WorldWideScience

Sample records for brainstem circuitry regulating

  1. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    Full Text Available BACKGROUND: Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. METHODOLOGY/PRINCIPAL FINDINGS: To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. CONCLUSIONS/SIGNIFICANCE: These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2

  2. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Directory of Open Access Journals (Sweden)

    Maria Di Bonito

    Full Text Available Rhombomeres (r contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN, and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  3. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Science.gov (United States)

    Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M; Studer, Michèle

    2013-01-01

    Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  4. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.

    Science.gov (United States)

    Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A

    2016-07-01

    Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc.

  5. Optical analysis of circuitry for respiratory rhythm in isolated brainstem of foetal mice

    OpenAIRE

    Muller, Kenneth J.; Tsechpenakis, Gavriil; Homma, Ryota; Nicholls, John G.; Lawrence B Cohen; Eugenin, Jaime

    2009-01-01

    Respiratory rhythms arise from neurons situated in the ventral medulla. We are investigating their spatial and functional relationships optically by measuring changes in intracellular calcium using the fluorescent, calcium-sensitive dye Oregon Green 488 BAPTA-1 AM while simultaneously recording the regular firing of motoneurons in the phrenic nerve in isolated brainstem/spinal cord preparations of E17 to E19 mice. Responses of identified cells are associated breath by breath with inspiratory ...

  6. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    Science.gov (United States)

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  7. Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal Siberian hamster (Phodopus sungorus).

    Science.gov (United States)

    Helwig, Michael; Archer, Zoë A; Heldmaier, Gerhard; Tups, Alexander; Mercer, Julian G; Klingenspor, Martin

    2009-07-01

    Central regulation of energy balance in seasonal mammals such as the Siberian hamster is dependent on the precise integration of short-term satiety information arising from the gastrointestinal tract with long-term signals on the status of available energy reserves (e.g. leptin) and prevailing photoperiod. Within the central nervous system, the brainstem nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN) are major relay nuclei that transmit information from the gastrointestinal tract to higher forebrain centres. We extended studies on the seasonal programming of the hypothalamus to examine the effect of the photoperiod on neuropeptidergic circuitries of this gut-brain axis. In the NTS and PBN we performed gene expression and immunoreactivity (-ir) studies on selected satiety-related neuropeptides and receptors: alpha-melanocyte stimulating hormone, melanocortin-3 receptor, melanocortin-4 receptor (MC4-R), growth hormone secretagogue-receptor, cocaine- and amphetamine-regulated transcript, preproglucagon (PPG), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY, galanin, neurotensin, and corticotrophin releasing hormone (CRH). Gene expression of PPG and MC4-R, and -ir of CCK and GLP-1, in the NTS were up-regulated after 14 weeks in long-day photoperiod (16 h light:8 h dark) compared to short-days (8 h light:16 h dark), whereas CRH-ir and NT-ir were increased in short-days within the PBN. We suggest that brainstem neuroendocrine mechanisms contribute to the long-term regulation of body mass in the Siberian hamster by a photoperiod-related modulation of satiety signalling.

  8. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  9. Gonadal hormone regulation of the emotion circuitry in humans

    NARCIS (Netherlands)

    Wingen, G.A. van; Ossewaarde, L.; Backstrom, T.; Hermans, E.J.; Fernandez, G.S.E.

    2011-01-01

    Gonadal hormones are known to influence the regulation of emotional responses and affective states. Whereas fluctuations in progesterone and estradiol are associated with increased vulnerability for mood disorders, testosterone is mainly associated with social dominance, aggressive, and antisocial b

  10. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Elisa M. Nabel

    2013-11-01

    Full Text Available Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development –the preeminent model of experience-dependent critical period plasticity- actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins– endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  11. Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions.

    Science.gov (United States)

    Nabel, Elisa M; Morishita, Hirofumi

    2013-01-01

    Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development - the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins - endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  12. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses.

    Science.gov (United States)

    Myers, Brent; Scheimann, Jessie R; Franco-Villanueva, Ana; Herman, James P

    2017-03-01

    In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.

  13. Sensitive Periods of Emotion Regulation: Influences of Parental Care on Frontoamygdala Circuitry and Plasticity

    Science.gov (United States)

    Gee, Dylan G.

    2016-01-01

    Early caregiving experiences play a central role in shaping emotional development, stress physiology, and refinement of limbic circuitry. Converging evidence across species delineates a sensitive period of heightened neuroplasticity when frontoamygdala circuitry is especially amenable to caregiver inputs early in life. During this period, parental…

  14. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise.

    Directory of Open Access Journals (Sweden)

    Antoine Lutz

    Full Text Available Recent brain imaging studies using functional magnetic resonance imaging (fMRI have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices during meditation (versus rest. During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ, and right posterior superior temporal sulcus (pSTS in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in

  15. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    Directory of Open Access Journals (Sweden)

    Badr M. Ibrahim

    2014-03-01

    Full Text Available Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM as the primary brainstem nucleus implicated in CB1R-evoked pressor response.

  16. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction.

    Science.gov (United States)

    Delgado, Mauricio R; Nearing, Katherine I; Ledoux, Joseph E; Phelps, Elizabeth A

    2008-09-11

    Recent efforts to translate basic research to the treatment of clinical disorders have led to a growing interest in exploring mechanisms for diminishing fear. This research has emphasized two approaches: extinction of conditioned fear, examined across species; and cognitive emotion regulation, unique to humans. Here, we sought to examine the similarities and differences in the neural mechanisms underlying these two paradigms for diminishing fear. Using an emotion regulation strategy, we examine the neural mechanisms of regulating conditioned fear using fMRI and compare the resulting activation pattern with that observed during classic extinction. Our results suggest that the lateral PFC regions engaged by cognitive emotion regulation strategies may influence the amygdala, diminishing fear through similar vmPFC connections that are thought to inhibit the amygdala during extinction. These findings further suggest that humans may have developed complex cognition that can aid in regulating emotional responses while utilizing phylogenetically shared mechanisms of extinction.

  17. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation.

    Science.gov (United States)

    Maier, Ezekiel J; Haynes, Brian C; Gish, Stacey R; Wang, Zhuo A; Skowyra, Michael L; Marulli, Alyssa L; Doering, Tamara L; Brent, Michael R

    2015-05-01

    Key steps in understanding a biological process include identifying genes that are involved and determining how they are regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it to map regulation of the key virulence factor of a deadly fungus-its capsule. The map, built from expression profiles of 41 TF mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a hierarchy comprising executive, midlevel, and "foreman" TFs. When grouped by temporal expression pattern, these TFs explain much of the transcriptional dynamics of capsule induction. Phenotypic analysis of TF deletion mutants revealed complex relationships among virulence factors and virulence in mice. These resources and analyses provide the first integrated, systems-level view of capsule regulation and biosynthesis. Our methods dramatically improve the efficiency with which transcriptional networks can be analyzed, making genomic approaches accessible to laboratories focused on specific physiological processes.

  18. Neural circuitry of emotion regulation: Effects of appraisal, attention, and cortisol administration.

    Science.gov (United States)

    Ma, Sean T; Abelson, James L; Okada, Go; Taylor, Stephan F; Liberzon, Israel

    2016-12-28

    Psychosocial well-being requires effective regulation of emotional responding in context of threat or stress. Neuroimaging studies have focused on instructed, volitional regulation (e.g., reappraisal or distancing), largely ignoring implicit regulation that does not involve purposeful effort to alter emotional experience. These implicit processes may or may not involve the same neural pathways as explicit regulatory strategies. We examined the neurobiology of implicit emotional regulation processes and the impact of the stress hormone cortisol on these processes. Our study task employed composite pictures of faces and places to examine neural activity during implicit emotional processing (of emotional faces), while these responses were implicitly regulated by attention shift away from the emotionally evocative stimuli, and while subjects reflectively appraised their own emotional response to them. Subjects completed the task in an fMRI scanner after random assignment to receive placebo or hydrocortisone (HCT), an orally administered version of cortisol. Implicit emotional processing activated insula/IFG, dACC/dMPFC, midbrain and amygdala. With attention shifting, we saw diminished signal in emotion generating/response regions (e.g., amygdala) and increased activations in task specific attention regions like parahippocampus. With appraisal of emotions, we observed robust activations in medial prefrontal areas, where activation is also seen in instructed reappraisal studies. We observed no main effects of HCT administration on brain, but males and females showed opposing neural effects in prefrontal areas. The data suggest that different types of emotion regulation utilize overlapping circuits, but with some strategy specific activation. Further study of the dimorphic sex response to cortisol is needed.

  19. A Neurobiological Model for the Effects of Early Brainstem Functioning on the Development of Behavior and Emotion Regulation in Infants: Implications for Prenatal and Perinatal Risk

    Science.gov (United States)

    Geva, Ronny; Feldman, Ruth

    2008-01-01

    Neurobiological models propose an evolutionary, vertical-integrative perspective on emotion and behavior regulation, which postulates that regulatory functions are processed along three core brain systems: the brainstem, limbic, and cortical systems. To date, few developmental studies applied these models to research on prenatal and perinatal…

  20. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.

    Science.gov (United States)

    Trautmann, Samantha M; Sharkey, Keith A

    2015-01-01

    Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.

  1. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry.

    Science.gov (United States)

    La Fata, Giorgio; Gärtner, Annette; Domínguez-Iturza, Nuria; Dresselaers, Tom; Dawitz, Julia; Poorthuis, Rogier B; Averna, Michele; Himmelreich, Uwe; Meredith, Rhiannon M; Achsel, Tilmann; Dotti, Carlos G; Bagni, Claudia

    2014-12-01

    Deficiencies in fragile X mental retardation protein (FMRP) are the most common cause of inherited intellectual disability, fragile X syndrome (FXS), with symptoms manifesting during infancy and early childhood. Using a mouse model for FXS, we found that Fmrp regulates the positioning of neurons in the cortical plate during embryonic development, affecting their multipolar-to-bipolar transition (MBT). We identified N-cadherin, which is crucial for MBT, as an Fmrp-regulated target in embryonic brain. Furthermore, spontaneous network activity and high-resolution brain imaging revealed defects in the establishment of neuronal networks at very early developmental stages, further confirmed by an unbalanced excitatory and inhibitory network. Finally, reintroduction of Fmrp or N-cadherin in the embryo normalized early postnatal neuron activity. Our findings highlight the critical role of Fmrp in the developing cerebral cortex and might explain some of the clinical features observed in patients with FXS, such as alterations in synaptic communication and neuronal network connectivity.

  2. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain.

    Science.gov (United States)

    Salomons, Tim V; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J

    2015-02-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.

  3. Brainstem disconnection

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, Curtis; Wootton-Gorges, Sandra L. [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Radiology, Sacramento, CA (United States); Jocson, Jennifer [University of California Davis, Medical Center and UC Davis Children' s Hospital, Department of Pediatrics, Sacramento, CA (United States)

    2009-12-15

    Brainstem disconnection is a very rare neonatal abnormality, with only seven cases reported. We report a unique case of a neonate who presented at delivery with hypertonia, dysmorphic facial features, and respiratory distress, as well as numerous musculoskeletal and genitourinary abnormalities. MRI of the brain showed disconnection between the pons and medulla with cerebellar hypoplasia and absent cerebellar peduncles. It aided in the description of the neurological and vascular anomalies associated with this diagnosis. (orig.)

  4. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.

    Science.gov (United States)

    Hassfurth, Benjamin; Magnusson, Anna K; Grothe, Benedikt; Koch, Ursula

    2009-10-01

    Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are highly expressed in the superior olivary complex, the primary locus for binaural information processing. This hyperpolarization-activated current (I(h)) regulates the excitability of neurons and enhances the temporally precise analysis of the binaural acoustic cues. By using the whole-cell patch-clamp technique, we examined the properties of I(h) current in neurons of the lateral superior olive (LSO) and the medial nucleus of the trapezoid body (MNTB) before and after hearing onset. Moreover, we tested the hypothesis that I(h) currents are actively regulated by sensory input activity by performing bilateral and unilateral cochlear ablations before hearing onset, resulting in a chronic auditory deprivation. The results show that after hearing onset, I(h) currents are rapidly upregulated in LSO neurons, but change only marginally in neurons of the MNTB. We also found a striking difference in maximal current density, voltage dependence and activation time constant between the LSO and the MNTB in mature-like animals. Following bilateral cochlear ablations before hearing onset, the I(h) currents were scaled up in the LSO and scaled down in the MNTB. Consequently, in the LSO this resulted in a depolarized resting membrane potential and a lower input resistance of these neurons. This type of activity-dependent homeostatic change could thus result in an augmented response to the remaining inputs.

  5. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Matsuo

    innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.

  6. Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke

    2015-01-01

    and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.

  7. Transsynaptic tracing of CNS neural circuitry involved in the innervation of bladder function in the adult rat brainstem and spinal cord%大鼠脊髓及脑干内膀胱支配中枢的跨突触示踪研究

    Institute of Scientific and Technical Information of China (English)

    盛珺; 肖燎原; 张月雷; 林浩东; 侯春林

    2013-01-01

    Objective To identify the CNS neural circuitry involved in the innervation of bladder function in the adult rat brainstem and spinal cord using pseudorabies virus,a transsynaptic tracer,so as to lay down the basis for further studying of brain functional reorganization after bladder function reconstruction.Methods GFP-PRV 4.5ul (1 × 108 PFU/ml)was injected into the bladder wall of 15 adult female SD rats at 3 different sites.The distribution of virus-infected neurons in the brainstem,spinal cord and dorsal root ganglion were observed under fluorescent microscope at various intervals (72h,84h,96h,108h,120h) following the PRV injection.Results Fluorescence positive neurons were mainly present in L6~S1,L1~L2 dorsal root ganglion;sacral parasympathetic nucleus,intermediolateral cell column and dorsal commissural in L6~S1 and L1~L2 spinal cord segments; Barrington's nucleus,nucleus raphe magnus,the gigantocelluar reticular nucleus,the parapyramidal reticular formation,noradrenergic cell groups A5 and A7,locus coeruleus,periaqueductal gray and the ventral region of red nucleus in brainstem.Conclusion The structures labeled in spinal cord and brainstern are synaptically connected with the bladder and presumably involved in the neural control of the bladder.%目的 跨突触示踪正常大鼠脊髓和脑干内膀胱支配相关中枢,为进一步阐明膀胱功能重建术后中枢重塑奠定研究基础. 方法 成年雌性SD大鼠l5只,膀胱壁内分三个点共注射GFP-PRV 4.5μl(1×108 PFU/ml).注射后不同时间(72、84、96、108、120h)分别取大脑、脊髓及背根神经节,荧光显微镜下观察标记结果. 结果 病毒注射后72~120 h,阳性神经元主要分布于L6~S1、L1~L2脊神经背根神经节;L6~S1、L1~L2脊髓节段骶副交感核、中间外侧核及后连合核;脑干的巴氏核、中缝巨细胞核、巨细胞网状核、锥旁网状结构、去甲肾上腺素能细胞群A5及A7、蓝斑、中脑导水管周

  8. Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion.

    Science.gov (United States)

    Ao, Yan; Go, Vay Liang W; Toy, Natalie; Li, Tei; Wang, Yu; Song, Moon K; Reeve, Joseph R; Liu, Yanyun; Yang, Hong

    2006-12-01

    The brainstem is essential for mediating energetic response to starvation. Brain stem TRH is synthesized in caudal raphe nuclei innervating brainstem and spinal vagal and sympathetic motor neurons. Intracisternal injection (ic) of a stable TRH analog RX77368 (7.5-25 ng) dose-dependently stimulated solid food intake by 2.4- to 3-fold in freely fed rats, an effect that lasted for 3 h. By contrast, RX77368 at 25 ng injected into the lateral ventricle induced a delayed and insignificant orexigenic effect only in the first hour. In pentobarbital-anesthetized rats, RX77368 (50 ng) ic induced a significant bipeak increase in serum total ghrelin levels from the basal of 8.7+/-1.7 ng/ml to 13.4+/-2.4 ng/ml at 30 min and 14.5+/-2.0 ng/ml at 90 min, which was prevented by either bilateral vagotomy (-60 min) or atropine pretreatment (2 mg/kg, -30 min) but magnified by bilateral adrenalectomy (-60 min). TRH analog ic-induced food intake in freely fed rats was abolished by either peripheral atropine or ghrelin receptor antagonist (D-Lys-3)-GHRP-6 (10 micromol/kg) or ic Y1 receptor antagonist 122PU91 (10 nmol/5 microl). Brain stem TRH mRNA and TRH receptor 1 mRNA increased by 57-58 and 33-35% in 24- and 48-h fasted rats and returned to the fed levels after a 3-h refeeding. Natural food intake in overnight fasted rats was significantly reduced by ic TRH antibody, ic Y1 antagonist, and peripheral atropine. These data establish a physiological role of brainstem TRH in vagal-ghrelin-mediated stimulation of food intake, which involves interaction with brainstem Y1 receptors.

  9. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  10. Pain inhibits pain; human brainstem mechanisms.

    Science.gov (United States)

    Youssef, A M; Macefield, V G; Henderson, L A

    2016-01-01

    Conditioned pain modulation is a powerful analgesic mechanism, occurring when a painful stimulus is inhibited by a second painful stimulus delivered at a different body location. Reduced conditioned pain modulation capacity is associated with the development of some chronic pain conditions and the effectiveness of some analgesic medications. Human lesion studies show that the circuitry responsible for conditioned pain modulation lies within the caudal brainstem, although the precise nuclei in humans remain unknown. We employed brain imaging to determine brainstem sites responsible for conditioned pain modulation in 54 healthy individuals. In all subjects, 8 noxious heat stimuli (test stimuli) were applied to the right side of the mouth and brain activity measured using functional magnetic resonance imaging. This paradigm was then repeated. However, following the fourth noxious stimulus, a separate noxious stimulus, consisting of an intramuscular injection of hypertonic saline into the leg, was delivered (conditioning stimulus). During this test and conditioning stimulus period, 23 subjects displayed conditioned pain modulation analgesia whereas 31 subjects did not. An individual's analgesic ability was not influenced by gender, pain intensity levels of the test or conditioning stimuli or by psychological variables such as pain catastrophizing or fear of pain. Brain images were processed using SPM8 and the brainstem isolated using the SUIT toolbox. Significant increases in signal intensity were determined during each test stimulus and compared between subjects that did and did not display CPM analgesia (ppain modulation circuitry provides a framework for the future investigations into the neural mechanisms responsible for the maintenance of persistent pain conditions thought to involve altered analgesic circuitry.

  11. Electronic test circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.A.

    1992-12-31

    Circuitry for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

  12. NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans

    Science.gov (United States)

    Campbell, Jason C.; Polan-Couillard, Lauren F.; Chin-Sang, Ian D.; Bendena, William G.

    2016-01-01

    C. elegans inhabit environments that require detection of diverse stimuli to modulate locomotion in order to avoid unfavourable conditions. In a mammalian context, a failure to appropriately integrate environmental signals can lead to Parkinson’s, Alzheimer’s, and epilepsy. Provided that the circuitry underlying mammalian sensory integration can be prohibitively complex, we analyzed nematode behavioral responses in differing environmental contexts to evaluate the regulation of context dependent circuit reconfiguration and sensorimotor control. Our work has added to the complexity of a known parallel circuit, mediated by interneurons AVA and AIB, that integrates sensory cues and is responsible for the initiation of backwards locomotion. Our analysis of the galanin-like G-protein coupled receptor NPR-9 in C. elegans revealed that upregulation of galanin signaling impedes the integration of sensory evoked neuronal signals. Although the expression pattern of npr-9 is limited to AIB, upregulation of the receptor appears to impede AIB and AVA circuits to broadly prevent backwards locomotion, i.e. reversals, suggesting that these two pathways functionally interact. Galanin signaling similarly plays a broadly inhibitory role in mammalian models. Moreover, our identification of a mutant, which rarely initiates backwards movement, allowed us to interrogate locomotory mechanisms underlying chemotaxis. In support of the pirouette model of chemotaxis, organisms that did not exhibit reversal behavior were unable to navigate towards an attractant peak. We also assessed ionotropic glutamate receptor GLR-1 cell-specifically within AIB and determined that GLR-1 fine-tunes AIB activity to modify locomotion following reversal events. Our research highlights that signal integration underlying the initiation and fine-tuning of backwards locomotion is AIB and NPR-9 dependent, and has demonstrated the suitability of C. elegans for analysis of multisensory integration and sensorimotor

  13. NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jason C Campbell

    2016-05-01

    Full Text Available C. elegans inhabit environments that require detection of diverse stimuli to modulate locomotion in order to avoid unfavourable conditions. In a mammalian context, a failure to appropriately integrate environmental signals can lead to Parkinson's, Alzheimer's, and epilepsy. Provided that the circuitry underlying mammalian sensory integration can be prohibitively complex, we analyzed nematode behavioral responses in differing environmental contexts to evaluate the regulation of context dependent circuit reconfiguration and sensorimotor control. Our work has added to the complexity of a known parallel circuit, mediated by interneurons AVA and AIB, that integrates sensory cues and is responsible for the initiation of backwards locomotion. Our analysis of the galanin-like G-protein coupled receptor NPR-9 in C. elegans revealed that upregulation of galanin signaling impedes the integration of sensory evoked neuronal signals. Although the expression pattern of npr-9 is limited to AIB, upregulation of the receptor appears to impede AIB and AVA circuits to broadly prevent backwards locomotion, i.e. reversals, suggesting that these two pathways functionally interact. Galanin signaling similarly plays a broadly inhibitory role in mammalian models. Moreover, our identification of a mutant, which rarely initiates backwards movement, allowed us to interrogate locomotory mechanisms underlying chemotaxis. In support of the pirouette model of chemotaxis, organisms that did not exhibit reversal behavior were unable to navigate towards an attractant peak. We also assessed ionotropic glutamate receptor GLR-1 cell-specifically within AIB and determined that GLR-1 fine-tunes AIB activity to modify locomotion following reversal events. Our research highlights that signal integration underlying the initiation and fine-tuning of backwards locomotion is AIB and NPR-9 dependent, and has demonstrated the suitability of C. elegans for analysis of multisensory integration

  14. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    Science.gov (United States)

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep.

