2015-01-01

    : A 7 yr. old girl presented with headache and vomitings. Investigations showed brainstem tuberculoma at the level of pons. Isolated presentation of tuberculoma of braistem is rare. In this report, it was aimed to present isolated brainstem tuberculoma without any focal neulogic deficit and other systemic involvement or past or family history of tuberculosis and importance of neuroimaging in diagnosing tuberculoma even in the absence of neulogic defcit.

  8. A CASE REPORT OF ISOLATED BRAINSTEM TUBERCULOMA WITHOUT ANY FOCAL NEUOLOGIC DEFICIT

    Directory of Open Access Journals (Sweden)

    Ramesh

    2015-11-01

    Full Text Available : A 7 yr. old girl presented with headache and vomitings. Investigations showed brainstem tuberculoma at the level of pons. Isolated presentation of tuberculoma of braistem is rare. In this report, it was aimed to present isolated brainstem tuberculoma without any focal neulogic deficit and other systemic involvement or past or family history of tuberculosis and importance of neuroimaging in diagnosing tuberculoma even in the absence of neulogic defcit.

  9. The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Seidel, Kay; Mahlke, Josefine; Siswanto, Sonny; Krüger, Reijko; Heinsen, Helmut; Auburger, Georg; Bouzrou, Mohamed; Grinberg, Lea T; Wicht, Helmut; Korf, Horst-Werner; den Dunnen, Wilfred; Rüb, Udo

    2015-03-01

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are among the human synucleinopathies, which show alpha-synuclein immunoreactive neuronal and/or glial aggregations and progressive neuronal loss in selected brain regions (eg, substantia nigra, ventral tegmental area, pedunculopontine nucleus). Despite several studies about brainstem pathologies in PD and DLB, there is currently no detailed information available regarding the presence of alpha-synuclein immunoreactive inclusions (i) in the cranial nerve, precerebellar, vestibular and oculomotor brainstem nuclei and (ii) in brainstem fiber tracts and oligodendroctyes. Therefore, we analyzed the inclusion pathologies in the brainstem nuclei (Lewy bodies, LB; Lewy neurites, LN; coiled bodies, CB) and fiber tracts (LN, CB) of PD and DLB patients. As reported in previous studies, LB and LN were most prevalent in the substantia nigra, ventral tegmental area, pedunculopontine and raphe nuclei, periaqueductal gray, locus coeruleus, parabrachial nuclei, reticular formation, prepositus hypoglossal, dorsal motor vagal and solitary nuclei. Additionally we were able to demonstrate LB and LN in all cranial nerve nuclei, premotor oculomotor, precerebellar and vestibular brainstem nuclei, as well as LN in all brainstem fiber tracts. CB were present in nearly all brainstem nuclei and brainstem fiber tracts containing LB and/or LN. These findings can contribute to a large variety of less well-explained PD and DLB symptoms (eg, gait and postural instability, impaired balance and postural reflexes, falls, ingestive and oculomotor dysfunctions) and point to the occurrence of disturbances of intra-axonal transport processes and transneuronal spread of the underlying pathological processes of PD and DLB along anatomical pathways. PMID:24995389

  10. Cognitive and affective disturbances following focal brainstem lesions: a review and report of three cases.

    Science.gov (United States)

    D'aes, Tine; Mariën, Peter

    2015-06-01

    Although insights in cerebellar neurocognition and affect are continuously growing, little is known about the role of the brainstem in cognitive and behavioural processing. In this paper, it is hypothesized that the brainstem is an inherent functional part of the cerebellocerebral network subserving cognition and affect, and that isolated brainstem damage may cause a constellation of symptoms closely resembling the cerebellar cognitive affective syndrome (CCAS) following cerebellar pathology. In order to investigate these premises, the available literature on cognitive and affective disturbances following brainstem lesions was critically reviewed starting from the pioneer descriptions in the 1950s till June 2012. Three personal cases were added to a study group of 75 cases with isolated vascular brainstem damage. In a cohort of 30 patients that allowed construction of anatomoclinical correlations in a reliable way, a range of cognitive and behavioural symptoms, typically associated with impairment of cortical or limbic areas, were identified. Executive dysfunction, attentional deficits and a decline in general intellectual capacity represent the most common cognitive findings, but memory, visuospatial skills, language and praxis may be impaired as well. Almost half of the cases presented with behavioural or affective changes. Analysis of SPECT findings indicates that functional suppression of frontal, parietal and to a lesser extent also the temporal areas are common phenomena after isolated brainstem stroke. As reflected by diaschisis affecting the cerebellocerebral network, a loss of excitatory input from the brainstem to the cerebellum and cerebrum may induce disruption of several cortical regions as well as emotional control centres resulting in and a constellation of symptoms closely resembling the CCAS. The pathophysiological mechanism underlying brainstem-induced cognitive and affective disturbances is discussed. PMID:25520275

  11. Stroke risk factors prepare rat brainstem tissues for a modified localized Shwartzman reaction

    OpenAIRE

    Hallenbeck, JM; Dutka, AJ; Kochanek, PM; Sirén, Anna-Leena; Pezeskpour, GH; Feuerstein, G

    2011-01-01

    Stroke risk factors such as hypertension, diabetes, advanced age, and genetic predisposition to stroke were demonstrated to prepare rat brainstem tissues for a modified local Shwartzman reaction. A single intracisternal injection of endotoxin provoked the reaction, and affected rats manifested neurologie deficits accompanied by pathologie lesions. Brainstem infarcts developed in only a small proportion of rats without recognized risk factors after intracisternal injection of endotoxin. Thus, ...

  12. Expression and significance of sonic hedgehog signaling pathway-related components in brainstem and supratentorial astrocytomas

    Institute of Scientific and Technical Information of China (English)

    XIN Yu; HAO Shu-yu; TIAN Yong-ji; ZHANG Jun-ting; WU Zhen; WAN Hong; LI Jun-hua; JIANG Jian; ZHANG Li-wei

    2011-01-01

    Background Studies have shown that abnormal activation of the sonic hedgehog pathway is closely related to tumorigenesis in central nervous system.This study aimed to investigate the role of the sonic hedgehog signaling pathway in the occurrence of brainstem and supratentorial glioma.Methods Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of sonic hedgehog-related components in 5 specimens of normal brain tissue,10 of grade Ⅱ brainstem glioma,and 10 of grade Ⅱ supratentorial glioma.The significance of differences between two groups was determined using the Mann-Whitney U test or the two-sample test according to the results of normality distribution tests.Results The mRNA expression levels of sonic hedgehog-related genes were higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue.The level of protein patched homolog 1 (PTCH1) was significantly higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue (P <0.01).Immunohistochemistry semi-quantitative analysis was consistent with the qRT-PCR result that PTCH1 expression was increased significantly in brainstem astrocytomas at the protein level (P <0.05).Conclusions Enhanced PTCH1 expression and activation of the sonic hedgehog pathway are involved in brainstem glioma.This may be related to the difference in malignant biological behavior between brainstem and hemispheric glioma,and could be an ideal therapeutic target in brainstem glioma.

  13. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    Science.gov (United States)

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  14. Analysis of diffuse brain injury with primary brainstem lesion on MRI

    International Nuclear Information System (INIS)

    It has been reported that diffuse brain injury patients with primary brainstem lesions have a poor prognosis. Predicting the existence of brainstem injury at hospital arrival is problematic in actual clinical practice. We conducted magnetic resonance imaging (MRI), to visualize brainstem lesions clearly, and retrospectively analyzed predictive factors of brainstem lesions by stepwise multiple logistic regression analysis of patient characteristics, neurological findings, laboratory data, and CT findings at arrival in each case. We compared 24 patients with brainstem lesion and 60 without using MRI obtained less than 3 weeks after admission. Items investigated were blood pressure immediately after hospital arrival, arterial blood gas analysis, existence of abnormal respiration, blow direction, Glasgow coma scale (GCS), light reflex, oculocephalic reflex, corneal reflex, intracranial pressure, jugular venous oxygen saturation, and CT findings such as existence of subarachnoid hemorrhage at the suprasellar cistern, perimesencephalic cistern and convexity, lesions on the thalamus and basal ganglia, gliding contusion, intraventricular hemorrhage and Traumatic Coma Data Bank classification. Independent predictive factors of primary brainstem lesion included impaired light reflex (odds ratio: 2.269), subarachnoid hemorrhage at convexity (odds ratio: 3.592) and suprasellar cistern (odds ratio: 2.458), and Traumatic Coma Data Bank group III (odds ratio: 11.062). (author)

  15. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  16. Type-dependent irreversible stochastic spin models for genetic regulatory networks at the level of promotion-inhibition circuitry

    Science.gov (United States)

    Mendonça, J. Ricardo G.; de Oliveira, Mário J.

    2015-12-01

    We describe an approach to model genetic regulatory networks at the level of promotion-inhibition circuitry through a class of stochastic spin models that includes spatial and temporal density fluctuations in a natural way. The formalism can be viewed as an agent-based model formalism with agent behaviour ruled by a classical spin-like pseudo-Hamiltonian playing the role of a local, individual objective function. A particular but otherwise generally applicable choice for the microscopic transition rates of the models also makes them of independent interest. To illustrate the formalism, we investigate (by Monte Carlo simulations) some stationary state properties of the repressilator, a synthetic three-gene network of transcriptional regulators that possesses oscillatory behaviour.

  17. The clinic discuss of prognosis and treatment or brainstem infarction combined coma

    Institute of Scientific and Technical Information of China (English)

    Niu Junying; Wanglei; YinShimin; Zheng Yishan; Shijie Qu; Zhanfen

    2000-01-01

    Objective Discuss the relationship between the position, bound of brainstem infarction and .consciousness clog,determinan the prognosis and curative effect. Background and Methods Total brainstem infarction 14 patients,9 male and 5 female,43 to 80 years old.all patients had been checked by CT or MRI,brainstem foliun scanning 6 cases,checked by MRI 8 canes micbrain infarction 2 cases,pon infarction 5 cases,medulla infasction 7 cases the midbrain infarction were rise rapid,inmediately coma,the mydrasis in defect side,opposite body mucsle tension heighten.then both lower limbs straight,both pathology sign masculine.the two cases are all alive .tocked-in syndrom has appeared in 1 case of pon infarction ,and died of combined illness 1 year later. 1 case defect affect centrum of breath and hearlbeat, coma,breath rhythm malajustment,breath stop.threr were no consciousness clog in the other 3 cases ,vertigo,force head position to trouble side, nystagmus, trouble side face hypalgesia,and all cureed .2 cases of medulla infarction appeared quactriplegia ,swallow hardness,anarthriad and so on, 5 others were hemi Watlenberg syndrom,all wcre cured. Results and Discussion coma or no in brainstem infaciton was related with position.it is reparted that midbrain infarction coma was 7.6 persent of brainstem infarction. consciousness clog is distinctness which defect position in midbrain lateral-back, pon ventro defect, not involved ARAS ,lwas locked-in synxdom. brainstem infarction combined combined with freedom breath clog,in medulla was 16.1percent,midorain was 1 1.6 percent, pons ws 83.96 percent the prognosis was.all right in lightly brainsterm infarction, lf involved in both medulla, ventro pon,the prognosis was bad, and lose quadriplegia. CT brainstern foliun scanning would enhanced scanning lay, and helpful for chech up the pathological chanoes of brainstem.

  18. Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    Science.gov (United States)

    Edwards, I J; Lall, V K; Paton, J F; Yanagawa, Y; Szabo, G; Deuchars, S A; Deuchars, J

    2015-01-01

    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD. PMID:24595534

  19. Localization of the brainstem GABAergic neurons controlling paradoxical (REM sleep.

    Directory of Open Access Journals (Sweden)

    Emilie Sapin

    Full Text Available Paradoxical sleep (PS is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons are principally located in the ventrolateral periaqueductal gray (vlPAG and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe. Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.

  20. EVALUATION OF AUDITORY & BRAINSTEM RESPONSES IN HYPERBILIRUBINEMIC INFANTS

    Directory of Open Access Journals (Sweden)

    Bhagya

    2014-07-01

    Full Text Available OBJECTIVE: Jaundice is a common finding in neonates affecting 70% of term and 80% of preterm neonates during the first week of life. So the objective of this study is to evaluate auditory and brainstem responses in hyper bilirubinemic infants and to see if there is any statistically significant increase in latencies of wave I and V waves. To initiate rehabilitative procedure as early in life as possible a screening method to detect auditory disabilities in hyper bilirubinemic infants is of great importance. So the present study is done to know the incidence of hearing loss in hyper bilirubinemic infants & to evaluate the waves I and V in those subjects. METHODS: 45 Infants with hyper bilirubinemia>12mg% & with no other risk factor who visited pediatric OPD of Bapuji Child Health Centre were evaluated using RMS EMG. EP MARK –II machine. Latencies of Waves I and V and interpeak latency of I-V were recorded. RESULTS: On one sample t-test, latency of wave I and IPL I-V were significantly increased (p-value <0.001, latency of V was prolonged which was statistically significant (p-value <0.01. Hearing impairment in the affected infants and complete deafness where none of the waves were recorded signify that it is a risk factor for deafness. CONCLUSION: Since hyper bilirubinemia is a risk factor for hearing impairment, their hearing screening by BERA at the earliest will help in their earliest initiation of rehabilitation when the brain is sensitive to the development of speech & language.

  1. Simultaneous extratympanic electrocochleography and auditory brainstem responses revisited

    Directory of Open Access Journals (Sweden)

    Carlos Minaya

    2015-03-01

    Full Text Available The purpose of this study was to revisit the two-channel, simultaneous click-evoked extratympanic electrocochleography and auditory brainstem response (ECoG/ABR recording technique for clinical use in normal hearing participants. Recording the compound action potential (AP of the ECoG simultaneously with ABR may be useful when Wave I of the ABR is small or diminished in patients with sensorineural or retrocochlear disorder and minimizes overall test time. In contrast to some previous studies that used the extratympanic electrode both as non-inverting electrode for the ECoG and inverting electrode for ABR, this study maintained separate recording channel montages unique to conventional click-evoked ECoG and ABR recordings. That is, the ABR was recorded using a vertical channel (Cz to ipsilateral earlobe, while the ECoG with custom extratympanic electrode was recorded using a horizontal channel (tympanic membrane to contralateral earlobe. The extratympanic electrode is easy to fabricate inhouse, or can be purchased commercially. Maintaining the conventional ABR montage permits continued use of traditional normative data. Broadband clicks at a fixed level of 85 dB nHL were presented with alternating polarity at stimulus rates of 9.3, 11.3, and 15.3/s. Different stimulation rates were explored to identify the most efficient rate without sacrificing time or waveform morphology. Results revealed larger ECoG AP than ABR Wave I, as expected, and no significant difference across stimulation rate and no interaction effect. Extratympanic electrode placement takes little additional clinic time and may improve the neurodiagnostic utility of the ABR.

  2. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  3. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chia-Ling; Yang, Chih-Feng; Dokmeci, Mehmet R [Department of Electrical and Computer Engineering, NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Agarwal, Vinay; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155 (United States); Kim, Taehoon; Busnaina, Ahmed [Department of Mechanical and Industrial Engineering, NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Chen, Michelle, E-mail: chen.ch@neu.edu, E-mail: yang.chi@neu.edu, E-mail: vinay.agarwal84@gmail.com, E-mail: thkim@coe.neu.edu, E-mail: sameer@ece.tufts.edu, E-mail: busnaina@coe.neu.edu, E-mail: michelle.chen@simmons.edu, E-mail: mehmetd@ece.neu.edu [Physics Department, Simmons College, 300 The Fenway, Boston, MA 02115 (United States)

    2010-03-05

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to {approx} 300% and {approx} 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  4. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    International Nuclear Information System (INIS)

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ∼ 300% and ∼ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  5. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    Science.gov (United States)

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R.

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ~ 300% and ~ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  6. Stimulation of the brainstem reticular formation evokes locomotor activity in embryonic chicken (in ovo).

    Science.gov (United States)

    Valenzuela, J I; Hasan, S J; Steeves, J D

    1990-10-01

    This study was designed to examine the period of embryonic chick development during which descending brainstem-spinal projections, originating from defined avian brainstem locomotor regions, become functionally active. Locomotor activity was examined using a new in ovo preparation for the focal electrical stimulation of embryonic brainstem locomotor regions. Embryos or hatchlings were anesthetized and mounted in a stereotaxic apparatus. Leg and wing muscle electromyographic (EMG) recordings were used to monitor any brainstem-stimulated motor activity. At present, we have been successful in demonstrating coordinated brainstem-evoked locomotion in embryos as early as embryonic day 15. The patterns of evoked locomotor activity were similar to locomotion evoked in hatchling chicks and were of 4 types: (1) alternating hindlimb movements ('stepping'), (2) synchronous (in-phase) hindlimb movements ('hatching'), (3) synchronous wing movements ('flapping'), and (4) simultaneous 'stepping' and 'flapping'. The cycle durations of evoked embryonic hindlimb movements are shorter than those observed for hatchling chicks. The present results are the first direct demonstration of functional connections between descending supraspinal neurons and spinal locomotor circuits at such an early stage of embryonic development. With modifications in technique, it may be possible to demonstrate functional connections at even earlier stages of embryonic development. PMID:2279325

  7. A neuronal circuitry for relative movement discrimination by the visual system of the fly

    Science.gov (United States)

    Poggio, T.; Reichardt, W.; Hausen, K.

    1981-09-01

    We propose the basic structure of a neuronal circuitry possibly underlying the detection of discontinuities in the optical flow by the visual system of the housefly. The main features of the circuitry are: binocular cells summate elementary movement detectors over a large visual field and inhibit each one of them; inhibition is of the shunting type, with an inhibitory equilibrium potential very near the resting potential. A specific model implementing our proposal accounts for all the behavioral data on relative movement discrimination, including the characteristic dynamics of the response.

  8. Common stemness regulators of embryonic and cancer stem cells

    OpenAIRE

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we h...

  9. Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.

    Science.gov (United States)

    Boyce, Kylie J; Andrianopoulos, Alex

    2013-02-01

    Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei. PMID:23204189

  10. Neural Emotion Regulation Circuitry Underlying Anxiolytic Effects of Perceived Control Over Pain

    OpenAIRE

    Salomons, Tim V.; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J.

    2015-01-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within subjects-designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neu...

  11. Morphogenetic Circuitry Regulating Growth and Development in the Dimorphic Pathogen Penicillium marneffei

    OpenAIRE

    Kylie J Boyce; Andrianopoulos, Alex

    2013-01-01

    Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germ...

  12. Co-localization of hypocretin-1 and hypocretin-2 in the cat hypothalamus and brainstem.

    Science.gov (United States)

    Zhang, Jian-Hua; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2002-08-01

    Hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) are two recently discovered hypothalamic neuropeptides. In the present study, using double immunofluorescent techniques, the co-localization of hcrt-1 and hcrt-2 was examined in neuronal soma and fibers/terminals located, respectively, in the cat hypothalamus and brainstem. In the hypothalamus, all hcrt-1 positive neuronal soma also displayed hcrt-2 immunoreactivity. In the brainstem, both hcrt-1 and hcrt-2 antibodies labeled the same fibers/terminals, indicating that hcrt-1 and hcrt-2 co-localize not only in the neuronal soma (hypothalamus) but also in their fibers/terminals (brainstem). If both peptides are released following neuronal activity, then the distinct effects of these peptides in the brain are likely to depend on the types of postsynaptic receptors that are activated. PMID:12182950

  13. Immunohistochemical localization of glutamate transporter EAAC1 in the brainstem of adult rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fu-xing; LIU Tao; ZHAO Jing-wei; LI Jin-lian; DONG Yu-lin; LI Ji-shuo

    2001-01-01

    Objective: To observe the distribution of EAAC1, a subtype of glutamate transporters, in the brainstem of adult rat. Methods: Immunocytochemical staining with avidin-biotin complex (ABC) method was employed. Results:EAAC1 was widely distributed throughout the brainstem. In many regions, the EAAC1-like immunoreactivity was primarily distributed in the neuropil. Cell body staining was observed in the prepositus hypoglossal nucleus, external cortex of the inferior colliculus, red nucleus, substantia nigra, mesencephalic raphe nuclei, ventral tegmental nucleus, superior olivary complex, nucleus of the trapezoid body, cochlear nucleus, sensory trigeminal complex, Barrington's nucleus,trigeminal motor nucleus, parabrachial nuclei, dorsal nucleus of vagus, hypoglossal nucleus, locus coeruleus, lateral and superior vestibular nuclei, lateral paragigantocellular nucleus and dorsal paragigantocellular nucleus. Conclusion: Glutamate transporter EAAC 1 is widely distributed throughout the brainstem of adult rat, which may play an important role in excitatory activities of the neurons induced by glutamate.

  14. Circuitry Linking the Csr and Stringent Response Global Regulatory Systems

    OpenAIRE

    Edwards, Adrianne N; Patterson-Fortin, Laura M.; Christopher A Vakulskas; Mercante, Jeffrey W.; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I.; Fields, Joshua A.; Thompson, Stuart A.; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony

    2011-01-01

    CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined m...

  15. fMRI of the brainstem using dual-echo EPI.

    Science.gov (United States)

    Beissner, Florian; Deichmann, Ralf; Baudrexel, Simon

    2011-04-15

    The brainstem is the part of the human brain that plays a pivotal role in the maintenance of many critical body functions. Due to the elevated level of cardiogenic noise, few fMRI studies have investigated the brainstem so far. Cardiac-gated echo-planar imaging with acquisition of two echoes per excitation (dual-echo EPI) is one method that significantly reduces cardiogenic noise and, thus, allows for fMRI measurements of the brainstem. As information on optimal preprocessing approaches for brainstem-fMRI data is still scarce, the goal of this study was to compare different combinations of normalization and smoothing procedures as implemented in standard fMRI software packages and to identify the combinations yielding optimal results for dual-echo EPI. 21 healthy subjects were measured while executing a simple motor paradigm to activate the facial and trigeminal motor nucleus in the brainstem. After motion correction and calculation of T(2)*-maps the data were preprocessed with 24 combinations of standard normalization (SPM classic, SPM unified, FSL, ABC) and smoothing procedures (pre-/post-smoothing with 3mm-, 4.5mm- and 6mm-kernel) before undergoing first- and second-level statistical analysis. Activation results were compared for first-level and second-level statistics using two anatomically defined regions of interest. Five methods were found to be sensitive for activation of both nuclei. These included FSL normalization with 3mm and 4.5mm pre-smoothing as well as 3mm post-smoothing, SPM unified normalization with 3mm pre-smoothing and ABC normalization with 4.5mm pre-smoothing. All these methods can be recommended for normalization and smoothing when analyzing fMRI data of the brainstem acquired by cardiac-gated dual-echo EPI. PMID:21256220

  16. Flupirtine inhibits calcitonin-gene related peptide release from rat brainstem in vitro.

    Science.gov (United States)

    Tringali, Giuseppe; Greco, Maria Cristina; Capuano, Alessandro; Guerriero, Giuseppe; Currò, Diego; Navarra, Pierluigi

    2012-01-11

    We have previously shown that the nonopioid analgesic flupirtine possesses analgesic activity in the orofacial formalin test in vivo in the rat. However, this paradigm does not allow to distinguish between central and peripheral site of action of the drug. In this study we used a recently characterized in vitro model, consisting in acute rat brainstem explants, to investigate whether flupirtine analgesia may be, at least in part, attributed to interference with neurotransmission between the first and the second order neurons of the trigeminal system, occurring within the brainstem. We used acute rat brainstem explants; CGRP released into the incubation medium was taken as a marker of CGRP release from central terminals of trigeminal ganglion afferent neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of flupirtine, alone or with putative antagonist XE-991. We found that flupirtine inhibits in a concentration-dependent manner both basal and capsaicin-stimulated CGRP release from rat brainstem. This effect is mimicked by the flupirtine analogue retigabine, and is counteracted by the Kv7 blocker XE-991. These findings provide in vitro evidence that the analgesic activity of flupirtine may be related to interference with pain neurotransmission at the brainstem level. Pharmacological data suggests that such effect is related to opening of Kv7 channels on first-order neuronal nerve ending, and the subsequent inhibition of neurotransmitter release, since the effect is mimicked by the Kv7 opener retigabine and is counteracted by the Kv7 blocker XE-991. PMID:22155095

  17. Appliance of preoperative diffusion tensor imaging and fiber tractography in patients with brainstem lesions

    Directory of Open Access Journals (Sweden)

    Cao ZhiKai

    2010-01-01

    Full Text Available Background: Surgical resection of brainstem lesions has a high risk of morbidity, because vital fasciculi in the brainstem can be damaged along the entry routes. Diffusion tensor imaging (DTI is an in vivo method for mapping white matter fiber tracts in the brain. Objective: To summarize the experience of surgical treatment of brainstem lesions with the assistance of DTI and fiber tractography. Materials and Methods: A retrospective analysis clinical data of nine patients with brainstem lesions were investigated between July 2007 and September 2009. The analysis included age distribution, clinical presentation, pre- and postoperative modified Rankin score (mRS, and surgical approach. DTI and fiber tractography were used to reconstruct the corticospinal tracts and the medial lemnisci. Results: DTI and fiber tractography showed that most of the corticospinal tracts were compressed anteriorly or anterolaterally, except for one case (posteriorly. All the medial lemnisci were displaced posteriorly or posterolaterally. Individualized surgical approaches were designed according to the information provided by DTI and fiber tractography. Total resection was achieved in two patients with brainstem cavernomas and two patients with pilocytic astrocytoma. Partial resection was performed in the other patients. The neurological functional status was better than preoperative period in eight patients, one patient with medulla oblongata astrocytoma deteriorated. The preoperative average mRS score was 2.22 points. At the time of the last follow-up, the average postoperative score had improved by 0.56 to 1.66 points. Conclusions: DTI and fiber tractography can provide valuable information regarding the relationship between the principal fiber tracts and brainstem lesions, which is useful in neurosurgical planning.

  18. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease

    Science.gov (United States)

    Cazorla, Maxime; Kang, Un Jung; Kellendonk, Christoph

    2016-01-01

    Current therapies for treating movement disorders such as Parkinson’s disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dys-regulation and why medication-induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different basal ganglia nuclei process motor information and output. We have recently identified the importance of an underappreciated collateral projection that bridges the striatal output direct pathway with the indirect pathway. These bridging collaterals are extremely plastic in the adult brain and are involved in the regulation of motor balance. Our findings add a new angle to the classical model of basal ganglia circuitry that could be exploited for the development of new therapies against movement disorders. In this Scientific Perspective, we describe the function of bridging collaterals and other recent discoveries that challenge the simplicity of the classical basal ganglia circuit model. We then discuss the potential implication of bridging collaterals in the pathophysiology of Parkinson’s disease and schizophrenia. Because dopamine D2 receptors and striatal neuron excitability have been found to regulate the density of bridging collaterals, we propose that targeting these projections downstream of D2 receptors could be a possible strategy for the treatment of basal ganglia disorders. PMID:26018615

  19. Sex differences in the neurobiology of fear conditioning and extinction: a preliminary fMRI study of shared sex differences with stress-arousal circuitry

    Directory of Open Access Journals (Sweden)

    Lebron-Milad Kelimer

    2012-04-01

    Full Text Available Abstract Background The amygdala, hippocampus, medial prefrontal cortex (mPFC and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI to investigate sex differences in brain activity in these regions during fear conditioning and extinction. Methods Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes were analyzed using SPM8. Results Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC and dorsal anterior cingulate cortex (dACC in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. Conclusions These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.

  20. The application of diffusion tensor imaging and diffusion tensor tractography in the perionerative assessment of tumors involving brainstem

    Institute of Scientific and Technical Information of China (English)

    郭翠萍

    2014-01-01

    Objective To explore the value of diffusion tensor imaging(DTI)and diffusion tensor tractography(DTT)in assessment of Corticospinal tract(CST)and medial lemniscus(ML)in tumors involving brainstem.Methods A total of 35 cases with pathologically confirmed tumors involving brainstem were collected,and 35 volunteers

  1. Functional Ear (A)Symmetry in Brainstem Neural Activity Relevant to Encoding of Voice Pitch: A Precursor for Hemispheric Specialization?

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Bidelman, Gavin M.; Smalt, Christopher J.

    2011-01-01

    Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and…

  2. CMOS instrumentation amplifier with offset cancellation circuitry and high PSRR for low power application

    International Nuclear Information System (INIS)

    This paper presents the design and development of a CMOS instrumentation amplifier for biomedical application. The instrumentation amplifier possesses a very high power-supply rejection ratio (PSRR) and is able to operate at single supply voltage for low power application with improved performance compared to existing work. It also has a full CMOS implementation of offset cancellation circuitry. (author)

  3. Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation.

    Science.gov (United States)

    Hu, Wenqian; Yuan, Bingbing; Lodish, Harvey F

    2014-09-29

    While we have considerable understanding of the transcriptional networks controlling mammalian cell differentiation, our knowledge of posttranscriptional regulatory events is very limited. Using differentiation of primary erythroid cells as a model, we show that the sequence-specific mRNA-binding protein Cpeb4 is strongly induced by the erythroid-important transcription factors Gata1 and Tal1 and is essential for terminal erythropoiesis. By interacting with the translation initiation factor eIF3, Cpeb4 represses the translation of a large set of mRNAs, including its own mRNA. Thus, transcriptional induction and translational repression combine to form a negative feedback loop to control Cpeb4 protein levels within a specific range that is required for terminal erythropoiesis. Our study provides an example of how translational control is integrated with transcriptional regulation to precisely control gene expression during mammalian cell differentiation. PMID:25220394

  4. Brainstem auditory evoked responses and ophthalmic findings in llamas and alpacas in eastern Canada

    OpenAIRE

    Webb, Aubrey A.; Cullen, Cheryl L.; Lamont, Leigh A.