  15. Role of serotonin transporter inhibition in the regulation of tryptophan hydroxylase in brainstem raphe nuclei: time course and regional specificity.

    Science.gov (United States)

    MacGillivray, L; Lagrou, L M; Reynolds, K B; Rosebush, P I; Mazurek, M F

    2010-12-01

    Drugs that selectively inhibit the serotonin transporter (SERT) are widely prescribed for treatment of depression and a range of anxiety disorders. We studied the time course of changes in tryptophan hydroxylase (TPH) in four raphe nuclei after initiation of two different SERT inhibitors, citalopram and fluoxetine. In the first experiment, groups of Sprague-Dawley rats received daily meals of rice pudding either alone (n=9) or mixed with citalopram 5 mg/kg/day (n=27). Rats were sacrificed after 24 h, 7 days or 28 days of treatment. Sections of dorsal raphe nucleus (DRN), median raphe nucleus (MRN), raphe magnus nucleus (RMN) and caudal linear nucleus (CLN) were processed for TPH immunohistochemistry. Citalopram induced a significant reduction in DRN TPH-positive cell counts at 24 h (41%), 7 days (38%) and 28 days (52%). Similar reductions in TPH-positive cell counts were also observed at each timepoint in the MRN and in the RMN. In the MRN, citalopram resulted in significant reductions at 24 h (26%), 7 days (16%) and 28 days (23%). In the RMN, citalopram induced significant reductions of TPH-positive cell counts at 24 h (45%), 7 days (34%) and 28 days (43%). By contrast, no significant differences between control and treatment groups were observed in the CLN at any of the time points that we studied. To investigate whether these changes would occur with other SERT inhibitors, we conducted a second experiment, this time with a 28-day course of fluoxetine. As was observed with citalopram, fluoxetine induced significant reductions of TPH cell counts in the DRN (39%), MRN (38%) and RMN (41%), with no significant differences in the CLN. These results indicate that SERT inhibition can alter the regulation of TPH, the rate limiting enzyme for serotonin biosynthesis. This persistent and regionally specific downregulation of serotonin biosynthesis may account for some of the clinical withdrawal symptoms associated with drugs that inhibit SERT.

  16. A brainstem anosognosia of hemiparesis

    Directory of Open Access Journals (Sweden)

    Kazuo Abe

    2009-10-01

    Full Text Available A woman had anosognosia for hemiplegia as a manifestation of brainstem infarction. She had no mental or neuropsychological disturbances, and had involvement of the brainstem in the frontal/parietal-subcortical circuits to the right cerebral hemisphere. Brainstem lesions that disrupt frontal/parietal-subcortical areas may affect anosognosia for hemiplegia.

  17. Pediatric brainstem oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Sandeep Mohindra

    2012-01-01

    Full Text Available The authors present the first report of pediatric brainstem oligodendroglioma, infiltrating midbrain, and medulla oblongata. The report details clinical features, radiological findings, and surgical steps. As this entity is exceedingly uncommon, the overall epidemiology, prognosis, and long-term outcome remain far from established.

  18. Craniofacial Pain: Brainstem Mechanisms

    Directory of Open Access Journals (Sweden)

    Barry J Sessle

    1996-01-01

    Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of

  19. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension.

    Directory of Open Access Journals (Sweden)

    Nadia A Congo Carbajosa

    Full Text Available Aberrations in the ubiquitin-proteasome system (UPS are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86 ± 15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2 ± 8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92 ± 22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7 ± 0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasome activity. Proteasome activity was significantly reduced by 67 ± 4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.

  20. Extracorporeal membrane oxygenation circuitry.

    Science.gov (United States)

    Lequier, Laurance; Horton, Stephen B; McMullan, D Michael; Bartlett, Robert H

    2013-06-01

    The extracorporeal membrane oxygenation circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard extracorporeal membrane oxygenation circuit consists of a mechanical blood pump, gas-exchange device, and a heat exchanger all connected together with circuit tubing. Extracorporeal membrane oxygenation circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites, and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short- and long-term extracorporeal membrane oxygenation applications. Contemporary extracorporeal membrane oxygenation circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time while minimizing the procedure-related complications of bleeding, thrombosis, and other physiologic derangements, which were so common with the early application of extracorporeal membrane oxygenation. Modern era extracorporeal membrane oxygenation circuitry and components are simpler, safer, more compact, and can be used across a wide variety of patient sizes from neonates to adults.

  1. Brainstem Tuberculoma in Pregnancy

    Directory of Open Access Journals (Sweden)

    Dana A. Muin

    2015-01-01

    Full Text Available We report a case of a Somali refugee who presented in the second trimester of her first pregnancy with a four-week history of gradual right-sided sensomotoric hemisyndrome including facial palsy and left-sided paresis of the oculomotorius nerve causing drooping of the left eyelid and double vision. Cranial magnetic resonance imaging revealed a solitary brainstem lesion. Upon detection of hilar lymphadenopathy on chest X-ray (CXR, the diagnosis of disseminated tuberculosis with involvement of the central nervous system was confirmed by PCR and treatment induced with rifampicin, isoniazid, pyrazinamide, and ethambutol. The patient had a steady neurological improvement and a favorable pregnancy outcome.

  2. Congenital brainstem disconnection associated with a syrinx of the brainstem

    NARCIS (Netherlands)

    Barth, P. G.; de Vries, L. S.; Nikkels, P. G. J.; Troost, D.

    2008-01-01

    We report a case of congenital brainstem disconnection including the second detailed autopsy. A full-term newborn presented with irreversible apnoea and died on the fifth day. MRI revealed disconnection of the brainstem. The autopsy included a series of transverse sections of the mesencephalon, medu

  3. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces.

    Science.gov (United States)

    Marzluff, John M; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J

    2012-09-25

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal's brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior.

  4. Optogenetic mapping of brain circuitry

    Science.gov (United States)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  5. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available BACKGROUND: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  6. Lyme disease of the brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Peter [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Decker, Andrew [Northern Westchester Hospital Center, Department of Neurology, Mt. Kisco, NY (United States); Kornel, Ezriel [Northern Westchester Hospital Center, Division of Neurosurgery, Mt. Kisco, NY (United States); Halperin, John J. [North Shore University Hospital, Department of Neurology, Manhasset, NY (United States)

    2005-12-01

    Lyme disease is a multisystem infectious disease caused by the tick-borne spirochete, Borrelia burgdorferi. Central nervous system (CNS) involvement typically causes local inflammation, most commonly meningitis, but rarely parenchymal brain involvement. We describe a patient who presented with clinical findings suggesting a brainstem process. Magnetic resonance imaging (MRI) and positron emission tomography (PET) suggested a brainstem neoplasm. Prior to biopsy, laboratory evaluation led to the diagnosis of Lyme disease. Clinical and imaging abnormalities improved markedly following antimicrobial therapy. We describe Lyme disease involvement of the cerebellar peduncles with hypermetabolism on PET. Although MRI is the primary imaging modality for most suspected CNS pathology, the practical applications of PET continue to expand. (orig.)

  7. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    Science.gov (United States)

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-03-18

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  8. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  9. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians.

    Science.gov (United States)

    Musacchia, Gabriella; Strait, Dana; Kraus, Nina

    2008-07-01

    Musicians have a variety of perceptual and cortical specializations compared to non-musicians. Recent studies have shown that potentials evoked from primarily brainstem structures are enhanced in musicians, compared to non-musicians. Specifically, musicians have more robust representations of pitch periodicity and faster neural timing to sound onset when listening to sounds or both listening to and viewing a speaker. However, it is not known whether musician-related enhancements at the subcortical level are correlated with specializations in the cortex. Does musical training shape the auditory system in a coordinated manner or in disparate ways at cortical and subcortical levels? To answer this question, we recorded simultaneous brainstem and cortical evoked responses in musician and non-musician subjects. Brainstem response periodicity was related to early cortical response timing across all subjects, and this relationship was stronger in musicians. Peaks of the brainstem response evoked by sound onset and timbre cues were also related to cortical timing. Neurophysiological measures at both levels correlated with musical skill scores across all subjects. In addition, brainstem and cortical measures correlated with the age musicians began their training and the years of musical practice. Taken together, these data imply that neural representations of pitch, timing and timbre cues and cortical response timing are shaped in a coordinated manner, and indicate corticofugal modulation of subcortical afferent circuitry.

  10. Bayesian segmentation of brainstem structures in MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka

    2015-01-01

    In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we...... the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy...

  11. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    OpenAIRE

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J.; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M.; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p

  12. Brainstem involvement in subacute sclerosing panencephalitis

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    2011-01-01

    Full Text Available The parieto-occipital region of the brain is most frequently and severely affected in subacute sclerosing panencephalitis (SSPE. The basal ganglia, cerebellum and corpus callosum are less commonly involved. Brainstem involvement is rarely described in SSPE, and usually there is involvement of other regions of the brain. We describe a patient with subacute sclerosing panencephalitis with brain magnetic resonance imaging showing extensive brainstem involvement without significant involvement of other cortical structures. Though rarely described in SSPE, one should be aware of such brainstem and cerebellum involvement, and SSPE should be kept in mind when brainstem signal changes are seen in brain MRI with or without involvement of other regions of brain to avoid erroneous reporting.

  13. Signal conditioning circuitry design for instrumentation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  14. Resolving the Brainstem Contributions to Attentional Analgesia

    Science.gov (United States)

    Brooks, Jonathan C.W.; Davies, Wendy-Elizabeth

    2017-01-01

    Previous human imaging studies manipulating attention or expectancy have identified the periaqueductal gray (PAG) as a key brainstem structure implicated in endogenous analgesia. However, animal studies indicate that PAG analgesia is mediated largely via caudal brainstem structures, such as the rostral ventromedial medulla (RVM) and locus coeruleus (LC). To identify their involvement in endogenous analgesia, we used brainstem optimized, whole-brain imaging to record responses to concurrent thermal stimulation (left forearm) and visual attention tasks of titrated difficulty in 20 healthy subjects. The PAG, LC, and RVM were anatomically discriminated using a probabilistic atlas. Pain ratings disclosed the anticipated analgesic interaction between task difficulty and pain intensity (p pain intensity. Intersubject analgesia scores correlated to activity within a distinct region of the RVM alone. These results identify distinct roles for a brainstem triumvirate in attentional analgesia: with the PAG activated by attentional load; specific RVM regions showing pronociceptive and antinociceptive processes (in line with previous animal studies); and the LC showing lateralized activity during conflicting attentional demands. SIGNIFICANCE STATEMENT Attention modulates pain intensity, and human studies have identified roles for a network of forebrain structures plus the periaqueductal gray (PAG). Animal data indicate that the PAG acts via caudal brainstem structures to control nociception. We investigated this issue within an attentional analgesia paradigm with brainstem-optimized fMRI and analysis using a probabilistic brainstem atlas. We find pain intensity encoding in several forebrain structures, including the insula and attentional activation of the PAG. Discrete regions of the rostral ventromedial medulla bidirectionally influence pain perception, and locus coeruleus activity mirrors the interaction between attention and nociception. This approach has enabled the

  15. Brainstem auditory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available The tecnique that we use for eliciting brainstem auditory evoked responses (BAERs is described. BAERs are a non-invasive and reliable clinical test when carefully performed. This test is indicated in the evaluation of disorders which may potentially involve the brainstem such as coma, multiple sclerosis posterior fossa tumors and others. Unsuspected lesions with normal radiologic studies (including CT-scan can be revealed by the BAER.

  16. GLIA DETERMINE THE COURSE OF BDNF-MEDIATED DENDRITOGENESIS AND PROVIDE A SOLUBLE INHIBITORY CUE TO DENDRITIC GROWTH IN THE BRAINSTEM

    OpenAIRE

    Martin, Jessica L.; Brown, Alexandra L; Balkowiec, Agnieszka

    2012-01-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neur...

  17. Interface Electronic Circuitry for an Electronic Tongue

    Science.gov (United States)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  18. IMAGING WHITE MATTER IN HUMAN BRAINSTEM

    Directory of Open Access Journals (Sweden)

    Anastasia A Ford

    2013-07-01

    Full Text Available The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted MRI may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging (HARDI of an intact excised human brainstem performed at 11.1T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST, superior (SCP and middle cerebellar peduncle (MCP, and medial lemniscus (ML pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

  19. Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain

    Science.gov (United States)

    Lee, Michelle; Manders, Toby R.; Eberle, Sarah E.; Su, Chen; D'amour, James; Yang, Runtao; Lin, Hau Yueh; Deisseroth, Karl; Froemke, Robert C.

    2015-01-01

    Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation. PMID:25834050

  20. Optogenetic dissection of medial prefrontal cortex circuitry.

    Science.gov (United States)

    Riga, Danai; Matos, Mariana R; Glas, Annet; Smit, August B; Spijker, Sabine; Van den Oever, Michel C

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  1. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  2. Brainstem Encephalitis and ADEM Following Mumps

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-03-01

    Full Text Available Clinical manifestations of brainstem encephalitis (BSE with fever, decreased level of consciousness, and left facial and abducens paralysis developed 1 week after bilateral parotitis and mumps in a 4 year-old female child and were followed by symptoms of acute disseminated encephalomyelitis (ADEM within 20 days of recovery from BSE.

  3. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  4. The development of micromachined gyroscope structure and circuitry technology.

    Science.gov (United States)

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-14

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  5. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Directory of Open Access Journals (Sweden)

    Dunzhu Xia

    2014-01-01

    Full Text Available This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs, piezoelectric vibrating gyroscopes (PVGs, surface acoustic wave (SAW gyroscopes, bulk acoustic wave (BAW gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs, magnetically suspended gyroscopes (MSGs, micro fiber optic gyroscopes (MFOGs, micro fluid gyroscopes (MFGs, micro atom gyroscopes (MAGs, and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  6. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Science.gov (United States)

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-01

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468

  7. Functional maps of neocortical local circuitry

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2007-10-01

    Full Text Available This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.

  8. A Neurophysiological Approach for Evaluating Noise-Induced Sleep Disturbance: Calculating the Time Constant of the Dynamic Characteristics in the Brainstem.

    Science.gov (United States)

    Tagusari, Junta; Matsui, Toshihito

    2016-03-25

    Chronic sleep disturbance induced by traffic noise is considered to cause environmental sleep disorder, which increases the risk of cardiovascular disease, stroke, diabetes and other stress-related diseases. However, noise indices for the evaluation of sleep disturbance are not based on the neurophysiological process of awakening regulated by the brainstem. In this study, through the neurophysiological approach, we attempted (1) to investigate the thresholds of awakening due to external stimuli in the brainstem; (2) to evaluate the dynamic characteristics in the brainstem and (3) to verify the validity of existing noise indices. Using the mathematical Phillips-Robinson model, we obtained thresholds of awakening in the brainstem for different durations of external stimuli. The analysis revealed that the brainstem seemed insensitive to short stimuli and that the response to external stimuli in the brainstem could be approximated by a first-order lag system with a time constant of 10-100 s. These results suggest that the brainstem did not integrate sound energy as external stimuli, but neuroelectrical signals from auditory nerve. To understand the awakening risk accumulated in the brainstem, we introduced a new concept of "awakening potential" instead of sound energy.

  9. Hearing Restoration with Auditory Brainstem Implant

    Science.gov (United States)

    NAKATOMI, Hirofumi; MIYAWAKI, Satoru; KIN, Taichi; SAITO, Nobuhito

    2016-01-01

    Auditory brainstem implant (ABI) technology attempts to restore hearing in deaf patients caused by bilateral cochlear nerve injury through the direct stimulation of the brainstem, but many aspects of the related mechanisms remain unknown. The unresolved issues can be grouped into three topics: which patients are the best candidates; which type of electrode should be used; and how to improve restored hearing. We evaluated our experience with 11 cases of ABI placement. We found that if at least seven of eleven electrodes of the MED-EL ABI are effectively placed in a patient with no deformation of the fourth ventricle, open set sentence recognition of approximately 20% and closed set word recognition of approximately 65% can be achieved only with the ABI. Appropriate selection of patients for ABI placement can lead to good outcomes. Further investigation is required regarding patient selection criteria and methods of surgery for effective ABI placement. PMID:27464470

  10. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  11. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    Science.gov (United States)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  12. Circadian clock circuitry in colorectal cancer.

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Vinciguerra, Manlio; Papa, Gennaro; Piepoli, Ada

    2014-04-21

    Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.

  13. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    Science.gov (United States)

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  14. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  15. A human brainstem glioma xenograft model enabled for bioluminescence imaging

    OpenAIRE

    Hashizume, Rintaro; Ozawa, Tomoko; Dinca, Eduard B.; Banerjee, Anuradha; Prados, Michael D.; James, Charles D.; Gupta, Nalin

    2009-01-01

    Despite the use of radiation and chemotherapy, the prognosis for children with diffuse brainstem gliomas is extremely poor. There is a need for relevant brainstem tumor models that can be used to test new therapeutic agents and delivery systems in pre-clinical studies. We report the development of a brainstem-tumor model in rats and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to therapy as part of this model. Luciferase-modified human glioblastoma...

  16. Semiconductors can be tested without removing them from circuitry

    Science.gov (United States)

    Allen, B. C.

    1966-01-01

    Oscilloscope, with specially developed test circuitry, quickly checks semiconductors without removing them from the circuitry. For transistors, approximate gain and linearity, as well as PNP or NPN determinations are made. When testing diodes, open or short circuits, and reverse polarity show up plainly.

  17. Nanocantilever based mass sensor integrated with cmos circuitry

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Campabadal, F.;

    2003-01-01

    We have demonstrated the successful integration of a cantilever based mass detector with standard CMOS circuitry. The purpose of the circuitry is to facilitate the readout of the cantilever's deflection in order to measure resonant frequency shifts of the cantilever. The principle and design of t...

  18. Brainstem: neglected locus in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Lea T Grinberg

    2011-07-01

    Full Text Available The most frequent neurodegenerative diseases (NDs are Alzheimer’s disease (AD, Parkinson’s disease (PD, and frontotemporal lobar degeneration associated with protein TDP-43 (FTLD-TDP. Neuropathologically, NDs are characterized by abnormal intracellular and extracellular protein deposits and by disease-specific neuronal death. Practically all terminal stages of NDs are clinically associated with dementia. Therefore, major attention was directed to protein deposits and neuron loss in supratentorial (telencephalic brain regions in the course of NDs. This was also true for PD, although the pathological hallmark of PD is degeneration of pigmented neurons of the brainstem’s substantia nigra. However, PD pathophysiology was explained by dopamine depletion in the telencephalic basal ganglia due to insufficiency and degeneration of the projection neurons located in substantia nigra. In a similar line of argumentation AD- and FTLD-related clinical deficits were exclusively explained by supratentorial allo- and neocortical laminar neuronal necrosis. Recent comprehensive studies in AD and PD early stages found considerable and unexpected involvement of brainstem nuclei, which could have the potential to profoundly change our present concepts on origin, spread, and early clinical diagnosis of these diseases. In contrast with PD and AD, few studies addressed brainstem involvement in the course of the different types of FTLD-TDP. Some of the results, including ours, disclosed a higher and more widespread pathology than anticipated. The present review will focus mainly on the impact of brainstem changes during the course of the most frequent NDs including PD, AD, and FTLD-TDP, with special emphasis on the need for more comprehensive research on FTLDs.

  19. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiwei [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Dong, Yushu [Department of Neurosurgery, 463rd Hospital of PLA, Shenyang 110042 (China); Xu, Chun; Jiang, Liming; Chen, Yongjie; Jiang, Cheng [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Hou, Wugang, E-mail: gangwuhou@163.com [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China); Li, Wei, E-mail: liweipepeyato@163.com [Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi’an 710032 (China)

    2013-11-01

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury.

  20. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders

    Directory of Open Access Journals (Sweden)

    Chelsea A Vadnie

    2014-09-01

    Full Text Available Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD. In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.

  1. 颈动脉注射辣椒素对脑干心血管相关核团一氧化氮合酶和Fos表达的影响%NADPH-diaphorase activity and Fos expression in brainstem nuclei involved in cardiovascular regulation following intracarotid injection of capsaicin

    Institute of Scientific and Technical Information of China (English)

    薛保建; 丁延峰; 何瑞荣; 张小雪; 石葛明

    2001-01-01

    could be found in AP. (3) The above responses to capsaicin were significantly inhibited by pretreatment with either a capsaicin receptor antagonist ruthenium red or a NMDA receptor antagonist MK-801. The above results indicate that intracarotid injection of capsaicin may activate the neurons in brainstem nuclei involved in cardiovascular regulation, and that NO only plays an indirect role in the modulation of the responses of brainstem nuclei to capsaicin. These effects of capsaicin are mediated by capsaicin receptors with involvement of glutamate.

  2. Neurodynamics, tonality, and the auditory brainstem response.

    Science.gov (United States)

    Large, Edward W; Almonte, Felix V

    2012-04-01

    Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition.

  3. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  4. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem.

    Science.gov (United States)

    Holiga, Štefan; Mueller, Karsten; Möller, Harald E; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L; Jech, Robert

    2015-01-01

    During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.

  5. New calibration circuitry and concept for AGIPD

    Science.gov (United States)

    Mezza, D.; Allahgholi, A.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Klyuev, A.; Laurus, T.; Marras, A.; Mozzanica, A.; Perova, I.; Poehlsen, J.; Schmitt, B.; Sheviakov, I.; Shi, X.; Trunk, U.; Xia, Q.; Zhang, J.; Zimmer, M.

    2016-11-01

    AGIPD (adaptive gain integrating pixel detector) is a detector system developed for the European XFEL (XFEL.EU), which is currently being constructed in Hamburg, Germany. The XFEL.EU will operate with bunch trains at a repetition rate of 10 Hz. Each train consists of 2700 bunches with a temporal separation of 220 ns corresponding to a rate of 4.5 MHz. Each photon pulse has a duration of integration. Dynamic gain switching allows single photon resolution in the high gain stage and can cover a dynamic range of 104 × 12.4 keV photons in the low gain stage. The burst structure of the bunch trains forces to have an intermediate in-pixel storage of the signals. The full scale chip has 352 in-pixel storage cells inside the pixel area of 200 × 200 μm2. This contribution will report on the measurements done with the new calibration circuitry of the AGIPD1.1 chip (without sensor). These results will be compared with the old version of the chip (AGIPD1.0). A new calibration method (that is not AGIPD specific) will also be shown.

  6. 76 FR 79215 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same...

    Science.gov (United States)

    2011-12-21

    ... COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same... importation of certain semiconductor chips with DRAM circuitry, and modules and products containing same by... after importation of certain semiconductor chips with DRAM circuitry, and modules and...

  7. Involvement of cAMP-PKA pathway in group Ⅱ metabotropic glutamate receptors-mediated regulation of respiratory rhythm from neonatal rat brainstem slice%cAMP-PKA通路参与Ⅱ组代谢性谷氨酸受体对新生鼠离体延髓脑片呼吸节律性放电的调节

    Institute of Scientific and Technical Information of China (English)

    郑奇辉; 李国才; 程静; 方芳; 吴中海

    2011-01-01

    本研究旨在探讨cAMP-PKA通路在Ⅱ组代谢性谷氨酸受体对离体延髓脑片呼吸节律性放电的影响中的作用.制作新生大鼠离体延髓脑片标本,主要包含延髓面神经后核内侧区(medial region of the nucleus retrofacialis,mNRF),并完整保留舌下神经根,以改良Kreb's液(modified Kreb's solution,MKS)恒温灌流脑片,用吸附电极记录舌下神经根呼吸节律性放电活动(respiratory rhythmical discharge activity,RRDA).待放电活动稳定后,第1组灌流Ⅱ组代谢性谷氨酸受体特异性拮抗剂(2S)-a-ethylglutamic acid(EGLU)10 min,第2组先给予cAMP-PKA通路激动剂Forskolin灌流10 min,而后MKS洗脱至正常,灌流cAMP-PKA通路抑制剂Rp-cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt(Rp-cAMPS)10 min,第3组首先给予Rp-cAMPS 10 min,洗脱后联合Rp-cAMPS+EGLU持续灌流10 min,记录各组各时间点RRDA的变化.结果显示,给予Ⅱ组代谢性谷氨酸受体拮抗剂EGLU后,呼吸周期(respiratory cycle,RC)缩短,放电积分幅度(integral amplitude,IA)和吸气时程(inspiratory time,TI)没有变化;Forskolin兴奋呼吸,缩短RC,增加IA,延长TI;Rp-cAMPS则延长RC,降低IA,缩短TI;并且cAMP-PKA通路被阻断之后,EGLU缩短RC的效应也被抑制.这些结果提示在离体延髓水平上,cAMP-PKA通路参与了Ⅱ组代谢性谷氨酸受体对脑片呼吸节律性放电的调节.%The study aims to identify the role of cAMP-PKA pathway in the group II metabotropic glutamate receptors (mGluRs)-mediated regulation of respiratory rhythm from the brainstem slice. Neonatal (aged 0-3 d) Sprague-Dawley rats of either sex were used. The brainstem slice containing the medial region of the nucleus retrofacialis (mNRF) and the hypoglossal nerve rootlets was prepared, and the surgical procedure was performed in the modified Kreb's solution (MK.S) with continuous carbogen (95% O2 and 5% CO2) bubbling, and ended in 3 min. Respiratory rhythmical discharge activity

  8. Changes of brainstem auditory and somatosensory evoked

    Institute of Scientific and Technical Information of China (English)

    Yang Jian

    2000-01-01

    Objective: to investigate the characteristics and clinical value of evoked potentials in late infantile form of metachromatic leukodystrophy. Methods: Brainstem auditory, and somatosensory evoked potentials were recorded in 6 patients, and compared with the results of CT scan. Results: All of the 6 patients had abnormal results of BAEP and MNSEP. The main abnormal parameters in BAEP were latency prolongation in wave I, inter-peak latency prolongation in Ⅰ-Ⅲ and Ⅰ-Ⅴ. The abnormal features of MNSEP were low amplitude and absence of wave N9, inter-Peak latency prolongation in Ng-N13 and N13-N20, but no significant change of N20 amplitude. The results also revealed that abnormal changes in BAEP and MNSEP were earlier than that in CT. Conclusion: The detection of BAEP and MNSEP in late infantile form of metachromatic leukodystrophy might early reveal the abnormality of conductive function in nervous system and might be a useful method in diagnosis.

  9. Intracranial neurenteric cyst traversing the brainstem

    Directory of Open Access Journals (Sweden)

    Jasmit Singh

    2015-01-01

    Full Text Available Neurenteric cysts (NECs, also called enterogenous cysts, are rare benign endodermal lesions of the central nervous system that probably result from separation failure of the notochord and upper gastrointestinal tract. Most frequently they are found in the lower cervical spine or the upper thoracic spine. Intracranial occurrence is rare and mostly confined to infratentorial compartment, in prepontine region [51%]. Other common locations are fourth ventricle and cerebellopontine angle. There are few reports of NEC in medulla or the cerebellum. Because of the rarity of the disease and common radiological findings, they are misinterpreted as arachnoid or simple cysts until the histopathological confirmation, unless suspected preoperatively. We herein report a rare yet interesting case of intracranial NEC traversing across the brainstem.

  10. Magnetic resonance imaging differential diagnosis of brainstem lesions in children

    Institute of Scientific and Technical Information of China (English)

    Carlo Cosimo Quattrocchi; Yuri Errante; Maria Camilla Rossi Espagnet; Stefania Galassi; Sabino Walter Della Sala; Bruno Bernardi; Giuseppe Fariello; Daniela Longo

    2016-01-01

    Differential diagnosis of brainstem lesions,either isolated or in association with cerebellar and supra-tentorial lesions,can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential,especially in the pediatric population. Magnetic resonance imaging(MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and,particularly,the brainstem. High magnetic static field MRI allows detailed visualization of the morphology,signal intensity and metabolic content of the brainstem nuclei,together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular,toxico-metabolic,infectiveinflammatory,degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions,the brainstem vascularization territories,gray and white matter distribution and tissue selective vulnerability.

  11. A brainstem variant of reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.; Tomimoto, H.; Terada, K. [Kyoto University, Department of Neurology, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Miki, Y.; Yamamoto, A. [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Satoi, H.; Kanda, M. [Ijinkai Takeda General Hospital, Department of Neurology, Fushimi-ku, Kyoto (Japan); Fukuyama, H. [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan)

    2005-09-01

    Reversible posterior leukoencephalopathy syndrome (RPLS) is caused by various heterogeneous factors, the commonest being hypertension, followed by nonhypertensive causes such as eclampsia, renal diseases and immunosuppressive therapy. Patients with RPLS exhibit bilateral white and gray matter abnormalities in the posterior aspects of the cerebral hemispheres. However, this syndrome may affect the brainstem predominantly, and these cases are designated as hypertensive brainstem encephalopathy. We present here two patients with reversible brainstem encephalopathy: one with hypertension and the other without hypertension. These patients presented with swelling and diffuse hyperintensities of the brainstem in fluid-attenuated inversion-recovery (FLAIR) and T2-weighted MRI, but with relatively mild clinical symptoms. They recovered without major neurological deficits, but had residual lacunar lesions in the pons. Reversible brainstem encephalopathy with characteristic MRI features was found in both hypertensive and nonhypertensive patients. These patients were diagnosed with a brainstem variant of RPLS, which is potentially fully reversible after an adequate treatment, and therefore should be carefully differentiated from other brainstem disease conditions. (orig.)

  12. Circuitry linking the Csr and stringent response global regulatory systems.

    Science.gov (United States)

    Edwards, Adrianne N; Patterson-Fortin, Laura M; Vakulskas, Christopher A; Mercante, Jeffrey W; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I; Fields, Joshua A; Thompson, Stuart A; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony

    2011-06-01

    CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry.

  13. ECP (Electrical Circuitry Program): A proposed program for electrical circuitry analysis

    Science.gov (United States)

    Barton, Cynthia K.; Williams, Anthony J.

    1988-02-01

    This research analyzed and proposed development of the computerized Electrical Circuitry Program (ECP). ECP is proposed to assist U.S. Army Corps of Engineers (USACE) in-house electrical engineers in performing the required analysis during facilities concept design phase. The program would include features which allow the user to design a thorough power system with minimum effort. The program would also allow the user to graphically determine outlet locations for luminaries, establish receptacle locations and types, select switch locations and types, lay out wiring diagrams for the system, and locate and describe the features of the panelboards. ECP would be equipped to perform voltage drop, short circuit, and wire length calculations to insure the system design's efficiency. Using the information entered into the program, ECP would create summary reports and panel schedules to be submitted with design documents.

  14. Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity.

    Directory of Open Access Journals (Sweden)

    Le Sun

    Full Text Available The ON-OFF direction selective ganglion cells (DSGCs in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience.

  15. Maturation of glutamatergic transmission in the vestibulo-olivary pathway impacts on the registration of head rotational signals in the brainstem of rats.

    Science.gov (United States)

    Lai, Chun-Hong; Ma, Chun-Wai; Lai, Suk-King; Han, Lei; Wong, Hoi-Man; Yeung, Kelvin Wai-Kwok; Shum, Daisy Kwok-Yan; Chan, Ying-Shing

    2016-01-01

    The recognition of head orientation in the adult involves multi-level integration of inputs within the central vestibular circuitry. How the different inputs are recruited during postnatal development remains unclear. We hypothesize that glutamatergic transmission at the vestibular nucleus contributes to developmental registration of head orientations along the vestibulo-olivary pathway. To investigate the maturation profile by which head rotational signals are registered in the brainstem, we used sinusoidal rotations on the orthogonal planes of the three pairs of semicircular canals. Fos expression was used as readout of neurons responsive to the rotational stimulus. Neurons in the vestibular nucleus and prepositus hypoglossal nucleus responded to all rotations as early as P4 and reached adult numbers by P21. In the reticular formation and inferior olive, neurons also responded to horizontal rotations as early as P4 but to vertical rotations not until P21 and P25, respectively. Neuronal subpopulations that distinguish between rotations activating the orthogonally oriented vertical canals were identifiable in the medial and spinal vestibular nuclei by P14 and in the inferior olivary subnuclei IOβ and IOK by P25. Neonatal perturbation of glutamate transmission in the vestibular nucleus was sufficient to derange formation of this distribution in the inferior olive. This is the first demonstration that developmental refinement of glutamatergic synapses in the central vestibular circuitry is essential for developmental registration of head rotational signals in the brainstem.

  16. Enterovirus 71 Brainstem Encephalitis and Cognitive and Motor Deficits

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-12-01

    Full Text Available Follow-up studies were conducted in 63 previously healthy children with enterovirus 71 brainstem encephalitis (49 stage II, 7 stage Ilia, and 7 stage Illb at National Cheng Kung University Hospital, Tainan, Taiwan.

  17. Brainstem variant of posterior reversible encephalopathy syndrome: A case report.

    Science.gov (United States)

    Tortora, Fabio; Caranci, Ferdinando; Belfiore, Maria Paola; Manzi, Francesca; Pagliano, Pasquale; Cirillo, Sossio

    2015-12-01

    Posterior reversible encephalopathy syndrome (PRES) is a clinico-radiological condition, generally observed in conjunction with severe and acute hypertension, that involves mainly the posterior head areas (occipital and temporal lobes) and anterior "watershed" areas. In this syndrome it is rare to observe a predominant involvement of the brainstem. We describe the clinical and radiological findings in a patient with brainstem involvement, discussing its pathophysiological features and possible differential diagnosis.

  18. Brainstem cysticercose simulating cystic tumor lesion: a case report

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1994-09-01

    Full Text Available The authors report the case of a 37 year-old man with a solitary cysticercus cyst in the brainstem (pons successfully removed through a suboccipital craniectomy. Surgery in neurocysticercosis has been indicated in patients with hydrocephalus and/or large cystic lesions. Cystic lesions in the brainstem and spinal cord may have indication for surgery for two reasons: (1 diagnosis; and (2 treatment. Aspects related to differential diagnosis and therapeutic alternatives are discussed.

  19. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes.

  20. Functional characterization of obesogenic neural circuitries

    NARCIS (Netherlands)

    Boender, A.J.

    2015-01-01

    Obesity can be characterized as a disorder in which affected individuals fail to properly regulate the balance between energy intake and expenditure. Recently, genome-wide association studies have identified over 30 genetic variants that associate with increased body weight and thus provide clues on

  1. Computational Analysis of Transcriptional Circuitries in Human Embryonic Stem Cells Reveals Multiple and Independent Networks

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wang

    2014-01-01

    Full Text Available It has been known that three core transcription factors (TFs, NANOG, OCT4, and SOX2, collaborate to form a transcriptional circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES cells. Similarly, MYC also plays an important role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional regulatory networks control the activity of ES cells remains unclear. In this study, we reanalyzed an extended core network, which includes the set of genes that are cobound by the three core TFs and additional TFs that also bind to these cobound genes. Our results show that beyond the core transcriptional network, additional transcriptional networks are potentially important in the regulation of the fate of human ES cells. Several gene families that encode TFs play a key role in the transcriptional circuitry of ES cells. We also demonstrate that MYC acts independently of the core module in the regulation of the fate of human ES cells, consistent with the established argument. We find that TP53 is a key connecting molecule between the core-centered and MYC-centered modules. This study provides additional insights into the underlying regulatory mechanisms involved in the fate determination of human ES cells.

  2. Automatic quadrature control and measuring system. [using optical coupling circuitry

    Science.gov (United States)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  3. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.

  4. Toluene alters p75NTR expression in the rat brainstem.

    Science.gov (United States)

    Pascual, Jesús; Morón, Lena; Zárate, Jon; Gutiérrez, Arantza; Churruca, Itziar; Echevarría, Enrique

    2004-01-01

    Toluene is a neurotoxic organic solvent widely used in industry. Acute toluene administration in rats induced a significant increase in the numbers of neural cells immunostained for p75NTR in several brainstem regions, such as the raphe magnus and the nucleus of the solitary tract, as well as in the lateral reticular, gigantocellular, vestibular and ventral cochlear nuclei, without any in the facial and spinal trigeminal nuclei and the dorsal horn of the spinal cord. These data suggest that p75NTR could be involved in toluene-induced neurotoxic efffects in the rat brainstem.

  5. Genetics Home Reference: leukoencephalopathy with thalamus and brainstem involvement and high lactate

    Science.gov (United States)

    ... Health Conditions LTBL leukoencephalopathy with thalamus and brainstem involvement and high lactate Enable Javascript to view the expand/collapse ... Close All Description Leukoencephalopathy with thalamus and brainstem involvement and high lactate ( LTBL ) is a disorder that affects the ...

  6. 76 FR 72214 - Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt...

    Science.gov (United States)

    2011-11-22

    ... COMMISSION Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt... Commission has received a complaint entitled In Re Certain Semiconductor Chips with DRAM Circuitry, and... importation of certain semiconductor chips with dram circuitry, and modules and products containing same....

  7. Regional brainstem expression of Fos associated with sexual behavior in male rats.

    Science.gov (United States)

    Hamson, Dwayne K; Watson, Neil V

    2004-05-01

    This study utilized Fos expression to map the distribution of activated cells in brainstem areas following masculine sexual behavior. Males displaying both appetitive and consumatory sexual behaviors (Cop) were compared to animals prevented from copulation (NC) and to socially isolated (SI) animals. Following copulation, Fos was preferentially augmented in the caudal ventral medulla (CVM), a region mediating descending inhibition of penile reflexes, and which may be regulated by a forebrain circuit that includes the medial preoptic area (MPOA). Copulation-induced Fos was observed in the medial divisions of both the dorsal cochlear nucleus (DC) and trapezoid bodies (Tz), areas which are part of a circuit processing auditory information. In addition, the medullary linear nucleus (Li) displayed comparable amounts of Fos in Cop and NC as compared to the SI animals. Other regions of the pontomedullary reticular system, which may mediate sleep and arousal, did not exhibit Fos expression associated with consumatory sexual behavior. We suggest that Fos is associated with the inhibition of sexual behavior following ejaculation in the CVM, and that auditory information arising from the DC and Tz is combined with copulation-related sensory information in the subparafasicular nucleus and projected to the hypothalamus. In addition, equal amounts of Fos expression observed in the Li in both the Cop and NC animals suggests that this region is involved in sexual arousal. Overall, the data suggest that processing by brainstem nuclei directly contributes to the regulation of mating behavior in male rats.

  8. The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease : A Brief Historical Overview and Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical Relevance

    NARCIS (Netherlands)

    Rueb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Seidel, Kay; Dunnen, den Wilfred; Korf, Horst-Werner

    2016-01-01

    The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascendin

  9. Separate circuitries encode the hedonic and nutritional values of sugar.

    Science.gov (United States)

    Tellez, Luis A; Han, Wenfei; Zhang, Xiaobing; Ferreira, Tatiana L; Perez, Isaac O; Shammah-Lagnado, Sara J; van den Pol, Anthony N; de Araujo, Ivan E

    2016-03-01

    Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is, however, unknown whether sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We found in mice that separate basal ganglia circuitries mediated the hedonic and nutritional actions of sugar. During sugar intake, suppressing hedonic value inhibited dopamine release in ventral, but not dorsal, striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal, but not ventral, striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar's ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data indicate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy-seeking over taste quality.

  10. The neural circuitry of expertise: perceptual learning and social cognition

    OpenAIRE

    2013-01-01

    Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create ou...

  11. Mapping of CGRP in the alpaca (Lama pacos) brainstem.

    Science.gov (United States)

    de Souza, Eliana; Coveñas, Rafael; Yi, Pedro; Aguilar, Luís Angel; Lerma, Luís; Andrade, Roy; Mangas, Arturo; Díaz-Cabiale, Zaida; Narváez, José Angel

    2008-07-01

    In this study, we demonstrate the presence of immunoreactive structures containing calcitonin gene-related peptide in the alpaca brainstem. This is the first time that a detailed mapping of the cell bodies and fibers containing this neuropeptide in the alpaca brainstem has been carried out using an immunocytochemical technique. Immunoreactive cell bodies and fibers were widely distributed throughout the alpaca brainstem. A high density of calcitonin gene-related peptide-immunoreactive perikarya was found in the superior colliculus, the dorsal nucleus of the raphe, the trochlear nucleus, the lateral division of the marginal nucleus of the brachium conjunctivum, the motor trigeminal nucleus, the facial nucleus, the pons reticular formation, the retrofacial nucleus, the rostral hypoglossal nucleus, and in the motor dorsal nucleus of the vagus, whereas a high density of fibers containing calcitonin gene-related peptide was observed in the lateral division of the marginal nucleus of the brachium conjunctivum, the parvocellular division of the alaminar spinal trigeminal nucleus, the external cuneate nucleus, the nucleus of the solitary tract, the laminar spinal trigeminal nucleus, and in the area postrema. This widespread distribution indicates that the neuropeptide studied might be involved in multiple functions in the alpaca brainstem.