    2006-01-01

    Seventeen llamas and 23 alpacas of various coat and iris colors were evaluated for: 1) deafness by using brainstem auditory evoked response testing; and 2) for ocular abnormalities via complete ophthalmic examination. No animals were deaf. The most common ocular abnormalities noted were iris-to-iris persistent pupillary membranes and incipient cataracts.

  5. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    Science.gov (United States)

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  6. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    Science.gov (United States)

    Dubiel, A; Kulesza, R J

    2015-12-17

    Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Additionally, the vast majority of subjects with ASD suffer some degree of auditory dysfunction and we have previously identified significant hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is utilized as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology in the auditory brainstem. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4 or 16 kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these sound exposures, we found significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Further, we found a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:26518464

  7. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death.

    Science.gov (United States)

    Aiba, Isamu; Wehrens, Xander H T; Noebels, Jeffrey L

    2016-08-16

    Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations. PMID:27482086

  8. The Theoretical Distribution of Evoked Brainstem Activity in Preterm, High-Risk, and Healthy Infants.

    Science.gov (United States)

    Salamy, A.

    1981-01-01

    Determines the frequency distribution of Brainstem Auditory Evoked Potential variables (BAEP) for premature babies at different stages of development--normal newborns, infants, young children, and adults. The author concludes that the assumption of normality underlying most "standard" statistical analyses can be met for many BAEP measures.…

  9. Differences in Brainstem Fiber Tract Response to Radiation: A Longitudinal Diffusion Tensor Imaging Study

    International Nuclear Information System (INIS)

    Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transverse pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance

  10. Modelling the level-dependent latency of the auditory brainstem response

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2011-01-01

    Auditory brainstem responses (ABR) are used for both clinical and research purposes to objectively assess human hearing. A prominent feature of the transient evoked ABR is the level-dependent latency of the distinct peaks in its waveform. The latency of the most prominent peak, wave-V, is about 8...

  11. Distribution of Neurotensin and Somatostatin-28 (1-12) in the Minipig Brainstem.

    Science.gov (United States)

    Sánchez, M L; Vecino, E; Coveñas, R

    2016-08-01

    Using an indirect immunoperoxidase technique, an in depth study has been carried out for the first time on the distribution of fibres and cell bodies containing neurotensin and somatostatin-28 (1-12) (SOM) in the minipig brainstem. The animals used were not treated with colchicine. The distribution of neurotensin- and SOM-immunoreactive fibres was seen to be quite similar and was moderate in the minipig brainstem: a close anatomical relationship between both neuropeptides was observed. The distribution of cell bodies containing neurotensin or SOM was quite different and restricted. Cell bodies containing neurotensin were found in four brainstem nuclei: nucleus centralis raphae, nucleus dorsalis raphae, in the pars centralis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis raphae. Cell bodies containing SOM were found in six nuclei/regions of the brainstem: nucleus ambiguus, nucleus dorsalis motorius nervi vagus, formatio reticularis, nucleus parabrachialis medialis, nucleus reticularis lateralis and nucleus ventralis raphae. According to the observed anatomical distribution of the immunoreactive structures containing neurotensin or SOM, the peptides could be involved in sleep-waking, nociceptive, gustatory, motor, respiratory and autonomic mechanisms. PMID:26250798

  12. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  13. Ventilation induced apnea and its effect on dorsal brainstem inspiratory neurones in the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Balnave, Ron J.; Chow, Chin M.

    2007-01-01

    The purpose of this study was to examine the effect of mechanical ventilation (MV) on inherent breathing and on dorsal brainstem nucleus tractus solitarius (NTS) respiratory cell function. In pentobarbitone-anaesthetised rats, application of MV at combined high frequencies and volumes (representing

  14. Brainstem ischaemia presenting as naloxone-reversible coma followed by downward gaze paralysis.

    OpenAIRE

    Goldman, S.; Cordonnier, M J; Sztencel, J

    1984-01-01

    A 65-year-old man showed naloxone-reversible unconsciousness followed by downward gaze paralysis. CT scan suggested an ischaemic lesion in the mesodiencephalic region. This observation represents the first case of naloxone-reversible coma related to brainstem ischaemia.

  15. BRAIN-STEM INFLUENCES ON BICEPS REFLEX ACTIVITY AND MUSCLE TONE IN THE ANESTHETIZED RAT

    NARCIS (Netherlands)

    JUCH, PJW; SCHAAFSMA, A; VANWILLIGEN, JD

    1992-01-01

    This study analyzes the effect of electrical stimulation of the locus coeruleus (LC) and adjacent brainstem structures on the tonic reflex (TVR), the tonic stretch reflex (TSR) and on muscle tone (MT) in anaesthetized rat. Increases in TVR. TSR and MT of the m. biceps were evoked from regions rostra

  16. Paediatric brain-stem gliomas: MRI, FDG-PET and histological grading correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won; Kim, In-One; Cheon, Jung-Eun; Kim, Woo Sun; Moon, Sung Gyu; Kim, Tae Jung; Yeon, Kyung Mo [Seoul National University Hospital, Department of Radiology, Seoul (Korea); Chi, Je Geun [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea); Wang, Kyu-Chang [Seoul National University College of Medicine, Department of Neurosurgery, Seoul (Korea); Chung, June Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea)

    2006-09-15

    MRI and FDG-PET may predict the histological grading of paediatric brain-stem gliomas. To assess MRI findings and metabolic imaging using FDG-PET of brain-stem gliomas based on histological grading. Included in the study were 20 paediatric patients (age 3-14 years, mean 8.2 years) with brain-stem glioma (five glioblastomas, ten anaplastic astrocytomas and five low-grade astrocytomas). MR images were assessed for the anatomical site of tumour origin, focality, pattern of tumour growth, and enhancement. All glioblastomas were located in the pons and showed diffuse pontine enlargement with focally exophytic features. Eight anaplastic astrocytomas were located in the pons and demonstrated diffuse pontine enlargement without exophytic features. Low-grade astrocytomas were located in the pons, midbrain or medulla and showed focally exophytic growth features and peripheral enhancement. In 12 patients in whom FDG-PET was undertaken, glioblastomas showed hypermetabolic or hypometabolic lesions, anaplastic astrocytomas showed no metabolic change or hypometabolic lesions and low-grade astrocytomas showed hypometabolism compared with the cerebellum. MRI findings correlated well with histological grading of brain-stem gliomas and MRI may therefore predict the histological grading. FDG-PET may be helpful in differentiating between anaplastic astrocytoma and glioblastomas among high-grade tumours. (orig.)

  17. Normal development of brainstem in childhood. Measurement of the area on mid-sagittal MR imaging

    International Nuclear Information System (INIS)

    Developmental abnormality of brainstem is shown in pediatric patients with mental retardation, autism, periventricular leukomalacia, neurodegenerative disease, and so on. Our purpose here is to clarify the normal developmental pattern of the brainstem. We measured the area of tectum, midbrain tegmentum, pons, basis pontis and pontine tegmentum on mid-sagittal MR images in 111 children (newborn to 20 year old). Different growth patterns were shown in all parts of the brainstem. Tectum showed a subtle increase in area from the newborn to adult period, while midbrain tegmentum and pontine tegmenturn showed a mild and gradual increase in area. Pons and pontine tegmentum showed a rapid and prominent increase in area from newborn to infant period and gradual increase in area until the adult period. These different growth patterns seemed to be consistent with differences in the myelination cycles of the neuronal fibers, maturation of the nuclei and proliferation of glial cells in each part of the brainstem. Mid-sagittal MR imaging of the head is accurate and reproducible and is used conveniently in routine head MR study, making it very useful for the diagnosis of many central nervous diseases and anomalies. We believe that this new milestone provided in this study will be helpful in distinguishing normal children from those that have neurodegenerative disorders. (author)

  18. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    OpenAIRE

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2011-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial...

  19. Epsilon-Near-Zero Photonics Wires for Mid-Infrared Optical Lumped Circuitry

    CERN Document Server

    Liu, Runyu; Zhong, Yujun; Podolskiy, Viktor; Wasserman, Daniel

    2016-01-01

    There has been recent interest in the development of optical analogues of lumped element circuitry, where optical elements act as effective optical inductors, capacitors, and resistors. Such optical circuitry requires the photonic equivalent of electrical wires, structures able carry optical frequency signals to and from the lumped circuit elements while simultaneously maintaining signal carrier wavelengths much larger than the size of the lumped elements. Here we demonstrate the design, fabrication, and characterization of hybrid metal/doped-semiconductor 'photonic wires' operating at optical frequencies with effective indices of propagation near-zero. Our samples are characterized by polarization and angle-dependent FTIR spectroscopy and modeled by finite element methods and rigorous coupled wave analysis. We demonstrate coupling to such photonic wires from free space, and show the effective wavelength of the excited mode to be approximately an order of magnitude larger than the free-space wavelength of our...

  20. Renewal of safety circuitry on a zero-energy research reactor using microprocessor units

    International Nuclear Information System (INIS)

    The conventional hard-wired safety-circuitry of the zero-energy research reactor at the Central Electricity Generating Board's Berkeley Nuclear Laboratories is being replaced by microprocessor-based units. The Paper describes how levels of reliability that are necessary for safety circuitry have been achieved by the use of two entirely different guard line systems based on a Motorola 6800 microprocessor and an Intel 8085A microprocessor. The two systems operate in parallel and either will trip the reactor. Each has been programmed by a different programmer using different philosophies. The two units and the test programme involving over 106 simulated guard line trips are described. An overall reliability of better than 10-6 per annum is claimed. (author)

  1. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice

    OpenAIRE

    Shmelkov, Sergey V.; Hormigo, Adília; Jing, Deqiang; Proenca, Catia C.; Bath, Kevin G.; Milde, Till; Shmelkov, Evgeny; Kushner, Jared S; Baljevic, Muhamed; Dincheva, Iva; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Yancopoulos, George D.; Ninan, Ipe

    2010-01-01

    Obsessive-compulsive disorder (OCD) is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions, and it often encompasses anxiety and depressive symptoms1,2. Recently, the corticostriatal circuitry has been implicated in the pathogenesis of OCD3,4. However, the etiology, pathophysiology and molecular basis of OCD remain unknown. Several studies indicate that the pathogenesis of OCD has a genetic component5–8. Here we demonstrate that loss o...

  2. Basic development of one-chip control circuitry for commutatorless dc motors

    Science.gov (United States)

    Nutz, K. D.; Stromski, R.

    1984-12-01

    A monolithic one chip circuitry including the detection of rotor speed control and the direct load current drive of dc-motors with an electronic commutation was developed because of the increased efficiency of commutatorless dc-motors in which high-quality magnetic materials were used. The hardware demonstration of Hall-Sensor-elements in a power compatible technology was successful. A design based on the data is shown.

  3. NeuroArray: A Universal Interface for Patterning and Interrogating Neural Circuitry with Single Cell Resolution

    OpenAIRE

    Li, Wei; Xu, Zhen; Huang, Junzhe; Lin, Xudong; Luo, Rongcong; Chen, Chia-Hung; Shi, Peng

    2014-01-01

    Recreation of neural network in vitro with designed topology is a valuable tool to decipher how neurons behave when interacting in hierarchical networks. In this study, we developed a simple and effective platform to pattern primary neurons in array formats for interrogation of neural circuitry with single cell resolution. Unlike many surface-chemistry-based patterning methods, our NeuroArray technique is specially designed to accommodate neuron's polarized morphologies to make regular arrays...

  4. Online contributions of auditory feedback to neural activity in avian song control circuitry

    OpenAIRE

    Sakata, Jon T.; Michael S. Brainard

    2008-01-01

    Birdsong, like human speech, relies critically on auditory feedback to provide information about the quality of vocalizations. Although the importance of auditory feedback to vocal learning is well established, whether and how feedback signals influence vocal premotor circuitry has remained obscure. Previous studies in singing birds have not detected changes to vocal premotor activity following perturbations of auditory feedback, leading to the hypothesis that contributions of feedback to voc...

  5. Vasopressin Modulates Medial Prefrontal Cortex-Amygdala Circuitry During Emotion Processing in Humans

    OpenAIRE

    Zink, Caroline F.; Stein, Jason L; Kempf, Lucas; Hakimi, Shabnam; Meyer-Lindenberg, Andreas

    2010-01-01

    The neuropeptide, vasopressin, is a modulator of mammalian social behavior and emotion, particularly fear, aggression, and anxiety. In humans, the neural circuitry underlying behavioral effects of vasopressin is unknown. Using a double-blind crossover administration of 40 IU vasopressin or placebo and functional MRI during processing of facial emotions in healthy male volunteers, we show that vasopressin specifically reduces differential activation in the subgenual cingulate cortex. Structura...

  6. Cortico-limbic circuitry and the airways: Insights from functional neuroimaging of respiratory afferents and efferents

    OpenAIRE

    Evans, Karleyton C.

    2010-01-01

    After nearly two decades of active research, functional neuroimaging has demonstrated utility in the identification of cortical, limbic, and paralimbic (cortico-limbic) brain regions involved in respiratory control and respiratory perception. Before the recent boon of human neuroimaging studies, the location of the principal components of respiratory-related cortico-limbic circuitry had been unknown and their function had been poorly understood. Emerging neuroimaging evidence in both healthy ...

  7. Longitudinal Monitoring of Motor Neuron Circuitry in FALS Rats Using in vivo phMRI

    OpenAIRE

    Choi, Ji-Kyung; Dedeoglu, Alpaslan; Jenkins, Bruce G.

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) presents challenges for diagnosis and objective monitoring of disease progression. We demonstrate, using pharmacologic MRI, that alterations in motor circuitry can be characterized using a passive stimulus in a rat model of familial ALS (FALS) as a function of symptom progression. Pre-symptomatic FALS rats had a pattern of activation to amphetamine indistinguishable from wild-type controls. In contrast, symptomatic rats showed significantly decreased respon...

  8. Sex Differences and Chronic Stress Effects on the Neural Circuitry Underlying Fear Conditioning and Extinction

    OpenAIRE

    Farrell, Mollee R.; SENGELAUB, DALE R.; Wellman, Cara L.

    2013-01-01

    There are sex differences in the rates of many stress-sensitive psychological disorders such as post traumatic stress disorder (PTSD). As medial prefrontal cortex and amygdala are implicated in many of these disorders, understanding differential stress effects in these regions may shed light on the mechanisms underlying sex-dependent expression of disorders like depression and anxiety. Prefrontal cortex and amygdala are key regions in the neural circuitry underlying fear conditioning and exti...

  9. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion

    OpenAIRE

    Lee, A. Moses; Hoy, Jennifer L.; Bonci, Antonello; Wilbrecht, Linda; Stryker, Michael P; Niell, Cristopher M.

    2014-01-01

    Sensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual responses. Although recent studies have begun to elucidate the intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating sy...

  10. Regulation of the galanin system in the brainstem and hypothalamus by electroconvulsive stimulation in mice

    DEFF Research Database (Denmark)

    Christiansen, S H

    2011-01-01

    the hypothalamus. Adult mice were treated with ECS once daily for 14 consecutive days, a paradigm previously shown to exert antidepressant-like effects. Significant increases in galanin transcription were found in the locus coeruleus and dorsomedial nuclei of the hypothalamus. In addition, GalR2 m...... repeated ECS in brain regions involved in monoaminergic neurotransmission and stress modulation thus indicating a possible role of the galanin system in the therapeutic effects of ECS....

  11. Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation.

    Science.gov (United States)

    Bennett, Maxwell R; Hatton, Sean N; Lagopoulos, Jim

    2016-06-01

    Evidence is considered as to whether behavioral criteria for diagnosis of post-traumatic stress disorder (PTSD) are applicable to that of traumatized animals and whether the phenomena of acquisition, extinction and reactivation of fear behavior in animals are also successfully applicable to humans. This evidence suggests an affirmative answer in both cases. Furthermore, the deficits in gray matter found in PTSD, determined with magnetic resonance imaging, are also observed in traumatized animals, lending neuropsychological support to the use of animals to probe what has gone awry in PTSD. Such animal experiments indicate that the core synaptic circuitry mediating behavior following trauma consists of the amygdala, ventral-medial prefrontal cortex and hippocampus, all of which are modulated by the basal ganglia. It is not clear if this is the case in PTSD as the observations using fMRI are equivocal and open to technical objections. Nevertheless, the effects of the basal ganglia in controlling glutamatergic synaptic transmission through dopaminergic and serotonergic synaptic mechanisms in the core synaptic circuitry provides a ready explanation for why modifying these mechanisms delays extinction in animal models and predisposes towards PTSD. In addition, changes of brain-derived neurotrophic factor (BDNF) in the core synaptic circuitry have significant effects on acquisition and extinction in animal experiments with single nucleotide polymorphisms in the BDNF gene predisposing to PTSD. PMID:25985955

  12. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

    Directory of Open Access Journals (Sweden)

    Dichter Gabriel S

    2012-07-01

    Full Text Available Abstract This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders, neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder, and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome. We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  13. Idiopathic Brainstem Neuronal Chromatolysis (IBNC: a novel prion protein related disorder of cattle?

    Directory of Open Access Journals (Sweden)

    Martin Stuart

    2008-09-01

    Full Text Available Abstract Background The epidemic form of Bovine Spongiform Encephalopathy (BSE is generally considered to have been caused by a single prion strain but at least two strain variants of cattle prion disorders have recently been recognized. An additional neurodegenerative condition, idiopathic brainstem neuronal chromatolysis and hippocampal sclerosis (IBNC, a rare neurological disease of adult cattle, was also recognised in a sub-set of cattle submitted under the BSE Orders in which lesions of BSE were absent. Between the years of 1988 and 1991 IBNC occurred in Scotland with an incidence of 7 cases per 100,000 beef suckler cows over the age of 6 years. Results When the brains of 15 IBNC cases were each tested by immunohistochemistry, all showed abnormal labelling for prion protein (PrP. Immunohistological labelling for PrP was also present in the retina of a single case available for examination. The pattern of PrP labelling in brain is distinct from that seen in other ruminant prion diseases and is absent from brains with other inflammatory conditions and from normal control brains. Brains of IBNC cattle do not reveal abnormal PrP isoforms when tested by the commercial BioRad or Idexx test kits and do not reveal PrPres when tested by Western blotting using stringent proteinase digestion methods. However, some weakly protease resistant isoforms of PrP may be detected when tissues are examined using mild proteinase digestion techniques. Conclusion The study shows that a distinctive neurological disorder of cattle, which has some clinical similarities to BSE, is associated with abnormal PrP labelling in brain but the pathology and biochemistry of IBNC are distinct from BSE. The study is important either because it raises the possibility of a significant increase in the scope of prion disease or because it demonstrates that widespread and consistent PrP alterations may not be confined to prion diseases. Further studies, including transmission

  14. Transient isolated brainstem symptoms preceding posterior circulation stroke: a population-based study

    Science.gov (United States)

    Paul, Nicola LM; Simoni, Michela; Rothwell, Peter M

    2013-01-01

    Summary Background Transient isolated brainstem symptoms (eg, isolated vertigo, dysarthria, diplopia) are not consistently classified as transient ischaemic attacks (TIAs) and data for prognosis are limited. If some of these transient neurological attacks (TNAs) are due to vertebrobasilar ischaemia, then they should be common during the days and weeks preceding posterior circulation strokes. We aimed to assess the frequency of TNAs before vertebrobasilar ischaemic stroke. Methods We studied all potential ischaemic events during the 90 days preceding an ischaemic stroke in patients ascertained within a prospective, population-based incidence study in Oxfordshire, UK (Oxford Vascular Study; 2002–2010) and compared rates of TNA preceding vertebrobasilar stroke versus carotid stroke. We classified the brainstem symptoms isolated vertigo, vertigo with non-focal symptoms, isolated double vision, transient generalised weakness, and binocular visual disturbance as TNAs in the vertebrobasilar territory; atypical amaurosis fugax and limb-shaking as TNAs in the carotid territory; and isolated slurred speech, migraine variants, transient confusion, and hemisensory tingling symptoms as TNAs in uncertain territory. Findings Of the 1141 patients with ischaemic stroke, vascular territory was categorisable in 1034 (91%) cases, with 275 vertebrobasilar strokes and 759 carotid strokes. Isolated brainstem TNAs were more frequent before a vertebrobasilar stroke (45 of 275 events) than before a carotid stroke (10 of 759; OR 14·7, 95% CI 7·3–29·5, p<0·0001), particularly during the preceding 2 days (22 of 252 before a vertebrobasilar stroke vs two of 751 before a carotid stroke, OR 35·8, 8·4–153·5, p<0·0001). Of all 59 TNAs preceding (median 4 days, IQR 1–30) vertebrobasilar stroke, only five (8%) fulfilled the National Institute of Neurological Disorders and Stroke (NINDS) criteria for TIA. The other 54 cases were isolated vertigo (n=23), non-NINDS binocular visual

  15. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-01

    Background Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. Material/Methods We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro® 8.0 software. The t test was performed for infinitesimal shear modules. Results The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (p<0.01). Conclusions The immature brainstem is a rate-dependent material in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the

  16. Tricky Circuitry

    Science.gov (United States)

    Davies, Tony

    2014-01-01

    Teaching children about circuits and the way electricity works is a "tricky business" because it is invisible. Just imagine all eyes are on the teacher as he or she produces for the class what looks like a ping-pong ball and then, with a wave of their hand, the incredible happens! This wonderful white sphere begins to glow red and a…

  17. Corticostriatal circuitry.

    Science.gov (United States)

    Haber, Suzanne N

    2016-03-01

    Corticostriatal connections play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. The cortex projects to the striatum topographically. Thus, different regions of the striatum have been associated with these different functions: the ventral striatum with reward; the caudate nucleus with cognition; and the putamen with motor control. However, corticostriatal connections are more complex, and interactions between functional territories are extensive. These interactions occur in specific regions in which convergence of terminal fields from different functional cortical regions are found. This article provides an overview of the connections of the cortex to the striatum and their role in integrating information across reward, cognitive, and motor functions. Emphasis is placed on the interface between functional domains within the striatum. PMID:27069376

  18. Neurodegenerative changes in the brainstem and olfactory bulb in people older than 50 years old: a descriptive study

    Directory of Open Access Journals (Sweden)

    Francine Hehn de Oliveira

    2015-07-01

    Full Text Available With the increase in life expectancy in Brazil, concerns have grown about the most prevalent diseases in elderly people. Among these diseases are neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. Protein deposits related to the development of these diseases can pre-date the symptomatic phases by years. The tau protein is particularly interesting: it might be found in the brainstem and olfactory bulb long before it reaches the limbic cortex, at which point symptoms occur. Of the 14 brains collected in this study, the tau protein was found in the brainstems of 10 (71.42% and in olfactory bulbs of 3 out 11. Of the 7 individuals who had a final diagnosis of Alzheimer’s disease (AD, 6 presented tau deposits in some region of the brainstem. Our data support the idea of the presence of tau protein in the brainstem and olfactory bulb in the earliest stages of AD.

  19. Prolonged dysphagia due to Listeria-rhombencephalitis with brainstem abscess and acute polyradiculoneuritis.

    Science.gov (United States)

    Smiatacz, Tomasz; Kowalik, Maciej Michal; Hlebowicz, Maria

    2006-06-01

    We report a case of previously healthy student with acute rhombencephalitis and brainstem abscess caused by Listeria monocytogenes. The disease begun with uncharacteristic prodromal symptoms of gastrointestinal infection followed by headache and vertigo. After hospital admission the patient rapidly deteriorated, presenting pronounced dysphagia and respiratory failure requiring mechanical ventilation. The diagnosis was established upon clinical symptoms of infection, brainstem involvement, typical MRI findings and positive for L. monocytogenes blood culture. Infection was complicated by acute, demyelinating neuropathy, diagnosed upon clinical symptoms of frail palsy confirmed by ENG. Initially introduced empirical doxycyclin/ceftriaxon treatment was subsequently changed to targeted ampicillin/gentamycin therapy, mechanical ventilation, intravenous human immunoglobulin treatment, tracheostomy and endoscopic gastrostomy. Prolonged dysphagia resolved after rehabilitation. After one year the patient remains well with only slight dysmetria. PMID:16260041

  20. Infant temperament and the brainstem auditory evoked response in later childhood.

    Science.gov (United States)

    Woodward, S A; McManis, M H; Kagan, J; Deldin, P; Snidman, N; Lewis, M; Kahn, V

    2001-07-01

    Brainstem auditory evoked responses (BAERs) were evaluated on 10-12-year-old children (N = 56) who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. BAER measurement was selected because high reactive infants tend to become inhibited or fearful young children, and adult introverts have a faster latency to wave V of the BAER than do extroverts. Children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, a finding that possibly suggests greater excitability in projections to the inferior colliculus. The fact that a fundamental feature of brainstem activity differentiated preadolescent children belonging to two early temperamental groups supports the value of gathering physiological data in temperament research. PMID:11444488

  1. The basal ganglia downstream control of brainstem motor centres--an evolutionarily conserved strategy.

    Science.gov (United States)

    Grillner, Sten; Robertson, Brita

    2015-08-01

    The basal ganglia plays a crucial role in decision-making and control of motion. The output of the basal ganglia consists of tonically active GABAergic neurons, a proportion of which project to different brainstem centres and another part projecting to thalamus and back to cortex. The focus here is on the former part, which keeps the different brainstem motor-centres tonically inhibited under resting conditions. These centres will be disinhibited when called into action. In the control of motion the direct pathway will promote movement and the indirect pathway inhibit competing movement patterns counteracting the motor-command issued. The basal ganglia detailed structure and function are conserved throughout the vertebrate evolution, including the afferent (e.g. habenulae) and efferent control of the dopamine system. PMID:25682058

  2. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    International Nuclear Information System (INIS)

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  3. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking.

    Science.gov (United States)

    Matthews, David W; Deschênes, Martin; Furuta, Takahiro; Moore, Jeffrey D; Wang, Fan; Karten, Harvey J; Kleinfeld, David

    2015-04-15

    Sensorimotor processing relies on hierarchical neuronal circuits to mediate sensory-driven behaviors. In the mouse vibrissa system, trigeminal brainstem circuits are thought to mediate the first stage of vibrissa scanning control via sensory feedback that provides reflexive protraction in response to stimulation. However, these circuits are not well defined. Here we describe a complete disynaptic sensory receptor-to-muscle circuit for positive feedback in vibrissa movement. We identified a novel region of trigeminal brainstem, spinal trigeminal nucleus pars muralis, which contains a class of vGluT2+ excitatory projection neurons involved in vibrissa motor control. Complementary single- and dual-labeling with traditional and virus tracers demonstrate that these neurons both receive primary inputs from vibrissa sensory afferent fibers and send monosynaptic connections to facial nucleus motoneurons that directly innervate vibrissa musculature. These anatomical results suggest a general role of disynaptic architecture in fast positive feedback for motor output that drives active sensation. PMID:25503925

  4. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  5. Differential sensitivity of brainstem vs cortical astrocytes to changes in pH reveals functional regional specialization of astroglia

    OpenAIRE

    Kasimov, V.; Larina, O; C Castaldo; Marina, N; Patrushev, M; Kasparov, Sergey; Gourine, A.

    2013-01-01

    Astrocytes might function as brain interoceptors capable of detecting different (chemo)sensory modalities and transmitting sensory information to the relevant neural networks controlling vital functions. For example, astrocytes which reside near the ventral surface of the brainstem (central respiratory chemosensitive area) respond to physiological decreases in pH with vigorous elevations in intracellular Ca2+ and release of ATP. ATP transmits astroglial excitation to the brainstem respiratory...

  6. A Review of the Clinical Outcomes for Patients Diagnosed with Brainstem Metastasis and Treated with Stereotactic Radiosurgery

    OpenAIRE

    Lamm, Andrew F.; Elaimy, Ameer L.; Lamoreaux, Wayne T.; Mackay, Alexander R.; Fairbanks, Robert K.; Demakas, John J.; Barton S. Cooke; Lee, Christopher M.

    2013-01-01

    Only 3%–5% of all brain metastases are located in the brainstem. We present a comprehensive review of the clinical outcomes from modern studies that treated patients with brainstem metastasis using either a Gamma Knife or a linear accelerator-based stereotactic radiosurgery. The median survival time of patients was compared to better understand what clinical or treatment factors are predictive of improved survival. This information can then be utilized to optimize patient care. The data sugge...

  7. Analysis of the mechanisms of rabbit's brainstem hemorrhage complicated with irritable changes in the alvine mucous membrane

    Institute of Scientific and Technical Information of China (English)

    Xue-Long Jin; Yang Zheng; Hai-Ming Shen; Wen-Li Jing; Zhao-Qiang Zhang; Jian-Zhong Huang; Qing-Lin Tan

    2005-01-01

    AIM: To explore the dynamic changes in the pressure of the lateral ventricle during acute brainstem hemorrhage and the changes of neural discharge of vagus nerve under the load of intracranial hypertension, so as to analyze their effects on the congestive degree of intestinal mucous membrane and the morphologic changes of intestinal mucous membrane.METHODS: An operation was made to open the skull to obtain an acute brainstem hemorrhage animal model.Microcirculatory microscope photography device and video recording system were used to determine the changes continuously in the caliber of jejunal mesenteric artery during brainstem hemorrhage and the changes with time in the congestion of jejunal mucosal villi. We used HE stain morphology to analyze the changes of duodenal mucosal villi. A recording electrode was used to calculate and measure the electric discharge activities of cervical vagus nerve.RESULTS: (1) We observed that the pressure of lateral cerebral ventricle increased transiently during acute brainstem hemorrhage; (2) The caliber of the jejunal mesenteric artery increased during brainstem hemorrhage.Analysis of red color coordinate values indicated transient increase in the congestion of jejunal mucous membrane during acute brainstem hemorrhage; (3) Through the analysis of the pathologic slice, we found enlarged blood vessels, stagnant blood, and transudatory red blood cells in the duodenal submucous layer; (4) Electric discharge of vagus nerve increased and sporadic hemorrhage spots occurred in duodenal mucous and submucous layer, when the lateral ventricle was under pressure.CONCLUSION: Brainstem hemorrhage could causeintracranial hypertension, which would increase the neural discharge of vagus nerve and cause the transient congestion of jejunal mucous membrane. It could cause hyperemia and diffused hemorrhage in the duodenal submucous layer 48 h after brainstem hemorrhage.