  12. Adaptive hypofractionated gamma knife radiosurgery for a large brainstem metastasis

    DEFF Research Database (Denmark)

    Sinclair, Georges; Bartek, Jiri; Martin, Heather;

    2016-01-01

    BACKGROUND: To demonstrate how adaptive hypofractionated radiosurgery by gamma knife (GK) can be successfully utilized to treat a large brainstem metastasis - a novel approach to a challenging clinical situation. CASE DESCRIPTION: A 42-year-old woman, diagnosed with metastatic nonsmall cell lung ...

  13. Intraparenchymal papillary meningioma of brainstem: case report and literature review

    Directory of Open Access Journals (Sweden)

    Jiang Xiao-Bing

    2012-01-01

    Full Text Available Abstract Both intraparenchymal papillary meningioma and papillary meningioma with cyst formation of brainstem have never been reported. The authors present an extremely rare case of patient with intraparenchymal papillary meningioma of brainstem. A 23-year-old Chinese male presented with a 4-month history of progressive left upper limb and facial nerve palsy. Magnetic resonance imaging revealed a cystic-solid, heterogeneously enhancing mass in pons and right cerebral peduncle with no dural attachment. The tumor was totally removed via subtemporal approach. During surgery, the lesion was found to be completely intraparenchymal. Histological and immunohistochemical examinations were compatible with the diagnosis of papillary meningioma. The lesion recurred nine months after primary surgery, a second surgery followed by radiotherapy was performed. Till to now (nearly 2 years after the treatment, the patient is tumor free survival. Intraparenchymal meningioma of brainstem with cystic formation is very rare, however, it should be considered as a differential diagnosis of a brainstem neoplasm. The present case strongly recommended that postoperative radiotherapy was essential for the patients with papillary meningiomas.

  14. Preparation and Culture of Chicken Auditory Brainstem Slices

    OpenAIRE

    Sanchez, Jason T.; Seidl, Armin H.; Rubel, Edwin W; Barria, Andres

    2011-01-01

    The chicken auditory brainstem is a well-established model system that has been widely used to study the anatomy and physiology of auditory processing at discreet periods of development 1-4 as well as mechanisms for temporal coding in the central nervous system 5-7.

  15. Brainstem death: A comprehensive review in Indian perspective.

    Science.gov (United States)

    Dhanwate, Anant Dattatray

    2014-09-01

    With the advent of cardiopulmonary resuscitation techniques, the cardiopulmonary definition of death lost its significance in favor of brain death. Brain death is a permanent cessation of all functions of the brain in which though individual organs may function but lack of integrating function of the brain, lack of respiratory drive, consciousness, and cognition confirms to the definition that death is an irreversible cessation of functioning of the organism as a whole. In spite of medical and legal acceptance globally, the concept of brain death and brain-stem death is still unclear to many. Brain death is not promptly declared due to lack of awareness and doubts about the legal procedure of certification. Many brain dead patients are kept on life supporting systems needlessly. In this comprehensive review, an attempt has been made to highlight the history and concept of brain death and brain-stem death; the anatomical and physiological basis of brain-stem death, and criteria to diagnose brain-stem death in India.

  16. Brainstem death: A comprehensive review in Indian perspective

    Directory of Open Access Journals (Sweden)

    Anant Dattatray Dhanwate

    2014-01-01

    Full Text Available With the advent of cardiopulmonary resuscitation techniques, the cardiopulmonary definition of death lost its significance in favor of brain death. Brain death is a permanent cessation of all functions of the brain in which though individual organs may function but lack of integrating function of the brain, lack of respiratory drive, consciousness, and cognition confirms to the definition that death is an irreversible cessation of functioning of the organism as a whole. In spite of medical and legal acceptance globally, the concept of brain death and brain-stem death is still unclear to many. Brain death is not promptly declared due to lack of awareness and doubts about the legal procedure of certification. Many brain dead patients are kept on life supporting systems needlessly. In this comprehensive review, an attempt has been made to highlight the history and concept of brain death and brain-stem death; the anatomical and physiological basis of brain-stem death, and criteria to diagnose brain-stem death in India.

  17. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James;

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  18. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  19. Construction of Hindi Speech Stimuli for Eliciting Auditory Brainstem Responses.

    Science.gov (United States)

    Ansari, Mohammad Shamim; Rangasayee, R

    2016-12-01

    Speech-evoked auditory brainstem responses (spABRs) provide considerable information of clinical relevance to describe auditory processing of complex stimuli at the sub cortical level. The substantial research data have suggested faithful representation of temporal and spectral characteristics of speech sounds. However, the spABR are known to be affected by acoustic properties of speech, language experiences and training. Hence, there exists indecisive literature with regards to brainstem speech processing. This warrants establishment of language specific speech stimulus to describe the brainstem processing in specific oral language user. The objective of current study is to develop Hindi speech stimuli for recording auditory brainstem responses. The Hindi stop speech of 40 ms containing five formants was constructed. Brainstem evoked responses to speech sound |da| were gained from 25 normal hearing (NH) adults having mean age of 20.9 years (SD = 2.7) in the age range of 18-25 years and ten subjects (HI) with mild SNHL of mean 21.3 years (SD = 3.2) in the age range of 18-25 years. The statistically significant differences in the mean identification scores of synthesized for speech stimuli |da| and |ga| between NH and HI were obtained. The mean, median, standard deviation, minimum, maximum and 95 % confidence interval for the discrete peaks and V-A complex values of electrophysiological responses to speech stimulus were measured and compared between NH and HI population. This paper delineates a comprehensive methodological approach for development of Hindi speech stimuli and recording of ABR to speech. The acoustic characteristic of stimulus |da| was faithfully represented at brainstem level in normal hearing adults. There was statistically significance difference between NH and HI individuals. This suggests that spABR offers an opportunity to segregate normal speech encoding from abnormal speech processing at sub cortical level, which implies that

  20. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  1. HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression.

    Science.gov (United States)

    Holsen, L M; Lancaster, K; Klibanski, A; Whitfield-Gabrieli, S; Cherkerzian, S; Buka, S; Goldstein, J M

    2013-10-10

    Decades of clinical and basic research indicate significant links between altered hypothalamic-pituitary-adrenal (HPA)-axis hormone dynamics and major depressive disorder (MDD). Recent neuroimaging studies of MDD highlight abnormalities in stress response circuitry regions which play a role in the regulation of the HPA-axes. However, there is a dearth of research examining these systems in parallel, especially as related to potential trait characteristics. The current study addresses this gap by investigating neural responses to a mild visual stress challenge with real-time assessment of adrenal hormones in women with MDD in remission and controls. Fifteen women with recurrent MDD in remission (rMDD) and 15 healthy control women were scanned on a 3T Siemens MR scanner while viewing neutral and negative (stress-evoking) stimuli. Blood samples were obtained before, during, and after scanning for the measurement of HPA-axis hormone levels. Compared to controls, rMDD women demonstrated higher anxiety ratings, increased cortisol levels, and hyperactivation in the amygdala and hippocampus, pHPA-axis hormone dynamics on hyperactivity in stress response circuitry regions elicited by a well-validated stress paradigm in women with recurrent MDD in remission.

  2. Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.

    Science.gov (United States)

    Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M

    2014-01-01

    Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.

  3. Implementing size-optimal discrete neural networks require analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  4. From Fibonacci to the mathematics of cows and quantum circuitry

    Science.gov (United States)

    Wilmott, C. M.

    2015-01-01

    The Fibonacci sequence is a famously well-known integer sequence from the thirteenth century which has transcended its original motivation. It possesses many interested and varied applications within architecture, engineering and science. Less well known is the Narayana sequence which itself has interesting and wide-ranging Fibonacci-type connections. In this paper, we shall recall Narayana's original motivation that gives rise to the sequence bearing his name. We also provide an interesting application of this sequence to the construction to quantum gate circuitry used in quantum computation.

  5. Hemicrania continua secondary to an ipsilateral brainstem lesion.

    Science.gov (United States)

    Valença, Marcelo M; Andrade-Valença, Luciana P A; da Silva, Wilson Farias; Dodick, David W

    2007-03-01

    We describe a 47-year-old woman with a 3-year history of a continuum mild-moderate right-side headache, with exacerbations, associated with stabbing volleys of pain on right orbit-temporal region (10/10) and right eye ptosis and lacrimation with conjunctival injection. The pain was completely abolished with indomethacin (100 mg per day). The diagnosis of hemicrania continua was made according to the International Headache Society (IHS) criteria. The headache presentation was precipitated by a stroke and a right-side brainstem lesion was present at magnetic resonance imaging. This case report shows anatomoclinical evidence of the involvement of brainstem structures on the pathophysiology of hemicrania continua.

  6. Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure

    Science.gov (United States)

    Kim, Ju Hwan; Yu, Da-Hyeon

    2017-01-01

    With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether short-term exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system. PMID:28280411

  7. Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry.

    Science.gov (United States)

    Corradin, Olivia; Cohen, Andrea J; Luppino, Jennifer M; Bayles, Ian M; Schumacher, Fredrick R; Scacheri, Peter C

    2016-11-01

    SNPs associated with disease susceptibility often reside in enhancer clusters, or super-enhancers. Constituents of these enhancer clusters cooperate to regulate target genes and often extend beyond the linkage disequilibrium (LD) blocks containing risk SNPs identified in genome-wide association studies (GWAS). We identified 'outside variants', defined as SNPs in weak LD with GWAS risk SNPs that physically interact with risk SNPs as part of a target gene's regulatory circuitry. These outside variants further explain variation in target gene expression beyond that explained by GWAS-associated SNPs. Additionally, the clinical risk associated with GWAS SNPs is considerably modified by the genotype of outside variants. Collectively, these findings suggest a potential model in which outside variants and GWAS SNPs that physically interact in 3D chromatin collude to influence target transcript levels as well as clinical risk. This model offers an additional hypothesis for the source of missing heritability for complex traits.

  8. Automatic hearing loss detection system based on auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R [Laboratorio de Ingenieria en Rehabilitacion e Investigaciones Neuromusculares y Sensoriales (Argentina); Facultad de Ingenieria, Universidad Nacional de Entre Rios, Ruta 11 - Km 10, Oro Verde, Entre Rios (Argentina)

    2007-11-15

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  9. The Superior Transvelar Approach to the Fourth Ventricle and Brainstem

    OpenAIRE

    Ezer, Haim; Banerjee, Anirban Deep; Bollam, Papireddy; Guthikonda, Bharat; Nanda, Anil

    2012-01-01

    Objective The superior transvelar approach is used to access pathologies located in the fourth ventricle and brainstem. The surgical path is below the venous structures, through the superior medullary velum. Following splitting the tentorial edge, near the tentorial apex, the superior medullary velum is split in the cerebello-mesencephalic fissure. Using the supracerebellar infratentorial, transtentorial or parietal interhemispheric routes, the superior medullary velum is approached. Splittin...

  10. Automatic hearing loss detection system based on auditory brainstem response

    Science.gov (United States)

    Aldonate, J.; Mercuri, C.; Reta, J.; Biurrun, J.; Bonell, C.; Gentiletti, G.; Escobar, S.; Acevedo, R.

    2007-11-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  11. Reflections on the brainstem dysfunction in neurologically disabled children.

    Science.gov (United States)

    Saito, Yoshiaki

    2009-08-01

    This article deals with the neurological basis of brainstem-related symptoms in disabled children. Synaptic interactions of respiratory and swallowing centers, which are briefly reviewed in this study, highlight the significance of the nucleus of solitary tract (NTS) in the stereotyped motor events. Coordination mechanisms between these two central pattern generators are also studied with a focus on the inhibitory action of decrementing expiratory neurons that terminate the inspiratory activity and become activated during swallowing. Dorsal brainstem lesions in hypoxic-ischemic encephalopathy (HIE) affect the area including NTS, and result in symptoms of apneusis, facial nerve paresis, dysphagia, gastroesophageal reflux, and laryngeal stridor. Leigh syndrome patients with similar distributions of medullary lesions show increased sighs, post-sigh apnea, hiccups, and vomiting in addition to the symptoms of HIE, suggesting pathologically augmented vagal reflex pathways. The present article also discusses the pathophysiology of laryngeal dystonia in xeroderma pigmentosum group A, self-mutilation in Lesch-Nyhan syndrome, and sudden unexpected death in Fukuyama congenital muscular dystrophy. Close observation and logical assessment of brainstem dysfunction symptoms should be encouraged in order to achieve better understanding and management of these symptoms in disabled children.

  12. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  13. Functional imaging of the human brainstem during somatosensory input and autonomic output

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2013-09-01

    Full Text Available Over the past half a century, many experimental animal investigations have explored the role of various brainstem regions in a variety of conditions. Despite the accumulation of a considerable body of knowledge in primarily anaesthetized preparations, relatively few investigations have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images, has resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including during cutaneous and muscle pain, as well as during challenges that evoke increases in sympathetic activity. More recently we have successfully recorded sympathetic nerve activity concurrently with fMRI of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many conditions will involve changes in brainstem function and structure, defining brainstem changes will likely result in a greater ability to develop more effective treatment regimes.

  14. Stitching Circuits: Learning About Circuitry Through E-textile Materials

    Science.gov (United States)

    Peppler, Kylie; Glosson, Diane

    2012-11-01

    Central to our understanding of learning is the relationship between various tools and technologies and the structuring of disciplinary subject matter. One of the staples of early science education curriculum is the use of electrical circuit toolkits to engage students in broader discussions of energy. Traditionally, these concepts are introduced to youth using battery packs, insulated wire and light bulbs. However, there are affordances and limitations in the way this toolset highlights certain conceptual aspects while obscuring others, which we argue leads to common misconceptions about electrical circuitry. By contrast, we offer an alternative approach utilizing an e-textiles toolkit for developing understanding of electrical circuitry, testing the efficacy of this approach for learning in elective settings to pave the way for later classroom adoption. This study found that youth who engaged in e-textile design demonstrated significant gains in their ability to diagram a working circuit, as well as significant gains in their understanding of current flow, polarity and connections. The implications for rethinking our current toolkits for teaching conceptual understanding in science are discussed.

  15. A rabbit model of graded primary mechanical injury to brainstem

    Institute of Scientific and Technical Information of China (English)

    YU Yong-min; WANG Xiao-wei; XUE Hai-bin; XIA Peng; LI Hong-wei; DAI Guo-xin; JI Xiao-yuan; ZHAO Hui; YIN Zhi-yong

    2012-01-01

    Objective:To introduce a new animal model of graded mechanical primary brainstem injury (BSI).Methods:Altogether 45 rabbits were subjected to BSI by type Ⅱ biological impact machine designed by the Third Military Medical University.The animals were divided into 4 experimental groups (n=10) and 1 control group (n=5) according to different magnitudes of impact pressure imposed on the occipital nodule:Group 1,500-520 kPa; Group 2,520-540 kPa; Group 3,540-560 kPa; Group 4,560-580 kPa and Group 5,0 kPa with 20 kPa increase in each grade.The impact depth was a constant 0.5 cm.After injury,the clinical symptoms and signs as well as pathological changes were observed.Results:Rabbits in Group 1 revealed mild physiological reaction of BSI.They had localized cerebral contusion with punctate hemorrhage and subarachnoid hemorrhage (SAH) was limited to the peripheral tissues at the impact area.In Group 2,obvious physiological reaction was observed.Local pathological lesions reached the superficial layer ofbrainstem tissues; focal hemorrhage and girdleshaped SAH in basilar pon were observed under microscope.In Group 3,BSI was more severe with a long respiratory depression.Pathological lesions reached the inner portion of brainstem with massive hemorrhage and the whole brainstem was wrapped by subarachnoid hematoma.In Group 4,most rabbits died due to severe BSI.Pathological lesions deepened to the central brainstem with wide pathological change,rapture of the medulla oblongata central canal.Group 5 was the control group,with normal brainstem structure and no lesion observed.Conclusion:This model successfully simulates different levels ofbrainstem mechanical injury and clearly shows the subsequent pathological changes following injury.It takes two external parameters (impact pressure and depth) and has a similar injury mechanism to clinical accelerating BSI.Moreover it is reproducible and stable,thus being beneficial for exploring pathophysiological mechanism,diagnosis and

  16. Architectural organization of the african elephant diencephalon and brainstem.

    Science.gov (United States)

    Maseko, Busisiwe C; Patzke, Nina; Fuxe, Kjell; Manger, Paul R

    2013-01-01

    The current study examined the organization of the diencephalon and brainstem of the African elephant (Loxodonta africana) - a region of the elephant brain that has not been examined for at least 50 years. The current description, employing material amenable for use with modern neuroanatomical methods, shows that, for the most part, the elephant diencephalon and brainstem are what could be considered typically mammalian, with subtle differences in proportions and topology. The variations from these previous descriptions, where they occurred, were related to four specific aspects of neural information processing: (1) the motor systems, (2) the auditory and vocalization systems, (3) the orexinergic satiety/wakefulness centre of the hypothalamus and the locus coeruleus, and (4) the potential neurogenic lining of the brainstem. For the motor systems, three specific structures exhibited interesting differences in organization - the pars compacta of the substantia nigra, the facial motor nerve nucleus, and the inferior olivary nuclear complex, all related to the timing and learning of movements and likely related to the control of the trunk. The dopaminergic neurons of the substantia nigra appear to form distinct islands separated from each other by large fibre pathways, an appearance unique to the elephant. Each island may send topologically organized projections to the striatum forming a dopaminergic innervation mosaic that may relate to trunk movements. At least five regions of the combined vocalization production and auditory/seismic reception system were specialized, including the large and distinct nucleus ellipticus of the periaqueductal grey matter, the enlarged lateral superior olivary nucleus, the novel transverse infrageniculate nucleus of the dorsal thalamus, the enlarged dorsal column nuclei and the ventral posterior inferior nucleus of the dorsal thalamus. These specializations, related to production and reception of infrasound, allow the proposal of a

  17. Isolated in vitro brainstem-spinal cord preparations remain important tools in respiratory neurobiology.

    Science.gov (United States)

    Johnson, Stephen M; Turner, Sara M; Huxtable, Adrianne G; Ben-Mabrouk, Faiza

    2012-01-15

    Isolated in vitro brainstem-spinal cord preparations are used extensively in respiratory neurobiology because the respiratory network in the pons and medulla is intact, monosynaptic descending inputs to spinal motoneurons can be activated, brainstem and spinal cord tissue can be bathed with different solutions, and the responses of cervical, thoracic, and lumbar spinal motoneurons to experimental perturbations can be compared. The caveats and limitations of in vitro brainstem-spinal cord preparations are well-documented. However, isolated brainstem-spinal cords are still valuable experimental preparations that can be used to study neuronal connectivity within the brainstem, development of motor networks with lethal genetic mutations, deleterious effects of pathological drugs and conditions, respiratory spinal motor plasticity, and interactions with other motor behaviors. Our goal is to show how isolated brainstem-spinal cord preparations still have a lot to offer scientifically and experimentally to address questions within and outside the field of respiratory neurobiology.

  18. Intrinsic brainstem schwannoma – A rare clinical entity and a histological enigma

    Directory of Open Access Journals (Sweden)

    Anil Kumar Sharma

    2016-01-01

    Full Text Available Intraparenchymal schwannomas arising in the brainstem are very rare, and only eight cases have been reported in literature till now. We report an intraparenchymal brainstem schwannoma presenting with the classical clinical presentation of an intrinsic brainstem lesion, and discuss its clinicoradiological characteristics and histological origins. We highlight the importance of an intraoperative frozen section diagnosis in such cases. Intraoperative tissue diagnosis significantly may alter the surgical strategy, which should be aimed at near total intracapsular decompression of the schwannoma.

  19. The anorectic actions of the TGFβ cytokine MIC-1/GDF15 require an intact brainstem area postrema and nucleus of the solitary tract.

    Directory of Open Access Journals (Sweden)

    Vicky Wang-Wei Tsai

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15 modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP and the medial (m portion of the nucleus of the solitary tract (NTS, which did not stain with tyrosine hydroxylase (TH. To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.

  20. Photoreceptors and neural circuitry underlying phototaxis in insects.

    Science.gov (United States)

    Yamaguchi, Satoko; Heisenberg, Martin

    2011-01-01

    Visual behavior of insects has long been studied, but it is only recently that a wide variety of genetic tools has become available for its analysis. Perhaps the most basic visual behaviour is phototaxis, locomotion towards a source of light. It is known in many insects and has been studied for over a century but the neural network underlying it is little understood. We recently described in the fruit fly Drosophila how different photoreceptor types contribute to phototaxis. By blocking subsets of them we showed that at least four of the five types are involved. In this short review, we compare phototactic behaviour in fruit flies and other insects (especially honeybees), and discuss what is known about the underlying neural circuitry. :

  1. Recurrent circuitry dynamically shapes the activation of piriform cortex.

    Science.gov (United States)

    Franks, Kevin M; Russo, Marco J; Sosulski, Dara L; Mulligan, Abigail A; Siegelbaum, Steven A; Axel, Richard

    2011-10-06

    In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.