  8. Clinical Experience of Auditory Brainstem Response Testing on Pediatric Patients in the Operating Room

    OpenAIRE

    Wheaton Hinchion; Briana Dornan; Guangwei Zhou

    2012-01-01

    Objectives. To review our experience of conducting auditory brainstem response (ABR) test on children in the operating room and discuss the benefits versus limitations of this practice. Methods. Retrospective review study conducted in a pediatric tertiary care facility. A total of 267 patients identified with usable data, including ABR results, medical and surgical notes, and follow-up evaluation. Results. Hearing status successfully determined in all patients based on the ABR results form th...

  9. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    OpenAIRE

    Leeman Jonathan E; Clump David A; Wegner Rodney E; Heron Dwight E; Burton Steven A; Mintz Arlan H

    2012-01-01

    Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SR...

  10. Frequency difference beyond behavioral limen reflected by frequency following response of human auditory Brainstem

    OpenAIRE

    Xu, Qin; Gong, Qin

    2014-01-01

    Background The present study investigated whether the frequency-following response (FFR) of the auditory brainstem can represent individual frequency-discrimination ability. Method We measured behavioral frequency-difference limens (FDLs) in normal hearing young adults. Then FFRs were evoked by two pure tones, whose frequency difference was no larger than behavioral FDL. Discrimination of FFRs to individual frequencies was conducted as the neural representation of stimulus frequency differenc...

  11. Short GSM mobile phone exposure does not alter human auditory brainstem response

    OpenAIRE

    Thuróczy György; Kubinyi Györgyi; Molnár Ferenc; Kellényi Lóránd; Stefanics Gábor; Hernádi István

    2007-01-01

    Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR) was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young ...

  12. Using Concha Electrodes to Measure Cochlear Microphonic Waveforms and Auditory Brainstem Responses

    OpenAIRE

    Zhang, Ming

    2010-01-01

    During electrocochleography, that is, ECochG or ECoG, a recording electrode can be placed in the ear canal lateral to the tympanic membrane. We designed a concha electrode to record both sinusoidal waveforms of cochlear microphonics (CMs) and auditory brainstem responses (ABRs). The amplitudes of CM waveforms and Wave I or compound action potentials (CAPs) recorded at the concha were greater than those recorded at the mastoid but slightly lower than those recorded at the ear canal. Wave V amp...

  13. Brainstem Regions Involved in the Expiration Reflex. A c-fos Study in Anesthetized Cats

    OpenAIRE

    Poliacek, Ivan; Halasova, Erika; Jakus, Jan; Murin, Peter; Barani, Helena; Stransky, Albert; Bolser, Donald C.

    2007-01-01

    Expression of the immediate-early gene c-fos, a marker of neuronal activation, was employed to localize brainstem neuronal populations functionally related to the expiration reflex (ER). Twelve spontaneously breathing, non-decerebrate, pentobarbital anesthetized cats were used. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive ERs mechanically induced from the glottis (296±9 ERs) was compared to FLI in 6 control non-stimulated cats. Respiratory rate, arterial blood pre...

  14. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    OpenAIRE

    Källstrand, Johan; Olsson, Olle; Nehlstedt, Sara Fristedt; Ling, Mia; Nielzén, Sören

    2010-01-01

    Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward masking in adults diagnosed with Asperger syndrome (AS). Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16), schizophrenic patients (n = 16) and attention defici...

  15. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    OpenAIRE

    Nielzen, Soren

    2010-01-01

    Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward...

  16. Differences in Brainstem Fiber Tract Response to Radiation: A Longitudinal Diffusion Tensor Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Yimei; Feng, Tianshu [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Gajjar, Amar [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Ogg, Robert J.; Hua, Chiaho [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2013-06-01

    Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transverse pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.

  17. Brainstem encoding of speech and musical stimuli in congenital amusia: Evidence from Cantonese speakers

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2015-01-01

    Full Text Available Congenital amusia is a neurodevelopmental disorder of musical processing that also impacts subtle aspects of speech processing. It remains debated at what stage(s of auditory processing deficits in amusia arise. In this study, we investigated whether amusia originates from impaired subcortical encoding of speech (in quiet and noise and musical sounds in the brainstem. Fourteen Cantonese-speaking amusics and 14 matched controls passively listened to six Cantonese lexical tones in quiet, two Cantonese tones in noise (signal-to-noise ratios at 0 and 20 dB, and two cello tones in quiet while their frequency-following responses (FFRs to these tones were recorded. All participants also completed a behavioral lexical tone identification task. The results indicated normal brainstem encoding of pitch in speech (in quiet and noise and musical stimuli in amusics relative to controls, as measured by FFR pitch strength, pitch error, and stimulus-to-response correlation. There was also no group difference in neural conduction time or FFR amplitudes. Both groups demonstrated better FFRs to speech (in quiet and noise than to musical stimuli. However, a significant group difference was observed for tone identification, with amusics showing significantly lower accuracy than controls. Analysis of the tone confusion matrices suggested that amusics were more likely than controls to confuse between tones that shared similar acoustic features. Interestingly, this deficit in lexical tone identification was not coupled with brainstem abnormality for either speech or musical stimuli. Together, our results suggest that the amusic brainstem is not functioning abnormally, although higher-order linguistic pitch processing is impaired in amusia. This finding has significant implications for theories of central auditory processing, requiring further investigations into how different stages of auditory processing interact in the human brain.

  18. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival

  19. Proposed Toxic and Hypoxic Impairment of a Brainstem Locus in Autism

    OpenAIRE

    Woody R. McGinnis; Tapan Audhya; Stephen M. Edelson

    2013-01-01

    Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS) in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain’s point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal fun...

  20. Long-term Survival after Resection of HER2+ Infiltrating Ductal Carcinoma Metastasis to the Brainstem.

    Science.gov (United States)

    Awad, Al-Wala; Zaidi, Hasan A; Awad, Al-Homam; Spetzler, Robert

    2016-01-01

    The central nervous system is a common site of metastatic spread from neoplasms in distant organs, including breast, bone, and lung. The decision to surgically treat these metastatic lesions is often challenging, especially in the setting of systemic disease or when eloquent brain regions are involved. Treating metastatic disease in the brainstem can be technically difficult, and in many institutions, considered a contraindication to surgical intervention, given the relatively high risk of new postoperative neurological deficits. Herein, we report a case of metastatic ductal carcinoma of the breast with spread to the pontine-medullary junction that was treated with aggressive surgical resection and chronic hormonal therapy. After surgical excision of the brainstem lesion, the patient remained asymptomatic and was maintained on trastuzumab therapy over a 10-year follow-up period, with no radiographic or clinical evidence of recurrent disease. To our knowledge, this is the first report of a patient treated for a solitary metastasis to the brainstem with long-term survival. PMID:26929889

  1. Management of pediatric brainstem glioma. Surgical indication and the value of pathological diagnosis

    International Nuclear Information System (INIS)

    We reviewed 14 cases of pediatric brainstem glioma. Magnetic resonance showed 10 tumors in the pons, 3 in the midbrain, and 1 in the medulla oblongata. Six patients underwent partial tumor resection, and 1 patient underwent endoscopic biopsy of the tumor. The pathological diagnoses were consistent with pilocytic astrocytoma in 1 patient, fibrillary astrocytoma in 3 patients, anaplastic astrocytoma in 2 patients, and ganglioglioma in 1 patient. Although the patient with a ganglioglioma of the medulla oblongata had mild dysphagia after the operation, no other symptoms were noted. The remaining 7 patients did not undergo tumor resection because of the classic appearance of the diffuse pontine gliomas. Eleven patients underwent radiotherapy, and 8 patients also underwent chemotherapy. Although 2 patients with fibrillary astrocytoma of the midbrain and 1 patient with pilocytic astrocytoma of the pons had stable outcomes without tumor progression, the other patients died of disease. Because the results of this study suggest that the prognosis of brainstem glioma depends on both tumor location and pathological character, pathological diagnosis provides essential information for both treatment and prognosis. However, surgical resection of tumors requires careful consideration, because operative morbidity has been reported even after partial resection of low-grade gliomas of the brainstem. No effective treatment has been reported for diffuse pontine glioma, although radiotherapy does provide temporary control. Thus, every effort should be made to preserve the patient's quality of life with medical support, including terminal care. (author)

  2. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  3. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  4. An fMRI study of the interface between affective and cognitive neural circuitry in pediatric bipolar disorder.

    Science.gov (United States)

    Pavuluri, Mani N; O'Connor, Megan Marlow; Harral, Erin M; Sweeney, John A

    2008-04-15

    The pathophysiology of pediatric bipolar disorder (PBD) impacts both affective and cognitive brain systems. Understanding disturbances in the neural circuits subserving these abilities is critical for characterizing developmental aberrations associated with the disorder and developing improved treatments. Our objective is to use functional neuroimaging with pediatric bipolar disorder patients employing a task that probes the functional integrity of attentional control and affect processing. Ten euthymic unmedicated pediatric bipolar patients and healthy controls matched for age, sex, race, socioeconomic status, and IQ were scanned using functional magnetic resonance imaging. In a pediatric color word matching paradigm, subjects were asked to match the color of a word with one of two colored circles below. Words had a positive, negative or neutral emotional valence, and were presented in 30-s blocks. In the negative affect condition, relative to the neutral condition, patients with bipolar disorder demonstrated greater activation of bilateral pregenual anterior cingulate cortex and left amygdala, and less activation in right rostral ventrolateral prefrontal cortex (PFC) and dorsolateral PFC at the junction of the middle frontal and inferior frontal gyri. In the positive affect condition, there was no reduced activation of PFC or increased amygdala activation. The pattern of reduced activation of ventrolateral PFC and greater amygdala activation in bipolar children in response to negative stimuli suggests both disinhibition of emotional reactivity in the limbic system and reduced function in PFC systems that regulate those responses. Higher cortical cognitive areas such as the dorsolateral PFC may also be adversely affected by exaggerated emotional responsivity to negative emotions. This pattern of functional alteration in affective and cognitive circuitry may contribute to the reduced capacity for affect regulation and behavioral self-control in pediatric bipolar

  5. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  6. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  7. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse.

    Science.gov (United States)

    Rogers, J L; Ghee, S; See, R E

    2008-01-24

    Reinstatement of extinguished drug-seeking has been utilized in the study of the neural substrates of relapse to drugs of abuse, particularly cocaine. However, limited studies have examined the circuitry that drives the reinstatement of heroin-seeking behavior in the presence of conditioned cues, or by heroin itself. In order to test the hypothesis that the circuitry underlying reinstatement in heroin-experienced animals would show overlapping, yet distinct differences from cocaine-experienced animals, we used transient inhibition of several cortical, striatal, and limbic brain regions during reinstatement of heroin-seeking produced by heroin-paired cues, or by a single priming dose of heroin. Rats lever pressed for i.v. heroin discretely paired with a conditioned stimulus (CS) during daily 3-h sessions for a period of 2 weeks, followed by daily extinction of lever responding. Subsequent reinstatement of heroin-seeking was measured as lever responding in the absence of heroin reinforcement. The first set of reinstatement tests involved response-contingent CS presentations following bilateral intracranial infusion of either a combination of GABA receptor agonists (baclofen-muscimol, B/M) or vehicle (saline) into one of 13 different brain regions. The second set of reinstatement tests involved a single heroin injection (0.25 mg/kg, s.c.) following either B/M or vehicle infusions. Our results showed that vehicle-infused animals reinstated to both CS presentations and a priming injection of heroin, while B/M inactivation of several areas known to be important for the reinstatement of cocaine-seeking also attenuated heroin-seeking in response to CS presentations and/or a priming dose of heroin. However, as predicted, inactivation of areas previously shown to not affect cocaine-seeking significantly attenuated heroin-seeking, supporting the hypothesis that the circuitry underlying the reinstatement of heroin-seeking is more diffusely distributed than that for cocaine

  8. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G. [Westinghouse Savannah River Company, AIKEN, SC (United States); Clark, D.E. [University of Florida, Gainesville, FL (United States); Schulz, R.L. [University of Flordia, Gainesville, FL (United States)

    1998-06-01

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within.

  9. Circuitry for monitoring a high direct current voltage supply for an ionization chamber

    International Nuclear Information System (INIS)

    An arrangement to measure the voltage of the supply and a switching means controlled by this is described. The voltage measurer consists of first and second signal coupling means, the input of the second (connected to the voltage supply) is connected in series with the output of the first. An ionization chamber with this circuitry may be used to monitor the radiation output of a particle accelerator more accurately. Faulty measurements of the dose output, caused by voltages in the earth circuit, are avoided. (U.K.)

  10. The unitary hypothesis: A common neural circuitry for novel manipulations, language, plan-ahead, and throwing?

    OpenAIRE

    Calvin, Prof William H

    1993-01-01

    Plan-ahead becomes necessary for those movements which are over-and-done in less time than it takes for the feedback loop to operate. Natural selection for one of the ballistic movements (hammering, clubbing, and throwing) could evolve a plan-ahead serial buffer for hand-arm commands that would benefit the other ballistic movements as well. This same circuitry may also sequence other muscles (children learning handwriting often screw up their faces and tongues) and so novel oral-facial sequen...

  11. Microwave technology for waste management applications including disposition of electronic circuitry

    International Nuclear Information System (INIS)

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse

  12. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    International Nuclear Information System (INIS)

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within

  13. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  14. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion.

    Science.gov (United States)

    Cross, Donna J; Flexman, Jennifer A; Anzai, Yoshimi; Morrow, Thomas J; Maravilla, Kenneth R; Minoshima, Satoshi

    2006-09-01

    Compensatory changes following disruption of neuronal circuitry have been indicated by previous imaging studies of stroke and other brain injury, but evidence of the pathways involved in such dynamic changes has not been shown in vivo. We imaged rats before and after lesion-induced disruption of the lateral olfactory tract to investigate the subsequent recovery and/or reorganization of functional neuronal circuitry. Serial magnetic resonance imaging was performed following intranasal administration of a paramagnetic track tracer Mn(2+). Images were analyzed using statistical mapping techniques in the stereotactic coordinate system. At 1 week post-lesion, Mn(2+) transport caudal to lesion was reduced as expected, and more importantly, increased transport through the anterior commissure was seen. At 4 weeks post-lesion, there was recovery of transport caudal to lesion, and increased transport through the anterior commissure extended to the contralateral olfactory cortex. Correlation analysis of regional Mn(2+) transport indicated that contralateral enhancement was not simply due to septal window spillover. This study demonstrates for the first time in vivo evidence of compensatory changes in functional neuronal activity to a contralateral pathway through the commissure following brain injury. PMID:16859928

  15. Characteristics of brainstem auditory evoked potentials of students studying folk dance

    Institute of Scientific and Technical Information of China (English)

    Yunxiang Li; Yuzhen Zhu

    2008-01-01

    BACKGROUND:Previous experiments have demonstrated that brainstem auditory evoked potential is affected by exercise,exercise duration,and frequency. OBJECTIVE:Comparing the brainstem auditory evoked potential of students studying folk dance to students studying other subjects.DESIGN:Observational contrast study. SETTING:Physical Education College,Shandong Normal University PARTICIPANTS:Fifty-five female students were enrolled at Shandong Normal University between September and December in 2005,including 21 students that studied folk dance and 34 students that studied other subjects.The age of the folk dance students averaged(19±1)years and dance training length was(6.0 ±1.5)years.The students that studied other subjects had never taken part in dance training or other physical training,and their age averaged(22±1)years,body height averaged(162±5)cm,body mass averaged(51 ±6)kg.All subjects had no prior ear disease or history of other neurological disorders.All students provided informed consent for the experimental project. METHODS:The neural electricity tester,NDI-200(Shanghai Poseidon Medical Electronic Instrument Factory)was used to examine and record Brainstem Auditory Evoked Potential values of the subjects during silence,as well as to transversally analyze the Brainstem Auditory Evoked Potential values.The electrode positions were cleaned and degreased with soapy water,followed by ethanol.The selected bipolar electrodes were situated on the head:recording electrodes were placed at the Baihui acupoint,and the reference electrode was placed at the mastoid of the measured ear,with grounding electrodes in the center of the forehead.Brainstem Auditory Evoked Potential values were elicited by monaural stimulation of a "click" though an earphone; the other ear was sheltered by the white noise.The click intensity was 102 db,the stimulation frequency was 30 Hz,the bandpass filters were 1 000-3 000 Hz,the sensitivity was 5 μV,and a total of 2 000 sweeps were

  16. Effect of early onset otitis media on brainstem and cortical auditory processing

    Directory of Open Access Journals (Sweden)

    Mannarukrishnaiah Jayaram

    2008-04-01

    Full Text Available Abstract Background Otitis media (OM leads to significant reduction in the hearing sensitivity. The reduced auditory input, if in the early years of life when the auditory neural system is still maturing, may adversely influence the structural as well as functional development of the system. Past research has reported abnormalities in both the structure and function of brainstem nuclei following auditory deprivation, but, it has not necessarily focused on children who had OM in their first year of life. It can also be said that if auditory processing is affected at the brainstem level because of early onset OM (reduced auditory input in the crucial periods of neural development, then, it may be said that auditory processing is also affected at the cortical level because it receives distorted input from the brainstem. Therefore, the purpose of this study was to document the effects of early onset OM on auditory processing, if any, at the brainstem as well as at cortical levels. A related purpose of the study was to investigate the persistence of the effects of early onset OM, if any, on auditory processing. Methods A cross sectional approach and a standard group comparison design was used in the study. Thirty children, who had OM between 6 and 12 months of age and who were in the age range of 3.1 – 5.6 years participated in the study. Children with OM were divided into 3 groups based on their age. Click evoked auditory brainstem responses (ABRs and late latency responses (LLRs were recorded from these children, and the responses were compared with those from age and gender matched normal children without any history of OM. The data from the 2 groups was statistically analyzed through independent t test. Pearson's Product Moment correlation was computed to examine the relationship between results of ABR and LLR in children with early onset OM. Results The mean central conduction time was significantly increased and the mean amplitude of wave I

  17. Correlation between baseline blood pressure and the brainstem FMRI response to isometric forearm contraction in human volunteers: a pilot study.

    Science.gov (United States)

    Coulson, J M; Murphy, K; Harris, A D; Fjodorova, M; Cockcroft, J R; Wise, R G

    2015-07-01

    It has been shown previously that changes in brainstem neural activity correlate with changes in both mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) during static handgrip (SHG). However, the relationship between baseline MAP and brainstem neural activity is unclear. We investigated changes in blood oxygen level-dependent (BOLD) signal induced by SHG in 12 young adults using BOLD functional magnetic resonance imaging (FMRI). An estimation of the blood pressure response to SHG was obtained in seven subjects during a session outside the MRI scanner and was used to model the blood pressure response to SHG inside the scanner. SHG at 40% of maximum grip increased MAP (mean ± s.d.) at the end of the 180-s squeeze from 85 ± 6 mm Hg to 108 ± 15 mm Hg, P = 0.0001. The brainstem BOLD signal change associated with SHG was localised to the ventrolateral medulla. This regional BOLD signal change negatively correlated with baseline MAP, r = -0.61, P = 0.01. This relationship between baseline MAP and brainstem FMRI responses to forearm contraction is suggestive of a possible role for brainstem activity in the control of MAP and may provide mechanistic insights into neurogenic hypertension. PMID:25391759

  18. Huntington's disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem.

    Science.gov (United States)

    Rüb, Udo; Hentschel, Matthias; Stratmann, Katharina; Brunt, Ewout; Heinsen, Helmut; Seidel, Kay; Bouzrou, Mohamed; Auburger, Georg; Paulson, Henry; Vonsattel, Jean-Paul; Lange, Herwig; Korf, Horst-Werner; den Dunnen, Wilfred

    2014-04-01

    Huntington's disease (HD) is a progressive polyglutamine disease that leads to a severe striatal and layer-specific neuronal loss in the cerebral neo-and allocortex. As some of the clinical symptoms (eg, oculomotor dysfunctions) suggested a degeneration of select brainstem nuclei, we performed a systematic investigation of the brainstem of eight clinically diagnosed and genetically confirmed HD patients. This post-mortem investigation revealed a consistent neuronal loss in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the pons, superior and inferior olives, in the area of the excitatory burst neurons for horizontal saccades, raphe interpositus nucleus and vestibular nuclei. Immunoreactive intranuclear neuronal inclusions were present in all degenerated and apparently spared brainstem nuclei and immunoreactive axonal inclusions were observed in all brainstem fiber tracts of the HD patients. Degeneration of brainstem nuclei can account for a number of less well-understood clinical HD symptoms (ie, cerebellar, oculomotor and vestibular symptoms), while the formation of axonal aggregates may represent a crucial event in the cascades of pathological events leading to neurodegeneration in HD. PMID:24779419

  19. Continued Maturation of the Click-Evoked Auditory Brainstem Response in Preschoolers

    Science.gov (United States)

    Spitzer, Emily; White-Schwoch, Travis; Carr, Kali Woodruff; Skoe, Erika; Kraus, Nina

    2016-01-01

    Background Click-evoked auditory brainstem responses (ABRs) are a valuable tool for probing auditory system function and development. Although it has long been thought that the human auditory brainstem is fully mature by age 2 yr, recent evidence indicates a prolonged developmental trajectory. Purpose The purpose of this study was to determine the time course of ABR maturation in a preschool population and fill a gap in the knowledge of development. Research Design Using a cross-sectional design, we investigated the effect of age on absolute latencies, interwave latencies, and amplitudes (waves I, III, V) of the click-evoked ABR. Study Sample A total of 71 preschoolers (ages 3.12–4.99 yr) participated in the study. All had normal peripheral auditory function and IQ. Data Collection and Analysis ABRs to a rarefaction click stimulus presented at 31/sec and 80 dB SPL (73 dB nHL) were recorded monaurally using clinically-standard recording and filtering procedures while the participant sat watching a movie. Absolute latencies, interwave latencies, and amplitudes were then correlated to age. Results Developmental changes were restricted to absolute latencies. Wave V latency decreased significantly with age, whereas wave I and III latencies remained stable, even in this restricted age range. Conclusions The ABR does not remain static after age 2 yr, as seen by a systematic decrease in wave V latency between ages 3 and 5 yr. This finding suggests that the human brainstem has a continued developmental time course during the preschool years. Latency changes in the age 3–5 yr range should be considered when using ABRs as a metric of hearing health. PMID:25597458

  20. The relationship between acceptable noise level and electrophysiologic auditory brainstem and cortical signal to noise ratios

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2014-03-01

    Full Text Available The following objectives of the study were formulated: i to investigate differences in measured signal to noise ratios while recording speech-evoked auditory brainstem response (cABR and cortical late latency response (LLR in low and high acceptable noise level (ANL groups; and ii to compare peak to peak amplitude of cABR (V-A and LLR (N1-P2 in low and high ANL groups. A total of 23 normal hearing participants was included in the study. One shot replicative and partly exploratory research design was utilized to study the effect of signal to noise ratio in a recorded waveform on afferent mechanism, assessed by cABR and LLR on participants having values of ANL of ≤7 (low ANL group and ≥13 (high ANL group. There were no differences in signal to noise ratio in the recorded waveforms of cABR and LLR between low and high ANL groups at both brainstem and cortical levels. However, the peak to peak amplitude of V-A of cABR and N1-P2 of LLR were both statistically larger in the high ANL group compared to their counterpart. The signal to noise ratio in recorded waveforms did not differentiated cABR (V-A or LLR (N1-P2 in low and high ANL groups. However, Larger peak to peak amplitudes in the high ANL group suggests differences higher processing centers in the upper brainstem to the auditory cortex. The findings of the study may be useful in determining the patient acceptability of noise.

  1. Effect of estrogen on vagal afferent projections to the brainstem in the female.

    Science.gov (United States)

    Ciriello, John; Caverson, Monica M

    2016-04-01

    The effects of 17β-estradiol (E) on the distribution and density of brainstem projections of small or large diameter primary vagal afferents were investigated in Wistar rats using transganglionic transport of wheat germ agglutinin- (WGA; preferentially transported by non-myelinated afferent C-fibers; 2%), or cholera toxin B-subunit- (CTB, 5%; preferentially transported by large myelinated afferent A-fibers) conjugated horseradish peroxidase (HRP) in combination with the tetramethylbenzidine method in age matched ovariectomized (OVX) only or OVX and treated with E (OVX+E; 30pg/ml plasma) females for 12 weeks. Additionally, these projections were compared to aged matched males. Unilateral microinjection of WGA-HRP into the nodose ganglion resulted in dense anterograde labeling bilaterally, with an ipsilateral predominance in several subnuclei of the nucleus of the solitary tract (NTS) and in area postrema that was greatest in OVX+E animals compared to OVX only and males. Moderately dense anterograde labeling was also observed in paratrigeminal nucleus (PAT) of the OVX+E animals. CTB-HRP produced less dense anterograde labeling in the NTS complex, but had a wider distribution within the brainstem including the area postrema, dorsal motor nucleus of the vagus, PAT, the nucleus ambiguus complex and ventrolateral medulla in all groups. The distribution of CTB-HRP anterograde labeling was densest in OVX+E, less dense in OVX only females and least dense in male rats. Little, if any, labeling was found within PAT in males using either WGA-or CTB-HRP. Taken together, these data suggest that small, non-myelinated (WGA-labeled) and large myelinated (CTB-labeled) diameter vagal afferents projecting to brainstem autonomic areas are differentially affected by circulating levels of estrogen. These effects of estrogen on connectivity may contribute to the sex differences observed in central autonomic mechanisms between gender, and in females with and without estrogen. PMID

  2. Natural history and management of brainstem gliomas in adults. A retrospective Italian study.

    Science.gov (United States)

    Salmaggi, A; Fariselli, L; Milanesi, I; Lamperti, E; Silvani, A; Bizzi, A; Maccagnano, E; Trevisan, E; Laguzzi, E; Rudà, R; Boiardi, A; Soffietti, R

    2008-02-01

    Brainstem gliomas in adults are rare tumors, with heterogeneous clinical course; only a few studies in the MRI era describe the features in consistent groups of patients. In this retrospective study, we report clinical features at onset, imaging characteristics and subsequent course in a group of 34 adult patients with either histologically proven or clinico-radiologically diagnosed brainstem gliomas followed at two centers in Northern Italy. Of the patients 18 were male, 14 female, with a median age of 31. In 21 of the patients histology was obtained and in 20 it was informative (2 pilocytic astrocytoma, 9 low-grade astrocytoma, 8 anaplastic astrocytoma and 1 glioblastoma). Contrast enhancement at MRI was present in 14 patients. In all of the 9 patients who were investigated with MR spectroscopy, the Cho/NAA ratio was elevated at diagnosis. In 8 of the patients, an initial watch and wait policy was adopted, while 24 were treated shortly after diagnosis with either radiotherapy alone [4] or radiotherapy and chemotherapy [20] (mostly temozolomide). Only minor radiological responses were observed after treatments; in a significant proportion of patients (9 out of 15) clinical improvement during therapy occurred in the context of radiologically (MRI) stable disease. Grade III or IV myelotoxicity was observed in 6 patients. After a follow-up ranging from 9 to 180 months, all but 2 patients have progressed and 14 have died (12 for disease progression, 2 for pulmonary embolism). Median overall survival time was of 59 months. Investigation of putative prognostically relevant parameters showed that a short time between disease onset and diagnosis was related to a shorter survival. Compared with literature data, our study confirms the clinical and radiological heterogeneity of adult brainstem gliomas and underscores the need for multicenter trials in order to assess the efficacy of treatments in these tumors. PMID:18293027

  3. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  4. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses

    DEFF Research Database (Denmark)

    Harte, James; Pigasse, Gilles; Dau, Torsten

    2009-01-01

    Different attempts have been made to directly measure frequency specific basilar membrane (BM) delays in animals, e.g., laser velocimetry of BM vibrations and auditory nerve fiber recordings. The present study uses otoacoustic emissions (OAEs) and auditory brainstem responses (ABRs) to estimate B...... synaptic delays. This allows a comparison between individual OAE and BM delays over a large frequency range in the same subjects, and offers support to the theory that OAEs are reflected from a tonotopic place and carried back to the cochlear base via a reverse traveling wave....

  5. Brainstem hemorrhage following clipping of anterior communicating aneurysm: Is lumbar drain responsible?

    Directory of Open Access Journals (Sweden)

    Arindom Kakati

    2012-01-01

    Full Text Available Remote brainstem hemorrhage is an extremely rare complication following supratentorial surgery. We describe here a 55-year-old patient with ruptured anterior communicating artery aneurysm, who underwent an uneventful clipping of the aneurysm, and had a lumbar drainage intra-operatively to facilitate brain relaxation. In the postoperative period, he developed pontomesencephalic hemorrhage, and had a fatal outcome. The potential causative factors are discussed, and the relevant literature reviewed. This is probably the first reported case of this complication in the literature.

  6. Neuroimaging of Infectious and Inflammatory Diseases of the Pediatric Cerebellum and Brainstem.

    Science.gov (United States)

    Rossi, Andrea; Martinetti, Carola; Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico

    2016-08-01

    Cerebellar involvement by infectious-inflammatory conditions is rare in children. Most patients present with acute ataxia, and are typically previously healthy, young (often preschool) children. Viral involvement is the most common cause and ranges from acute postinfectious ataxia to acute cerebellitis MR imaging plays a crucial role in the evaluation of patients suspected of harboring inflammatory-infectious involvement of the cerebellum and brainstem. Knowledge of the imaging features of these disorders and technical competence on pediatric MR imaging are necessary for a correct interpretation of findings, which in turn prompts further management. PMID:27423804

  7. Increased astrocytic expression of metallothioneins I + II in brainstem of adult rats treated with 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan; Moos, Torben

    1997-01-01

    caused damage to this part of the brain. In the grey matter regions infiltrated with OX-42-positive cells, astrocytes identified by anti-GFAP and MT-I + II antibodies were almost absent. By contrast, in the peripheral zone of the lesioned regions numerous reactive GFAP- and MT-I + II-positive astrocytes...... were observed. The blood-brain barrier (BBB) to serum albumin was compromised in the entire brainstem. The astrocytic expression of MT-I + II could reflect the brains needs to scavenge metal ions released from either damaged cells or plasma proteins entering the brain due to the injured BBB, as well as...

  8. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    Science.gov (United States)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  9. The role of BDNF in depression on the basis of its location in the neural circuitry

    Institute of Scientific and Technical Information of China (English)

    Hui YU; Zhe-yu CHEN

    2011-01-01

    Depression is one of the most prevalent and life-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their roles in depression and antidepressant action. While these regions no doubt play important roles in the mental illness, there is compelling evi-dence that other brain regions are also involved. Brain-derived neurotrophic factor (BDNF) is broadly expressed in the developing and adult mammalian brain and has been implicated in development, neural regeneration, synaptic transmission, synaptic plasticity and neurogenesis. Recently BDNF has been shown to play an important role in the pathophysiology of depression, however there are con-troversial reports about the effects of BDNF on depression. Here, we present an overview of the current knowledge concerning BDNF actions and associated intracellular signaling in hippocampus, prefrontal cortex, nucleus accumbens (NAc) and amygdala as their rela-tion to depression.

  10. Broadband Energy Harvesting Using a Metamaterial Resonator Embedded With Non-Foster Impedance Circuitry

    CERN Document Server

    Fu, Guoqing

    2014-01-01

    Radio Frequency Identification (RFID) and implantable biomedical devices need efficient power and data transfer with very low profile antennas. We propose a low profile electrically small antenna for near-field wireless power and data telemetry employing a metamaterial Split Ring Resonator (SRR) antenna. SRRs can be designed for operation over wide frequencies from RF to visible. However, they are inherently narrowband making them sensitive to component mismatch with respect to external transmit antenna. Here we propose an embedding of a non-foster impedance circuitry into the metamaterial SRR structure that imparts conjugate negative complex impedance to this resonator antenna thereby increasing the effective bandwidth and thus overcoming the fundamental limit for efficient signal coupling. We demonstrate the concept through extensive numerical simulations and a prototype system at the board level using discrete off-the-shelf components and printed circuit SRR antenna at 500 MHz. We show that the power trans...

  11. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bobrek, Miljko [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  12. Planar SQUID magnetometer integrated with bootstrap circuitry under different bias modes

    International Nuclear Information System (INIS)

    A planar superconducting quantum interference device (SQUID) magnetometer consisting of a parallel gradiometer SQUID with integrated input coils connected to an on-chip pickup loop was designed and fabricated in conventional niobium technology. SQUID bootstrap circuitry (SBC) incorporating suitable current and voltage feedbacks was also integrated into the design. For a SQUID inductance of Ls = 350 pH and a chip size of 5 × 5 mm2, the field resolution of the voltage-biased SQUID magnetometer reached −1/2 with the bootstrap circuit and an ordinary preamplifier. We also observed that the effective McCumber parameter βc of the junctions is influenced by the bias mode. Indeed, when the nominal junction βc was larger than unity, our SQUID magnetometer operated stably in the voltage bias mode. The device exhibited low noise even without SBC. (paper)

  13. Circuitry for the automatic tare balancing at radiometric weigh-feeder belts

    International Nuclear Information System (INIS)

    The invention has been aimed at a circuitry for the automatic tare balancing at radiometric weigh-feeder belts with digital data processing of the measurement pulse rate emitted by a radiation detector during a measuring cycle. To secure a non-perturbational and exact permanent pulse rate correction by the tare rate the measuring pulse rate is summed up under the operational mode 'taring' for a preselected rotation time of the empty belt and evaluated using a factor related to the length of measuring cycle. The resulting pulses are stored as an average value. Under the operational mode 'weighing' the difference between pulse rate and stored tare pulses will be formed and transmitted to a data processing unit

  14. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage.

    Science.gov (United States)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson; Weinert, Brian T; Passmore, Lori A; Patel, Ketan J; Olsen, Jesper V; Choudhary, Chunaram; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. PMID:25557546

  15. Large central lesions compressing the hypothalamus and brainstem. Operative approaches and combination treatment with radiosurgery

    International Nuclear Information System (INIS)

    A major aim of minimally invasive neurosurgery is to preserve function in the brain and cranial nerves. Based on previous results of radiosurgery for central lesions (19 craniopharyngiomas, 46 pituitary adenomas, 9 meningeal tumors), combined micro- and/or radiosurgery was applied for large lesions compressing the hypothalamus and/or brainstem. A basal interhemispheric approach via superomedial orbitotomy or a transcallosal-transforaminal approach was used for these large tumors. Tumors left behind in the hypothalamus or cavernous sinus were treated with radiosurgery using a gamma unit. Preoperative hypothalamo-pituitary functions were preserved in most of these patients. Radiosurgical results were evaluated in patients followed for more than 2 years after treatment. All 9 craniopharyngiomas decreased in size after radiosurgery, although a second treatment was required in 4 patients. All 20 pituitary adenomas were stable or decreased in size and 5 of 7 functioning adenomas showed normalized values of hormones in the serum. All 3 meningeal tumors were stable or decreased in size after treatment. No cavernous sinus symptoms developed after radiosurgery. We conclude that combined micro- and radio-neurosurgery is an effective and less invasive treatment for large central lesions compressing the hypothalamus and brainstem. (author)

  16. Auditory brainstem responses in a Rhesus Macaque model of neuro-AIDS.

    Science.gov (United States)

    Raymond, L A; Wallace, D; Berman, N E; Marcario, J; Foresman, L; Joag, S V; Raghavan, R; Narayan, O; Cheney, P D

    1998-10-01

    Nine rhesus macaques (Macaca mulatta) were inoculated with a combination of two passaged strains of SIVmac (R71 and 17E), both of which are known to be neurovirulent. Auditory brainstem responses (ABRs) were recorded at regular intervals from these animals both before and after inoculation. Increases in ABR peak and interpeak latency were observed corresponding to progression of SIV disease. Post-inoculation increases in latency were observed for all five peaks of the ABR and for interpeak intervals I-V and III-V. The largest increases in latency were associated with end-stage disease. Within 14 weeks of inoculation, all but two animals developed end-stage simian AIDS and were euthanized. Histopathological examination revealed multifocal lesions in the cerebral gray and white matter as well as in the auditory structures of the brainstem. In most animals, ABR changes were accompanied by evidence of underlying neuropathology. However, cases of severe neuropathology with no ABR abnormalities and vice versa were also noted. Though in a much shorter time frame, SIVmac R71/17E produced both physiological and histopathological abnormalities similar to those associated with HIV disease in humans. These results further support the SIVmac R71/17E infected rhesus macaque as an animal model of HIV related neurological disease in humans. PMID:9839648

  17. Neonatal brainstem function and 4-month arousal-modulated attention are jointly associated with autism.

    Science.gov (United States)

    Cohen, Ira L; Gardner, Judith M; Karmel, Bernard Z; Phan, Ha T T; Kittler, Phyllis; Gomez, Tina Rovito; Gonzalez, Maripaz G; Lennon, Elizabeth M; Parab, Santosh; Barone, Anthony

    2013-02-01

    The authors evaluated the contribution of initially abnormal neonatal auditory brainstem responses (ABRs) and 4-month arousal-modulated attention visual preference to later autism spectrum disorder (ASD) behaviors in neonatal intensive care unit (NICU) graduates. A longitudinal study design was used to compare NICU graduates with normal ABRs (n = 28) to those with initially abnormal ABRs (n = 46) that later resolved. At 4 months postterm age, visual preference (measured after feeding) for a random check pattern flashing at 1, 3, or 8 Hz and gestational age (GA) served as additional predictors. Outcome measures were PDD Behavior Inventory (PDDBI) scores at 3.4 years (standard deviation = 1.2), and developmental quotients (DQ) obtained around the same age with the Griffiths Mental Development Scales (GMDS). Preferences for higher rates of stimulation at 4 months were highly correlated with PDDBI scores (all P-values measure most associated with a diagnosis of autism. For those with abnormal ABRs, increases in preference for higher rates of stimulation as infants were linked to nonlinear increases in severity of ASD at 3 years and to an ASD diagnosis. Abnormal ABRs were associated with later reports of repetitive and ritualistic behaviors irrespective of 4-month preference for stimulation. The joint occurrence of initially abnormal neonatal ABRs and preference for more stimulation at 4 months, both indices of early brainstem dysfunction, may be a marker for the development of autism in this cohort. PMID:23165989

  18. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  19. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  20. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  1. "Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry.

    Science.gov (United States)

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: "liking,"learning," and "wanting" [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or "wanting" hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily selfadministered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens (NAC), and they stimulate the functioning of brain reward circuitry (producing the "high" that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions. PMID:22236117

  2. Trigeminal-Rostral Ventromedial Medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury

    Directory of Open Access Journals (Sweden)

    Chai Bryan

    2012-10-01

    Full Text Available Abstract Background Our previous studies have shown that complete Freund’s adjuvant (CFA-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM, a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results Microinjection of the IL-1 receptor antagonist (5 nmol, n=6 into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol and L-733,060 (0.5-11.4 nmol, attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol, attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.

  3. Neuroanatomical circuitry associated with exploratory eye movement in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Linlin Qiu

    Full Text Available Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS and widespread gray matter density (GMD reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA 17], the left cuneus (BA 18, the left superior occipital cortex (BA 18/19, the left superior frontal gyrus (BA 6, the left cerebellum, the right lingual cortex (BA 17/18, the right middle occipital cortex (BA19, the right inferior temporal cortex (BA 37, the right dorsolateral prefrontal cortex (BA 46 and bilateral precentral gyri (BA 6 extending to the frontal eye fields (FEF, BA 8. To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.

  4. SU-E-T-225: It Is Necessary to Contouring the Brainstem On MRI Images in Radiotherapy of Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Liu, C; Liu, C [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To analyze the error in contouring the brainstem for patients with head and neck cancer who underwent radiotherapy based on computed tomography (CT) and magnetic resonance (MR) images. Methods: 20 brain tumor and 17 nasopharyngeal cancer patients were randomly selected. Each patient underwent MR and CT scanning. For each patient, one observer contoured the brainstem on CT and MR images for 10 times, and 10 observers from five centers delineated the brainstem on CT and MR images only one time. The inter- and intra-observers volume and outline variations were compared. Results: The volumes of brainstem contoured by inter- and intra-observers on CT and MR images were similar (p>0.05). The reproducibility of contouring brainstem on MR images was better than that on CT images (p<0.05) for both inter- and intra-observer variability. The inter- and intra-observer for contouring on CT images reached mean values of 0.81±0.05 (p>0.05) and of 0.85±0.05 (p>0.05), respectively, while on MR images these respective values were 0.90±0.05 (p>0.05) and 0.92±0.04 (p>0.05). Conclusion: Contouring the brainstem on MR images was more accurate and reproducible than that on CT images. Precise information might be more helpful for protecting the brainstem radiation injury the patients whose lesion were closed to brainstem.

  5. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew.

    Science.gov (United States)

    Zhong, Weixia; Chebolu, Seetha; Darmani, Nissar A

    2016-04-01

    Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non

  6. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  7. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  8. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  9. Musicians and Tone-Language Speakers Share Enhanced Brainstem Encoding but Not Perceptual Benefits for Musical Pitch

    Science.gov (United States)

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Behavioral and neurophysiological transfer effects from music experience to language processing are well-established but it is currently unclear whether or not linguistic expertise (e.g., speaking a tone language) benefits music-related processing and its perception. Here, we compare brainstem responses of English-speaking musicians/non-musicians…

  10. Cross-Domain Effects of Music and Language Experience on the Representation of Pitch in the Human Auditory Brainstem

    Science.gov (United States)

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively…

  11. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  12. Effect of sex and rate of stimulus on auditory brainstem responses of children with history of preterm birth

    Directory of Open Access Journals (Sweden)

    Sara hasani

    2013-05-01

    Full Text Available Background and Aim: Preterm birth is one of the risk factors need comprehensive audiological assessment. In this study, the effect of sex and rate of stimulation on response of children with history of preterm birth was investigated by auditory brainstem response (ABR. Methods: This cross-sectional study was conducted using convinience sampling. Click-evoked a uditory brainstem response test with both low (21.1 c/s and high (51.1 c/s stimulus rates was recorded in 30 children with a history of preterm birth and 30 ones with history of term labor, as controls. Results: Significant differences were observed in inter-peak latencies of I-III in both rates, III-V in the low rate, I-V in the high rate, and absolute latency of III wave between high and low stimulus rates (p<0.05 for all. Rate of stimulus affect on auditory brainstem response of preterm birth group was more than controls. Sex also affected on some parameters of auditory brainstem response test. Conclusion: Preterm birth group showed longer latencies than normal group in both rates. Rate of stimulus had significant effect on results of children with history of preterm birth compared normal group. These findings may reflect the negative effect of preterm birth on neural synchronization function in response to transient stimuli.

  13. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    International Nuclear Information System (INIS)

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  14. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low...

  15. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Science.gov (United States)

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  16. Transient analysis of electromagnets with emphasis on solid components, eddy currents, and driving circuitry

    Science.gov (United States)

    Batdorff, Mark A.

    Valves are commonly used in fluid power systems to control pressure and flow. The emerging field of digital hydraulics demands high-speed, low cost, on/off valves with improved performance. Electromagnets, or solenoids, are commonly used to actuate valves due to their low cost, high reliability, and moderate performance. This work develops a dynamic model for a solid steel electromagnet that can be used for design and optimization, and unveils design tradeoffs with geometry and driving circuitry that are often overlooked. This work develops an accurate, computationally efficient, nonlinear, coupled, dynamic, axisymmetric, high fidelity magnetic equivalent circuit (HFMEC) electromagnet model capable of predicting force, inductance, dynamic response, and energy consumption. The model is intended for applications where both accuracy and solution time are critical. Axisymmetric magnetic fringing and leakage permeances were derived in order to capture nonlinear magnetic field phenomena that affect force and inductance. The tradeoffs between solid-center and hollow-center electromagnets were investigated. It was shown with both simulation and measurement that a hollow-center electromagnet has a 37.7% shorter useful stroke due to increased magnetic fringing and leakage (from 4.0mm to 2.5mm). However, it was also shown that the hollow-center electromagnet has a 70% improved turn-off response (from 617ms to 362ms). A single objective optimization study was performed demonstrating that hollow-center electromagnets are advantageous and can up to 204% increased dynamic response for systems where dynamics are dominated by eddy current lag. Electromagnets experience dynamic lag when turning on and off due to inductance and eddy currents. Coil driving methods, such as peak-and-hold, are often used to minimize turn-on lag by using high initial voltages and currents. However, circuits often do not address turn-off lag, which can be significant. This work investigates the effects of

  17. Rapid eye movement sleep behavior disorder in a patient with brainstem lymphoma.

    Science.gov (United States)

    Jianhua, Chen; Xiuqin, Liu; Quancai, Cui; Heyang, Sun; Yan, Huang

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is common in patients with neurodegenerative diseases. RBD occurring in a patient with brainstem lymphoma has not yet been reported. A 30-year-old man had an eleven-month history of violent motor and vocal behavior during sleep. Brain magnetic resonance imaging disclosed hypointensity T1 and hyperintensity T2 signals in the pontomesencephalic junction and at the upper/mid pons level. A stereotactic biopsy demonstrated the presence of diffuse large B-cell lymphoma. On polysomnography, there was enhanced submental and limb electromyographic tone and increased muscular activity during REM sleep. Chemotherapy diminished the dream-enacting behaviors. This case provides evidence that treatment aimed at the primary disease can partially improve the frequency of RBD. PMID:23448775

  18. Anatomy of brain-stem white-matter tracts shown by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    We acquired high-resolution MRI and anisotropically diffusion-weighted images (DWI) with direction-selective gradients of the brain stem in 20 healthy volunteers, to identify brain-stem structures such as white-matter tracts and nuclei which show diffusion anisotropy. After averaging and superposition of individual cuts, the images were projected onto appropriate plates of the Schaltenbrand and Wahren anatomical atlas. We identified 20 structures - white-matter tracts and some nuclei - with high contrast. The direction of fibres could be determined as areas of increased (parallel to) or decreased diffusion (perpendicular to the gradient). This study may contribute to understanding of the functional anatomy of the brain stem. (orig.)

  19. A case of overlapping Bickerstaff's brainstem encephalitis and Guillain-Barré syndrome

    Institute of Scientific and Technical Information of China (English)

    WANG De-sheng; TANG Ying; WANG Ye

    2006-01-01

    Objective: There is no report on Bickerstaff's brainstem encephalitis (BBE) patients in China. We here report the first case of BBE in China. Methods: Clinical features, results of electromyography, electroencephalography (EEG), magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) examination were studied to clarify the characteristics of this syndrome.Results: A 44-year-old man presented himself at our inpatient department with somnolence and dizziness as his initial symptoms.He developed multiple cranial nerves paralysis especially internal and external ophthalmoplegia, ataxia and tetraparesis within 1 week. His condition rapidly deteriorated, and he experienced coma. Electromyography showed indications of peripheral nerve dysfunction, electroencephalography revealed loss of basic rhythm, MRI demonstrated high-intensity abnormalities on T2-weighted images of medulla oblongata, and CSF albuminocytological dissociation was defined abnormally as high protein. Ten similar clinically; BBE and FS were proposed to be the variant of GBS.

  20. Bickerstaff's brainstem encephalitis (BBE) in childhood: rapid resolution after intravenous immunoglobulins treatment.

    Science.gov (United States)

    Pavone, P; Le Pira, A; Greco, F; Vitaliti, G; Smilari, P L; Parano, E; Falsaperla, R

    2014-01-01

    Three young patients with Bickerstaff's brainstem encephalitis (BBE) are reported. Some weeks following an upper tract infection, the children after a short period of recovery, showed acute onset of symmetric weakness of the lower limbs with difficulty in standing by and walking. The distal muscle weakness had a rapid progression with involvement of the cranial nerve, and then with severe impairment of the consciousness till to coma in one of the three children. BBE is a rare and often underdiagnosed affection in childhood. Common neuro-immune pathogenesis, overlap of clinical signs and strict correlation among BBE with Fisher syndrome and Guillain-Barrè syndrome lead to think that these affections represent an unique spectrum with different central and peripheral involvement. In these children, treatment with intravenous immunoglobulins resulted in a progressive and rapid resolution of the clinical features. PMID:25268095

  1. Sex-specific response to hypoxia in a reduced brainstem preparation from Xenopus laevis.

    Science.gov (United States)

    Rousseau, Jean-Philippe; Fournier, Stéphanie; Kinkead, Richard

    2016-04-01

    Respiratory reflexes and tolerance to hypoxia show significant sexual dimorphism. However, the data supporting this notion originates exclusively from mammals. To determine whether this concept is limited to this group of vertebrates, we examined the sex-specific response to acute hypoxia in an adult reduced brainstem preparation from Xenopus laevis. Within the first 5min of exposure to hypoxic aCSF (98% N2/2% CO2), recordings of respiratory-related activity show a stronger increase in fictive breathing frequency in males than females. This initial response was followed by a decrease in respiratory-related activity; this depression occurred 6min sooner in males than females. These results represent new evidences of sexual dimorphism in respiratory control in amphibians and provide potential insight in understanding the homology with other groups of vertebrates, including mammals. PMID:26528898

  2. Cavernous sinus thrombosis syndrome and brainstem involvement in patient with leptospirosis: Two rare complications of leptospirosis

    Science.gov (United States)

    Alian, Shahriyar; Taghipour, Mehrdad; Sharifian, Rayka; Fereydouni, Mohammad Amin

    2014-01-01

    Leptospirosis is a bacterial disease that is caused by pathogenic spirochetes of the genus Leptospira. It can affect humans and animals. In humans, it can lead to a wide spectrum of symptoms. It is known as the most common zoonosis in the world. The typical presentation of the disease is an acute biphasic febrile illness with or without jaundice. Less common clinical manifestations may result from involvement of different human body systems. In many places, this disease may be under-diagnosed, especially when associated with neurological complications. Moreover, without treatment, leptospirosis can lead to organ damages, and even death. Neurological complications are uncommon and are reported in a few cases. Cavernous sinus thrombosis syndrome and brainstem involvement are rare complications of leptospirosis and are associated with a high mortality risk. To our knowledge, no such cases have been reported in the literature. PMID:25535508

  3. Mitochondrial bioenergetics and oxidative status disruption in brainstem of weaned rats: Immediate response to maternal protein restriction.

    Science.gov (United States)

    Ferreira, Diorginis José Soares; da Silva Pedroza, Anderson Apolônio; Braz, Glauber Ruda Feitoza; da Silva-Filho, Reginaldo Correia; Lima, Talitta Arruda; Fernandes, Mariana Pinheiro; Doi, Sonia Q; Lagranha, Claudia Jacques

    2016-07-01

    Mitochondrial bioenergetics dysfunction has been postulated as an important mechanism associated to a number of cardiovascular diseases in adulthood. One of the hypotheses is that this is caused by the metabolic challenge generated by the mismatch between prenatal predicted and postnatal reality. Perinatal low-protein diet produces several effects that are manifested in the adult animal, including altered sympathetic tone, increased arterial blood pressure and oxidative stress in the brainstem. The majority of the studies related to nutritional programming postulates that the increased risk levels for non-communicable diseases are associated with the incompatibility between prenatal and postnatal environment. However, little is known about the immediate effects of maternal protein restriction on the offspring's brainstem. The present study aimed to test the hypothesis that a maternal low-protein diet causes tissue damage immediately after exposure to the nutritional insult that can be assessed in the brainstem of weaned offspring. In this regard, a series of assays was conducted to measure the mitochondrial bioenergetics and oxidative stress biomarkers in the brainstem, which is the brain structure responsible for the autonomic cardiovascular control. Pregnant Wistar rats were fed ad libitum with normoprotein (NP; 17% casein) or low-protein (LP; 8% casein) diet throughout pregnancy and lactation periods. At weaning, the male offsprings were euthanized and the brainstem was quickly removed to assess the mitochondria function, reactive oxygen species (ROS) production, mitochondrial membrane electric potential (ΔΨm), oxidative biomarkers, antioxidant defense and redox status. Our data demonstrated that perinatal LP diet induces an immediate mitochondrial dysfunction. Furthermore, the protein restriction induced a marked increase in ROS production, with a decrease in antioxidant defense and redox status. Altogether, our findings suggest that LP-fed animals may be at

  4. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hongwu; Gan, Yungen [Shenzhen Children' s Hospital, Department of Radiology, Shenzhen (China); Wen, Feiqiu [Shenzhen Children' s Hospital, Department of Neurology, Shenzhen (China); Huang, Wenxian [Shenzhen Children' s Hospital, Department of Respiratory, Shenzhen (China)

    2012-06-15

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  5. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    International Nuclear Information System (INIS)

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  6. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    International Nuclear Information System (INIS)

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm3 , 3515 mm3 , and 4517 mm3 , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm2 in RR MS and 124.3-64.82 mm2 in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency

  7. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A. [Ataturk Univ., Erzurum (Turkey). Depts. of Radiology, Histology, Neurology and Embryology, Psychiatry

    2006-07-15

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm{sup 3} , 3515 mm{sup 3} , and 4517 mm{sup 3} , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm{sup 2} in RR MS and 124.3-64.82 mm{sup 2} in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency.

  8. Auditory Rehabilitation in Rhesus Macaque Monkeys (Macaca mulatta) with Auditory Brainstem Implants

    Institute of Scientific and Technical Information of China (English)

    Zhen-Min Wang; Zhi-Jun Yang; Fu Zhao; Bo Wang; Xing-Chao Wang; Pei-Ran Qu; Pi-Nan Liu

    2015-01-01

    Background:The auditory brainstem implants (ABIs) have been used to treat deafness for patients with neurofibromatosis Type 2 and nontumor patients.The lack of an appropriate animal model has limited the study of improving hearing rehabilitation by the device.This study aimed to establish an animal model of ABI in adult rhesus macaque monkey (Macaca mulatta).Methods:Six adult rhesus macaque monkeys (M.mulatta) were included.Under general anesthesia,a multichannel ABI was implanted into the lateral recess of the fourth ventricle through the modified suboccipital-retrosigmoid (RS) approach.The electrical auditory brainstem response (EABR) waves were tested to ensure the optimal implant site.After the operation,the EABR and computed tomography (CT) were used to test and verify the effectiveness via electrophysiology and anatomy,respectively.The subjects underwent behavioral observation for 6 months,and the postoperative EABR was tested every two weeks from the 1st month after implant surgery.Result:The implant surgery lasted an average of 5.2 h,and no monkey died or sacrificed.The averaged latencies of peaks Ⅰ,Ⅱ and Ⅳ were 1.27,2.34 and 3.98 ms,respectively in the ABR.One-peak EABR wave was elicited in the operation,and one-or two-peak waves were elicited during the postoperative period.The EABR wave latencies appeared to be constant under different stimulus intensities;however,the amplitudes increased as the stimulus increased within a certain scope.Conclusions:It is feasible and safe to implant ABIs in rhesus macaque monkeys (M.mulatta) through a modified suboccipital RS approach,and EABR and CT are valid tools for animal model establishment.In addition,this model should be an appropriate animal model for the electrophysiological and behavioral study of rhesus macaque monkey with ABI.

  9. Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus).

    Science.gov (United States)

    Sawyer, Eva K; Turner, Emily C; Kaas, Jon H

    2016-06-15

    Pinnipeds (sea lions, seals, and walruses) are notable for many reasons, including their ape-sized brains, their adaptation to a coastal niche that combines mastery of the sea with strong ties to land, and the remarkable abilities of their trigeminal whisker system. However, little is known about the central nervous system of pinnipeds. Here we report on the somatosensory areas of the nervous system of the California sea lion (Zalophus californianus). Using stains for Nissl, cytochrome oxidase, and vesicular glutamate transporters, we investigated the primary somatosensory areas in the brainstem, thalamus, and cortex in one sea lion pup and the external anatomy of the brain in a second pup. We find that the sea lion's impressive array of whiskers is matched by a large trigeminal representation in the brainstem with well-defined parcellation that resembles the barrelettes found in rodents but scaled upward in size. The dorsal column nuclei are large and distinct. The ventral posterior nucleus of the thalamus has divisions, with a large area for the presumptive head representation. Primary somatosensory cortex is located in the neocortex just anterior to the main vertical fissure, and precisely locating it as we do here is useful for comparing the highly gyrified pinniped cortex with that of other carnivores. To our knowledge this work is the first comprehensive report on the central nervous system areas for any sensory system in a pinniped. The results may be useful both in the veterinary setting and for comparative studies related to brain evolution. J. Comp. Neurol. 524:1957-1975, 2016. © 2016 Wiley Periodicals, Inc. PMID:26878587

  10. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea

    Science.gov (United States)

    Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E.

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, pmelanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control. PMID:27077912

  11. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  12. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  13. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor.

    Science.gov (United States)

    Browning, Kirsteen N; Babic, Tanja; Toti, Luca; Holmes, Gregory M; Coleman, F Holly; Travagli, R Alberto

    2014-10-15

    Stress impairs gastric emptying, reduces stomach compliance and induces early satiety via vagal actions. We have shown recently that the ability of the anti-stress neuropeptide oxytocin (OXT) to modulate vagal brainstem circuits undergoes short-term plasticity via alterations in cAMP levels subsequent to vagal afferent fibre-dependent activation of metabotropic glutamate receptors. The aim of the present study was to test the hypothesis that the OXT-induced gastric response undergoes plastic changes in the presence of the prototypical stress hormone, corticotropin releasing factor (CRF). Whole cell patch clamp recordings showed that CRF increased inhibitory GABAergic synaptic transmission to identified corpus-projecting dorsal motor nucleus of the vagus (DMV) neurones. In naive brainstem slices, OXT perfusion had no effect on inhibitory synaptic transmission; following exposure to CRF (and recovery from its actions), however, re-application of OXT inhibited GABAergic transmission in the majority of neurones tested. This uncovering of the OXT response was antagonized by pretreatment with protein kinase A or adenylate cyclase inhibitors, H89 and di-deoxyadenosine, respectively, indicating a cAMP-mediated mechanism. In naive animals, OXT microinjection in the dorsal vagal complex induced a NO-mediated corpus relaxation. Following CRF pretreatment, however, microinjection of OXT attenuated or, at times reversed, the gastric relaxation which was insensitive to l-NAME but was antagonized by pretreatment with a VIP antagonist. Immunohistochemical analyses of vagal motoneurones showed an increased number of oxytocin receptors present on GABAergic terminals of CRF-treated or stressed vs. naive rats. These results indicate that CRF alters vagal inhibitory circuits that uncover the ability of OXT to modulate GABAergic currents and modifies the gastric corpus motility response to OXT. PMID:25128570

  14. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

    Science.gov (United States)

    Cerritelli, Serena; Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control. PMID:27077912

  15. Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions

    Directory of Open Access Journals (Sweden)

    Irina Solopova

    2015-02-01

    Full Text Available An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation and modulation. The role that the rhythmogenesis capacity of the spinal cord plays in injured populations has become an area of interest and systematic investigation among researchers in recent years, despite its importance being long recognized by neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives a broad convergence of various supraspinal and sensory inputs and may contribute to a vast repertoire of motor actions, the importance of assessing the functional state of the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used as a unique and important model for investigating human rhythmogenesis since its manifestation is largely facilitated by a reduction of external resistance. This article aims to provide a review on current issues related to the ‘locomotor’ state and interactions between spinal and supraspinal influences on the central pattern generator circuitry in humans, which may be important for developing gait rehabilitation strategies in individuals with spinal cord and brain injuries.