  2. New materials strategies for creating hybrid electronic circuitry (Presentation Video)

    Science.gov (United States)

    Marks, Tobin J.

    2013-09-01

    This lecture focuses on the challenging design and realization of new materials for creating unconventional electronic circuitry. Fabrication methodologies to achieve these goals include high-throughput, large-area printing techniques. Materials design topics to be discussed include: 1. Rationally designed high-mobility p- and n-type organic semiconductors for printed organic CMOS, 2. Polycrystalline and amorphous oxide semiconductors for transparent and mechanically flexible electronics, 3) Self-assembled and printable high-k nanodielectrics enabling ultra-large capacitance, low leakage, high breakdown fields, minimal trapped interfacial charge, and device radiation hardness. 4) Combining these materials sets to fabricate a variety of high-performance thin-film transistor-based devices.

  3. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... consumption of different amplifier topologies. Next, low power features of different amplifier types are analyzed on transistor level. A brief comparison of SI circuits for low power applications vs. SC circuits is presented. Methodologies for low voltage design is presented. This is followed by a collection...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power...

  4. Focusing on optic tectum circuitry through the lens of genetics

    Directory of Open Access Journals (Sweden)

    Nevin Linda M

    2010-09-01

    Full Text Available Abstract The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.

  5. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    Science.gov (United States)

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  6. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    Science.gov (United States)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  7. Arithmetic and local circuitry underlying dopamine prediction errors.

    Science.gov (United States)

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-09-10

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

  8. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis

    Science.gov (United States)

    Averette, Anna F.; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E.

    2016-01-01

    Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation

  9. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    Full Text Available Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which

  10. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  11. Lissencephaly with brainstem and cerebellar hypoplasia and congenital cataracts.

    Science.gov (United States)

    Abumansour, Iman S; Wrogemann, Jens; Chudley, Albert E; Chodirker, Bernard N; Salman, Michael S

    2014-06-01

    Classical lissencephaly may be associated with cerebellar hypoplasia and when significant cerebellar abnormalities occur, defects in proteins encoded by TUBA1A, RELN, and very-low-density lipoprotein receptor (VLDLR) genes have been reported. We present a neonate with a severe neurologic phenotype associated with hypotonia, oropharyngeal incoordination that required a gastric tube for feeding, intractable epilepsy, and congenital cataracts. Her brain magnetic resonance imaging (MRI) showed classical lissencephaly, ventriculomegaly, absent corpus callosum, globular and vertical hippocampi, and severe cerebellar and brainstem hypoplasia. She died at 6 weeks of age. No specific molecular diagnosis was made. This likely represents a previously undescribed genetic lissencephaly syndrome.

  12. Metastatic Brainstem Glioma in Children: A Case Report and Review

    OpenAIRE

    Castaño González, Alexandra; Pontificia Universidad Javeriana; Angarita Ribero, Claudia Tatiana; Pontificia Universidad Javeriana; Guzmán Cruz, Paula Carolina; Pontificia Universidad Javeriana

    2012-01-01

    This article presents a 33 months old patient, with failure to thrive, alterations in gait and swallow. Brain and spine magnetic resonance showed masses at medulla and pons, venous thrombosis in the left transverse sinus and metastatic masses to spinal cord. Unresectable metastatic brainstem glioma was diagnosed. Oncology started treatment with chemotherapy and radiotherapy having a survival time of more than 3 years. En este artículo se presenta el caso de un bebé de 33 meses de edad con ...

  13. Brainstem and limbic encephalitis with paraneoplastic neuromyelitis optica.

    Science.gov (United States)

    Moussawi, Khaled; Lin, David J; Matiello, Marcelo; Chew, Sheena; Morganstern, Daniel; Vaitkevicius, Henrikas

    2016-01-01

    The spectrum of disorders associated with anti-neuromyelitis optica (NMO) antibody is being extended to include infrequent instances associated with cancer. We describe a patient with brainstem and limbic encephalitis from NMO-immunoglobulin G in serum and cerebrospinal fluid in the context of newly diagnosed breast cancer. The neurological features markedly improved with excision of her breast cancer and immune suppressive therapy. This case further broadens the NMO spectrum disorders (NMOSD) by an association between NMOSD and cancer and raises the question of coincidental occurrence and the appropriate circumstances to search for a tumor in certain instances of NMO.

  14. Task-Related Suppression of the Brainstem Frequency following Response

    Science.gov (United States)

    2013-02-18

    and none reported as being ‘‘fluently bilingual’’. While three participants reported having .3 years of musical experience, none performed profes...malleability in neural encoding of pitch, timbre , and timing. Ann N Y Acad Sci 1169: 543–557. doi:10.1111/j.1749–6632.2009.04549.x. 3. Bidelman GM, Krishnan A...2009) Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci 29: 13165–13171. doi

  15. Dysarthria in children with cerebellar or brainstem tumors.

    Science.gov (United States)

    van Mourik, M; Catsman-Berrevoets, C E; Yousef-Bak, E; Paquier, P F; van Dongen, H R

    1998-05-01

    Speech features were perceptually analyzed in two groups of children. The first group (n = 6) had undergone cerebellar tumor resection, and the second group (n = 6) included children with brainstem tumors. Children belonging to the first group became dysarthric after a postoperative mute phase. Slow speech rate was a specific feature, but scanning speech and irregular articulatory breakdown (i.e., prominent characteristics in adult ataxic dysarthria) were not observed. In the second group, hypernasality was a prominent characteristic and resembled flaccid dysarthria in adults. These findings suggest that acquired childhood dysarthria needs a proper classification.

  16. Stereotactic LINAC radiosurgery for the treatment of brainstem cavernomas

    Energy Technology Data Exchange (ETDEWEB)

    Fuetsch, M.; El Majdoub, F.; Hoevels, M.; Sturm, V.; Maarouf, M. [Koeln Univ. (Germany). Dept. of Stereotaxy and Functional Neurosurgery; Mueller, R.P. [Koeln Univ. (Germany). Dept. of Radiation Oncology

    2012-04-15

    Background: The management of deep-seated cerebral cavernous malformations (CCMs) is still controversial. Although surgery remains the treatment of choice in patients with recurrent hemorrhage, patients with CCMs located in the brainstem are in many cases not eligible for resection due to high procedure-related morbidity and mortality. We evaluated the long-term outcome of LINAC radiosurgery (LINAC-RS) for the treatment of brainstem CCMs. Patients and methods: Between December 1992 and March 2008, 14 patients (6 men, 8 women) harboring brainstem CCMs underwent LINAC-RS. Pretreatment neuroimaging showed no associated developmental venous angiomas (DVAs) in any of our patients. Prior to treatment, all patients suffered at least from one symptomatic hemorrhage (median 1.8, range 1-3). A median follow-up of 7.1 years (range 2.0-16.8 years) could be obtained in 12 patients. We applied a median tumor surface dose of 13.9 Gy (range 11-18 Gy; median tumor volume 1.6 ml, range 0.4-4.3 ml). Results: Following LINAC-RS, neurological outcome improved in 4 (33.3%) and remained unchanged in 8 patients (66.7%). Rebleeding with subsequent transient neurological status deterioration occurred in 4 patients (33.3%), leading to additional surgical resection in 2 patients (16.7%). The corresponding annual hemorrhage rate was 4.8% (4/82.8 patient-years). Adverse radiation effects (ARE, defined by perilesional hyperintensity on T{sub 2}-weighted MR images) were revealed in 3 patients (25%), leading to transient neurological deficits in 2 patients (16.7%). There were no procedure-related complications leading to either permanent morbidity or mortality. Conclusion: Our results support the role of LINAC-RS as an efficient and safe treatment to significantly reduce the annual hemorrhage rate in patients suffering from brainstem CCMs not eligible to microsurgery. Compared with radiosurgery for arteriovenous malformations (AVMs), the intervention-related morbidity is higher. (orig.)

  17. Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis.

    Science.gov (United States)

    Lambertz, M; Vandenhouten, R; Grebe, R; Langhorst, P

    2000-01-14

    Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS

  18. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    Science.gov (United States)

    Barnden, Leighton R.; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  19. AUDITORY BRAINSTEM RESPONSES IN SENILE PRESBYCUSIS PATIENTS OVER 90 YEARS

    Institute of Scientific and Technical Information of China (English)

    CHEN Aiting; LIANG Sichao; ZHANG Ruining; GUO Weiwei; ZHOU Qiyou; JI Fei

    2014-01-01

    Objective To analyze the characteristics of auditory brainstem response (ABR) in presbycusis patients el-der than 90 years. Methods Fourteen presbycusis patients elder than 90 years (presbycusis group, 91.1.4 ± 1.3 years, 26 ears) and 9 normal-hearing young adults (control group, 22.7 ± 1.2 years, 18 ears) participated in the study. Alternative click-evoked ABRs were recorded in both groups. The peak latency (PL) of peak I,Ⅲ, and V, and the inter-peak latency (IPI) of I-Ⅲ,Ⅲ-V, and I-V were compared between groups. Results In elder presbycusis patients, the occurrence rate of peak I andⅢwere both 76.9%, and that of peak V was 84.6%. In presbycusis group, the peak latencies of I, Ⅲ, V were significantly longer than that of control group (P<0.001). There was no significant difference between groups in the IPI of peak I-IⅢ (P=0.298, peakⅢ-V (P=0.254) and peak I-V (P=0.364). Conclusions Auditory brainstem responses in presbycusis pa-tients elder than 90 years showed worse wave differentiation.

  20. Brainstem auditory evoked potential abnormalities in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2013-01-01

    Full Text Available Background: Diabetes mellitus represents a syndrome complex in which multiple organ systems, including the central nervous system, are affected. Aim: The study was conducted to determine the changes in the brainstem auditory evoked potentials in type 2 diabetes mellitus. Materials and Methods: A cross sectional study was conducted on 126 diabetic males, aged 35-50 years, and 106 age-matched, healthy male volunteers. Brainstem auditory evoked potentials were recorded and the results were analyzed statistically using student′s unpaired t-test. The data consisted of wave latencies I, II, III, IV, V and interpeak latencies I-III, III-V and I-V, separately for both ears. Results: The latency of wave IV was significantly delayed only in the right ear, while the latency of waves III, V and interpeak latencies III-V, I-V showed a significant delay bilaterally in diabetic males. However, no significant difference was found between diabetic and control subjects as regards to the latency of wave IV unilaterally in the left ear and the latencies of waves I, II and interpeak latency I-III bilaterally. Conclusion: Diabetes patients have an early involvement of central auditory pathway, which can be detected with fair accuracy with auditory evoked potential studies.

  1. A case of Bickerstaff's brainstem encephalitis in childhood

    Directory of Open Access Journals (Sweden)

    Ji Youn Kim

    2010-04-01

    Full Text Available Bickerstaff's brainstem encephalitis (BBE is a rare disease diagnosed by specific clinical features such as 'progressive, relatively symmetric external ophthalmoplegia and ataxia by 4 weeks' and 'disturbance of consciousness or hyperreflexia' after the exclusion of other diseases involving the brain stem. Anti-ganglioside antibodies (GM, GD and GQ in the serum or cerebrospinal fluid (CSF are sometimes informative for the diagnosis of BBE because of the rarity of positive findings in other diagnositic methods: brain magnetic resonance imaging (MRI, routine CSF examination, motor nerve conduction study, and needle electromyography. We report a rare case of childhood BBE with elevated anti-GM1 antibodies in the serum, who had specific clinical symptoms such as a cranial polyneuropathy presenting as ophthalmoplegia, dysarthria, dysphagia, and facial weakness; progressive motor weakness; altered mental status; and ataxia. However, the brain MRI, routine CSF examination, nerve conduction studies, electromyography, somatosensory evoked potentials, and brainstem auditory evoked potentials were normal. BBE was suspected and the patient was successfully treated with intravenous immunoglobulins.

  2. Auditory Brainstem Responses in Children Treated with Cisplatin

    Directory of Open Access Journals (Sweden)

    Mohammad Kamali

    2012-03-01

    Full Text Available Background and Aim: In view of improvement in therapeutic outcome of cancer treatment in children resulting in increased survival rates and the importance of hearing in speech and language development, this research project was intended to assess the effects of cisplatin group on hearing ability in children aged 6 months to 12 years.Methods: In this cross-sectional study, hearing of 10 children on cisplatin group medication for cancer who met the inclusion criteria was examined by recording auditory brainstem responses (ABR using the three stimulants of click and 4 and 8 kHz tone bursts. All children were examined twice: before drug administration and within 72 hours after receiving the last dose. Then the results were compared with each other.Results: There was a significant difference between hearing thresholds before and after drug administration (p<0.05. Right and left ear threshold comparison revealed no significant difference.Conclusion: Ototoxic effects of cisplatin group were confirmed in this study. Insignificant difference observed in comparing right and left ear hearing thresholds could be due to small sample size. auditory brainstem responses test especially with frequency specificity proved to be a useful method in assessing cisplatin ototoxicity.

  3. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  4. A computational framework for ultrastructural mapping of neural circuitry.

    Directory of Open Access Journals (Sweden)

    James R Anderson

    2009-03-01

    Full Text Available Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM, mosaicking and registration (ir-tools, and large slice viewers (MosaicBuilder, Viking can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina, terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally

  5. A Computational Framework for Ultrastructural Mapping of Neural Circuitry

    Science.gov (United States)

    Anderson, James R; Jones, Bryan W; Yang, Jia-Hui; Shaw, Marguerite V; Watt, Carl B; Koshevoy, Pavel; Spaltenstein, Joel; Jurrus, Elizabeth; UV, Kannan; Whitaker, Ross T; Mastronarde, David; Tasdizen, Tolga; Marc, Robert E

    2009-01-01

    Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components) are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM) remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM) image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM), mosaicking and registration (ir-tools), and large slice viewers (MosaicBuilder, Viking) can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina), terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally, this framework

  6. Endoscopic approaches to brainstem cavernous malformations: Case series and review of the literature

    Directory of Open Access Journals (Sweden)

    Nikhil R Nayak

    2015-01-01

    Conclusion: The endoscope is a promising adjunct to the neurosurgeon′s ability to approach difficult to access brainstem cavernous malformations. It allows the surgeon to achieve well-illuminated, panoramic views, and by combining approaches, can provide minimally invasive access to most regions of the brainstem.

  7. The Role of the Auditory Brainstem in Processing Linguistically-Relevant Pitch Patterns

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.

    2009-01-01

    Historically, the brainstem has been neglected as a part of the brain involved in language processing. We review recent evidence of language-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem. We argue that there is enhancing…

  8. Learning and the motivation to eat: forebrain circuitry.

    Science.gov (United States)

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia.

  9. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    Science.gov (United States)

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  10. NeuronBank: a tool for cataloging neuronal circuitry

    Directory of Open Access Journals (Sweden)

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  11. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  12. The impact of severity of hypertension on auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Gurdev Lal Goyal

    2014-07-01

    Full Text Available Background: Auditory brainstem response is an objective electrophysiological method for assessing the auditory pathways from the auditory nerve to the brainstem. The aim of this study was to correlate and to assess the degree of involvement of peripheral and central regions of brainstem auditory pathways with increasing severity of hypertension, among the patients of essential hypertension. Method: This study was conducted on 50 healthy age and sex matched controls (Group I and 50 hypertensive patients (Group II. Later group was further sub-divided into - Group IIa (Grade 1 hypertension, Group IIb (Grade 2 hypertension, and Group IIc (Grade 3 hypertension, as per WHO guidelines. These responses/potentials were recorded by using electroencephalogram electrodes on a root-mean-square electromyography, EP MARC II (PC-based machine and data were statistically compared between the various groups by way of one-way ANOVA. The parameters used for analysis were the absolute latencies of Waves I through V, interpeak latencies (IPLs and amplitude ratio of Wave V/I. Result: The absolute latency of Wave I was observed to be significantly increased in Group IIa and IIb hypertensives, while Wave V absolute latency was highly significantly prolonged among Group IIb and IIc, as compared to that of normal control group. All the hypertensives, that is, Group IIa, IIb, and IIc patients were found to have highly significant prolonged III-V IPL as compared to that of normal healthy controls. Further, intergroup comparison among hypertensive patients revealed a significant prolongation of Wave V absolute latency and III-V IPL in Group IIb and IIc patients as compared to Group IIa patients. These findings suggest a sensory deficit along with synaptic delays, across the auditory pathways in all the hypertensives, the deficit being more markedly affecting the auditory processing time at pons to midbrain (IPL III-V region of auditory pathways among Grade 2 and 3

  13. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong;

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  14. Abnormal ocular motility with brainstem and cerebellar disorders.

    Science.gov (United States)

    Carlow, T J; Bicknell, J M

    1978-01-01

    The disorders of ocular motility seen in association with brainstem or cerebellar disorders may point to rather specific anatomical or pathological correlations. Pontine gaze palsy reflects involvement of the pontine paramedian reticular formation. Internuclear ophthalmoplegia signifies a lesion in the medial longitudinal fasciculus. Skew deviation may result from a lesion anywhere in the posterior fossa. Ocular bobbing typically results from a pontine lesion. The Sylvian aqueduct syndrome is characteristic of involvement in the upper midbrain-pretectal region, usually a pinealoma. Cerebellar lesions may be manifested by gaze paresis, skew deviation, disturbances of saccadic or smooth pursuit movements, ocular myoclonus, or several characteristic forms of nystagmus. Familiarity with these disorders may be of great help to the physician dealing with a patient with a possible posterior fossa lesion.

  15. Synaptic plasticity in inhibitory neurons of the auditory brainstem.

    Science.gov (United States)

    Bender, Kevin J; Trussell, Laurence O

    2011-04-01

    There is a growing appreciation of synaptic plasticity in the early levels of auditory processing, and particularly of its role in inhibitory circuits. Synaptic strength in auditory brainstem and midbrain is sensitive to standard protocols for induction of long-term depression, potentiation, and spike-timing-dependent plasticity. Differential forms of plasticity are operative at synapses onto inhibitory versus excitatory neurons within a circuit, and together these could serve to tune circuits involved in sound localization or multisensory integration. Such activity-dependent control of synaptic function in inhibitory neurons may also be expressed after hearing loss and could underlie persistent neuronal activity in patients with tinnitus. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  16. The neural circuitry of expertise: perceptual learning and social cognition.

    Science.gov (United States)

    Harré, Michael

    2013-12-17

    Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific and interrelated types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviorally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations (SDEs). Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and social

  17. Altered reward circuitry in the norepinephrine transporter knockout mouse.

    Directory of Open Access Journals (Sweden)

    Joseph J Gallagher

    Full Text Available Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET, using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT knockout mouse, but dissimilar from work with serotonin transporter (SERT knockout mice where Mn(2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely

  18. The Neural Circuitry of Expertise: Perceptual Learning and Social Cognition

    Directory of Open Access Journals (Sweden)

    Michael eHarre

    2013-12-01

    Full Text Available Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is likely a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviourally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations. Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and

  19. Convergence and cross talk in urogenital neural circuitries.

    Science.gov (United States)

    Hubscher, C H; Gupta, D S; Brink, T S

    2013-10-01

    Despite common comorbidity of sexual and urinary dysfunctions, the interrelationships between the neural control of these functions are poorly understood. The medullary reticular formation (MRF) contributes to both mating/arousal functions and micturition, making it a good site to test circuitry interactions. Urethane-anesthetized adult Wistar rats were used to examine the impact of electrically stimulating different nerve targets [dorsal nerve of the penis (DNP) or clitoris (DNC); L6/S1 trunk] on responses of individual extracellularly recorded MRF neurons. The effect of bladder filling on MRF neurons was also examined, as was stimulation of DNP on bladder reflexes via cystometry. In total, 236 MRF neurons responded to neurostimulation: 102 to DNP stimulation (12 males), 64 to DNC stimulation (12 females), and 70 to L6/S1 trunk stimulation (12 males). Amplitude thresholds were significantly different at DNP (15.0 ± 0.6 μA), DNC (10.5 ± 0.7 μA), and L6/S1 trunk (54.2 ± 4.6 μA), whereas similar frequency responses were found (max responses near 30-40 Hz). In five males, filling/voiding cycles were lengthened with DNP stimulation (11.0 ± 0.9 μA), with a maximal effective frequency plateau beginning at 30 Hz. Bladder effects lasted ≈ 2 min after DNP stimulus offset. Many MRF neurons receiving DNP/DNC input responded to bladder filling (35.0% and 68.3%, respectively), either just before (43%) or simultaneously with (57%) the voiding reflex. Taken together, MRF-evoked responses with neurostimulation of multiple nerve targets along with different responses to bladder infusion have implications for the role of MRF in multiple aspects of urogenital functions.

  20. Brainstem tegmental lesions in neonates with hypoxicischemic encephalopathy: Magnetic resonance diagnosis and clinical outcome

    Institute of Scientific and Technical Information of China (English)

    Carlo Cosimo Quattrocchi; Giuseppe Fariello; Daniela Longo

    2016-01-01

    Lesions of the brainstem have been reported in the clinical scenarios of hypoxic-ischemic encephalopathy(HIE), although the prevalence of these lesions is probably underestimated. Neuropathologic studies have demonstrated brainstem involvement in severely asphyxiated infants as an indicator of poor outcome. Among survivors to HIE, the most frequent clinical complaints that may be predicted by brainstem lesions include feeding problems, speech, language and communication problems and visual impairments. Clinical series, including vascular and metabolic etiologies, have found selective involvement of the brainstem with the demonstration of symmetric bilateral columnar lesions of the tegmentum. The role of brainstem lesions in HIE is currently a matter of debate, especially when tegmental lesions are present in the absence of supratentorial lesions. Differential diagnosis of tegmental lesions in neonates and infants include congenital metabolic syndromes and drug-related processes. Brainstem injury with the presence of supratentorial lesions is a predictor of poor outcome and high rates of mortality and morbidity. Further investigation will be conducted to identify specific sites of the brainstem that are vulnerable to hypoxic-ischemic and toxic-metabolic insults.

  1. Neuropathological changes in auditory brainstem nuclei in cattle with experimentally induced bovine spongiform encephalopathy.

    Science.gov (United States)

    Fukuda, S; Okada, H; Arai, S; Yokoyama, T; Mohri, S

    2011-01-01

    Bovine spongiform encephalopathy (BSE) is characterized by the appearance of spongy lesions in the brain, particularly in the brainstem nuclei. This study evaluated the degenerative changes observed in the central auditory brainstem of BSE-challenged cattle. The neuropathological changes in the auditory brainstem nuclei were assessed by determining the severity of vacuolation and the presence of disease-associated prion protein (PrP(Sc)). Sixteen female Holstein-Friesian calves, 2-4 months of age, were inoculated intracerebrally with BSE agent. BSE-challenged animals developed the characteristic clinical signs of BSE approximately 18 months post inoculation (mpi) and advanced neurological signs after 22 mpi. Before the appearance of clinical signs (i.e. at 3, 10, 12 and 16 mpi), vacuolar change was absent or mild and PrP(Sc) deposition was minimal in the auditory brainstem nuclei. The two cattle sacrificed at 18 and 19 mpi had no clinical signs and showed mild vacuolar degeneration and moderate amounts of PrP(Sc) accumulation in the auditory brainstem pathway. In the animals challenged with BSE agent that developed clinical sings (i.e. after 20 mpi), spongy changes were more prominent in the nucleus of the inferior colliculus compared with the other nuclei of the auditory brainstem and the medial geniculate body. Neuropathological changes characterized by spongy lesions accompanied by PrP(Sc) accumulation in the auditory brainstem nuclei of BSE-infected cattle may be associated with hyperacusia.

  2. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  3. Apparatus, system and method for providing cryptographic key information with physically unclonable function circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Areno, Matthew

    2015-12-08

    Techniques and mechanisms for providing a value from physically unclonable function (PUF) circuitry for a cryptographic operation of a security module. In an embodiment, a cryptographic engine receives a value from PUF circuitry and based on the value, outputs a result of a cryptographic operation to a bus of the security module. The bus couples the cryptographic engine to control logic or interface logic of the security module. In another embodiment, the value is provided to the cryptographic engine from the PUF circuitry via a signal line which is distinct from the bus, where any exchange of the value by either of the cryptographic engine and the PUF circuitry is for communication of the first value independent of the bus.

  4. 78 FR 53159 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same: Notice...

    Science.gov (United States)

    2013-08-28

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same: Notice of Commission Determination To Terminate the Investigation Based on Settlement AGENCY:...

  5. 78 FR 24234 - Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same; Notice...

    Science.gov (United States)

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same; Notice..., which is a limited exclusion order barring the entry of unlicensed DRAM semiconductor chips...

  6. 77 FR 33240 - Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same...

    Science.gov (United States)

    2012-06-05

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Chips With DRAM Circuitry, and Modules and Products Containing Same Determination Not To Review an Initial Determination To Amend the Complaint and Notice of Investigation...

  7. Inverse activity of masticatory muscles with and without trismus: a brainstem syndrome.

    Science.gov (United States)

    Jelasic, F; Freitag, V

    1978-09-01

    Clinical and EMG findings in 10 cases of intrinsic brainstem lesions are reported with paradoxical activity of jaw closing muscles during jaw opening, with and without trismus. In five cases with trigeminal anaesthesia, the inverse activity of jaw closers is interpreted as a manifestation of disturbance in the central programming of mastication in the motor trigeminal area of the brainstem. Stretch reflex mechanisms and disinhibition of the trigeminal motor neurones play no part in the origin of inverse activity. The distinct brainstem syndrome can only be detected by EMG and the special clinical features.

  8. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem.

    Directory of Open Access Journals (Sweden)

    Gilles Vandewalle

    Full Text Available BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s monochromatic violet (430 nm, blue (473 nm, and green (527 nm light exposures of equal photon flux (10(13ph/cm(2/s while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.

  9. Hybrid gate dielectric materials for unconventional electronic circuitry.

    Science.gov (United States)

    Ha, Young-Geun; Everaerts, Ken; Hersam, Mark C; Marks, Tobin J

    2014-04-15

    Recent advances in semiconductor performance made possible by organic π-electron molecules, carbon-based nanomaterials, and metal oxides have been a central scientific and technological research focus over the past decade in the quest for flexible and transparent electronic products. However, advances in semiconductor materials require corresponding advances in compatible gate dielectric materials, which must exhibit excellent electrical properties such as large capacitance, high breakdown strength, low leakage current density, and mechanical flexibility on arbitrary substrates. Historically, conventional silicon dioxide (SiO2) has dominated electronics as the preferred gate dielectric material in complementary metal oxide semiconductor (CMOS) integrated transistor circuitry. However, it does not satisfy many of the performance requirements for the aforementioned semiconductors due to its relatively low dielectric constant and intransigent processability. High-k inorganics such as hafnium dioxide (HfO2) or zirconium dioxide (ZrO2) offer some increases in performance, but scientists have great difficulty depositing these materials as smooth films at temperatures compatible with flexible plastic substrates. While various organic polymers are accessible via chemical synthesis and readily form films from solution, they typically exhibit low capacitances, and the corresponding transistors operate at unacceptably high voltages. More recently, researchers have combined the favorable properties of high-k metal oxides and π-electron organics to form processable, structurally well-defined, and robust self-assembled multilayer nanodielectrics, which enable high-performance transistors with a wide variety of unconventional semiconductors. In this Account, we review recent advances in organic-inorganic hybrid gate dielectrics, fabricated by multilayer self-assembly, and their remarkable synergy with unconventional semiconductors. We first discuss the principals and functional

  10. Type-2 diabetes mellitus and auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Sheelu S Siddiqi

    2013-01-01

    Full Text Available Objective: Diabetes mellitus (DM causes pathophysiological changes at multiple organ system. With evoked potential techniques, the brain stem auditory response represents a simple procedure to detect both acoustic nerve and central nervous system pathway damage. The objective was to find the evidence of central neuropathy in diabetes patients by analyzing brainstem audiometry electric response obtained by auditory evoked potentials, quantify the characteristic of auditory brain response in long standing diabetes and to study the utility of auditory evoked potential in detecting the type, site, and nature of lesions. Design: A total of 25 Type-2 DM [13 (52% males and 12 (48% females] with duration of diabetes over 5 years and aged over 30 years. The brainstem evoked response audiometry (BERA was performed by universal smart box manual version 2.0 at 70, 80, and 90 dB. The wave latency pattern and interpeak latencies were estimated. This was compared with 25 healthy controls (17 [68%] males and 8 [32%] females. Result: In Type-2 DM, BERA study revealed that wave-III representing superior olivary complex at 80 dB had wave latency of (3.99 ± 0.24 ms P < 0.001, at 90 dB (3.92 ± 0.28 ms P < 0.001 compared with control. The latency of wave III was delayed by 0.39, 0.42, and 0.42 ms at 70, 80, and 90 dB, respectively. The absolute latency of wave V representing inferior colliculus at 70 dB (6.05 ± 0.27 ms P < 0.001, at 80 dB (5.98 ± 0.27 P < 0.001, and at 90 dB (6.02 ± 0.30 ms P < 0.002 compared with control. The latency of wave-V was delayed by 0.48, 0.47, and 0.50 ms at 70, 80, and 90 dB, respectively. Interlatencies I-III at 70 dB (2.33 ± 0.22 ms P < 0.001, at 80 dB (2.39 ± 0.26 ms P < 0.001, while at 90 dB (2.47 ± 0.25 ms P < 0.001 when compared with control. Interlatencies I-V at 70 dB (4.45 ± 0.29 ms P < 0.001 at 80 dB (4.39 ± 0.34 ms P < 0.001, and at 90 dB (4.57 ± 0.31 ms P < 0.001 compared with control. Out of 25 Type-2 DM, 13 (52

  11. Regional differences in age-related lipofuscin accumulation in the female hamster brainstem

    NARCIS (Netherlands)

    Gerrits, Peter O.; Kortekaas, Rudie; de Weerd, Henk; Veening, Jan G.; van der Want, Johannes J. L.

    2012-01-01

    Lipofuscin accumulation is a characteristic feature of senescent postmitotic neuronal cells but estrogen may have protecting effects by inhibiting its formation. In the present ultrastructural study, lipofuscin accumulation was studied in 2 estrogen-alpha-receptive brainstem areas: nucleus pararetro

  12. Herpetic brainstem encephalitis: report of a post-mortem case studied electron microscopically and immunohisiochemically

    Directory of Open Access Journals (Sweden)

    José Eymard Homem Pitella

    1987-03-01

    Full Text Available A post-mortem examined case of herpetic brainstem encephalitis is presented. Clinically, the patient had cephalea followed by ataxia, drowsiness and multiple palsies of some cranial nerves, developing into death in eight days. The pathologic examination of the brain showed necrotizing encephalitis in multiple foci limited to the brainstem, more distinctly in the pons and medula oblongata. The technique of immunoperoxidase revealed rare glial cells with intranuclear immunoreactivity for herpes antigen. Rare viral particles with the morphological characteristics of the herpesvirus were identified in the nuclei of neurons in 10% formol fixed material. This is the second reported case of herpetic brainstem encephalitis confirmed by post-mortem examination. The pathway used by the virus to reach the central nervous system and its posterior dissemination to the oral cavity, the orbitofrontal region and the temporal lobes as well as to the brainstem, after a period of latency and reactivation, are discussed.

  13. Prodominant hypertensive brainstem encephalopathy with supratentorial involvement: Case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hee; Park, Sung Tae; Lim, Hyun Kyung [Dept. of Radiology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae; Cha, Ji Hoon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Hypertensive encephalopathy typically presents with bilateral parietooccipital vasogenic edema. Brainstem and cerebellar edema are uncommon in association with typical supratentorial changes. We experienced three cases of atypical hypertensive encephalopathy involving brainstem and cerebellum as well as cerebral white matter, which showed characteristic alternating linear bright and low signals in the pons, the so-called 'stripe sign'. We report these cases here with a brief literature review.

  14. Expression and significance of sonic hedgehog signaling pathway-related components in brainstem and supratentorial astrocytomas

    Institute of Scientific and Technical Information of China (English)

    XIN Yu; HAO Shu-yu; TIAN Yong-ji; ZHANG Jun-ting; WU Zhen; WAN Hong; LI Jun-hua; JIANG Jian; ZHANG Li-wei

    2011-01-01

    Background Studies have shown that abnormal activation of the sonic hedgehog pathway is closely related to tumorigenesis in central nervous system.This study aimed to investigate the role of the sonic hedgehog signaling pathway in the occurrence of brainstem and supratentorial glioma.Methods Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of sonic hedgehog-related components in 5 specimens of normal brain tissue,10 of grade Ⅱ brainstem glioma,and 10 of grade Ⅱ supratentorial glioma.The significance of differences between two groups was determined using the Mann-Whitney U test or the two-sample test according to the results of normality distribution tests.Results The mRNA expression levels of sonic hedgehog-related genes were higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue.The level of protein patched homolog 1 (PTCH1) was significantly higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue (P <0.01).Immunohistochemistry semi-quantitative analysis was consistent with the qRT-PCR result that PTCH1 expression was increased significantly in brainstem astrocytomas at the protein level (P <0.05).Conclusions Enhanced PTCH1 expression and activation of the sonic hedgehog pathway are involved in brainstem glioma.This may be related to the difference in malignant biological behavior between brainstem and hemispheric glioma,and could be an ideal therapeutic target in brainstem glioma.

  15. Pain fiber anesthetic reduces brainstem Fos after tooth extraction.

    Science.gov (United States)

    Badral, B; Davies, A J; Kim, Y H; Ahn, J S; Hong, S D; Chung, G; Kim, J S; Oh, S B

    2013-11-01

    We recently demonstrated that pain-sensing neurons in the trigeminal system can be selectively anesthetized by co-application of QX-314 with the TRPV1 receptor agonist, capsaicin (QX cocktail). Here we examined whether this new anesthetic strategy can block the neuronal changes in the brainstem following molar tooth extraction in the rat. Adult male Sprague-Dawley rats received infiltration injection of anesthetic 10 min prior to lower molar tooth extraction. Neuronal activation was determined by immunohistochemistry for the proto-oncogene protein c-Fos in transverse sections of the trigeminal subnucleus caudalis (Sp5C). After tooth extraction, c-Fos-like immunoreactivity (Fos-LI) detected in the dorsomedial region of bilateral Sp5C was highest at 2 hrs (p tooth extraction; reduced Fos-LI was also observed with the conventional local anesthetic lidocaine. Pulpal anesthesia by infiltration injection was confirmed by inhibition of the jaw-opening reflex in response to electrical tooth pulp stimulation. Our results suggest that the QX cocktail anesthetic is effective in reducing neuronal activation following tooth extraction. Thus, a selective pain fiber 'nociceptive anesthetic' strategy may provide an effective local anesthetic option for dental patients in the clinic.

  16. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E; Olsen, Glenn H.; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  17. Brainstem acoustic areas in the marine catfish, Arius felis.

    Science.gov (United States)

    McCormick, C A

    2001-03-01

    The marine catfish Arius felis produces low frequency sounds for communication and obstacle detection. It was hypothesized that the utriculus of the inner ear might play an important role in these behaviors. In the current study, brainstem acoustic areas were studied to reveal possible neuroanatomical specializations in utricular processing areas. The first-order octaval nuclei in Arius were identical in number, anatomical characteristics, and organization of saccular, lagenar, and utricular inputs to previous reports of these features in Ictalurus, a closely related species of catfish that does not exhibit the specialized acoustic behaviors present in Arius. Similarly, injections of neural tracer in the acoustic midbrain (nucleus centralis) of Arius revealed afferent and retrograde pathways almost identical to those previously reported in Ictalurus. It is suggested that areas within the primary and higher-order octaval nuclei that utilize utricular input in acoustic processing are likely identical in Arius and Ictalurus. Two sets of higher-order connections in Arius differ from those in Ictalurus. First, Arius apparently lacks the direct input from the anterior octaval nucleus to nucleus centralis reported in Ictalurus. Second, in Arius nucleus centralis projects bilaterally to a strip of neurons positioned ventral to the ventral boundary of the torus semicircularis. This projection is apparently absent in Ictalurus and in the related species Carassius (goldfish), but has been previously reported in Porichthyes, a sound-producing species belonging to a different teleost taxon.

  18. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  19. A clinical study of brainstem infarction identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-04-01

    We conducted a clinical study of 155 cases that were confirmed to have brainstem infarctions on MRI (T[sub 1]-weighted image showed a low signal and T[sub 2]-weighted image showed a high signal, measuring in excess of 2 x 2 mm). The majority of the brainstem infarction was located in the pontine base in 132 cases (85.2%). Of these, 19 cases had double lesions including infarctions in the pontine base. Second infarctions frequently occurred in the cerebral peduncle or medical medulla oblongata, unilateral to the pontine infarctions. In addition to 98 symptomatic cases, there were 57 cases of 'asymptomatic' brainstem infarction. They comprised 24 cases accompanying other symptomatic cerebrovascular diseases in the supratentorium and 33 cases of transient subjective complaints such as headache or vertigo-dizziness. Complication by supratentorial infarctions was significantly frequent in cases of brainstem infarction (p<0.001), 122 of 155 cases (78.7%), especially in the pontine base (88.6%); while in the control cases (without brainstem infarction) only 65 of 221 cases (29.4%). These findings are considered to show the widespread progress of arteriosclerosis in brainstem infarction, especially in ones in the pontine base. (author).

  20. Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Ana Navarro

    Full Text Available The lipocalin apolipoprotein D (Apo D is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus. In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32-96 years of age with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.

  1. Type-dependent irreversible stochastic spin models for genetic regulatory networks at the level of promotion-inhibition circuitry

    Science.gov (United States)

    Mendonça, J. Ricardo G.; de Oliveira, Mário J.

    2015-12-01

    We describe an approach to model genetic regulatory networks at the level of promotion-inhibition circuitry through a class of stochastic spin models that includes spatial and temporal density fluctuations in a natural way. The formalism can be viewed as an agent-based model formalism with agent behaviour ruled by a classical spin-like pseudo-Hamiltonian playing the role of a local, individual objective function. A particular but otherwise generally applicable choice for the microscopic transition rates of the models also makes them of independent interest. To illustrate the formalism, we investigate (by Monte Carlo simulations) some stationary state properties of the repressilator, a synthetic three-gene network of transcriptional regulators that possesses oscillatory behaviour.

  2. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  3. Participation of brainstem monoaminergic nuclei in behavioral depression.

    Science.gov (United States)

    Lin, Yan; Sarfraz, Yasmeen; Jensen, Ashley; Dunn, Adrian J; Stone, Eric A

    2011-12-01

    Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.

  4. Brainstem auditory-evoked potentials in two meditative mental states

    Directory of Open Access Journals (Sweden)

    Kumar Sanjay

    2010-01-01

    Full Text Available Context: Practicing mental repetition of "OM" has been shown to cause significant changes in the middle latency auditory-evoked potentials, which suggests that it facilitates the neural activity at the mesencephalic or diencephalic levels. Aims: The aim of the study was to study the brainstem auditory-evoked potentials (BAEP in two meditation states based on consciousness, viz. dharana, and dhyana. Materials and Methods: Thirty subjects were selected, with ages ranging from 20 to 55 years (M=29.1; ±SD=6.5 years who had a minimum of 6 months experience in meditating "OM". Each subject was assessed in four sessions, i.e. two meditation and two control sessions. The two control sessions were: (i ekagrata, i.e. single-topic lecture on meditation and (ii cancalata, i.e. non-targeted thinking. The two meditation sessions were: (i dharana, i.e. focusing on the symbol "OM" and (ii dhyana, i.e. effortless single-thought state "OM". All four sessions were recorded on four different days and consisted of three states, i.e. pre, during and post. Results: The present results showed that the wave V peak latency significantly increased in cancalata, ekagrata and dharana, but no change occurred during the dhyana session. Conclusions: These results suggested that information transmission along the auditory pathway is delayed during cancalata, ekagrata and dharana, but there is no change during dhyana. It may be said that auditory information transmission was delayed at the inferior collicular level as the wave V corresponds to the tectum.

  5. The superior transvelar approach to the fourth ventricle and brainstem.

    Science.gov (United States)

    Ezer, Haim; Banerjee, Anirban Deep; Bollam, Papireddy; Guthikonda, Bharat; Nanda, Anil

    2012-06-01

    Objective The superior transvelar approach is used to access pathologies located in the fourth ventricle and brainstem. The surgical path is below the venous structures, through the superior medullary velum. Following splitting the tentorial edge, near the tentorial apex, the superior medullary velum is split in the cerebello-mesencephalic fissure. Using the supracerebellar infratentorial, transtentorial or parietal interhemispheric routes, the superior medullary velum is approached. Splitting this velum provides a detailed view of the fourth ventricle and its floor. Materials and Methods A total of 10 formalin-fixed specimens were dissected in a stepwise manner to simulate the superior transvelar approach to the fourth ventricle. The exposure gained the distance from the craniotomy site and the ease of access was assessed for each of the routes. We also present an illustrative case, operated by the senior author (AN). Results The superior transvelar approach provides access to the entire length of the fourth ventricle floor, from the aqueduct to the obex, when using the parietal interhemispheric route. In addition, this approach provides access to the entire width of the floor of the fourth ventricle; however, this requires retracting the superior cerebellar peduncle. Using the supracerebellar infratentorial route gives a limited exposure of the superior part of the fourth ventricle. The occipital interhemispheric route is a compromise between these two. Conclusion The superior transvelar approach to the fourth ventricle provides a route for approaching the fourth ventricle from above. This approach does not require opening the posterior fossa in the traditional way, and provides a reasonable alternative for accessing the superior fourth ventricle.