  16. Spectrotemporal sound preferences of neighboring inferior colliculus neurons: implications for local circuitry and processing

    Directory of Open Access Journals (Sweden)

    Chen eChen

    2012-09-01

    Full Text Available How do local circuits in the inferior colliculus (IC process and transform spectral and temporal sound information? Using a four-tetrode array we examined the functional properties of the IC and metrics of its micro circuitry by recording neural activity from neighboring single neurons in the cat. Spectral and temporal response preferences were compared for neurons found on the same and adjacent tetrodes, as well as across distant recording sites. We found that neighboring neurons had similar preferences while neurons recorded across distant sites were less similar. Best frequency was the most correlated parameter between neighboring neurons and best frequency differences exhibited unique clustering at ~0.3 octave intervals, indicative of the frequency band lamina. Other spectral and temporal parameters of the receptive fields were more similar for neighboring neurons than for those at distant sites and the receptive field similarity was larger for neurons with small differences in best frequency. Furthermore, correlated firing was stronger for neighboring neuron pairs and increased with proximity and decreasing best frequency difference. Thus although response selectivities are quite diverse in the IC, spectral and temporal preference within a local microcircuit are functionally quite similar. This suggests a scheme where local circuits are organized into zones that are specialized for processing distinct spectrotemporal cues.

  17. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  18. Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry.

    Science.gov (United States)

    Dinkelacker, V; Grüter, M; Klaver, P; Grüter, T; Specht, K; Weis, S; Kennerknecht, I; Elger, C E; Fernandez, G

    2011-05-01

    Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition. PMID:21120515

  19. Dorsal MPFC circuitry in rodent models of cocaine use: Implications for drug-addiction therapies

    Science.gov (United States)

    Jasinska, Agnes J.; Chen, Billy T.; Bonci, Antonello; Stein, Elliot A.

    2014-01-01

    While the importance of the medial prefrontal cortex (MPFC) in cocaine addiction is well established, its precise contribution to cocaine seeking, taking, and relapse remains incompletely understood. In particular, across two different models of cocaine self-administration, pharmacological or optogenetic activation of the dorsal MPFC has been reported to sometimes promote and sometimes inhibit cocaine seeking. We highlight important methodological differences between the two experimental paradigms, and propose a framework to potentially reconcile the apparent discrepancy. We also draw parallels between these preclinical models of cocaine self-administration and human neuroimaging studies in cocaine users, and argue that both lines of evidence point to dynamic interactions between cue-reactivity processes and control processes within the dorsal MPFC circuitry. From a translational perspective, these findings underscore the importance of interventions and therapeutics targeting not just a brain region, but a specific computational process within that brain region, and may have implications for the design and implementation of more effective treatments for human cocaine addiction. PMID:24620898

  20. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  1. Decoding signal processing in thalamo-hippocampal circuitry: implications for theories of memory and spatial processing.

    Science.gov (United States)

    Tsanov, Marian; O'Mara, Shane M

    2015-09-24

    A major tool in understanding how information is processed in the brain is the analysis of neuronal output at each hierarchical level through which neurophysiological signals are propagated. Since the experimental brain operation performed on Henry Gustav Molaison (known as patient H.M.) in 1953, the hippocampal formation has gained special attention, resulting in a very large number of studies investigating signals processed by the hippocampal formation. One of the main information streams to the hippocampal formation, vital for episodic memory formation, arises from thalamo-hippocampal projections, as there is extensive connectivity between these structures. This connectivity is sometimes overlooked by theories of memory formation by the brain, in favour of theories with a strong cortico-hippocampal flavour. In this review, we attempt to address some of the complexity of the signals processed within the thalamo-hippocampal circuitry. To understand the signals encoded by the anterior thalamic nuclei in particular, we review key findings from electrophysiological, anatomical, behavioural and computational studies. We include recent findings elucidating the integration of different signal modalities by single thalamic neurons; we focus in particular on the propagation of two prominent signals: head directionality and theta rhythm. We conclude that thalamo-hippocampal processing provides a centrally important, substantive, and dynamic input modulating and moderating hippocampal spatial and mnemonic processing. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25498107

  2. A novel method for determining pulse counting circuitry dead time using the Nuclear Weapons Inspection System

    International Nuclear Information System (INIS)

    A novel method for measuring dead time in nuclear pulse processing circuitry has been developed using the autocorrelation measurement capability of the Nuclear Weapons Inspection System (NWIS). Initially developed for active neutron interrogation of nuclear weapons and other fissile assemblies, NWIS employs a custom gallium arsenide application specific integrated circuit and a new signature analysis software package to simultaneously acquire and display the autocorrelation and cross-correlation spectra of up to five detector/electronics systems. The system operates at clock frequencies up to 1 GHz, permitting the collection of timing pulses in bins as narrow as 1 ns. In normal operation NWIS uses well characterized detectors and constant fraction discriminators, but it may also be configured to accept pulses from any circuit and to use the autocorrelation spectrum to accurately determine dead-time. Unlike traditional dead-time assessment techniques that typically require multiple sources and an assumed dead-time model, NWIS provides single-measurement assessment of circuit dead time and does not require an assumed dead-time model or a calibrated high count-rate source

  3. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  4. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    International Nuclear Information System (INIS)

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  5. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bobrek, Miljko [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays [1]. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  6. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability

    Directory of Open Access Journals (Sweden)

    Jürgen Franke

    2014-03-01

    Full Text Available Short-term plasticity plays a key role in synaptic transmission and has been extensively investigated for excitatory synapses. Much less is known about inhibitory synapses. Here we analyze the performance of glycinergic connections between the medial nucleus of the trapezoid body (MNTB and the lateral superior olive (LSO in the auditory brainstem, where high spike rates as well as fast and precise neurotransmission are hallmarks. Analysis was performed in acute mouse slices shortly after hearing onset (postnatal day (P11 and eight days later (P19. Stimulation was done at 37°C with 1–400 Hz for 40 s. Moreover, in a novel approach named marathon experiments, a very prolonged stimulation protocol was employed, comprising 10 trials of 1-min challenge and 1-min recovery periods at 50 Hz and 1 Hz, respectively, thus lasting up to 20 min and amounting to > 30,000 stimulus pulses. IPSC peak amplitudes displayed short-term depression (STD and synaptic attenuation in a frequency-dependent manner. No facilitation was observed. STD in the MNTB-LSO connections was less pronounced than reported in the upstream calyx of Held-MNTB connections. At P11, the STD level and the failure rate were slightly lower within the ms-to-s range than at P19. During prolonged stimulation periods lasting 40 s, P19 connections sustained virtually failure-free transmission up to frequencies of 100 Hz, whereas P11 connections did so only up to 50 Hz. In marathon experiments, P11 synapses recuperated reproducibly from synaptic attenuation during all recovery periods, demonstrating a robust synaptic machinery at hearing onset. At 26°C, transmission was severely impaired and comprised abnormally high amplitudes after minutes of silence, indicative of imprecisely regulated vesicle pools. Our study takes a fresh look at synaptic plasticity and stability by extending conventional stimulus periods in the ms-to-s range to minutes. It also provides a framework for future analyses of

  7. Regulation of body fat mass by the gut microbiota

    DEFF Research Database (Denmark)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik;

    2016-01-01

    New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries in the...

  8. Oxytocin Treatment, Circuitry, and Autism: A Critical Review of the Literature Placing Oxytocin Into the Autism Context.

    Science.gov (United States)

    Guastella, Adam J; Hickie, Ian B

    2016-02-01

    Observed impairment in reciprocal social interaction is a diagnostic hallmark of autism spectrum disorders. There is no effective medical treatment for these problems. Psychological treatments remain costly, time intensive, and developmentally sensitive for efficacy. In this review, we explore the potential of oxytocin-based therapies for social impairments in autism. Evidence shows that acute oxytocin administration improves numerous markers critical to the social circuitry underlying social deficits in autism. Oxytocin may optimize these circuits and enhance reward, motivation, and learning to improve therapeutic outcomes. Despite this, the current evidence of therapeutic benefit from extended oxytocin treatment remains very limited. We highlight complexity in crossing from the laboratory to the autism clinical setting in evaluation of this therapeutic. We discuss a clinical trial approach that provides optimal opportunity for therapeutic response by using personalized methods that better target specific circuitry to define who will obtain benefit, at what stage of development, and the optimal delivery approach for circuitry manipulation. For the autism field, the therapeutic challenges will be resolved by a range of treatment strategies, including greater focus on specific interventions, such as oxytocin, that have a strong basis in the fundamental neurobiology of social behavior. More sophisticated and targeted clinical trials utilizing such approaches are now required, placing oxytocin into the autism context. PMID:26257243

  9. The banana code – Natural blend processing in the olfactory circuitry of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Marco eSchubert

    2014-02-01

    Full Text Available Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly’s olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I. In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL, the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.

  10. Effects of direct social experience on trust decisions and neural reward circuitry

    Directory of Open Access Journals (Sweden)

    Dominic S. Fareri

    2012-10-01

    Full Text Available The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball tossing game with three fictional partners manipulated to be perceived as good, bad or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction-error (PE learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning

  11. Intrinsic circuitry in the deep layers of the cat superior colliculus.

    Science.gov (United States)

    Behan, M; Kime, N M

    1996-01-01

    The mammalian superior colliculus is involved in the transformation of sensory signals into orienting behaviors. Sensory and motor signals are integrated in the colliculus to produce movements of the eyes, head, and neck. While there is a considerable amount of information available on the afferent and efferent connections of the colliculus, almost nothing is known about its intrinsic circuitry, particularly that of its deepest layers. It is likely that intrinsic connections in these deeper layers of the colliculus participate in the sensory-motor transformations leading to orienting movements. In this study, we used the neuroanatomical tracer biocytin to label small groups of neurons in the deeper layers of the cat superior colliculus and examine the distribution of their axons and terminals. We found a broadly distributed network of intrinsic projections throughout the deep layers of the superior colliculus. While the majority of terminals were found in a 1-2 mm radius around the injection site, labeled terminals were found throughout the deep layers of the colliculus up to 5 mm from the injection site. In addition, these injections sometimes labeled terminals in the superficial tectum. Extensive projections were demonstrated by the more superficial injections, but few terminals were found when injections were confined to the deepest layers of the colliculus. There was no evidence of anisotropy in the distribution of terminals from injections made at different rostrocaudal or mediolateral locations; neurons located in any one region in the colliculus could potentially influence any other region. This network of intrinsic connections in the cat superior colliculus could provide a means for deeper-layer efferent neurons to associate, and to modulate or coordinate their output. Interneurons could also provide a substrate for mutual inhibition between neurons at the rostral pole of the colliculus that are active during fixation, and more caudally located neurons

  12. Flexible thin film circuitry enabling ubiquitous electronics via post-fabrication customization (Presentation Recording)

    Science.gov (United States)

    Cobb, Brian

    2015-09-01

    For decades, the electronics industry has been accurately described by Moore's Law, where the march towards increasing density and smaller feature sizes has enabled continuous cost reductions and performance improvements. With flexible electronics, this perpetual scaling is not foreseen to occur. Instead, the industry will be dominated by Wright's Law, first proposed in 1936, where increasing demand for high volumes of product will drive costs down. We have demonstrated thin film based circuitry compatible with flexible substrates with high levels of functionality designed for such a high volume industry. This includes a generic 8-bit microprocessor totaling more than 3.5k TFTs operating at 2.1 kHz. We have also developed a post fabrication programming technique via inkjet printing of conductive spots to form a one-time programmable instruction generator, allowing customization of the processor for a specific task. The combination demonstrates the possibility to achieve the high volume production of identical products necessary to reap the benefits promised by Wright's Law, while still retaining the individualization necessary for application differentiation. This is of particular importance in the area of item level identification via RFID, where low cost and individualized identification are necessary. Remotely powered RFID tags have been fabricated using an oxide semiconductor based TFT process. This process is compatible with the post-fabrication printing process to detail individual identification codes, with the goal of producing low cost, high volume flexible tags. The goal is to produce tags compatible with existing NFC communication protocols in order to communicate with readers that are already ubiquitous in the market.

  13. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available BACKGROUND: The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding. METHODOLOGY/PRINCIPAL FINDINGS: Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings. CONCLUSIONS: It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  14. DEVELOPING ‘STANDARD NOVEL ‘VAD’ TECHNIQUE’ AND ‘NOISE FREE SIGNALS’ FOR SPEECH AUDITORY BRAINSTEM RESPONSES FOR HUMAN SUBJECTS

    OpenAIRE

    Ranganadh Narayanam*

    2016-01-01

    In this research as a first step we have concentrated on collecting non-intra cortical EEG data of Brainstem Speech Evoked Potentials from human subjects in an Audiology Lab in University of Ottawa. The problems we have considered are the most advanced and most essential problems of interest in Auditory Neural Signal Processing area in the world: The first problem is the Voice Activity Detection (VAD) in Speech Auditory Brainstem Responses (ABR); The second problem is to identify the best De-...

  15. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem

    International Nuclear Information System (INIS)

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident. -- Highlights: ► The ‘normal’ response to smoke exposure is decreased α7 and β2 in certain nuclei. ► SIDS infants have decreased α7 in cNTS, Grac and Cun. ► SIDS infants have decreased β2 in cNTS and increased β2 in facial. ► The NTS is more sensitive to both α7 and β2 regulation in SIDS. ► Smoke exposure

  16. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  17. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  18. Unstable Prefrontal Response to Emotional Conflict and Activation of Lower Limbic Structures and Brainstem in Remitted Panic Disorder

    OpenAIRE

    Chechko, Natalya; Wehrle, Renate; Erhardt, Angelika; Holsboer, Florian; Czisch, Michael; Sämann, Philipp G

    2009-01-01

    Background The neural mechanisms of panic disorder (PD) are only incompletely understood. Higher sensitivity of patients to unspecific fear cues and similarities to conditioned fear suggest involvement of lower limbic and brainstem structures. We investigated if emotion perception is altered in remitted PD as a trait feature. Methodology/Principal Findings We used blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to study neural and behavioural responses of...

  19. Detection of Perinatal Cytomegalovirus Infection and Sensorineural Hearing Loss in Belgian Infants by Measurement of Automated Auditory Brainstem Response▿

    OpenAIRE

    Verbeeck, Jannick; Van Kerschaver, Erwin; Wollants, Elke; Beuselinck, Kurt; Stappaerts, Luc; Van Ranst, Marc

    2008-01-01

    Since auditory disability causes serious problems in the development of speech and in the total development of a child, it is crucial to diagnose possible hearing impairment as soon as possible after birth. This study evaluates the neonatal hearing screening program in Flanders, Belgium. The auditory ability of 118,438 babies was tested using the automated auditory brainstem response. We selected 194 babies with indicative hearing impairment and 332 matched controls to investigate the associa...

  20. A neonate with hand, foot, and mouth disease complicated with brainstem encephalitis and pulmonary edema:A complete recovery

    OpenAIRE

    GUO Shi-jie; Wang, Dong-Xuan; Dai, Chun-Lai; Wu, Hui

    2014-01-01

    Hand, foot, and mouth disease (HFMD) with serious complications and fatal cases have been reported over the last decade worldwide. The authors report a rare case of HFMD in a neonate complicated with brainstem encephalitis and pulmonary edema. She had fever, lethargy, dyspnea. Physical examination revealed shock signs, fine rales on both lungs, absent Moro reflex. The patient had a rapidly progressive course with seizures, coma, no spontaneous breathing, chemosis. There were some vesicles on ...

  1. Brainstem Respiratory Oscillators Develop Independently of Neuronal Migration Defects in the Wnt/PCP Mouse Mutant looptail

    OpenAIRE

    Thoby-Brisson, Muriel; Bouvier, Julien; Glasco, Derrick M.; Stewart, Michelle E.; Dean, Charlotte; Murdoch, Jennifer N; Champagnat, Jean; Fortin, Gilles; Chandrasekhar, Anand

    2012-01-01

    The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail...

  2. Identifying the Threshold of Iron Deficiency in the Central Nervous System of the Rat by the Auditory Brainstem Response

    OpenAIRE

    Greminger, Allison R.; Mayer-Pröschel, Margot

    2015-01-01

    The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and...

  3. Noise-Induced “Toughening” Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation

    Science.gov (United States)

    Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Gabaldón-Ull, María C.; Jareño-Flores, Tania; Miller, Josef M.; Juiz, José M.

    2016-01-01

    An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this “toughening” effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with “toughening” and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol. PMID:27065815

  4. Early postnatal development of thyrotropin-releasing hormone (TRH) expression, TRH receptor binding, and TRH responses in neurons of rat brainstem.

    Science.gov (United States)

    Bayliss, D A; Viana, F; Kanter, R K; Szymeczek-Seay, C L; Berger, A J; Millhorn, D E

    1994-02-01

    typical manner, suggesting that expression of the TRH-sensitive conductance is also developmentally regulated. Together, these data indicate that the TRH raphe neuronal system of the rat brainstem is not fully mature at the time of birth but develops over the first few postnatal weeks. This was true of levels of TRH mRNA in caudal raphe nuclei, density of TRH-IR fibers and 3H-methyl-TRH binding in nXII, and also the manner and magnitude of electrophysiological responses of HMs to exogenously applied TRH. PMID:8301363

  5. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.

    Science.gov (United States)

    Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S

    2009-08-01

    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations. PMID:19345268

  6. Effects of 12 Months Continuous Positive Airway Pressure on Sympathetic Activity Related Brainstem Function and Structure in Obstructive Sleep Apnea

    Science.gov (United States)

    Henderson, Luke A.; Fatouleh, Rania H.; Lundblad, Linda C.; McKenzie, David K.; Macefield, Vaughan G.

    2016-01-01

    Muscle sympathetic nerve activity (MSNA) is greatly elevated in patients with obstructive sleep apnea (OSA) during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 OSA subjects before and after 6 and 12 months of continuous positive airway pressure (CPAP) treatment. We found that following 6 and 12 months of CPAP treatment, resting MSNA levels were significantly reduced in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related brainstem activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons, and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MSNA likely due to its effects on restoring brainstem structure and function. PMID:27013952

  7. Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study

    Institute of Scientific and Technical Information of China (English)

    Feng Han; Yu-Fei Zhang; Yun-Qing Li

    2003-01-01

    AIM: To prove that neurons in the different structures of the brainstem that express tyrosine hydroxylase (TH) are involved in the transmission and modulation of visceral or somatic nociceptive information in rat.METHODS: Immunohistochemical double-staining method was used to co-localize TH and Fos expression in neurons of the rat brainstem in visceral or subcutaneous noxious stimulation models.RESULTS: Neurons co-expressing TH/Fos were observed in lateral reticular nucleus (LRT), rostroventrolateral reticular nucleus (RVL), solitary tract nucleus (SOL), locus coeruleus (LC), A5, A7 neuronal groups and ventrolateral subdivision of the periaqueductal gray (vlPAG) in both models. But the proportion and number of the double-labeled neurons responding to the two noxious stimuli were significantly different in the LRT, RVL and LC nuclei. The proportion and number of the TH/Fos double-labeled neurons in the visceral pain model were smaller than that in the subcutaneous pain model. However, in the case of SOL, they were similar in the two models.CONCLUSION: Differences of Fos expression in TH immunoreactive neurons in animals after visceral and somatic noxious stimulation indicate that the mechanisms of the transmission and modulation of visceral nociceptive information in the brainstem may be different from that of somatic nociceptive information.

  8. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes.

    Science.gov (United States)

    Abadi, Susan; Khanbabaee, Ghamartaj; Sheibani, Kourosh

    2016-09-01

    Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group) and 261 age- and sex-matched normally developing children (control group). Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V) than did the control group (P=0.001). These amplitudes were significantly reduced after 1 year (P=0.001); however, they were still significantly higher than those of the control group (P=0.001). The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients' improvement after treatment. PMID:27582591

  9. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2009-10-01

    Full Text Available Abstract Introduction Brainstem gliomas are rare in adults. They most commonly occur in the pons and are most likely to be high-grade lesions. The diagnosis of a high-grade brainstem glioma is usually reached due to the presentation of rapidly progressing brainstem, cranial nerve and cerebellar symptoms. These symptoms do, however, overlap with a variety of other central nervous system disorders. Magnetic resonance imaging is the radiographic modality of choice, but can still be misleading. Case presentation A 48-year-old Caucasian woman presented with headache and vomiting followed by cerebellar signs and confusion. Magnetic resonance imaging findings were suggestive of a demyelinating process, but the patient failed to respond to therapy. Her condition rapidly progressed and she died. At autopsy, a high-grade invasive pontine tumor was identified. Histological evaluation revealed glioblastoma multiforme. Conclusion While pontine gliomas are rare in adults, those that do occur tend to be high-grade and rapidly progressive. Progression of symptoms from non-specific findings of headache and vomiting to rapid neurological deterioration, as occurred in our patient, is common in glioblastoma multiforme. While radiographic findings are often suggestive of the underlying pathology, this case represents the possibility of glioblastoma multiforme presenting as a deceptively benign appearing lesion.

  10. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.

    Directory of Open Access Journals (Sweden)

    Marion Cousineau

    Full Text Available Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR. "Neural Pitch Salience" (NPS measured from FFRs-essentially a time-domain equivalent of the classic pattern recognition models of pitch-has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.

  11. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hultcrantz, M.

    1988-09-01

    Pregnant CBA/CBA mice were exposed to 0.5, 1 and 2 Grey (Gy), (1 Gy = 100 rad) in single doses with whole body gamma-irradiation on the 12th, 13th and 16th gestational days, respectively. The animals were tested at an age of one month for vestibular and cochlear function. Thereafter the inner ears were analyzed with scanning electron microscopy. A morphological analysis with cytocochleograms was performed. Morphological changes in the vestibular part showed gross malformations in the cristae ampullares. Hair cells of type I seemed to be more severely changed than hair cells type II. The macula utriculi also showed malformations of the otoconia. All these changes were more pronounced when the irradiation was given early during pregnancy and with the highest doses used, except the otoconia which were more injured when irradiated day 16 of gestation. No disturbances of the equilibrium reflexes were noted. In the cochlea a dose-dependent, time-related damage pattern was demonstrated with pathological changes of outer (OHC) and inner (IHC) hair cells. When tested electrophysiologically for auditory function with auditory brainstem recordings (ABR), elevated thresholds were revealed different in shape depending on when during pregnancy irradiation took place. A good correlation existed between the morphological changes as seen in the cytocochleograms and the functional changes documented with the ABR.

  12. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope

    International Nuclear Information System (INIS)

    Pregnant CBA/CBA mice were exposed to 0.5, 1 and 2 Grey (Gy), (1 Gy = 100 rad) in single doses with whole body gamma-irradiation on the 12th, 13th and 16th gestational days, respectively. The animals were tested at an age of one month for vestibular and cochlear function. Thereafter the inner ears were analyzed with scanning electron microscopy. A morphological analysis with cytocochleograms was performed. Morphological changes in the vestibular part showed gross malformations in the cristae ampullares. Hair cells of type I seemed to be more severely changed than hair cells type II. The macula utriculi also showed malformations of the otoconia. All these changes were more pronounced when the irradiation was given early during pregnancy and with the highest doses used, except the otoconia which were more injured when irradiated day 16 of gestation. No disturbances of the equilibrium reflexes were noted. In the cochlea a dose-dependent, time-related damage pattern was demonstrated with pathological changes of outer (OHC) and inner (IHC) hair cells. When tested electrophysiologically for auditory function with auditory brainstem recordings (ABR), elevated thresholds were revealed different in shape depending on when during pregnancy irradiation took place. A good correlation existed between the morphological changes as seen in the cytocochleograms and the functional changes documented with the ABR

  13. Spectrotemporal resolution tradeoff in auditory processing as revealed by human auditory brainstem responses and psychophysical indices.

    Science.gov (United States)

    Bidelman, Gavin M; Syed Khaja, Ameenuddin

    2014-06-20

    Auditory filter theory dictates a physiological compromise between frequency and temporal resolution of cochlear signal processing. We examined neurophysiological correlates of these spectrotemporal tradeoffs in the human auditory system using auditory evoked brain potentials and psychophysical responses. Temporal resolution was assessed using scalp-recorded auditory brainstem responses (ABRs) elicited by paired clicks. The inter-click interval (ICI) between successive pulses was parameterized from 0.7 to 25 ms to map ABR amplitude recovery as a function of stimulus spacing. Behavioral frequency difference limens (FDLs) and auditory filter selectivity (Q10 of psychophysical tuning curves) were obtained to assess relations between behavioral spectral acuity and electrophysiological estimates of temporal resolvability. Neural responses increased monotonically in amplitude with increasing ICI, ranging from total suppression (0.7 ms) to full recovery (25 ms) with a temporal resolution of ∼3-4 ms. ABR temporal thresholds were correlated with behavioral Q10 (frequency selectivity) but not FDLs (frequency discrimination); no correspondence was observed between Q10 and FDLs. Results suggest that finer frequency selectivity, but not discrimination, is associated with poorer temporal resolution. The inverse relation between ABR recovery and perceptual frequency tuning demonstrates a time-frequency tradeoff between the temporal and spectral resolving power of the human auditory system. PMID:24793771

  14. The representation of conspecific sounds in the auditory brainstem of teleost fishes.

    Science.gov (United States)

    Wysocki, Lidia Eva; Ladich, Friedrich

    2003-07-01

    Temporal patterns of sounds are thought to be the most important carriers of acoustic information in teleost fishes. In order to investigate how conspecific sounds are processed by the auditory system, auditory brainstem responses (ABRs) elicited by conspecific sounds were recorded in five species of teleosts. In the catfishes Platydoras costatus and Pimelodus pictus, the loach Botia modesta and the labyrinth fish Trichopsis vittata, all of which are hearing specialists, each pulse within the sounds elicited a separate brainwave that closely followed the temporal structure. The ABRs of P. costatus and B. modesta also represent amplitude patterns of conspecific sounds. By contrast, ABRs of the sunfish Lepomis gibbosus, a hearing non-specialist, consisted of long series of waves that could not be attributed to specific sound pulses. A more detailed analysis, however, indicated that each stimulus pulse contributed to the compound ABR waveform. Spectral analysis of low-pitched drumming sounds of P. pictus and corresponding ABRs showed peaks in the ABR spectra at the harmonics of the sound. Our results indicate that, besides temporal patterns, amplitude fluctuations and the frequency content of sounds can be represented in the auditory system and help the fish to extract important information for acoustic communication. PMID:12771172

  15. Multiple brainstem infarctions in a boy caused by angiitis of the basilar artery.

    Science.gov (United States)

    Tsuji, Masahiro; Tamura, Takuya; Yoshida, Takeshi; Haruta, Tsunekazu

    2011-02-01

    A 13-year-old boy was admitted to our hospital with altered states of consciousness coupled with a headache and nausea. Upon admission, the patient was afebrile and comatose with a decorticated posture and was subsequently intubated. All routine laboratory tests and cerebrospinal fluid analyses were normal. Brain T2-weighted MRI (figure 1A) revealed multiple hyperintense signals in the brainstem and cerebellum. A single gadolinium-enhanced lesion was observed in the left occipital lobe. These observations were indicative of acute disseminated encephalomyelitis (ADEM) and we subsequently started methylprednisolone pulse therapy. In the follow-up MRI study, the lesions were necrotic, suggesting changes after a stroke rather than ADEM. The MR angiography (figure 1B) and the conventional cerebral angiography (figure 1C,D) performed on days 25 and 28, respectively, revealed segmental stenoses ("beading") of the basilar artery and the left middle cerebral artery and the near occlusions of both posterior cerebral arteries with thrombus adjacent to the basilar artery bifurcation. No angiographic abnormalities were observed in the extracranial carotid and renal arteries. We diagnosed the lesions as angiitic infarctions and started plasma exchange and antiplatelet therapy. PMID:20530143

  16. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  17. Large-scale synchronized activity in the embryonic brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Yoko eMomose-Sato

    2013-04-01

    Full Text Available In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca2+- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.