  6. Localization of the brainstem GABAergic neurons controlling paradoxical (REM sleep.

    Directory of Open Access Journals (Sweden)

    Emilie Sapin

    Full Text Available Paradoxical sleep (PS is a state characterized by cortical activation, rapid eye movements and muscle atonia. Fifty years after its discovery, the neuronal network responsible for the genesis of PS has been only partially identified. We recently proposed that GABAergic neurons would have a pivotal role in that network. To localize these GABAergic neurons, we combined immunohistochemical detection of Fos with non-radioactive in situ hybridization of GAD67 mRNA (GABA synthesis enzyme in control rats, rats deprived of PS for 72 h and rats allowed to recover after such deprivation. Here we show that GABAergic neurons gating PS (PS-off neurons are principally located in the ventrolateral periaqueductal gray (vlPAG and the dorsal part of the deep mesencephalic reticular nucleus immediately ventral to it (dDpMe. Furthermore, iontophoretic application of muscimol for 20 min in this area in head-restrained rats induced a strong and significant increase in PS quantities compared to saline. In addition, we found a large number of GABAergic PS-on neurons in the vlPAG/dDPMe region and the medullary reticular nuclei known to generate muscle atonia during PS. Finally, we showed that PS-on neurons triggering PS localized in the SLD are not GABAergic. Altogether, our results indicate that multiple populations of PS-on GABAergic neurons are distributed in the brainstem while only one population of PS-off GABAergic neurons localized in the vlPAG/dDpMe region exist. From these results, we propose a revised model for PS control in which GABAergic PS-on and PS-off neurons localized in the vlPAG/dDPMe region play leading roles.

  7. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.

    Science.gov (United States)

    Schulte, Laura H; Sprenger, Christian; May, Arne

    2016-01-01

    The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced level of physiological noise. In this study we used a viable protocol for brainstem fMRI of standardized trigeminal nociceptive stimulation to achieve detailed insight into physiological brainstem mechanisms of trigeminal nociception. We conducted a study of 21 healthy participants using a nociceptive ammonia stimulation of the left nasal mucosa with an optimized MR acquisition protocol for high resolution brainstem echoplanar imaging in combination with two different noise correction techniques. Significant BOLD responses to noxious ammonia stimulation were observed in areas typically involved in trigeminal nociceptive processing such as the spinal trigeminal nuclei (sTN), thalamus, secondary somatosensory cortex, insular cortex and cerebellum as well as in a pain modulating network including the periaqueductal gray area, hypothalamus (HT), locus coeruleus and cuneiform nucleus (CNF). Activations of the left CNF were positively correlated with pain intensity ratings. Employing psychophysiological interaction (PPI) analysis we found enhanced functional connectivity of the sTN with the contralateral sTN and HT following trigeminal nociception. We also observed enhanced functional connectivity of the CNF with the RVM during painful stimulation thus implying an important role of these two brainstem regions in central pain processing. The chosen approach to study trigeminal nociception with high-resolution fMRI offers new insight into human pain processing and might thus lead to a better understanding of headache pathophysiology.

  8. The clinic discuss of prognosis and treatment or brainstem infarction combined coma

    Institute of Scientific and Technical Information of China (English)

    Niu Junying; Wanglei; YinShimin; Zheng Yishan; Shijie Qu; Zhanfen

    2000-01-01

    Objective Discuss the relationship between the position, bound of brainstem infarction and .consciousness clog,determinan the prognosis and curative effect. Background and Methods Total brainstem infarction 14 patients,9 male and 5 female,43 to 80 years old.all patients had been checked by CT or MRI,brainstem foliun scanning 6 cases,checked by MRI 8 canes micbrain infarction 2 cases,pon infarction 5 cases,medulla infasction 7 cases the midbrain infarction were rise rapid,inmediately coma,the mydrasis in defect side,opposite body mucsle tension heighten.then both lower limbs straight,both pathology sign masculine.the two cases are all alive .tocked-in syndrom has appeared in 1 case of pon infarction ,and died of combined illness 1 year later. 1 case defect affect centrum of breath and hearlbeat, coma,breath rhythm malajustment,breath stop.threr were no consciousness clog in the other 3 cases ,vertigo,force head position to trouble side, nystagmus, trouble side face hypalgesia,and all cureed .2 cases of medulla infarction appeared quactriplegia ,swallow hardness,anarthriad and so on, 5 others were hemi Watlenberg syndrom,all wcre cured. Results and Discussion coma or no in brainstem infaciton was related with position.it is reparted that midbrain infarction coma was 7.6 persent of brainstem infarction. consciousness clog is distinctness which defect position in midbrain lateral-back, pon ventro defect, not involved ARAS ,lwas locked-in synxdom. brainstem infarction combined combined with freedom breath clog,in medulla was 16.1percent,midorain was 1 1.6 percent, pons ws 83.96 percent the prognosis was.all right in lightly brainsterm infarction, lf involved in both medulla, ventro pon,the prognosis was bad, and lose quadriplegia. CT brainstern foliun scanning would enhanced scanning lay, and helpful for chech up the pathological chanoes of brainstem.

  9. Method, apparatus and system to compensate for drift by physically unclonable function circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason

    2016-11-22

    Techniques and mechanisms to detect and compensate for drift by a physically uncloneable function (PUF) circuit. In an embodiment, first state information is registered as reference information to be made available for subsequent evaluation of whether drift by PUF circuitry has occurred. The first state information is associated with a first error correction strength. The first state information is generated based on a first PUF value output by the PUF circuitry. In another embodiment, second state information is determined based on a second PUF value that is output by the PUF circuitry. An evaluation of whether drift has occurred is performed based on the first state information and the second state information, the evaluation including determining whether a threshold error correction strength is exceeded concurrent with a magnitude of error being less than the first error correction strength.

  10. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    Science.gov (United States)

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status.

  11. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry

    OpenAIRE

    Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark

    2012-01-01

    Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorph...

  12. Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency Harmonics Interrogation for Structural Damage Detection

    Science.gov (United States)

    2014-09-17

    AFRL-OSR-VA-TR-2014-0255 ADAPTIVE PIEZOELECTRIC CIRCUITRY SENSOR NETWORK KON-WELL WANG MICHIGAN UNIV ANN ARBOR Final Report 09/17/2014 DISTRIBUTION A...by ANSI Std. Z39.18 09-09-2014 Final Performance Report 06-01-2011 - 05-31-2014 Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency...approach. Specifically, we propose to create a new concept of adaptive high-frequency piezoelectric self-sensing interrogation by means of tunable

  13. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general.

  14. Immunohistochemical localization of glutamate transporter EAAC1 in the brainstem of adult rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fu-xing; LIU Tao; ZHAO Jing-wei; LI Jin-lian; DONG Yu-lin; LI Ji-shuo

    2001-01-01

    Objective: To observe the distribution of EAAC1, a subtype of glutamate transporters, in the brainstem of adult rat. Methods: Immunocytochemical staining with avidin-biotin complex (ABC) method was employed. Results:EAAC1 was widely distributed throughout the brainstem. In many regions, the EAAC1-like immunoreactivity was primarily distributed in the neuropil. Cell body staining was observed in the prepositus hypoglossal nucleus, external cortex of the inferior colliculus, red nucleus, substantia nigra, mesencephalic raphe nuclei, ventral tegmental nucleus, superior olivary complex, nucleus of the trapezoid body, cochlear nucleus, sensory trigeminal complex, Barrington's nucleus,trigeminal motor nucleus, parabrachial nuclei, dorsal nucleus of vagus, hypoglossal nucleus, locus coeruleus, lateral and superior vestibular nuclei, lateral paragigantocellular nucleus and dorsal paragigantocellular nucleus. Conclusion: Glutamate transporter EAAC 1 is widely distributed throughout the brainstem of adult rat, which may play an important role in excitatory activities of the neurons induced by glutamate.

  15. Oxytocin reduces neural activity in the pain circuitry when seeing pain in others

    NARCIS (Netherlands)

    Bos, Peter A.; Montoya, Estrella R.; Hermans, Erno J.; Keysers, Christian; van Honk, Jack

    2015-01-01

    Our empathetic abilities allow us to feel the pain of others. This phenomenon of vicarious feeling arises because the neural circuitry of feeling pain and seeing pain in others is shared. The neuropeptide oxytocin (OXT) is considered a robust facilitator of empathy, as intranasal OXT studies have re

  16. Asymmetrical Processing of Olfactory Input in the Piriform Cortex Mediates "Activation" of the Avian Navigation Circuitry.

    Science.gov (United States)

    Jorge, Paulo E; Marques, Paulo A M; Pinto, Belmiro V; Phillips, John B

    2016-08-11

    The role of odors in the long-distance navigation of birds has elicited intense debate for more than half a century. Failure to resolve many of the issues fueling this debate is due at least in part to the absence of controls for a variety of non-specific effects that odors have on the navigational process. The present experiments were carried out to investigate whether the olfactory inputs are involved only in "activation" of neuronal circuitry involved in navigation or are also playing a role in providing directional information. Experienced adult pigeons were exposed to controlled olfactory stimuli during different segments of the journey (release site vs. displacement + release site). Protein levels of IEGs (immediate early genes used to mark synaptic activity) were analyzed in areas within the olfactory/navigation avian circuitry. The results indicate that 1) exposure to natural odors at the release site (and not before) elicit greater activation across brain regions than exposure to filtered air, artificial odors, and natural odors along the entire outward journey (from home to the release site, inclusive); 2) activation of the piriform cortex in terms of odor discrimination is lateralized; 3) activation of the navigation circuitry is achieved by means of lateralized activation of piriform cortex neurons. Altogether, the findings provide the first direct evidence that activation of the avian navigation circuitry is mediated by asymmetrical processing of olfactory input occurring in the right piriform cortex.

  17. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  18. Non-contact structural damage detection using magnetic admittance approach with circuitry tuning

    Science.gov (United States)

    Wang, X.; Tang, J.

    2010-03-01

    One limitation of piezoelectric impedance/admittance approach is that the sensor is permanently fixed after it is bonded/embedded into the mechanical structure to be monitored. Recently, the magnetic transducer, which is essentially an electrical coil inserted with a permanent magnet, is explored for impedance/admittance-based damage detection. Since there is no direct contact between the magnetic sensor and the host structure, the magnetic impedance/admittance approach is capable of online health monitoring of structures with complicated geometries and boundaries. Also, the magnetic impedance/admittance sensor is moveable above the structure surface, which may reduce the number of sensors needed to cover a large structural area. In an earlier study a new magnetic impedance sensing scheme with circuitry integration is proposed, which can greatly enhance the signal-to-noise ratio and amplify the damage induced admittance change. In this research, we systematically study the sensor location on the performance of the magnetic impedance/admittance-based damage detection scheme with circuitry integration. By examining the resonant peaks in the circuitry impedance curves, the damage-induced change of circuitry admittance and the two-way magneto-mechanical coupling, the different amplification effects of the magnetic sensor on the dynamical responses around mechanical modes is investigated. The criteria of tuning the capacitance of the tunable capacitor to achieve significantly amplified admittance changes in a wide frequency range are also developed. Correlated numerical and experimental studies are carried out to validate our proposed tuning criteria.

  19. 78 FR 41079 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same

    Science.gov (United States)

    2013-07-09

    ... COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same AGENCY... semiconductors constitutes infringement of the asserted ``method of forming'' claims of the '828 patent. What... semiconductors. What is Elpida's theory of infringement under that statutory subsection? c. Of what relevance,...

  20. Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation.

    Science.gov (United States)

    Hu, Wenqian; Yuan, Bingbing; Lodish, Harvey F

    2014-09-29

    While we have considerable understanding of the transcriptional networks controlling mammalian cell differentiation, our knowledge of posttranscriptional regulatory events is very limited. Using differentiation of primary erythroid cells as a model, we show that the sequence-specific mRNA-binding protein Cpeb4 is strongly induced by the erythroid-important transcription factors Gata1 and Tal1 and is essential for terminal erythropoiesis. By interacting with the translation initiation factor eIF3, Cpeb4 represses the translation of a large set of mRNAs, including its own mRNA. Thus, transcriptional induction and translational repression combine to form a negative feedback loop to control Cpeb4 protein levels within a specific range that is required for terminal erythropoiesis. Our study provides an example of how translational control is integrated with transcriptional regulation to precisely control gene expression during mammalian cell differentiation.

  1. The organization of the brainstem and spinal cord of the mouse : Relationships between monoaminergic, cholinergic, and spinal projection systems

    NARCIS (Netherlands)

    VanderHorst, VGJM; Ulfhake, B

    2006-01-01

    Information regarding the organization of the CNS in terms of neurotransmitter systems and spinal connections in the mouse is sparse, especially at the level of the brainstem. An overview is presented of monoaminergic and cholinergic systems in the brainstem and spinal cord that were visualized immu

  2. Functional Ear (A)Symmetry in Brainstem Neural Activity Relevant to Encoding of Voice Pitch: A Precursor for Hemispheric Specialization?

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Bidelman, Gavin M.; Smalt, Christopher J.

    2011-01-01

    Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and…

  3. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry.

    Science.gov (United States)

    Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark

    2012-05-30

    Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions.

  4. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem...... and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...

  5. A Role for the Lateral Dorsal Tegmentum in Memory and Decision Neural Circuitry

    Science.gov (United States)

    Redila, Van; Kinzel, Chantelle; Jo, Yong Sang; Puryear, Corey B.; Mizumori, Sheri J.Y.

    2017-01-01

    A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz et al., 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo et al., 2013; Puryear et al., 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton et al., 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg

  6. Brainstem response audiometry in the determination of low-frequency hearing loss : a study of various methods for frequency-specific ABR-threshold assessment

    NARCIS (Netherlands)

    E.A.G.J. Conijn

    1992-01-01

    textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials origi

  7. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.

    Science.gov (United States)

    Lerud, Karl D; Almonte, Felix V; Kim, Ji Chul; Large, Edward W

    2014-02-01

    The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development.

  8. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.

    Science.gov (United States)

    Bidelman, Gavin M; Krishnan, Ananthanarayan

    2009-10-21

    Consonant and dissonant pitch relationships in music provide the foundation of melody and harmony, the building blocks of Western tonal music. We hypothesized that phase-locked neural activity within the brainstem may preserve information relevant to these important perceptual attributes of music. To this end, we measured brainstem frequency-following responses (FFRs) from nonmusicians in response to the dichotic presentation of nine musical intervals that varied in their degree of consonance and dissonance. Neural pitch salience was computed for each response using temporally based autocorrelation and harmonic pitch sieve analyses. Brainstem responses to consonant intervals were more robust and yielded stronger pitch salience than those to dissonant intervals. In addition, the ordering of neural pitch salience across musical intervals followed the hierarchical arrangement of pitch stipulated by Western music theory. Finally, pitch salience derived from neural data showed high correspondence with behavioral consonance judgments (r = 0.81). These results suggest that brainstem neural mechanisms mediating pitch processing show preferential encoding of consonant musical relationships and, furthermore, preserve the hierarchical pitch relationships found in music, even for individuals without formal musical training. We infer that the basic pitch relationships governing music may be rooted in low-level sensory processing and that an encoding scheme that favors consonant pitch relationships may be one reason why such intervals are preferred behaviorally.

  9. Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle.

    Science.gov (United States)

    Peciña, S; Berridge, K C

    1996-07-15

    The hypothesis that benzodiazepine-induced hyperphagia is due to a specific enhancement of the palatability of foods has been supported by previous 'taste reactivity' studies of affective (hedonic and aversive) reactions to taste palatability. Diazepam and chlordiazepoxide enhance hedonic reactions of rats (rhythmic tongue protrusions, etc.) to sweet tastes in a receptor-specific fashion. A role for brainstem circuits has been indicated by a previous demonstration of the persistence of the taste reactivity enhancement by diazepam after midbrain decerebration. The present study examined whether benzodiazepine brainstem receptors are the chief substrates for palatability enhancement even in intact brains. We compared the effectiveness of benzodiazepine microinjections to elicit feeding and enhance hedonic reactions when delivered into either the lateral ventricle (forebrain) or the fourth ventricle (brainstem) of rats. The results show diazepam is reliably more effective at eliciting feeding and enhancing positive hedonic reactions to oral sucrose when microinjections are made in the fourth ventricle than in the lateral ventricle. We conclude that brainstem neural systems containing benzodiazepine-GABA receptors are likely to be the chief substrates for benzodiazepine-induced palatability enhancement.

  10. Microvascular changes in estrogen-alpha sensitive brainstem structures of aging female hamsters

    NARCIS (Netherlands)

    Gerrits, Peter O.; de Weerd, Henk; van der Want, Johannes J. L.; Kortekaas, Rudie; Luiten, Paul G. M.; Veening, Jan G.

    2010-01-01

    Structural neuronal plasticity is present in the nucleus para-retroambiguus (NPRA) and the commissural nucleus of the solitary tract/A2 group (NTScom/A2) in female hamsters. Both brainstem nuclei play a role in estrous cycle related autonomic adaptations. We investigated how aging affects the capill

  11. Investigation of auditory brainstem function in elderly diabetic patients with presbycusis.

    Science.gov (United States)

    Kovacií, Jelena; Lajtman, Zoran; Ozegović, Ivan; Knezević, Predrag; Carić, Tomislav; Vlasić, Ana

    2009-01-01

    We performed brainstem auditory evoked potential (BAEP) examinations in 100 patients older than 60 years and having type I diabetes mellitus and presbycusis. The aim of our investigation was to compare the BAEP results of this group with those of healthy controls with presbycusis and to look for possible correlations between alteration of the auditory brainstem function and the aging of elderly diabetic patients. Absolute and interpeak latencies of all waves were prolonged significantly in the study group of diabetic patients. The amplitudes of all waves I through V were diminished in the study group as compared to those in the control group, with statistical significance present for all waves. Analysis of the latencies (waves I, II, I, and V), interpeak latencies (I-V), and amplitudes (I, II, III, and V) of BAEP revealed a significant difference between those of diabetics and those of healthy elderly controls with presbycusis. These data support a hypothesis that there is a brainstem neuropathy in diabetes mellitus that can be assessed with auditory brainstem response testing even in the group of elderly patients with sensorineural hearing loss.

  12. Developmental alterations of the auditory brainstem centers--pathogenetic implications in Sudden Infant Death Syndrome.

    Science.gov (United States)

    Lavezzi, Anna M; Ottaviani, Giulia; Matturri, Luigi

    2015-10-15

    Sudden Infant Death Syndrome (SIDS), despite the success of campaigns to reduce its risks, is the leading cause of infant death in the Western world. Even though the pathogenesis remains unexplained, brainstem abnormalities of the neuronal network that mediates breathing and protective responses to asphyxia, particularly in the arousal phase from sleep, are believed to play a fundamental role. This is the first study to identify, in SIDS, developmental defects of specific brainstem centers involved in hearing pathways, particularly in the cochlear and vestibular nuclei, in the superior olivary complex and in the inferior colliculus, suggesting a possible influence of the acoustic system on respiratory activity. In 49 SIDS cases and 20 controls an in-depth anatomopathological examination of the autonomic nervous system was performed, with the main aim of detecting developmental alterations of brainstem structures controlling both the respiratory and auditory activities. Overall, a significantly higher incidence of cytoarchitectural alterations of both the auditory and respiratory network components were observed in SIDS victims compared with matched controls. Even if there is not sufficient evidence to presume that developmental defects of brainstem auditory structures can affect breathing, our findings, showing that developmental deficit in the control respiratory areas are frequently accompanied by alterations of auditory structures, highlight an additional important element for the understanding the pathogenetic mechanism of SIDS.

  13. Neurochemical abnormalities in the brainstem of the Sudden Infant Death Syndrome (SIDS).

    Science.gov (United States)

    Machaalani, Rita; Waters, Karen A

    2014-12-01

    The brainstem has been a focus in Sudden Infant Death Syndrome (SIDS) research for 30 years. Physiological and animal model data show that cardiorespiratory, sleep, and arousal mechanisms are abnormal after exposure to SIDS risk factors or in infants who subsequently die from SIDS. As the brainstem houses the regulatory centres for these functions, it is the most likely site to find abnormalities. True to this hypothesis, data derived over the last 30 years shows that the brainstem of infants who died from SIDS exhibits abnormalities in a number of major neurotransmitter and receptor systems including: catecholamines, neuropeptides, acetylcholinergic, indole amines (predominantly serotonin and its receptors), amino acids (predominantly glutamate), brain derived neurotrophic growth factor (BDNF), and some cytokines. A pattern is emerging of particular brainstem nuclei being consistently affected including the dorsal motor nucleus of the vagus (DMNV), nucleus of the solitary tract (NTS), arcuate nucleus (AN) and raphe. We discuss the implications of these findings and directions that this may lead in future research.