  18. Childhood Sjögren syndrome presenting as acute brainstem encephalitis.

    Science.gov (United States)

    Matsui, Yoriko; Takenouchi, Toshiki; Narabayashi, Atsushi; Ohara, Kentaro; Nakahara, Tadaki; Takahashi, Takao

    2016-01-01

    Sjögren syndrome is an autoimmune disease characterized by dry mouth and eyes, known as sicca symptoms. The exact spectrum of neurological involvement, especially of the central nervous system, in childhood Sjögren syndrome has not been well defined. We report a girl who presented with acute febrile brainstem encephalitis. In retrospect, she had exhibited a preceding history of recurrent conjunctivitis and strong halitosis that could be considered as sicca symptoms. The histopathology results of a minor salivary biopsy, the presence of anti-SSA/Ro antibody, and keratoconjunctivitis confirmed the diagnosis of Sjögren syndrome. Commonly observed features in previously reported patients with childhood Sjögren syndrome and central nervous system complications have included fever at the time of neurologic presentation, cerebrospinal fluid pleocytosis, abnormal neuroimaging, and positivity for several specific antibodies. In children presenting with unknown acute febrile encephalopathy, Sjögren syndrome should be included in the differential diagnosis, especially when sicca symptoms are present. PMID:26006751

  19. INFLUENCE OF ACUPUNCTURE ("JIN'S SAN ZHEN") ON BRAINSTEM EVOKED POTENTIALS IN MENTAL RETARDATION CHILDREN

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing; MA Ruiling; JIN Rui

    2002-01-01

    Objective: To investigate the effect of acupuncture ("JIN's San Zhen") on infantile mental retardation (MR) .Methods: 44 cases of MR children were attributed to treatment group and 39 normal children to control group.P3(event-related potential) and brainstem evoked potentials were used as the indexes. Acupoints "Si-shen Zhen","Head Zhi San Zhen", "Hand Zhi San Zhen", "Foot Zhi San Zhen" were punctured with filiform needles, and stimulated by manipulating the needle once every 5 minutes with uniform reinforcing-reducing method. The treatment was conducted once daily, 6 times every week, with 4 months being a therapeutic course. Results: In comparison with normal children, the latency of P3 was longer and its amplitude lower in MR children. After 4 months' acupuncture treatment,the latency was shortened and the amplitude increased significantly in comparison with pre-treatment ( P<0.01,0.05). Results of the total inteiiigence quotient (TIQ) evaluation showed a 70.3% coincidence rate compared with improvement of P3. Conclusion: Changes of P3 and BAEP(brain auditory evoked potential) after acupuncture treatment may be related to the effect of "JIN's San Zhen" in bettering clinical symptoms and signs of MR infantile patients.

  20. Proposed Toxic and Hypoxic Impairment of a Brainstem Locus in Autism

    Directory of Open Access Journals (Sweden)

    Woody R. McGinnis

    2013-12-01

    Full Text Available Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain’s point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion—the “pNTS”—permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate, competition for hemoglobin (carbon monoxide, nitrates/nitrites, and higher blood viscosity (net systemic oxidative stress are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism.

  1. Eye movement prediction by oculomotor plant Kalman filter with brainstem control

    Institute of Scientific and Technical Information of China (English)

    Oleg V.KOMOGORTSEV; Javed I.KHAN

    2009-01-01

    Our work addresses one of the core issues related to Human Computer Interaction (HCI) systems that use eye gaze as an input.This issue is the sensor,transmission and other delays that exist in any eye tracker-based system,reducing its performance.A delay effect can be compensated by an accurate prediction of the eye movement trajectories.This paper introduces a mathematical model of the human eye that uses anatomical properties of the Human Visual System to predict eye movement trajectories.The eye mathematical model is transformed into a Kalman filter form to provide continuous eye position signal prediction during all eye movement types.The model presented in this paper uses brainstem control properties employed during transitions between fast (saccade) and slow (fixations,pursuit) eye movements.Results presented in this paper indicate that the proposed eye model in a Kalman filter form improves the accuracy of eye move-ment prediction and is capable of a real-time performance.In addition to the HCI systems with the direct eye gaze input,the proposed eye model can be immediately applied for a bit-rate/computational reduction in real-time gaze-contingent systems.

  2. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    International Nuclear Information System (INIS)

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  3. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shelton, Jacob H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-03-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios when human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments because of the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is a report of the activities involving Task 3 of the Nuclear Energy Enabling Technologies (NEET) 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays [1]. Evaluation of the performance of the system for both pre- and post-irradiation as well as operation at elevated temperature will be performed. Detailed performance of the system will be documented to ensure the design meets requirements prior to any extended evaluation. A suite of tests will be developed which will allow evaluation before and after irradiation and during temperature. Selection of the radiation exposure facilities will be determined in the early phase of the project. Radiation exposure will consist of total integrated dose (TID) up to 200 kRad or above with several intermediate doses during test. Dose rates will be in various ranges determined by the facility that will be used with a target of 30 kRad/hr. Many samples of the pre-commercial devices to be used will have been tested in previous projects to doses of at least 300 kRad and temperatures up to 125C. The complete systems will therefore be tested for performance at intermediate doses. Extended temperature testing will be performed up to the limit of the commercial sensors. The test suite performed at each test point will consist of operational testing of the three basic

  4. Updating of action-outcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus

    OpenAIRE

    MacLaren, Duncan A. A.; Wilson, David I.G.; Winn, Philip

    2013-01-01

    The pedunculopontine tegmental nucleus (PPTg) is in a pivotal position between the basal ganglia and brainstem: it is able to influence and regulate all levels of basal ganglia and corticostriatal activity as well as being a key component of brainstem reticular and motor control circuitry. Consistent with its anatomical position, the PPTg has previously been shown to process rapid, salient sensory input, is a target for Parkinson's disease treatments and has been implicated in associative lea...

  5. Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naive Adolescent Depression.

    Directory of Open Access Journals (Sweden)

    Haiyang Geng

    Full Text Available Evidence implicates abnormalities in prefrontal-hippocampus neural circuitry in major depressive disorder (MDD. This study investigates the potential disruptions in prefrontal-hippocampus structural and functional connectivity, as well as their relationship in first-episode medication-naïve adolescents with MDD in order to investigate the early stage of the illness without confounds of illness course and medication exposure.Diffusion tensor imaging and resting-state functional magnetic resonance imaging (rs-fMRI data were acquired from 26 first-episode medication-naïve MDD adolescents and 31 healthy controls (HC. Fractional anisotropy (FA values of the fornix and the prefrontal-hippocampus functional connectivity was compared between MDD and HC groups. The correlation between the FA value of fornix and the strength of the functional connectivity in the prefrontal cortex (PFC region showing significant differences between the two groups was identified.Compared with the HC group, adolescent MDD group had significant lower FA values in the fornix, as well as decreased functional connectivity in four PFC regions. Significant negative correlations were observed between fornix FA values and functional connectivity from hippocampus to PFC within the HC group. There was no significant correlation between the fornix FA and the strength of functional connectivity within the adolescent MDD group.First-episode medication-naïve adolescent MDD showed decreased structural and functional connectivity as well as deficits of the association between structural and functional connectivity shown in HC in the PFC-hippocampus neural circuitry. These findings suggest that abnormal PFC-hippocampus neural circuitry may present in the early onset of MDD and play an important role in the neuropathophysiology of MDD.

  6. Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

    DEFF Research Database (Denmark)

    Federowicz, Stephen; Kim, Donghyuk; Ebrahim, Ali;

    2014-01-01

    regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic......, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome...

  7. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-10-01

    Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. PMID:26363340

  8. Brainstem circuits underlying the prey-catching behavior of the frog.

    Science.gov (United States)

    Matesz, Klara; Kecskes, Szilvia; Bácskai, Tímea; Rácz, Éva; Birinyi, András

    2014-01-01

    Prey-catching behavior (PCB) of the frog consists of a sequence of movements as a stimulus-response chain of the behavioral pattern in which each action presents a signal for the subsequent event. The transformation of visual information into appropriate spatiotemporal patterns of motor activity is carried out by the motor pattern generators located in the brainstem reticular formation. The motor pattern generators provide input to the motoneurons either directly or via the last-order premotor interneurons (LOPI). Although the feeding program is predetermined in this way, various sensory mechanisms control the motor activity. By using neuronal labeling methods, we have studied the morphological details of sensorimotor integration related to the hypoglossal motoneurons to provide further insight into the neuronal circuits underlying the PCB in ranid frogs. Our major findings are as follows. (1) Dendrodendritic and dendrosomatic contacts established by the crossing dendrites of hypoglossal (XII) motoneurons may serve as a morphological option for co-activation, synchronization and proper timing of the bilateral activity of tongue muscles. The crossing dendrites may also provide a feedforward amplification of various signals to the XII motoneurons. The overlapping dendritic territories of the motoneurons innervating protractor and retractor muscles may facilitate the coordinated activities of the agonistic and antagonistic muscles. (2) The musculotopic organization of the XII motoneurons is reflected in the distribution of LOPI for the protractor and retractor muscles of the tongue. (3) Direct sensory inputs from the trigeminal, vestibular, glossopharyngeal-vagal, hypoglossal and spinal afferent fibers to the XII motoneurons may modulate the basic motor pattern and contribute to the plasticity of neuronal circuits. (4) The electrical couplings observed in the vestibulocerebellar neuronal circuits may synchronize and amplify the afferent signals. The combination of

  9. Distribution of catecholaminergic presympathetic-premotor neurons in the rat lower brainstem.

    Science.gov (United States)

    Nam, H; Kerman, I A

    2016-06-01

    We previously characterized the organization of presympathetic-premotor neurons (PSPMNs), which send descending poly-synaptic projections with collaterals to skeletal muscle and the adrenal gland. Such neurons may play a role in shaping integrated adaptive responses, and many of them were found within well-characterized regions of noradrenergic cell populations suggesting that some of the PSPMNs are catecholaminergic. To address this issue, we used retrograde trans-synaptic tract-tracing with attenuated pseudorabies virus (PRV) recombinants combined with multi-label immunofluorescence to identify PSPMNs expressing tyrosine hydroxylase (TH). Our findings indicate that TH-immunoreactive (ir) PSPMNs are present throughout the brainstem within multiple cell populations, including the A1, C1, C2, C3, A5 and A7 cell groups along with the locus coeruleus (LC) and the nucleus subcoeruleus (SubC). The largest numbers of TH-ir PSPMNs were located within the LC and SubC. Within SubC and the A7 cell group, about 70% of TH-ir neurons were PSPMNs, which was a significantly greater fraction of neurons than in the other brain regions we examined. These findings indicate that TH-ir neurons near the pontomesencephalic junction that are distributed across the LC, SubC, and the A7 may play a prominent role in somatomotor-sympathetic integration, and that the major functional role of the A7 and SubC noradrenergic cell groups maybe in the coordination of concomitant activation of somatomotor and sympathetic outflows. These neurons may participate in mediating homeostatic adaptations that require simultaneous activation of sympathetic and somatomotor nerves in the periphery. PMID:26946268

  10. Brainstem gliomas - A clinicopathological study of 45 cases with p53 immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Badhe Prerna

    2004-01-01

    Full Text Available BACKGROUND: Brainstem tumors represent 10% of central nervous system tumors, accounting for 30% of pediatric posterior fossa tumors. AIMS: The aim of this study was to clinicopathologically correlate 45 cases of brain stem gliomas and determine the occurrence and prognostic significance of p53 expression. MATERIALS AND METHOD: 45 cases of brain stem gliomas encountered during a 19-year period. 30 were diagnosed by surgical biopsy and 15 at autopsy. In 25 cases p53 immunohistochemistry (Avidin Biotinylated technique was performed. The WHO brain tumor classification and Stroink's CT classification were applied. STATISTICAL ANALYSIS USED: Chi square test. RESULTS AND CONCLUSIONS: 51 % of gliomas were observed in the first decade of life. The female to male ratio was 1.04: 1. The commonest presenting features were cranial nerve palsies (33% and cerebellar signs (29.8%. 55.55% of cases were located in the pons, 31.01% in the medulla and 13.33% in the midbrain. Diffuse astrocytomas were seen in 40 cases (5% were Grade I, 47.5%Grade II, 32.5% Grade III and 15% Grade IV and pilocytic astrocytomas in 5 cases. Grade IV patients had 2- 3 mitoses /10 high power fields and had a poorer survival rate. Grade II astrocytomas were treated with excision and radiotherapy, while grade III and IV tumors were treated with radiotherapy and chemotherapy (CCNU. Improvement was noted in 20% of patients postoperatively. The outcome was better in patients who were treated surgically. p53 is a frequently mutated gene in brain stem astrocytomas. It was found in 50 % of glioblastoma multiforme, 28.57% of grade III astrocytoma and 12.5% of grade II astrocytoma, while grade 1 astrocytomas failed to express p53 protein. p53 positivity was more in high grade lesions, decreasing significantly in lower grade lesions.

  11. Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish.

    Science.gov (United States)

    Finger, T E; Tong, S L

    1984-10-10

    The octavolateral sensory systems in teleost fish comprise at least four distinct hair-cell sensory modalities which are processed separately within the CNS. Two of these modalities, the mechanosensory lateral line system and the eighth nerve auditory system, have been implicated in the animal's ability to detect and localize underwater vibrations. Distinct mechanosensory lateral line and auditory nuclei are present within the torus semicircularis, the midbrain homologue of the inferior colliculus. The present study utilized horseradish peroxidase tracing techniques to delineate those areas of the lower brainstem which are involved in auditory as opposed to mechanosensory lateral line processes. The primary mechanosensory nucleus of the medulla, n. medialis, projects directly to the optic tectum and to the mechanosensory nucleus of the torus semicircularis. Nucleus medialis receives input from primary lateral line nerve fibers as well as from a number of sites within the CNS: n. praeeminentialis pars ventralis, and the eminentia granularis and lobus caudalis of the cerebellum. The n. praeeminentialis itself receives a descending input from the mechanosensory nucleus of the torus semicircularis. These mechanosensory lateral line pathways are parallel to, but distinct from, those of the electrosensory lateral line system. Auditory signals reach the midbrain via an entirely separate route. The octaval nerve terminates in a column of five medullary nuclei. Of these, only the anterior and descending octaval nuclei maintain a direct but sparse projection to the auditory nucleus of the midbrain. The bulk of the auditory input to the midbrain involves a newly described medullary nucleus, the medial auditory nucleus of the medulla. This nucleus receives input from the descending octaval nucleus and projects bilaterally to the auditory nucleus of the torus semicircularis. It is suggested that the medial auditory nucleus of the medulla is homologous to portions of the

  12. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    Science.gov (United States)

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  13. Wired for behavior: from development to function of innate limbic system circuitry

    OpenAIRE

    Katie eSokolowski; Corbin, Joshua G.

    2012-01-01

    The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional or motivational salience, which includes innate behaviors such as mating, aggression and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and ...

  14. Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in iv mice.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Goto

    Full Text Available Although left-right (L-R asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B subunits. We further examined the ε2 asymmetry in the inversus viscerum (iv mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L-R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory.

  15. First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry

    CERN Document Server

    Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S

    1999-01-01

    We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive $9 sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in $9 performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. $9 This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 $9 GeV/c protons. Current results and future perspectives will be reported. (11 refs).

  16. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  17. Unstable prefrontal response to emotional conflict and activation of lower limbic structures and brainstem in remitted panic disorder.

    Directory of Open Access Journals (Sweden)

    Natalya Chechko

    Full Text Available BACKGROUND: The neural mechanisms of panic disorder (PD are only incompletely understood. Higher sensitivity of patients to unspecific fear cues and similarities to conditioned fear suggest involvement of lower limbic and brainstem structures. We investigated if emotion perception is altered in remitted PD as a trait feature. METHODOLOGY/PRINCIPAL FINDINGS: We used blood oxygenation level-dependent (BOLD functional magnetic resonance imaging (fMRI to study neural and behavioural responses of 18 remitted PD patients and 18 healthy subjects to the emotional conflict paradigm that is based on the presentation of emotionally congruent and incongruent face/word pairs. We observed that patients showed stronger behavioural interference and lower adaptation to interference conflict. Overall performance in patients was slower but not less accurate. In the context of preceding congruence, stronger dorsal anterior cingulate cortex (dACC activation during conflict detection was found in patients. In the context of preceding incongruence, controls expanded dACC activity and succeeded in reducing behavioural interference. In contrast, patients demonstrated a dropout of dACC and dorsomedial prefrontal cortex (dmPFC recruitment but activation of the lower limbic areas (including right amygdala and brainstem. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that stimulus order in the presentation of emotional stimuli has a markedly larger influence on the brain's response in remitted PD than in controls, leading to abnormal responses of the dACC/dmPFC and lower limbic structures (including the amygdala and brainstem. Processing of non-panic related emotional stimuli is disturbed in PD patients despite clinical remission.

  18. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems.

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Edlow, Brian L; Eichner, Cornelius; Setsompop, Kawin; Polimeni, Jonathan R; Brown, Emery N; Kinney, Hannah C; Rosen, Bruce R; Wald, Lawrence L

    2015-12-01

    Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7 Tesla scanner equipped with multi-channel receive-coil array, which provided high magnetic resonance imaging sensitivity, and a multi-contrast (diffusion fractional anisotropy and T2-weighted) echo-planar-imaging approach, which provided complementary contrasts for Bn anatomy with matched geometric distortions and resolution. Through a combined examination of 1.3 mm(3) multi-contrast anatomical images acquired in healthy human adults, we semi-automatically generated in vivo probabilistic Bn labels of the ascending arousal (median and dorsal raphe), autonomic (raphe magnus, periaqueductal gray), and motor (inferior olivary nuclei, two subregions of the substantia nigra compatible with pars compacta and pars reticulata, two subregions of the red nucleus, and, in the diencephalon, two subregions of the subthalamic nucleus) systems. These labels constitute a first step toward the development of an in vivo neuroimaging template of Bn in standard space to facilitate future clinical and research investigations of human brainstem function and pathology. Proof-of-concept clinical use of this template is demonstrated in a minimally conscious patient with traumatic brainstem hemorrhages precisely localized to the raphe Bn involved in arousal. PMID:26066023

  19. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Science.gov (United States)

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16–20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3–4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  20. AT1a Receptor Has Interacted with Angiotensin-converting Enzymes 2 mRNA Expression in Mouse Brainstem

    Institute of Scientific and Technical Information of China (English)

    Zhanyi Lin; Shuguang Lin

    2008-01-01

    Objectives To examine in vivo interactions between angiotensin Ⅱ(Ang Ⅱ) AT1a receptor (AT1aR),angiotensin-converting enzymes (ACE) and ACE2 using small hairpin RNA (shRNA) gene-silencing methods in mice brainstem nucleus ttactus solitarius (NTS).Methods C57BL mice (n=8) were used as animal model.Method of microinjection in the nucleus of NTS was adopted.After ten days,mice were killed and their brain tissue were fixed and sectioned.The expression levels of AT1 aR,ACE and ACE2 mRNA at both sides of NTS were examined by in situ hybridization.Based on compared t-test,the changing for mRNA expression was examined.Results After the expression of AT1aR mRNA was significantly inhibited (61.6%±6.8% ) by AT1aR-shRNA,it was associated with decreases in ACE2 mRNA expression from (1.05±0.12) μCi/mg to (0.74±0.09) μCi/mg (29.0%±14.5%,P<0.01) on the same side of the brainstem.ACE mRNA expression was consistent at both sides (0.50 μCi/mg±0.09 μCi/mg and 0.53 μCi/mg±0.08 μCi/mg),with insignificant difference (P>0.05).Condusions The gene silencing result showed that there were interactions between brainstem AT1aR and ACE2.ACE mRNA expression was not altered by RNA interference treatment at AT1aR.

  1. Auditory brain-stem response, CT and MR imaging in a family with classical type Pelizaeus-Merzbacher Disease

    International Nuclear Information System (INIS)

    A family in which 5 males in successive generations were clinically suspected to be affected with the classical X-linked recessive form of Pelizaeus-Merzbacher disease (PMD) is presented. Two brothers and their maternal uncle were examined by one of the author (MS). In two brothers, aged 3 years and 2 years, the disease became obvious within a month after birth with nystagmus and head tremor. Head control and sitting were achieved at the age of 18 months at which time they began to speak. They could not stand nor walk without support. They had dysmetria, weakness and hyper-reflexia of lower extremities, and mild mental retardation. Their maternal uncle, aged 37 years, showed psychomotor retardation from birth and subsequently developed spastic paraplegia. He had been able to walk with crutches until adolescence. He had dysmetria, scanning speech, athetoid posture of fingers and significant intellectual deficits. Auditory brainstem response in both brothers revealed well defined waves I and II, low amplitude wave III and an absence of all subsequent components. CT demonstrated mild cerebral atrophy in the elder brother and was normal in the younger brother, but in their uncle, CT showed atrophy of the brainstem, cerebellum and cerebrum, and low density of the white matter of the centrum semiovale. MRI was performed in both brothers. Although the brainstem, the internal capsule and the thalamus were myelinated, the myelination in the subcortical white matter was restricted to periventricular regions on IR sequence scans. On SE sequence, the subcortical white matter was imaged as a brighter area than the cerebral cortex. These results demonstrate that the degree of myelination in these patients was roughly equal to that of 3-to 6-month old infants. (J.P.N.)

  2. Auditory brain-stem response, CT and MR imaging in a family with classical type Pelizaeus-Merzbacher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Shiomi, M.; Ookuni, H.; Sugita, T.

    1987-05-01

    A family in which 5 males in successive generations were clinically suspected to be affected with the classical X-linked recessive form of Pelizaeus-Merzbacher disease (PMD) is presented. Two brothers and their maternal uncle were examined by one of the authors (MS). In two brothers, aged 3 years and 2 years, the disease became obvious within a month after birth with nystagmus and head tremor. Head control and sitting were achieved at the age of 18 months at which time they began to speak. They could not stand nor walk without support. They had dysmetria, weakness and hyper-reflexia of lower extremities, and mild mental retardation. Their maternal uncle, aged 37 years, showed psychomotor retardation from birth and subsequently developed spastic paraplegia. He had been able to walk with crutches until adolescence. He had dysmetria, scanning speech, athetoid posture of fingers and significant intellectual deficits. Auditory brainstem response in both brothers revealed well defined waves I and II, low amplitude wave III and an absence of all subsequent components. CT demonstrated mild cerebral atrophy in the elder brother and was normal in the younger brother, but in their uncle, CT showed atrophy of the brainstem, cerebellum and cerebrum, and low density of the white matter of the centrum semiovale. MRI was performed in both brothers. Although the brainstem, the internal capsule and the thalamus were myelinated, the myelination in the subcortical white matter was restricted to periventricular regions on IR sequence scans. On SE sequence, the subcortical white matter was imaged as a brighter area than the cerebral cortex. These results demonstrate that the degree of myelination in these patients was roughly equal to that of 3-to 6-month old infants.

  3. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Gajjar, Amar; Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Li Yimei [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Glenn, George R.; Kun, Larry E.; Ogg, Robert J. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-04-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4-39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54-59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6-5.0 years). The median mean dose to the pons was 56 Gy (range, 7-59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response in

  4. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  5. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  6. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  7. State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene carolina major.

    Science.gov (United States)

    Eiland, M M; Lyamin, O I; Siegel, J M

    2001-02-01

    We have performed the first study of neuronal activity in freely-moving reptiles. 23 brainstem units were recorded from areas throughout the reticular formation, during wakefulness and quiescence in the box turtle. These units responded to various sensory stimuli and increased firing rates in relation to motor activity during wakefulness. All but one unit showed significant decreases in discharge during quiescence. Group I cells (32%) fired mostly during active movements and exhibited silent periods of 5 min or longer during quiescence while group II cells (68%) maintained slow tonic activity in quiescence. Polygraphic data showed no consistent, cyclically occurring phasic events during quiescence. PMID:11256184

  8. Common stemness regulators of embryonic and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Christiana; Hadjimichael; Konstantina; Chanoumidou; Natalia; Papadopoulou; Panagiota; Arampatzi; Joseph; Papamatheakis; Androniki; Kretsovali

    2015-01-01

    Pluripotency of embryonic stem cells(ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal trans-ducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors(cancer stem cells), provides a common conceptual and research frame-work for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  9. Wired for behavior: from development to function of innate limbic system circuitry

    Directory of Open Access Journals (Sweden)

    Katie eSokolowski

    2012-04-01

    Full Text Available The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional or motivational salience, which includes innate behaviors such as mating, aggression and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents, and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphism and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction.

  10. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    Science.gov (United States)

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph

  11. The effect of lead on brainstem auditory evoked potentials in children

    Institute of Scientific and Technical Information of China (English)

    邹朝春; 赵正言; 唐兰芳; 陈志敏; 杜立中

    2003-01-01

    Objective To determine whether lead affects brainstem auditory evoked potentials (BAEPs) in low-to-moderate lead exposed children. Methods BAEPs were recorded from 114 asymptomatic children aged 1-6 years. Average values were calculated for peak latency (PL) and amplitude (Amp). Whole blood lead (PbB) levels were assessed by graphite furnace atomic absorption spectroscopy. Based on their PbB levels, subjects were divided into low lead (PbB<100 μg/L) and high lead subgroups (PbB ≥100 μg/L). Results The PbB levels of the 114 subjects ranged from 32.0 to 380.0 μg/L in a positively skewed distribution. The median of PbB levels was 90.0 μg/L while the arithmetic average was 88.0 μg/L. Of the subjects, 43.0% (49/114) had levels equal to or greater than 100 μg/L. Bilateral PLs Ⅰ, Ⅴ, and Ⅲ of the left ear in the high lead subgroup were significantly longer than those in the low lead subgroup (P<0.05). A positive correlation was found between PbB levels and bilateral PLs Ⅰ, Ⅴ and Ⅲ of the left ear (P<0.05), after controlling for age and gender as confounding factors. A significant and positive correlation between PbB levels and PL Ⅰ of the left ear, even when PbB levels were lower than 100 μg/L, in the low subgroup (r=0.295, P=0.019) was also found.Conclusions Lead poisoning in children younger than 6 years old is a very serious problem to which close attention should be paid. The indications that lead prolongs partial PLs may imply that lead, even at PbB levels lower than 100 μg/L, impairs both the peripheral and the central portions of the auditory system. BAEPs may be a sensitive detector of subclinical lead exposure effects on the nervous system in children.

  12. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    Science.gov (United States)

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  13. Electroencephalogram and brainstem auditory evoked potential in 539 patients with central coordination disorder

    Institute of Scientific and Technical Information of China (English)

    Huijia Zhang; Hua Yan; Paoqiu Wang; Jihong Hu; Hongtao Zhou; Rong Qin

    2008-01-01

    BACKGROUND: Electroencephalogram (EEG) and brainstem auditory evoked potential (BAEP) are objective non-invasive means of measuring brain electrophysiology.OBJECTIVE: To analyze the value of EEG and BAEP in early diagnosis, treatment and prognostic evaluation of central coordination disorder.DESIGN, TIME AND SETTING: This case analysis study was performed at the Rehabilitation Center of Hunan Children's Hospital from January 2002 to January 2006.PARTICIPANTS: A total of 593 patients with severe central coordination disorder, comprising 455 boys and 138 girls, aged 1--6 months were enrolled for this study.METHODS: EEG was monitored using electroencephalography. BAEP was recorded using a Keypoint electromyogram device. Intelligence was tested by professionals using the Gesell scale.MAIN OUTCOME MEASURES: (1) The rate of abnormal EEG and BAEP, (2) correlation of abnormalities of EEG and BAEP with associated injuries, (3) correlation of abnormalities of EEG and BAEP with high risk factors.RESULTS: The rate of abnormal EEG was 68.6% (407/593 patients), and was increased in patients who also had mental retardation (P < 0.05). The rate of abnormal BAEP was 21.4% (127/593 patients). These 127 patients included 67 patients (52.8%) with peripheral auditory damage and 60 patients (47.2%) with central and mixed auditory damage. The rate of abnormal BAEP was significantly increased in patients who also had mental retardation (P < 0.01). Logistic regression analysis showed that asphyxia (P < 0.05), jaundice,preterm delivery, low birth weight and the umbilical cord around the neck were closely correlated with abnormal EEG in patients with central coordination disorder. Intracranial hemorrhage, jaundice (P < 0.05),low birth weight and intrauterine infection (P < 0.05) were closely correlated with abnormal BAEP in patients with central coordination disorder.CONCLUSION: Central coordination disorder is often associated with abnormal EEG and BAEP. The rate of EEG or BAEP abnormality

  14. Hippocampal - brainstem connectivity associated with vagal modulation after an intense exercise intervention in healthy men

    Directory of Open Access Journals (Sweden)

    Karl Juergen Bär

    2016-04-01

    Full Text Available AbstractRegular physical exercise leads increased vagal modulation of the cardiovascular system. A combination of peripheral and central processes has been proposed to underlie this adaptation. However, specific changes in the central autonomic network have not been described in human in more detail. We hypothesized that the anterior hippocampus known to be influenced by regular physical activity might be involved in the development of increased vagal modulation after a 6 weeks high intensity intervention in young healthy men (exercise group: n=17, control group: n=17. In addition to the determination of physical capacity before and after the intervention, we used resting state functional magnetic resonance imaging and synchronic heart rate variability assessment.We detected a significant increase of the power output at the anaerobic threshold of 11.4% (p<0.001, the maximum power output Pmax of 11.2% (p<0.001, and VO2max adjusted for body weight of 4.7% (p<0.001 in the exercise group (EG. Comparing baseline (T0 and post-exercise (T1 values of parasympathetic modulation of the exercise group, we observed a trend for a decrease in heart rate (p<0.06 and a significant increase of vagal modulation as indicated by RMSSD (p<0.026 during resting state. In the whole brain analysis, we found that the connectivity pattern of the right anterior hippocampus (aHC was specifically altered to the ventromedial anterior cortex, the dorsal striatum and to the dorsal vagal complex (DVC in the brainstem. Moreover, we only observed a highly significant negative correlation between increased RMSSD after exercise and decreased functional connectivity from the right aHC to DVC (r=-0.69, p=0.003. This indicates that increased vagal modulation was associated with functional connectivity between aHC and the dorsal vagal complex.In conclusion, our findings suggest that exercise associated changes in anterior hippocampal function might be involved in increased vagal

  15. Atlas-based automatic segmentation of MR images: Validation study on the brainstem in radiotherapy context

    International Nuclear Information System (INIS)

    Purpose: Brain tumor radiotherapy requires the volume measurements and the localization of several individual brain structures. Any tool that can assist the physician to perform the delineation would then be of great help. Among segmentation methods, those that are atlas-based are appealing because they are able to segment several structures simultaneously, while preserving the anatomy topology. This study aims to evaluate such a method in a clinical context. Methods and materials: The brain atlas is made of two three-dimensional (3D) volumes: the first is an artificial 3D magnetic resonance imaging (MRI); the second consists of the segmented structures in this artificial MRI. The elastic registration of the artificial 3D MRI against a patient 3D MRI dataset yields an elastic transformation that can be applied to the labeled image. The elastic transformation is obtained by minimizing the sum of the square differences of the image intensities and derived from the optical flow principle. This automatic delineation (AD) enables the mapping of the segmented structures onto the patient MRI. Parameters of the AD have been optimized on a set of 20 patients. Results are obtained on a series of 6 patients' MRI. A comprehensive validation of the AD has been conducted on performance of atlas-based segmentation in a clinical context with volume, position, sensitivity, and specificity that are compared by a panel of seven experimented physicians for the brain tumor treatments. Results: Expert interobserver volume variability ranged from 16.70 cm3 to 41.26 cm3. For patients, the ratio of minimal to maximal volume ranged from 48% to 70%. Median volume varied from 19.47 cm3 to 27.66 cm3 and volume of the brainstem calculated by AD varied from 17.75 cm3 to 24.54 cm3. Medians of experts ranged, respectively, for sensitivity and specificity, from 0.75 to 0.98 and from 0.85 to 0.99. Median of AD were, respectively, 0.77 and 0.97. Mean of experts ranged, respectively, from 0.78 to 0

  16. Acute intermittent hypoxia-induced expression of Brain-Derived Neurotrophic Factor is disrupted in the brainstem of mecp2 null mice

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K.; Knopp, Sharon J.; Balkowiec, Agnieszka; Bissonnette, John M.

    2012-01-01

    Rett syndrome is a neurodevelopmental disorder caused by loss of function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2−/y) mice were subjected to three 5-min episodes of exposure to 8% O2/4% CO2/88% N2, delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, i.e. 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking Mecp2. The results indicate that Mecp2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  17. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice.

    Science.gov (United States)

    Vermehren-Schmaedick, A; Jenkins, V K; Knopp, S J; Balkowiec, A; Bissonnette, J M

    2012-03-29

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2(-/y)) mice were subjected to three 5-min episodes of exposure to 8% O(2)/4% CO(2)/88% N(2), delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, that is, 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking MeCP2. The results indicate that MeCP2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  18. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum.

    Science.gov (United States)

    Mazzone, Paolo; Vilela Filho, Osvaldo; Viselli, Fabio; Insola, Angelo; Sposato, Stefano; Vitale, Flora; Scarnati, Eugenio

    2016-07-01

    The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson's disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region. PMID:26865208

  19. A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

    Directory of Open Access Journals (Sweden)

    Salvatore Fusco

    2016-02-01

    Full Text Available Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1 is modulated in neural stem and progenitor cells (NSCs by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein and Sirt-1 (Sirtuin 1, two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis.

  20. Characteristics of brainstem auditory evoked potential of neonates with mild or moderate hyperbilirubinemia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Brainstem auditory evoked potential (BAEP) has been widely used to evaluate the functional integrity and development of injured auditory system and brain, especially to objectively evaluate the function of auditory system and brain stem of very young babies, such as neonates and sick babies.OBJECTIVE: To observe the changes of BAEP of neonates with hyperbilirubinemia, and to investigate the relationship of bilirubin concentration and BAEP.DESIGN: An observation experiment.SETTING: Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA.PARTICIPANTS: Fifty-eight neonates with mild or moderate hyperbilirubinemia exhibiting jaundice within 24 hours after born, who received the treatment in the Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA between January 2004 and May 2007, were recruited in this study. The involved neonates, 31 boys and 27 girls, had gestational age of 37 to 46 weeks. They had no history of birth asphyxia, and were scored 8 to 10 points when born. Written informed consents of examination and treatment were obtained from the guardians of the neonates. This study was approved by the Hospital Ethics Committee. According to serum total bilirubin value, the neonates were assigned into 3 groups: low-concentration bilirubin group (n =16), moderate-concentration bilirubin group (n =27) and high-concentration bilirubin group (n =15). According to mean daily bilirubin increase, the subjects were sub-assigned into bilirubin rapid increase group (n =39) and bilirubin slow increase group (n =19).METHODS: After admission, all the neonates received drug treatment. Meanwhile, their 116 ears were examined with a myoelectricity evoked potential equipment (KEYPOINT) in latency, wave duration,amplitude and wave shape differentiation of each wave of BAEP. BAEP abnormal type was observed and abnormal rate of BAEP was calculated.MAIN OUTCOME MEASURES: ① Abnormal rate and abnormal type of BAEP

  1. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry

    OpenAIRE

    Christiansen, A.M.; HERMAN, J. P.; Ulrich-Lai, Y.M.

    2011-01-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such “comfort” food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid (GABA)ergic signaling is critical for both reward and stress regulation suggesting that these systems are prime candidates for mediating s...

  2. A neurocomputational model of spinal circuitry for controlling the execution of arm voluntary movements

    OpenAIRE

    Parziale, Antonio; Festa, Jacopo; Marcelli, Angelo

    2015-01-01

    We present a model of the spinal cord in controlling one degree-of-freedom arm movements. The model includes both neural and musculoskeletal functions in an integrated framework. The model has been implemented by an artificial neural network coupled with a computational model of muscle publicly available. The experimental results show that the model is able to regulate the position of the arm and to mediate reflex actions by integrating commands from CNS and signals from proprioceptors.

  3. Determining the control circuitry of redox metabolism at the genome-scale.

    Directory of Open Access Journals (Sweden)

    Stephen Federowicz

    2014-04-01

    Full Text Available Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs, ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2 (p<1e-6 correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.

  4. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals.

    Science.gov (United States)

    Furlan, Giulia; Rougeulle, Claire

    2016-09-01

    X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website. PMID:27173581

  5. [Acute brainstem encephalitis and myelitis in a girl with isolated methylmalonic aciduria due to MUT gene defect].

    Science.gov (United States)

    Liu, Yu-Peng; Ding, Yuan; Li, Xi-Yuan; Wang, Hai-Jun; Song, Jin-Qing; Ye, Jin-Tang; Wu, Tong-Fei; Yang, Yan-Ling

    2015-10-01

    Methylmalonyl CoA mutase deficiency due to MUT gene defect has been known as the main cause of isolated methylmalonic acidemia in Mainland China. This study reported a patient with isolated methylmalonic aciduria (MUT type) characterized as acute brainstem encephalitis and myelitis. The previously healthy girl presented with fever, lethargy and progressive weakness in her extremities at the age of 3 years and 2 months. Three day later, she had respiratory distress and consciousness. Cranial MRI revealed bilateral symmetrical lesion of pallidum, brain stem and spinal cord, indicating acute brainstem encephalitis and myelitis. Her blood propionylcarnitine (6.83 μmol/L vs normal range 1.0 to 5.0 μmol/L) and urinary methylmalonic acid (133.22 mmol/mol creatinine vs normal range 0.2 to 3.6 mmol/mol creatinine) increased significantly. Plasma total homocysteine was normal. On her MUT gene, a reported mutation (c.1630_1631GG>TA) and a novel mutation (c.1663C>T, p.A555T) were identified, which confirmed the diagnosis of methylmalonic aciduria (MUT type). After cobalamin injection, protein-restricted diet with the supplements of special formula and L-carnitine, progressive improvement has been observed. The clinical manifestation of patients with methylmalonic aciduria is complex. Metabolic study and gene analysis are keys for the diagnosis and treatment of the disorder. PMID:26483233

  6. Altered GABAA receptor expression in brainstem nuclei and SUDEP in Gabrg2(+/Q390X) mice associated with epileptic encephalopathy.

    Science.gov (United States)

    Xia, Geqing; P Pourali, Sarah; Warner, Timothy A; Zhang, Chun-Qing; L Macdonald, Robert; Kang, Jing-Qiong

    2016-07-01

    Sudden unexpected death in epilepsy (SUDEP) is the leading cause for death in individuals with epilepsy. The frequency of SUDEP correlates with the severity of epilepsies and lack of response to antiepileptic drug treatment, but the underlying mechanisms of SUDEP have not been elucidated fully. GABRG2(Q390X) is a mutation associated with the epileptic encephalopathy Dravet syndrome (DS) and with genetic epilepsy with febrile seizures plus (GEFS+) in patients. The Gabrg2(+/Q390X) knockin (KI) mouse phenocopies the major features of DS and GEFS+ and has SUDEP throughout life. The Gabrg2(+/-) knockout (KO) mouse is associated with infrequent absence seizures and represents a model of mild absence epilepsy syndrome without increased mortality. To explore the basis for SUDEP in DS and GEFS+, we compared mutant γ2 subunit and wild-type α1 and β2/3 subunit expression in mice in brainstem nuclei associated with respiratory function including the solitary tract, pre-Botzinger complex and Kolliker-Fuse nuclei. We found that synaptic GABAA receptors were reduced while intracellular nonfunctional γ2(Q390X) subunits were increased in the heterozygous DS and GEFS+ KI mice, but not in the heterozygous absence epilepsy KO mice. Given the critical role of these nuclei in cardiorespiratory function, it is likely the impaired GABAergic transmission and neuronal dysfunction in these brainstem nuclei are involved in the cardiorespiratory collapse in SUDEP. The study provides novel mechanistic insights into cardiorespiratory failure of SUDEP. PMID:27131289

  7. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  8. Cochlear and brainstem audiologic findings in normal hearing tinnitus subjects in comparison with non-tinnitus control group.

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-11-01

    Full Text Available While most tinnitus cases have some degree of hearing impairment, a small percent of the patients admitted to Ear, Nose and Throat Clinics or Hearing Evaluation Centers are those who complain of tinnitus despite having normal hearing thresholds. Present study was performed in order to better understanding of the probable causes of tinnitus and to investigate possible changes in the cochlear and auditory brainstem function in normal hearing patients with chronic tinnitus. Altogether, 63 ears (31 ears with tinnitus and 32 ears without tinnitus were examined. The prevalence of transient evoked otoacoustic emissions and characteristics of the auditory brainstem response components including wave latencies and wave amplitudes was determined in the two groups and analyzed with appropriate statistical methods. There was no difference between the prevalence of transient evoked emissions in the two groups. The mean difference between absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that were not statistically significant. Also, the interpeak latency values of I-III, III-V and I-V in both groups had no significant difference. Only the V/I amplitude ratio in the tinnitus group was significantly larger than the other group (p =0.04. The changes observed in amplitude of waves, especially in the later ones, can be considered as an Audiologic finding in normal hearing tinnitus subjects and its possible role in generation of tinnitus in these patients must be investigated.

  9. Topological characteristics of brainstem lesions in clinically definite and clinically probable cases of multiple sclerosis: An MRI-study

    International Nuclear Information System (INIS)

    Disseminated lesions in the white matter of the cerebral hemispheres and confluent lesions at the borders of the lateral ventricles as seen on MRI are both considered acceptable paraclinical evidence for the diagnosis of multiple sclerosis. Similar changes are, however, also found in vascular diseases of the brain. We therefore aimed at identifying those additional traits in the infratentorial region, which in our experience are not frequently found in cerebrovascular pathology. We evaluated MR brain scans of 68 patients and found pontine lesions in 71% of cases with a clinically definite diagnosis (17 out of 24) and in 33% of cases with a probable diagnosis (14 out of 43). Lesions in the medulla oblongata were present in 50% and 16%, respectively, and in the midbrain in 25% and 7%, respectively. With rare exceptions all brainstem lesions were contiguous with the cisternal or ventricular cerebrospinal fluid spaces. In keeping with post-mortem reports the morphological spectrum ranged from large confluent patches to solitary, well delineated paramedian lesions or discrete linings of the cerebrospinal fluid border zones and were most clearly depicted from horizontal and sagittal T2 weighted SE-sequences. If there is a predilection for the outer or inner surfaces of the brainstem, such lesions can be considered an additional typical feature of multiple sclerosis and can be more reliably weighted as paraclinical evidence for a definite diagnosis. (orig.)

  10. Genome Wide Analysis of Chromatin Regulation by Cocaine Reveals a Novel Role for Sirtuins

    OpenAIRE

    Renthal, William; Kumar, Arvind; Xiao, Guanghua; Wilkinson, Matthew; Covington, Herbert E.; Maze, Ian; Sikder, Devanjan; Robison, Alfred J.; LaPlant, Quincey; Dietz, David M.; Russo, Scott J.; Vialou, Vincent; Chakravarty, Sumana; Kodadek, Thomas J.; Stack, Ashley

    2009-01-01

    Changes in gene expression contribute to the long-lasting regulation of the brain’s reward circuitry seen in drug addiction, however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings...

  11. Impaired Cholinergic Excitation of Prefrontal Attention Circuitry in the TgCRND8 Model of Alzheimer’s Disease

    Science.gov (United States)

    Proulx, Éliane; Fraser, Paul; McLaurin, JoAnne; Lambe, Evelyn K.

    2015-01-01

    Attention deficits in Alzheimer’s disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer’s disease. PMID:26377466

  12. Programmable scan/read circuitry for charge coupled device imaging detectors. [spcecraft attitude control and star trackers

    Science.gov (United States)

    Salomon, P. M.; Smilowitz, K.

    1984-01-01

    A circuit for scanning and outputting the induced charges in a solid state charge coupled device (CCD) image detector is disclosed in an image detection system for use in a spacecraft attitude control system. The image detection system includes timing control circuitry for selectively controlling the output of the CCD detector so that video outputs are provided only with respect to induced charges corresponding to predetermined sensing element lines of the CCD detector. The timing control circuit and the analog to digital converter are controlled by a programmed microprocessor which defines the video outputs to be converted and further controls the timing control circuit so that no video outputs are provided during the delay associated with analog to digital conversion.

  13. “Liking” and “Wanting” Linked to Reward Deficiency Syndrome (RDS): Hypothesizing Differential Responsivity in Brain Reward Circuitry

    Science.gov (United States)

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2013-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: “liking,” “learning,” and “wanting” [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or “wanting” hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily self-administered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens, and they stimulate the functioning of brain reward circuitry (producing the “high” that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions. PMID:22236117

  14. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus

    DEFF Research Database (Denmark)

    Justinussen, Jessica; Holm, A; Kornum, B R

    2015-01-01

    as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas....

  15. Risperidone and Divalproex Differentially Engage the Fronto-Striato-Temporal Circuitry in Pediatric Mania: A Pharmacological Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Pavuluri, Mani N.; Passarotti, Alessandra M.; Fitzgerald, Jacklynn M.; Wegbreit, Ezra; Sweeney, John A.

    2012-01-01

    Objective: The current study examined the impact of risperidone and divalproex on affective and working memory circuitry in patients with pediatric bipolar disorder (PBD). Method: This was a six-week, double-blind, randomized trial of risperidone plus placebo versus divalproex plus placebo for patients with mania (n = 21; 13.6 [plus or minus] 2.5…

  16. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.;

    2012-01-01

    The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved in...... food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association...... between body mass index and the 5-HT4R density bilaterally in the two reward ‘hot spots’ nucleus accumbens and ventral pallidum, and additionally in the left hippocampal region and orbitofrontal cortex.These findings suggest that the 5-HT4R is critically involved in reward circuits that regulate people...

  17. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): Assessment of the involved white matter tracts by MRI

    International Nuclear Information System (INIS)

    Background and purpose: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. Patients and methods: We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy (1H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. Results: In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable signal

  18. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): Assessment of the involved white matter tracts by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Hassan [Department of Radiology, Benha University (Egypt); Wafaie, Ahmed, E-mail: a_wafaie@yahoo.com [Department of Radiology, Cairo University (Egypt); Abdelfattah, Sherif [Department of Radiology, Cairo University (Egypt); Farid, Tarek [Pediatric Department, Egyptian National Research Center (Egypt)

    2014-01-15

    Background and purpose: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. Patients and methods: We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy ({sup 1}H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. Results: In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable

  19. Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM.

    Science.gov (United States)

    Yagi, H; Akiguchi, I; Ohta, A; Yagi, N; Hosokawa, M; Takeda, T

    1998-04-27

    The role of the magnocellular reticular formation (MGRF) of the brainstem on learning and memory was examined in memory-deficient mice with spontaneous spongy degeneration in the brainstem (senescence-accelerated mouse, SAMP8) and control mice (accelerated-senescence resistant mouse, SAMR 1). SAMP8 showed spontaneous age-related impairment of learning and memory, as determined by passive and active avoidance responses. The deficits of learning and memory function in passive avoidance performances began at two months of age and increased with ageing. In the brains of SAMP8 at one month of age and older, spongy degeneration was mainly observed in the brainstem, while no vacuoles were evident in SAMR1 control (normal ageing mouse) brains in the age range tested (up to 12 months). The vacuolization in SAMP8 was marked in the MGRF, especially in the dorsomedial MGRF. Quantitative analysis of the vacuolization showed that the total area and number of vacuoles in the MGRF increased with age, and they were affected by the degree of deficits in learning and memory. The latency 24 h after footshock in passive avoidance tests decreased with the increase in total area and number of vacuoles in MGRF. The number of shocks in active avoidance tests increased with the increase in total number and area of vacuoles. Thus, learning and memory ability in passive and active avoidance responses deteriorated with enlargement in the vacuolated area in MGRF, and it was assumed that MGRF (especially, the dorsomedial part) possesses functions related to learning and memory. To confirm this notion, behavior and memory tests (passive avoidance and active avoidance tests, open field tests and shock sensitivity measurements) were carried out in SAMR1 mice, whose bilateral dorsomedial MGRF was destroyed electrolytically (MGRF-lesioned mice). The MGRF-lesioned mice showed no difference from sham mice in sensory threshold or open field activity; however, there was severe deterioration in passive

  20. Cerebellar and brainstem hypoplasia in a child with a partial monosomy for the short arm of chromosome 5 and partial trisomy for the short arm of chromosome 10

    NARCIS (Netherlands)

    Arts, W F M; Hofstee, Y; Drejer, G F; Beverstock, G C; Oosterwijk, J C

    1995-01-01

    A child with hypoplasia of the cerebellum and brainstem in association with an unbalanced translocation, resulting in a partial deletion of the short arm of chromosome 5 and a partial trisomy of the short arm of chromosome 10, is described. A balanced translocation was present in his mother and mate

  1. Age-dependent changes in the midsized neurofilament subunit in sensory-motor systems of the cat brainstem: an immunocytochemical study.

    Science.gov (United States)

    Zhang, J H; Sampogna, S; Morales, F R; Chase, M H

    2000-05-01

    This study documents age-related changes in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in sensory and motor neurons in the brainstem of the cat. In old age, there was a clear decrease in immunoreactivity in the following brainstem sensory and motor nuclei: sensory trigeminal, gracile, cuneate, and facial motor. Only a few neuronal perikarya and dendrites were labeled in these nuclei in old cats; moreover, when present, the labeling was weak. In contrast, in adult cats, these nuclei contained intensely stained neuronal perikarya and dendrites. In other sensory and motor nuclei of the brainstem, there was an obvious age-related increase in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in the perikarya. Despite different patterns of age-related alterations in immunoreactivity within perikarya and dendrites in distinct brainstem regions, most sensory and motor axons in old cats were smaller than those in adult cats. A decrease in the medium-molecular weight neurofilament subunit in the dendrites may be the basis for the dendritic atrophy that has been shown to occur in sensory nuclei in old animals. The decrease in axonal size is likely to be one of the causes of the decrease in axonal conduction velocity, in these neurons, that was reported in our previous studies. PMID:10819310

  2. New Evidence of Cerebellar and Brainstem Hypoplasia in Autistic Infants, Children and Adolescents: The MR Imaging Study by Hashimoto and Colleagues.

    Science.gov (United States)

    Courchesne, Eric

    1995-01-01

    In a study by Toshiaki Hashimoto and colleagues (EC 611 142), 10 infants with developmental delay, poor eye contact, and poor facial expression underwent magnetic resonance brain imaging and were later diagnosed with autism. This offered direct evidence of abnormality of the cerebellar vermis and the brainstem at the beginning stages of behavioral…

  3. Regulation of Bacterial Virulence by Csr (Rsm) Systems

    OpenAIRE

    Vakulskas, Christopher A.; Potts, Anastasia H.; Babitzke, Paul; Ahmer, Brian M. M.; Romeo, Tony

    2015-01-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional...

  4. Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations.

    Science.gov (United States)

    Chandler, Daniel J

    2016-06-15

    The brainstem nucleus locus coeruleus (LC) innervates the entire central nervous system and is the primary source of norepinephrine (NE) to the neocortex. While classically considered a homogenous modulator of forebrain activity by virtue of highly widespread and divergent axons, recent behavioral and pharmacological evidence suggest this nucleus may execute distinct operations within functionally distinct terminal fields. Summarized in this review are the anatomical and physiological properties of the nucleus within a historical context that led to the interpretation of the nucleus as a homogeneous entity with uniform and simultaneous actions throughout its terminal fields. Also included are findings from several laboratories which point to a more nuanced model of LC/NE function that parallels that seen in other forebrain-projecting monoaminergic nuclei. Such compartmentalized models of the nucleus promote the idea that specific LC circuits are involved in discrete behavioral operations, and therefore, by identifying the networks that are engaged by LC, the substrates for these behaviors can be identified and manipulated. Perturbations in the functional anatomy and physiology of this system may be related to neuropsychiatric conditions associated with dysregulation of the LC-noradrenergic system such as attention deficit hyperactivity disorder. Recent findings regarding the organization and operation of the LC/NE system collectively challenge the classical view of the nucleus as a relatively homogenous modulator of forebrain activity and provide the basis for a renewed scientific interest in this region of the brain. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26607255

  5. Sex differences in the neurobiology of fear conditioning and extinction: a preliminary fMRI study of shared sex differences with stress-arousal circuitry

    OpenAIRE

    Lebron-Milad Kelimer; Abbs Brandon; Milad Mohammed R; Linnman Clas; Rougemount-Bücking Ansgar; Zeidan Mohammed A; Holt Daphne J; Goldstein Jill M

    2012-01-01

    Abstract Background The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. Methods Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear...

  6. Age-related alterations in immunoreactivity of the midsized neurofilament subunit in the brainstem reticular formation of the cat.

    Science.gov (United States)

    Zhang, J H; Sampogna, S; Morales, F R; Chase, M H

    1997-09-19

    In the present study, we compared the immunoreactivity of the midsized subunit of neurofilaments (NF-M) in the brainstem reticular formation of adult and old cats. There was a dramatic decrease in immunoreactivity in most reticular nuclei in the old cats. The most obvious reduction in these regions occurred in dendritic arborizations. In contrast, a small number of nuclei showed a slight increase in immunoreactivity in the aged animals. The age-related changes in immunoreactivity indicate that there is an alteration of NF-M content in reticular neurons and their processes in old age. Such changes in NF-M content may be the basis for the alterations in the morphology of reticular neurons in aged animals. PMID:9374292

  7. In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds.

    Science.gov (United States)

    Crowell, Sara E; Wells-Berlin, Alicia M; Therrien, Ronald E; Yannuzzi, Sally E; Carr, Catherine E

    2016-05-01

    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals. PMID:27250191

  8. In vitro delineation of human brain-stem anatomy using a small resonator: correlation with macroscopic and histological findings

    International Nuclear Information System (INIS)

    Our purpose was to investigate the potential of an experimental animal coil using a commercial MRI unit to delineate the anatomical structure of the human brain stem. Three formaldehyde-fixed brain-stem specimens were examined by MRI and sectioned perpendicular to their longitudinal axis. The images were compared with gross anatomy and myelin-stained histological sections. Fibre tracts and nuclei which were not evident on examination of the unstained specimen were readily identified by MRI. Due to its inherent grey/white matter contrast, MRI with a high-resolution coil delineates anatomical structures in a way comparable to the myelin-stained histological sections. However, pigmented structures, readily visible on examination of the unstained specimen were discernible on neither MRI nor on myelin-stained sections. The excellent anatomical detail and grey/white matter contrast provided by these images could make MRI a useful adjunct to the pathologist investigating brain disease. (orig.)

  9. Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions

    Directory of Open Access Journals (Sweden)

    Elstner Matthias

    2011-12-01

    Full Text Available Abstract Background Deletions of the mitochondrial DNA (mtDNA accumulate to high levels in dopaminergic neurons of the substantia nigra pars compacta (SNc in normal aging and in patients with Parkinson's disease (PD. Human nigral neurons characteristically contain the pigment neuromelanin (NM, which is believed to alter the cellular redox-status. The impact of neuronal pigmentation, neurotransmitter status and brainstem location on the susceptibility to mtDNA damage remains unclear. We quantified mtDNA deletions (ΔmtDNA in single pigmented and non-pigmented catecholaminergic, as well as non-catecholaminergic neurons of the human SNc, the ventral tegmental area (VTA and the locus coeruleus (LC, using laser capture microdissection and single-cell real-time PCR. Results In healthy aged individuals, ΔmtDNA levels were highest in pigmented catecholaminergic neurons (25.2 ± 14.9%, followed by non-pigmented catecholamergic (18.0 ± 11.2% and non-catecholaminergic neurons (12.3 ± 12.3%; p Conclusions Catecholaminergic brainstem neurons are differentially susceptible to mtDNA damage. Pigmented dopaminergic neurons of the SNc show the highest ΔmtDNA levels, possibly explaining the exceptional vulnerability of the nigro-striatal system in PD and aging. Although loss of pigmented noradrenergic LC neurons also is an early feature of PD pathology, mtDNA levels are not elevated in this nucleus in healthy controls. Thus, ΔmtDNA are neither an inevitable consequence of catecholamine metabolism nor a universal explanation for the regional vulnerability seen in PD.

  10. Evaluation of auditory brain-stem evoked response in middle: Aged type 2 diabetes mellitus with normal hearing subjects

    Directory of Open Access Journals (Sweden)

    Debadatta Mahallik

    2014-01-01

    Full Text Available Background: Diabetes mellitus (DM is commonly metabolic disorders of carbohydrate in which blood glucose levels are abnormally high due to relative or absolute insulin deficiency. In addition, it is characterized by abnormal metabolism of fat, protein resulting from insulin deficit or insulin action, or both. There are two broad categories of DM are designated as type 1 and type 2. Type 2 diabetes is due to predominantly insulin resistance with relative insulin deficiency noninsulin-dependent DM. Type 2 diabetes is much more common than insulin-dependent DM. Objectives: The aim of this study was to assess, if there is any abnormality in neural conduction in auditory brain-stem pathway in type 2 DM patients having normal hearing sensitivity when compared to age-matched healthy populations. Materials and Methods: This study included middle - aged 25 subjects having normal hearing with diabetes type 2 mellitus. All were submitted to the full audiological history taking, otological examination, basic audiological evaluation and auditory brain-stem response audiometry which was recorded in both ears, followed by calculation of the absolute latencies of wave I, III and V, as well as interpeak latencies I-III, III-V, I-V. Results: Type 2 DM patients showed significant prolonged absolute latencies of I, III (P = 0.001 and interpeak latencies I-III, III-V and I-V in left ear (P = 0.001 and absolute latencies of I, V (P = 0.001, interpeak latencies III-V was statistically significant in right ear. Conclusions: The prolonged absolute latencies and interpeak latencies suggests abnormal neural firing synchronization or in the transmission in the auditory pathways in normal hearing type 2 diabetes mellitus patients.

  11. Brain-stem auditory evoked responses during microvascular decompression for trigeminal neuralgia: Predicting post-operative hearing loss

    Directory of Open Access Journals (Sweden)

    Ramnarayan Ramachandran

    2006-01-01

    Full Text Available Context: The importance of brainstem auditory evoked potential monitoring in reducing hearing loss during microvascular decompression for trigeminal neuralgia is now accepted. However the extent of the changes in the pattern of these potentials and the safe limits to which these changes are relevant in reducing postoperative hearing loss have not been established. Aims: The aim of this study is to quantify these changes and relate these to the postoperative hearing loss. Settings and Design: This study was done at the Walton Centre for neurology and neurosurgery, Liverpool, United Kingdom. The study was designed to give a measure of the change in the wave pattern following microvascular decompression and relate it to postoperative hearing loss. Materials and Methods: Seventy-five patients undergoing microvascular decompression for trigeminal neuralgia had preoperative and postoperative hearing assessments and intraoperative brainstem auditory evoked potential monitoring. Statistical Analysis Used: Chi-square tests. Results: It was found that the wave V latency was increased by more than 0.9ms in nine patients, eight of whom suffered significant postoperative hearing loss as demonstrated by audiometry. It was also seen that progressive decrease in amplitude of wave V showed progressive hearing loss with 25% loss when amplitude fell by 50 and 100% loss when wave V was lost completely. However most of the patients did not have a clinically manifest hearing loss. Conclusions: A per-operative increase in the latency of wave V greater than 0.9 ms and a fall of amplitude of wave V of more than 50% indicates a risk to hearing.

  12. Development and distribution of PAG-immunoreactive neurons in the central pathway of trigeminal proprioception of the rat brainstem

    Institute of Scientific and Technical Information of China (English)

    PANG You-wang; LI Jin-lian

    2002-01-01

    Objective:To investigate the development and distribution of phosphate-activated glutaminase like immunoreactive (PAG-LI) neurons in the central pathway of trigeminal proprioception of the rat brainstem.Methods: The immunohistochemitry techniques were used. Results: (1) At embryonic day 17 (E17), PAGLI neurons were initially observed in the mesencephalic trigeminal nucleus (Vme). All PAG-LI neurons were large round neurons with moderate immunostaining. The immunoreactivity grew intense and attained adultlike pattern at P10. (2) Not until postnatal day 10 (P10) did a few PAG-LI neurons appear in the area ventral to the motor trigeminal nucleus (AVM) and area dorsal to the superior olivery nucleus (ADO), and not until P12 in the dorsomedial part of the subnucleus oralis of the spinal trigeminal nucleus (Vodm) and dorsomedial part of the principal sensory trigeminal nucleus (Vpdm). As development proceeded, more and more neurons in them were immunostained, and some PAG-LI neurons were detected in the lateral reticular formation adjacent to the Vodm(LRF)and the caudolateral part of the supratrigeminal nucleus (Vsup-CL) at P21.Conclusion: In the central pathway of trigeminal proprioception of the rat brainstem, PAG-LI neurons appeared during two stages: The first stage from E17 to P10, PAG-LI neurons appeared in the Vme and reached adult-like pattern; the second stage from P10 to P21, PAG-LI neurons appeared in the Vodm, LRF,Vpdm, Vsup-CL, ADO, AVM and gradually reached adult-like pattern. This might be relative to the establishment of jaw movement patterns.

  13. Changes in Pain Processing in the Spinal Cord and Brainstem after Spinal Cord Injury Characterized by Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Stroman, Patrick W; Khan, Hamza S; Bosma, Rachel L; Cotoi, Andrea I; Leung, Roxanne; Cadotte, David W; Fehlings, Michael G

    2016-08-01

    Traumatic spinal cord injury (SCI) has a number of devastating consequences, including high prevalence of chronic pain and altered pain sensitivity. The causes of altered pain states vary depending on the injury and are difficult to diagnose and treat. A better understanding of pain mechanisms after SCI is expected to lead to better diagnostic capabilities and improved treatments. We therefore applied functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in a group of participants with previous traumatic SCI to characterize changes in pain processing as a result of their injuries. The same thermal stimulus was applied to the medial palm (C8 dermatome) as a series of repeated brief noxious thermal pulses in a group of 16 participants with a cervical (n = 14) and upper thoracic (n = 2) injuries. Functional MRI of the brainstem and spinal cord was used to determine the neuronal activity evoked by the noxious stimulation, and connectivity between regions was characterized with structural equation modeling (SEM). The results show that pain ratings, the location and magnitude of blood oxygenation-level dependent fMRI results, and connectivity assessed with SEM varied widely across participants. However, the results varied in relation to the perceived pain and the level/severity of injuries, particularly in terms of hypothalamus connectivity with other regions, and descending modulation via the periaqueductal gray matter-rostral ventromedial medulla-cord pathway. The results, therefore, appear to provide sensitive indicators of each individual's pain response, and information about the mechanisms of altered pain sensitivity. The ability to characterize changes in pain processing in individuals with SCI represents a significant technological advance. PMID:26801315

  14. Three-channel Lissajous' trajectories of auditory brainstem evoked potentials: contribution of fast and slow components to planar segment formation.

    Science.gov (United States)

    Pratt, H; Bleich, N; Feingold, K

    1990-01-01

    Three-Channel Lissajous' Trajectories (3CLT) of Auditory Brainstem Evoked Potentials (ABEP) to clicks were obtained after finite impulse response filtering in three frequency bands. These bands were chosen to replicate the widely used passband (100-3000 Hz) and to selectively enhance the definition of the 'pedestal' (10-240 Hz) or the first, third and fifth components (240-483 Hz). Quantitative measures of 3CLT were calculated to describe apex latencies, planar segment orientations, durations, trajectory amplitude peaks and their latencies. In addition, dipole moments at the latencies of apical points along 3-CLT were calculated. The planarity of ABEP 3-CLT segments persisted after selective enhancement of the 'pedestal' or the first, third and fifth components. These results rule out the suggestion that planarity of ABEP segments results from the interaction of the 'pedestal' with the superimposed faster components. These results demonstrate summation of 3-CLT planar segments ('a' 'c' and 'e' with the 'pedestal') to form new segments (wide-band 'a', 'c' and 'e'). With the exception of 'c', planar segments and the equivalent dipole moments associated with apexes did not change orientations across passbands. The effects of passband on the orientation of planar segment 'c' and the dipole moment of its apex are explained by its superimposition on the 'pedestal' in the wide-band records. A similar analysis of ABEP to clicks as compared to low-frequency stimuli (high-pass masked clicks) revealed no change in planarity nor in plane parameters. These results are compatible with the suggestion that the generators of the first, third and fifth ABEP components are curved fiber tracts. The planarity of the slow 'pedestal' may be due to the summation of slow synaptic potentials in auditory brainstem nuclei. These findings indicate that the generators of ABEP are composites that may be separated by selective lesion studies. PMID:2312411

  15. Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD

    Directory of Open Access Journals (Sweden)

    Castellanos F Xavier

    2007-07-01

    Full Text Available Abstract Background Calcyon is a single transmembrane protein predominantly expressed in the brain. Very recently, calcyon has been implicated in clathrin mediated endocytosis, a critical component of synaptic plasticity. At the genetic level, preliminary evidence supports an association between attention-deficit/hyperactivity disorder (ADHD and polymorphisms in the calcyon gene. As little is known about the potential role of calcyon in ADHD, animal models may provide important insights into this issue. Methods We examined calcyon mRNA expression in the frontal-striatal circuitry of three-, five-, and ten-week-old Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. As a complement, we performed a co-expression network analysis using a database of mRNA gene expression profiles of multiple brain regions in order to explore potential functional links of calcyon to other genes. Results In all age groups, SHR expressed significantly more calcyon mRNA in the medial prefrontal and orbital frontal cortices than WKY rats. In contrast, in the motor cortex, dorsal striatum and nucleus accumbens, calcyon mRNA expression was only significantly elevated in SHR in younger animals. In both strains, calcyon mRNA levels decreased significantly with age in all regions studied. In the co-expression network analysis, we found a cluster of genes (many of them poorly studied so far strongly connected to calcyon, which may help elucidate its role in the brain. The pair-wise relations of calcyon with other genes support its involvement in clathrin mediated endocytosis and, potentially, some other membrane/vesicular processes. Interestingly, no link was found between calcyon and the dopamine D1 receptor, which was previously shown to interact with the C-terminal of calcyon. Conclusion The results indicate an alteration in calcyon expression within the frontal-striatal circuitry

  16. Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle

    NARCIS (Netherlands)

    Haywood, S.A.; Simonian, S.X.; Beek, van der E.M.; Bicknell, R.J.; Herbison, A.E.

    1999-01-01

    Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen recept

  17. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel;

    2005-01-01

    dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...

  18. A low-cost dielectric spectroscopic system using metamaterial open horn-ring resonator-inspired BSF and detection circuitry

    Science.gov (United States)

    Kumari, Ratnesh; Patel, Piyush N.

    2016-07-01

    The sensitivity in a lower microwave band dielectric spectroscopic system is relatively less compared to that of millimeter wave and terahertz system. This work reports modeling and development of an epsilon-negative metamaterial resonator-inspired microwave band-stop filter as a prototype device and its detection circuitry for the spectroscopic analysis of dielectric samples in S-band. The device structure consists of a diamond-shaped patch with a complementary open split horn-ring resonator, fabricated on a Neltech substrate of relative permittivity ( ɛ r = 3.2). The measured transmission coefficient at 2.2 GHz and simulated result at 2.24 GHz demonstrate an excellent accuracy in the device fabrication. A low-cost connector-type microwave signal detection system was assembled for the real-time transduction of device signal into an equivalent DC voltage. Further, a single channel cavity developed using polydimethylsiloxane was placed over the resonator gap for analyzing the perturbation effect of electric field intensity on the resonance and circuit output DC level for different dielectric samples under test. The performed calibrations show linearity up to 82.5 % in the device response.

  19. Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: implications for drug addiction therapies.

    Science.gov (United States)

    Jasinska, Agnes J; Chen, Billy T; Bonci, Antonello; Stein, Elliot A

    2015-03-01

    Although the importance of the medial prefrontal cortex (MPFC) in cocaine addiction is well established, its precise contribution to cocaine seeking, taking and relapse remains incompletely understood. In particular, across two different models of cocaine self-administration, pharmacological or optogenetic activation of the dorsal MPFC has been reported to sometimes promote and sometimes inhibit cocaine seeking. We highlight important methodological differences between the two experimental paradigms and propose a framework to potentially reconcile the apparent discrepancy. We also draw parallels between these pre-clinical models of cocaine self-administration and human neuro-imaging studies in cocaine users, and argue that both lines of evidence point to dynamic interactions between cue-reactivity processes and control processes within the dorsal MPFC circuitry. From a translational perspective, these findings underscore the importance of interventions and therapeutics targeting not just a brain region, but a specific computational process within that brain region, and may have implications for the design and implementation of more effective treatments for human cocaine addiction. PMID:24620898

  20. Broadband wireless radio frequency power telemetry using a metamaterial resonator embedded with non-foster impedance circuitry

    Science.gov (United States)

    Fu, Guoqing; Sonkusale, Sameer

    2015-05-01

    Wireless powering of implantable biomedical devices and smart radio frequency identification (RFID) tags with very low profile antennas is desired. We propose a low profile electrically small antenna for near-field wireless power telemetry employing a metamaterial Split Ring Resonator (SRR) antenna. SRRs can be designed for operation over wide frequencies from RF to visible. However, they are inherently narrowband making them sensitive to component mismatch with respect to external transmit antenna. Here, we propose an embedding of a non-foster impedance circuitry into the metamaterial SRR structure that imparts conjugate negative complex impedance to this resonator antenna thereby increasing the effective bandwidth and thus overcoming the fundamental limit for efficient signal coupling. We demonstrate the concept through extensive numerical simulations and a prototype system at the board level using discrete off-the-shelf components and printed circuit SRR antenna at 500 MHz. We show that the power transfer between SRR receive antenna and the external transmit loop antenna is improved by more than 8 dB over a wide frequency band (from 525 MHz to 635 MHz), before and after non-foster circuit activation.

  1. High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

    OpenAIRE

    Nieland, Thomas J. F.; Logan, David J.; Saulnier, Jessica; Lam, Daniel; Johnson, Caroline; Root, David E.; Carpenter, Anne E.; Sabatini, Bernardo L.

    2013-01-01

    The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experime...

  2. High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

    OpenAIRE

    Nieland, Thomas J. F.; Logan, David J.; Saulnier, Jessica; Lam, Daniel; Johnson, Caroline; Root, David E.; Carpenter, Anne E.; Sabatini, Bernardo L.

    2014-01-01

    The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experime...

  3. Determinants of body weight regulation in humans.

    Science.gov (United States)

    Moehlecke, Milene; Canani, Luis Henrique; Silva, Lucas Oliveira Junqueira E; Trindade, Manoel Roberto Maciel; Friedman, Rogerio; Leitão, Cristiane Bauermann

    2016-04-01

    Body weight is regulated by the ability of hypothalamic neurons to orchestrate behavioral, endocrine and autonomic responses via afferent and efferent pathways to the brainstem and the periphery. Weight maintenance requires a balance between energy intake and energy expenditure. Although several components that participate in energy homeostasis have been identified, there is a need to know in more detail their actions as well as their interactions with environmental and psychosocial factors in the development of human obesity. In this review, we examine the role of systemic mediators such as leptin, ghrelin and insulin, which act in the central nervous system by activating or inhibiting neuropeptide Y, Agouti-related peptide protein, melanocortin, transcript related to cocaine and amphetamine, and others. As a result, modifications in energy homeostasis occur through regulation of appetite and energy expenditure. We also examine compensatory changes in the circulating levels of several peripheral hormones after diet-induced weight loss. PMID:26910628

  4. Regulating anxiety with extrasynaptic inhibition.

    Science.gov (United States)

    Botta, Paolo; Demmou, Lynda; Kasugai, Yu; Markovic, Milica; Xu, Chun; Fadok, Jonathan P; Lu, Tingjia; Poe, Michael M; Xu, Li; Cook, James M; Rudolph, Uwe; Sah, Pankaj; Ferraguti, Francesco; Lüthi, Andreas

    2015-10-01

    Aversive experiences can lead to complex behavioral adaptations including increased levels of anxiety and fear generalization. The neuronal mechanisms underlying such maladaptive behavioral changes, however, are poorly understood. Here, using a combination of behavioral, physiological and optogenetic approaches in mouse, we identify a specific subpopulation of central amygdala neurons expressing protein kinase C δ (PKCδ) as key elements of the neuronal circuitry controlling anxiety. Moreover, we show that aversive experiences induce anxiety and fear generalization by regulating the activity of PKCδ(+) neurons via extrasynaptic inhibition mediated by α5 subunit-containing GABAA receptors. Our findings reveal that the neuronal circuits that mediate fear and anxiety overlap at the level of defined subpopulations of central amygdala neurons and demonstrate that persistent changes in the excitability of a single cell type can orchestrate complex behavioral changes. PMID:26322928

  5. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth.

    Science.gov (United States)

    Bertocci, M A; Bebko, G; Versace, A; Fournier, J C; Iyengar, S; Olino, T; Bonar, L; Almeida, J R C; Perlman, S B; Schirda, C; Travis, M J; Gill, M K; Diwadkar, V A; Forbes, E E; Sunshine, J L; Holland, S K; Kowatch, R A; Birmaher, B; Axelson, D; Horwitz, S M; Frazier, T W; Arnold, L E; Fristad, M A; Youngstrom, E A; Findling, R L; Phillips, M L

    2016-09-01

    Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult psychopathology. Additionally, there is a critical need to identify biomarkers reflecting underlying neuropathological processes that predict clinical/behavioral outcomes in youth. We aimed to identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function and white matter in the whole brain using 80 youth aged 14.0 (s.d.=2.0) from three clinical sites. Linear regression using the LASSO (Least Absolute Shrinkage and Selection Operator) method for variable selection was used to predict severity of future behavioral and emotional dysregulation measured by the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)) at a mean of 14.2 months follow-up after neuroimaging assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic behaviors, depressive behaviors and sex, explained 28% of the variance in follow-up PGBI-10M. Neuroimaging measures alone, after accounting for other identified predictors, explained ~1/3 of the explained variance, in follow-up PGBI-10M. Specifically, greater bilateral cingulum length predicted lower PGBI-10M at follow-up. Greater functional connectivity in parietal-subcortical reward circuitry predicted greater PGBI-10M at follow-up. For the first time, data suggest that multimodal neuroimaging measures of underlying neuropathologic processes account for over a third of the explained variance in clinical outcome in a large sample of behaviorally and emotionally dysregulated youth. This may be an important first step toward identifying neurobiological measures with the potential to act as novel targets for early detection and future therapeutic interventions. PMID:26903272

  6. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts.

    Science.gov (United States)

    Blum, Kenneth; Liu, Yijun; Wang, Wei; Wang, Yarong; Zhang, Yi; Oscar-Berman, Marlene; Smolen, Andrew; Febo, Marcelo; Han, David; Simpatico, Thomas; Cronjé, Frans J; Demetrovics, Zsolt; Gold, Mark S

    2015-03-01

    Recently, Willuhn et al. reported that cocaine use and even non-substance-related addictive behavior increases as dopaminergic function is reduced. Chronic cocaine exposure has been associated with decreases in D2/D3 receptors and was also associated with lower activation of cues in occipital cortex and cerebellum, in a recent PET study by Volkow's et al. Therefore, treatment strategies, like dopamine agonist therapy, that might conserve dopamine function may be an interesting approach to relapse prevention in psychoactive drug and behavioral addictions. To this aim, we evaluated the effect of KB220Z™ on reward circuitry of 10 heroin addicts undergoing protracted abstinence (average 16.9 months). In a randomized placebo-controlled crossover study of KB220Z, five subjects completed a triple-blinded experiment in which the subject, the person administering the treatment, and the person evaluating the response to treatment were blinded to the treatment that any particular subject was receiving. In addition, nine subjects were genotyped utilizing the GARSDX™ test. We preliminarily report that KB220Z induced an increase in BOLD activation in caudate-accumbens-dopaminergic pathways compared to placebo following 1-hour acute administration. Furthermore, KB220Z also reduced resting-state activity in the putamen of abstinent heroin addicts. In the second phase of this pilot study of all 10 abstinent heroin-dependent subjects, we observed that three brain regions of interest were significantly activated from resting state by KB220Z compared to placebo (p addiction by direct or indirect dopaminergic interaction. Due to small sample size, we caution definitive interpretation of these preliminary results, and confirmation with additional research and ongoing rodent and human studies of KB220Z is required. PMID:25526228

  7. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth

    Science.gov (United States)

    Bertocci, Michele A.; Bebko, Genna; Versace, Amelia; Fournier, Jay C.; Iyengar, Satish; Olino, Thomas; Bonar, Lisa; Almeida, Jorge R. C.; Perlman, Susan B.; Schirda, Claudiu; Travis, Michael J.; Gill, Mary Kay; Diwadkar, Vaibhav A.; Forbes, Erika E.; Sunshine, Jeffrey L.; Holland, Scott K; Kowatch, Robert A.; Birmaher, Boris; Axelson, David; Horwitz, Sarah M.; Frazier, Thomas W.; Arnold, L. Eugene; Fristad, Mary. A; Youngstrom, Eric A.; Findling, Robert L.; Phillips, Mary L.

    2015-01-01

    Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult psychopathology. Additionally, there is a critical need to identify biomarkers reflecting underlying neuropathological processes that predict clinical/behavioral outcomes in youth. We aimed to identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function and white matter in the whole brain using 80 youth aged 14.0(sd=2.0) from 3 clinical sites. Linear regression using the LASSO method for variable selection was used to predict severity of future behavioral and emotional dysregulation [measured by the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)] at a mean of 14.2 months follow-up after neuroimaging assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic behaviors, depressive behaviors, and sex, explained 28% of the variance in follow-up PGBI-10M. Neuroimaging measures alone, after accounting for other identified predictors, explained approximately one-third of the explained variance, in follow-up PGBI-10M. Specifically, greater bilateral cingulum length predicted lower PGBI-10M at follow-up. Greater functional connectivity in parietal-subcortical reward circuitry predicted greater PGBI-10M at follow-up. For the first time, data suggest that multimodal neuroimaging measures of underlying neuropathologic processes account for over a third of the explained variance in clinical outcome in a large sample of behaviorally and emotionally dysregulated youth. This may be an important first step toward identifying neurobiological measures with the potential to act as novel targets for early detection and future therapeutic interventions. PMID:26903272

  8. Gamma Knife Radiosurgery Treatment for Metastatic Melanoma of the Trigeminal Nerve and Brainstem: A Case Report and a Review of the Literature

    OpenAIRE

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K; Lamoreaux, Wayne T.; Mackay, Alexander R.; Call, Jason A.; Demakas, John J.; Cooke, Barton S; Lee, Christopher M

    2013-01-01

    Objective and Importance. Brainstem metastases (BSMs) are uncommon but serious complications of some cancers. They cause significant neurological deficit, and options for treatment are limited. Stereotactic radiosurgery (SRS) has been shown to be a safe and effective treatment for BSMs that prolongs survival and can preserve or in some cases improve neurological function. This case illustrates the use of repeated SRS, specifically Gamma Knife radiosurgery (GKRS) for management of a unique bra...

  9. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem

    OpenAIRE

    MacLeod, Katrina M.; Horiuchi, Timothy K.

    2011-01-01

    Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for ...

  10. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    Science.gov (United States)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  11. Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3T.

    Science.gov (United States)

    Kovanlikaya, Ilhami; Firat, Zeynep; Kovanlikaya, Arzu; Uluğ, Aziz M; Cihangiroglu, M Mutlu; John, Majnu; Bingol, Canan Aykut; Ture, Ugur

    2011-03-01

    The purpose of the study was to investigate the role of Diffusion Tensor Imaging (DTI) and Diffusion Tensor Tractography (DTT) on the corticospinal tract alterations due to space occupying lesions in the brainstem before and after surgical resection. Pre- and post-surgical DTI data were acquired in 14 patients undergoing surgical resection of brainstem lesions. Patterns of corticospinal tract (CST) alteration on DTT were compared with the neurological exams of the patients pre- and post-operatively. DTT, especially in 3D movie format, seemed very helpful for evaluating the relationship of the lesions with the corticospinal tracts for surgical approach. None of the patients developed additional motor deficit related to surgery except one patient who presented with cerebellar ataxia after surgery. All of the patients with normal CST on DTT presented without motor deficit on neurological exam. The sensitivity, specificity, positive predictive and negative predictive values of DTT before surgery were 100%, 63.6%, 42.9% and 100%, and the corresponding values after surgery were 100%, 96%, 75% and 100% respectively. Although it has low specificity before surgery, DTT is a potentially useful technique in evaluating the effects of brainstem lesions and surgical resection on the relevant corticospinal tracts with high negative predictive value and higher specificity after surgery. PMID:19767164

  12. Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3 T

    International Nuclear Information System (INIS)

    The purpose of the study was to investigate the role of Diffusion Tensor Imaging (DTI) and Diffusion Tensor Tractography (DTT) on the corticospinal tract alterations due to space occupying lesions in the brainstem before and after surgical resection. Pre- and post-surgical DTI data were acquired in 14 patients undergoing surgical resection of brainstem lesions. Patterns of corticospinal tract (CST) alteration on DTT were compared with the neurological exams of the patients pre- and post-operatively. DTT, especially in 3D movie format, seemed very helpful for evaluating the relationship of the lesions with the corticospinal tracts for surgical approach. None of the patients developed additional motor deficit related to surgery except one patient who presented with cerebellar ataxia after surgery. All of the patients with normal CST on DTT presented without motor deficit on neurological exam. The sensitivity, specificity, positive predictive and negative predictive values of DTT before surgery were 100%, 63.6%, 42.9% and 100%, and the corresponding values after surgery were 100%, 96%, 75% and 100% respectively. Although it has low specificity before surgery, DTT is a potentially useful technique in evaluating the effects of brainstem lesions and surgical resection on the relevant corticospinal tracts with high negative predictive value and higher specificity after surgery.

  13. Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kovanlikaya, Ilhami, E-mail: ilk2002@med.cornell.edu [Department of Radiology, Weill Cornell Medical College, New York, NY (United States); Firat, Zeynep [Department of Radiology, Yeditepe University Hospital, Istanbul (Turkey); Kovanlikaya, Arzu [Department of Radiology, Weill Cornell Medical College, New York, NY (United States); Ulug, Aziz M. [Department of Radiology, Weill Cornell Medical College, New York, NY (United States); Department of Biomedical Engineering, Yeditepe University, Istanbul (Turkey); Cihangiroglu, M. Mutlu [Department of Radiology, Yeditepe University Hospital, Istanbul (Turkey); John, Majnu [Department of Public Health, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY (United States); Bingol, Canan Aykut; Ture, Ugur [Institute of Neurological Sciences, Yeditepe University Hospital, Istanbul (Turkey)

    2011-03-15

    The purpose of the study was to investigate the role of Diffusion Tensor Imaging (DTI) and Diffusion Tensor Tractography (DTT) on the corticospinal tract alterations due to space occupying lesions in the brainstem before and after surgical resection. Pre- and post-surgical DTI data were acquired in 14 patients undergoing surgical resection of brainstem lesions. Patterns of corticospinal tract (CST) alteration on DTT were compared with the neurological exams of the patients pre- and post-operatively. DTT, especially in 3D movie format, seemed very helpful for evaluating the relationship of the lesions with the corticospinal tracts for surgical approach. None of the patients developed additional motor deficit related to surgery except one patient who presented with cerebellar ataxia after surgery. All of the patients with normal CST on DTT presented without motor deficit on neurological exam. The sensitivity, specificity, positive predictive and negative predictive values of DTT before surgery were 100%, 63.6%, 42.9% and 100%, and the corresponding values after surgery were 100%, 96%, 75% and 100% respectively. Although it has low specificity before surgery, DTT is a potentially useful technique in evaluating the effects of brainstem lesions and surgical resection on the relevant corticospinal tracts with high negative predictive value and higher specificity after surgery.

  14. Brain circuitry of compulsivity.

    Science.gov (United States)

    van den Heuvel, Odile A; van Wingen, Guido; Soriano-Mas, Carles; Alonso, Pino; Chamberlain, Samuel R; Nakamae, Takashi; Denys, Damiaan; Goudriaan, Anna E; Veltman, Dick J

    2016-05-01

    Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field. PMID:26711687

  15. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    Science.gov (United States)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  16. Identifying the threshold of iron deficiency in the central nervous system of the rat by the auditory brainstem response.

    Science.gov (United States)

    Greminger, Allison R; Mayer-Pröschel, Margot

    2015-01-01

    The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and severity of ABR latency defects. To generate various levels of ID, female Long-Evans rats were exposed to diets containing sufficient, borderline, or deficient iron (Fe) concentrations throughout gestation and offspring lifetime. We measured hematological indices of whole body iron stores in dams and offspring to assess the degree of ID. Progression of AN ID in the offspring was measured as ferritin protein levels at different times during postnatal development to complement ABR functional measurements. The severity of ABR deficits correlated with the level of Fe restriction in each diet. The sufficient Fe diet did not induce AN ID and consequently did not show an impaired ABR latency response. The borderline Fe diet, which depleted AN Fe stores but did not cause systemic anemia resulted in significantly increased ABR latency isolated to Peak I.The low Fe diet, which induced anemia and growth retardation, significantly increased ABR latencies of Peaks I to IV. Our findings indicate that changes in the ABR could be related to various degrees of ID experienced throughout development. PMID:25732706

  17. Blood-brain barrier breakdown and repair following gliotoxic drug injection in the brainstem of streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Bondan

    2012-03-01

    Full Text Available Ethidium bromide (EB causes local astrocytic disappearance, with glia limitans disruption and blood-brain barrier (BBB breakdown. The aim of this study was to evaluate the BBB integrity after the injection of 0.1% EB or 0.9% saline solution into the cisterna pontis of Wistar rats submitted or not to the streptozotocin diabetogenic model. Brainstem sections were collected from 24 hours to 31 days post-injection for ultrastructural analysis and glial fibrillary acidic protein immunohistochemical staining. Some animals received colloidal carbon ink by intravenous route at the same periods. In rats injected with EB, results revealed astrocyte disappearance and leakage of carbon particles beginning at 48 hours and persisting for 7 days in non-diabetic rats and for 15 days in the diabetic ones, although, in both groups, several areas remained devoid of astrocytic processes up to 31 days. In rats injected with saline, there was no sign of astrocytic loss or carbon particles leakage.

  18. A study of brainstem evoked response audiometry in high-risk infants and children under 10 years of age

    Directory of Open Access Journals (Sweden)

    Ramanathan Thirunavukarasu

    2015-01-01

    Full Text Available Aims: To evaluate the hearing threshold and find the incidence of hearing loss in infants and children belonging to high-risk category and analyze the common risk factors. Subjects and Methods: Totally, 125 infants and children belonging to high-risk category were subjected to brainstem evoked response audiometry. Clicks were given at the rate of 11.1 clicks/s. Totally, 2000 responses were averaged. The intensity at which wave V just disappears was established as hearing the threshold. Degree of impairment and risk factors were analyzed. Results: Totally, 44 (35.2% were found to have sensorineural hearing loss. Totally, 30 children with hearing loss (68% belonged to age group 1-5 years. Consanguineous marriage was the most commonly associated risk factor. Majority (34 had profound hearing loss. Conclusion: Newborn screening is mandatory to identify hearing loss in the prelinguistic period to reduce the burden of handicap in the community. The need of the hour is health education and genetic counseling to decrease the hereditary hearing loss, as hearing impairment due to perinatal factors has reduced due to recent medical advancements.

  19. INFLUENCE OF ACUPUNCTURE (“JIN‘S SAN ZHEN”) ON BRAINSTEM EVOKED POTENTIALS IN MENTAL RETARDATION CHILDREN

    Institute of Scientific and Technical Information of China (English)

    袁青; 马瑞玲; 等

    2002-01-01

    Objective:To investigate the effect of acupuncture(“JIN's San Zhen”)on infantile mental retardation (MR).Methods:44 cases of MR children were attributed to treatment group and 3 normal children to control group.P3(event-related potential) and brainstem evoked potentials were used as the indexes.Acupoints “Si-shen Zhen”,“Head Zhi San Zhen”,“Hand Zhi San Zhen”,“Foot Zhi San Zhen” were unctured with filiform needles,and stimulated by manipulating the needle once every 5minutes with uniform reinforcing-reducing method.The treatment was conducted once daily,6 times every week,with 4 months being a therapeutic course.Results:In comparison with normal children,the latency of P3 was longer and its amplitude lower in MR children.After 4 months' acupuncture treatment,the latency was shortened and the smplitude increased significantly in comparison with pre-treatment (P<0.01,0.05).Results of the total intelligence quotient(TIQ) evaluation showed a 70.3% coincidence rate compared with improvement of P3.Conclusion:Changes of P3 and BAEP(brain auditory evoked potential) after acupuncture treatment may be related to the effect of “JIN's San Zhen” in bettering clinical symptoms and signs of MR infantile patients.

  20. Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.

    Science.gov (United States)

    Sakai, K; Neuzeret, P-C

    2011-12-01

    In this mini review, we summarize our findings regarding the brainstem neurons responsible for the postural, masseter, or pharyngeal muscle atonia observed during paradoxical sleep (PS) in freely moving cats. Both the pons and medulla contain neurons showing tonic activation selective to PS and atonia, referred to as PS/atonia-on-neurons. The PS/atonia-on neurons, characterized by their most slow conducting property and located in the peri-locus coeruleus alpha (peri-LCa) and adjacent LCa of the mediodorsal pontine tegmentum, play a critical executive role in the somatic and orofacial muscle atonia observed during PS. Slow conducting medullary PS/atonia-on neurons located in the nuclei reticularis magnocellularis (Mc) and parvocellularis (Pc) may play a critical executive role in the generation of, respectively, antigravity or orofacial muscle atonia during PS. In addition, either tonic or phasic cessation of activity of medullary serotonergic neurons may play an important role in the atonia of genioglossus muscles during PS via a mechanism of disfacilitation. PMID:22205587