  14. Paediatric brain-stem gliomas: MRI, FDG-PET and histological grading correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won; Kim, In-One; Cheon, Jung-Eun; Kim, Woo Sun; Moon, Sung Gyu; Kim, Tae Jung; Yeon, Kyung Mo [Seoul National University Hospital, Department of Radiology, Seoul (Korea); Chi, Je Geun [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea); Wang, Kyu-Chang [Seoul National University College of Medicine, Department of Neurosurgery, Seoul (Korea); Chung, June Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea)

    2006-09-15

    MRI and FDG-PET may predict the histological grading of paediatric brain-stem gliomas. To assess MRI findings and metabolic imaging using FDG-PET of brain-stem gliomas based on histological grading. Included in the study were 20 paediatric patients (age 3-14 years, mean 8.2 years) with brain-stem glioma (five glioblastomas, ten anaplastic astrocytomas and five low-grade astrocytomas). MR images were assessed for the anatomical site of tumour origin, focality, pattern of tumour growth, and enhancement. All glioblastomas were located in the pons and showed diffuse pontine enlargement with focally exophytic features. Eight anaplastic astrocytomas were located in the pons and demonstrated diffuse pontine enlargement without exophytic features. Low-grade astrocytomas were located in the pons, midbrain or medulla and showed focally exophytic growth features and peripheral enhancement. In 12 patients in whom FDG-PET was undertaken, glioblastomas showed hypermetabolic or hypometabolic lesions, anaplastic astrocytomas showed no metabolic change or hypometabolic lesions and low-grade astrocytomas showed hypometabolism compared with the cerebellum. MRI findings correlated well with histological grading of brain-stem gliomas and MRI may therefore predict the histological grading. FDG-PET may be helpful in differentiating between anaplastic astrocytoma and glioblastomas among high-grade tumours. (orig.)

  15. Evidence for Atypical Auditory Brainstem Responses in Young Children with Suspected Autism Spectrum Disorders

    Science.gov (United States)

    Roth, Daphne Ari-Even; Muchnik, Chava; Shabtai, Esther; Hildesheimer, Minka; Henkin, Yael

    2012-01-01

    Aim: The aim of this study was to characterize the auditory brainstem responses (ABRs) of young children with suspected autism spectrum disorders (ASDs) and compare them with the ABRs of children with language delay and with clinical norms. Method: The ABRs of 26 children with suspected ASDs (21 males, five females; mean age 32.5 mo) and an age-…

  16. Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem

    NARCIS (Netherlands)

    Zee, E.A. van der; Matsuyama, T.; Strosberg, A.D.; Traber, J.; Luiten, P.G.M.

    1989-01-01

    The distribution of muscarinic acetylcholine receptor protein (mAChR) in the rat forebrain and upper brainstem was described by using a monoclonal antibody (M35) raised against mAChR purified from bovine forebrain homogenates. A method is investigated for light microscopic (LM) and electronmicroscop

  17. Survival with concurrent temozolomide and radiotherapy in pediatric brainstem glioma with relation to the tumor volume

    Directory of Open Access Journals (Sweden)

    Shachi Jain Taran

    2015-01-01

    Full Text Available Background: Brainstem gliomas account for approximately 25% of all posterior fossa tumors. In pediatric age group, it constitutes about 10% of all brain tumors. Brainstem glioma is an aggressive and lethal type of malignancy with poor outcome despite all treatments. Aim: We studied the incidence and treatment outcome in pediatric patients with brainstem glioma depending on their tumor volume presenting in our institution in last 5 years. Brain tumors comprised 2.95% of all cancers and brainstem gliomas were 8% of all brain tumors. Materials and Methods: Nine pediatric patients were included in this analysis, who were treated with localized external radiotherapy 54–59.4 Gy along with temozolomide 75 mg/m2 during the whole course of radiotherapy. Results: The median survival in all these patients was 20 months and the overall 2 years survival is 44.4% (4/9. The median survival of patients with primary disease volume <40cc is 26 months whereas when the volume is more than 40cc the median survival is 13.5 months as calculated by Chi-square test. Conclusion: As this study includes a small number of patients with unknown histology and treated on the basis of magnetic resonance imaging findings, no definite opinion can be given as some patients may have a low-grade tumor. More studies are required to establish the relation of size of the tumor with survival.

  18. Ventilation induced apnea and its effect on dorsal brainstem inspiratory neurones in the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Balnave, Ron J.; Chow, Chin M.

    2007-01-01

    The purpose of this study was to examine the effect of mechanical ventilation (MV) on inherent breathing and on dorsal brainstem nucleus tractus solitarius (NTS) respiratory cell function. In pentobarbitone-anaesthetised rats, application of MV at combined high frequencies and volumes (representing

  19. Boxing sparring complicated by an acute subdural haematoma and brainstem haemorrhage.

    Science.gov (United States)

    Hart, Michael G; Trivedi, Rikin A; Hutchinson, Peter J

    2012-10-01

    A professional boxer developed an acute subdural haematoma after boxing sparring. Despite timely surgical decompression, he had a poor overall outcome predominantly from a delayed brainstem haematoma. Magnetic resonance imaging (MRI) was used to elucidate the pathophysiology of the patients' injury and clinical condition.

  20. Surgical considerations for ′intrinsic′ brainstem gliomas: Proposal of a modification in classification

    Directory of Open Access Journals (Sweden)

    Mehta V

    2009-01-01

    Full Text Available Background: Brainstem gliomas are highly heterogeneous tumors both in their clinical manifestation and in their pathology. Despite significant advances in the surgery for brainstem gliomas many aspects of this pathology are still unclear Objective: To evaluate the clinical, radiological and surgical outcome of 40 focal ′intrinsic′ brainstem gliomas and propose a surgical strategy-oriented classification. Materials and Methods: A total of 40 focal ′intrinsic′ ("expanding variety" tumors have been operated over a period of 8.5-years (January 1998-June 2007. Our criteria included patients with (1 well-defined gadolinium enhancing tumor; (2 relatively long duration of symptoms (> six months and (3 good neurological functional status and independent for all activities of daily living. The cutoff size of 2 cm was not rigidly adhered to. Results: The ′intrinsic′ brainstem tumors were classified into three types: Expanding, diffuse infiltrative and pure ventral varieties. Only patients with expanding variety of brainstem gliomas were subjected to surgery, mean age 19.2 years (range 4-55 years and male to female ration mean: 3:2. The tumor location included pons (n=19, midbrain (n=13 and medulla (n=8. Surgical approaches included midline suboccipital (n=28, retromastoid (n=7, subtemporal (n=3 and supracerebellar-infratentorial (n=2. Thirty-two cases with ′diffuse infiltrative′ and ′pure ventral′ variety were given radiotherapy only. Histology pathology revealed pilocytic variety (n=10, Grade II (n=17 and Grade III (n=13. There was one death in the surgical series (due to aspiration. Complications included meningitis (n=2, wound infection (n=1, chest infection (n=5 and transient mutism (n=1. Follow-up ranged from 3-68 months. Overall, 36 improved /remained same and three worsened in their clinical status at the time of discharge. Conclusion: The surgical management of intrinsic brainstem tumors presents a surgical challenge; radical

  1. Alternative oblique head CT scanning technique reduces bone artifact and improves interpretability of brainstem anatomy

    Directory of Open Access Journals (Sweden)

    Sam Douglas Kampondeni

    2010-06-01

    Full Text Available Brainstem pathology due to infections, infarcts and tumors are common in developing countries, but neuroimaging technology in these resource-poor settings is often limited to single slice, and occasionally spiral, CT. Unlike multislice CT and MRI, single slice and spiral CT are compromised by bone artifacts in the posterior fossa due to the dense petrous bones, often making imaging of the brainstem non-diagnostic. With appropriate head positioning, the petrous ridges can be avoided with 40˚ sagittal oblique scans parallel to either petrous ridge. We describe an alternative sagittal oblique scanning technique that significantly reduces brainstem CT artifacts thereby improving clarity of anatomy. With Inst­itutional Ethical approval, 13 adult patients were enrolled (5 males; 39%. All patients had routine axial brain CT and sagittal oblique scans with no lesions found. Images were read by 2 readers who gave a score for amount of artefact and clarity of structures in the posterior fossa. The mean artifact score was higher for routine axial images compared to sagittal oblique (2.92 vs. 1.23; P<0.0001. The mean anatomical certainty scores for the brainstem were significantly better in the sagittal oblique views compared to routine axial (1.23 vs. 2.77; P<0.0001. No difference was found between the two techniques with respect to the fourth ventricle or the cerebellum (axial vs. sag oblique: 1.15 vs. 1.27; P=0.37. When using single slice CT, the sagittal oblique scanning technique is valuable in improving clarity of anatomy in the brainstem if axial images are non-diagnostic due to bone artifacts.

  2. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as

  3. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry.

    Science.gov (United States)

    Baytekin, H Tarik; Baytekin, Bilge; Hermans, Thomas M; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A

    2013-09-20

    Even minute quantities of electric charge accumulating on polymer surfaces can cause shocks, explosions, and multibillion-dollar losses to electronic circuitry. This paper demonstrates that to remove static electricity, it is not at all necessary to "target" the charges themselves. Instead, the way to discharge a polymer is to remove radicals from its surface. These radicals colocalize with and stabilize the charges; when they are scavenged, the surfaces discharge rapidly. This radical-charge interplay allows for controlling static electricity by doping common polymers with small amounts of radical-scavenging molecules, including the familiar vitamin E. The effectiveness of this approach is demonstrated by rendering common polymers dust-mitigating and also by using them as coatings that prevent the failure of electronic circuitry.

  4. Epsilon-Near-Zero Photonics Wires for Mid-Infrared Optical Lumped Circuitry

    CERN Document Server

    Liu, Runyu; Zhong, Yujun; Podolskiy, Viktor; Wasserman, Daniel

    2016-01-01

    There has been recent interest in the development of optical analogues of lumped element circuitry, where optical elements act as effective optical inductors, capacitors, and resistors. Such optical circuitry requires the photonic equivalent of electrical wires, structures able carry optical frequency signals to and from the lumped circuit elements while simultaneously maintaining signal carrier wavelengths much larger than the size of the lumped elements. Here we demonstrate the design, fabrication, and characterization of hybrid metal/doped-semiconductor 'photonic wires' operating at optical frequencies with effective indices of propagation near-zero. Our samples are characterized by polarization and angle-dependent FTIR spectroscopy and modeled by finite element methods and rigorous coupled wave analysis. We demonstrate coupling to such photonic wires from free space, and show the effective wavelength of the excited mode to be approximately an order of magnitude larger than the free-space wavelength of our...

  5. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    OpenAIRE

    Badr M. Ibrahim; Abdel-Rahman, Abdel A.

    2013-01-01

    Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible un...

  6. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries

    Science.gov (United States)

    Grasso, Silvia; Chapelle, Jennifer; Salemme, Vincenzo; Aramu, Simona; Russo, Isabella; Vitale, Nicoletta; Verdun di Cantogno, Ludovica; Dallaglio, Katiuscia; Castellano, Isabella; Amici, Augusto; Centonze, Giorgia; Sharma, Nanaocha; Lunardi, Serena; Cabodi, Sara; Cavallo, Federica; Lamolinara, Alessia; Stramucci, Lorenzo; Moiso, Enrico; Provero, Paolo; Albini, Adriana; Sapino, Anna; Staaf, Johan; Di Fiore, Pier Paolo; Bertalot, Giovanni; Pece, Salvatore; Tosoni, Daniela; Confalonieri, Stefano; Iezzi, Manuela; Di Stefano, Paola; Turco, Emilia; Defilippi, Paola

    2017-01-01

    The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies. PMID:28300085

  7. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation

    Science.gov (United States)

    Settell, Megan L.; Testini, Paola; Cho, Shinho; Lee, Jannifer H.; Blaha, Charles D.; Jo, Hang J.; Lee, Kendall H.; Min, Hoon-Ki

    2017-01-01

    -DBS could affect the activity of neural systems and brain regions implicated in reward, mood regulation, and in the pathophysiology of MDD. In addition, we showed that a combination of fMRI and electrochemically-based neurochemical detection platform is an effective investigative tool for elucidating the circuitry involved in VTA-DBS.

  8. Idiopathic Brainstem Neuronal Chromatolysis (IBNC: a novel prion protein related disorder of cattle?

    Directory of Open Access Journals (Sweden)

    Martin Stuart

    2008-09-01

    Full Text Available Abstract Background The epidemic form of Bovine Spongiform Encephalopathy (BSE is generally considered to have been caused by a single prion strain but at least two strain variants of cattle prion disorders have recently been recognized. An additional neurodegenerative condition, idiopathic brainstem neuronal chromatolysis and hippocampal sclerosis (IBNC, a rare neurological disease of adult cattle, was also recognised in a sub-set of cattle submitted under the BSE Orders in which lesions of BSE were absent. Between the years of 1988 and 1991 IBNC occurred in Scotland with an incidence of 7 cases per 100,000 beef suckler cows over the age of 6 years. Results When the brains of 15 IBNC cases were each tested by immunohistochemistry, all showed abnormal labelling for prion protein (PrP. Immunohistological labelling for PrP was also present in the retina of a single case available for examination. The pattern of PrP labelling in brain is distinct from that seen in other ruminant prion diseases and is absent from brains with other inflammatory conditions and from normal control brains. Brains of IBNC cattle do not reveal abnormal PrP isoforms when tested by the commercial BioRad or Idexx test kits and do not reveal PrPres when tested by Western blotting using stringent proteinase digestion methods. However, some weakly protease resistant isoforms of PrP may be detected when tissues are examined using mild proteinase digestion techniques. Conclusion The study shows that a distinctive neurological disorder of cattle, which has some clinical similarities to BSE, is associated with abnormal PrP labelling in brain but the pathology and biochemistry of IBNC are distinct from BSE. The study is important either because it raises the possibility of a significant increase in the scope of prion disease or because it demonstrates that widespread and consistent PrP alterations may not be confined to prion diseases. Further studies, including transmission

  9. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

    Science.gov (United States)

    Szretter, Kristy J; Samuel, Melanie A; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S

    2009-09-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.

  10. Perioperative posterior reversible encephalopathy syndrome in 2 pediatric neurosurgery patients with brainstem ependymoma.

    Science.gov (United States)

    Gephart, Melanie G Hayden; Taft, Bonnie P; Giese, Anne-Katrin; Guzman, Raphael; Edwards, Michael S B

    2011-03-01

    Posterior reversible encephalopathy syndrome (PRES) has been described in pediatric neurooncology patients, although it has not been documented perioperatively in pediatric neurosurgery patients not actively receiving chemotherapy. Recently at the authors' facility, 2 cases of PRES were diagnosed perioperatively in children with brainstem ependymoma. Both patients had presented with hypertension, altered mental status, and seizures and demonstrated MR imaging features consistent with PRES. The patients were treated with antiseizure and antihypertension medications, leading to improvement in both clinical symptoms and neuroimaging findings. These cases are the first to document PRES in perioperative pediatric neurosurgery patients not actively receiving chemotherapy. Both patients had ependymoma involving the brainstem, which may have led to intra- and perioperative hemodynamic instability (including hypertension) and predisposed them to this syndrome. An awareness of PRES in similar scenarios will aid in the prevention, diagnosis, and treatment of pediatric neurosurgery patients with this syndrome.

  11. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  12. Hypertensive brainstem encephalopathy involving deep supratentorial regions: does only blood pressure matter?

    Directory of Open Access Journals (Sweden)

    Jong-Ho Park

    2010-04-01

    Full Text Available We report on a 42-year-old female patient who presented with high arterial blood pressure of 245/150 mmHg and hypertensive brainstem encephalopathy that involved the brainstem and extensive supratentorial deep gray and white matter. The lesions were nearly completely resolved several days after stabilization of the arterial blood pressure. Normal diffusion-weighted imaging findings and high apparent diffusion coefficient values suggested that the main pathomechanism was vasogenic edema owing to severe hypertension. On the basis of a literature review, the absolute value of blood pressure or whether the patient can control his/her blood pressure seems not to be associated with the degree of the lesions evident on magnetic resonance imaging. It remains to be determined if the acceleration rate and the duration of elevated arterial blood pressure might play a key role in the development of the hypertensive encephalopathy pattern.

  13. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.

  14. Stress-induced increases in brainstem amino acid levels are prevented by chronic sodium hydrosulfide treatment.

    Science.gov (United States)

    Warenycia, M W; Kombian, S B; Reiffenstein, R J

    1990-01-01

    Neurotransmitter amino acid levels were measured in select brain regions of rats and mice after chronic treatment with sublethal doses of sodium hydrosulfide (NaHS). Brainstem aspartate, glutamate, glutamine, taurine and GABA levels increased in chronically but not acutely saline-treated rats. These increases may have been due to stress from frequent handling, and were prevented by chronic NaHS treatment (7.5 mg/kg ip every 8 hr for 3 consecutive days). In contrast, aspartate, glutamate and glutamine increased in female but not in male ICR mouse brainstems after once daily treatment with 7.0 mg/kg NaHS for 5 consecutive days. These effects of NaHS may indicate chronic low level H2S neurotoxicity. Differences between chronic and acute treatments, female and male responses, and treatment paradigms may complicate interpretations of such toxicity studies.

  15. Activation of brainstem serotoninergic pathways decreases homosynaptic depression of monosynaptic responses of frog spinal motoneurons.

    Science.gov (United States)

    Cardona, A; Rudomin, P

    1983-12-05

    In the isolated neuraxis of the frog, low frequency stimulation (0.5-2 Hz) of the lateral columns produces monosynaptic responses in the ventral roots which are depressed with an exponential time course. Serotonin (10 mumol/liter) added to the bath, or stimulation of the brain-stem midline raphe nuclei, but not of the lateral reticular formation, reduced the magnitude of the low frequency depression of the responses. The above actions were abolished by methysergide (1 mumol/liter), a specific antagonist of serotonin. These observations show that the magnitude of the homosynaptic depression of monosynaptic responses of motoneurons can be controlled by descending serotonergic mechanisms. This action is considered to be an important component of the arousal behavior mediated by the brain-stem raphe nuclei.

  16. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  17. Evaluation of brainstem auditory evoked potential in type 2 diabetes mellitus individuals

    Directory of Open Access Journals (Sweden)

    Rathnavel Kumaran Murugesan

    2016-09-01

    Conclusions: These data reveal that there was a delay in both the latencies and IPLs which signifies the involvement of both the peripheral and central nervous system. The early diagnosis of brainstem defects may lead to improvement in treatment modalities of DM and decrease its morbidity. Thus BAEP might be used as a non- invasive tool to assess diabetic neuropathy. [Int J Res Med Sci 2016; 4(9.000: 3939-3944

  18. Compressive brainstem deformation resulting from subdural hygroma after neurosurgery: a case report

    Institute of Scientific and Technical Information of China (English)

    YU Shu-qing; WANG Ji-sheng; JI Nan

    2008-01-01

    @@ Acute and chronic subdural hygromas are common postoperative clinical complications of ventricular shunting, arachnoid cyst marsupialization and arachnoid cyst resection.1 This article introduces a case of subdural hygroma after resection of a space-occupying lesion in the left lateral ventricle that resulted in compressive brainstem deformation and reviewed the recent related literature. The conclusion is that in related surgical procedures, prevention of rapid cerebrospinal fluid loss and excessive fluctuations in intracranial pressure are especially important.

  19. Combined monitoring of evoked potentials during microsurgery for lesions adjacent to the brainstem and intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    KANG De-zhi; WU Zan-yi; LAN Qing; YU Liang-hong; LIN Zhang-ya; WANG Chen-yang; LIN Yuan-xiang

    2007-01-01

    Background Neurophysiologic monitoring during surgery is to prevent permanent neurological injury resulting from surgical manipulation. To improve the accuracy and sensitivity of intraoperative neuromonitoring, combined monitoring of transcranial electrical stimulation motor evoked potentials (TES-MEPs), somatosensory evoked potentials (SSEPs) and brainstem auditory evoked potentials (BAEPs) was attempted in microsurgery for lesions adjacent to the brainstem and intracranial aneurysms.Methods Monitoring of combined TES-MEPs with SSEPs was attempted in 68 consecutive patients with lesions adjacent to the brainstem as well as intracranial aneurysms. Among them, 31 patients (31 operations, 28 of posterior cranial fossa tumors, 3 of posterior circulation aneurysms) were also subjected to monitoring of BAEPs. The correlation of monitoring results and clinical outcome was studied prospectively.Results Combined monitoring of evoked potentials (EPs) was done in 64 (94.1%) of the 68 patients. MEPs monitoring was impossible for 4 patients (5.9%). No complication was observed during the combined monitoring in all the patients. In 45 (66.2%) of the 68 patients, EPs were stable, and they were neurologically intact. Motor dysfunction was detected by MEPs in 8 patients, SSEPs in 5, and BAEPs in 4, respectively.Conclusions A close relationship exists between postoperative motor function and the results of TES-MEPs monitoring.TES-MEPs are superior to SSEPs and BAEPs in detecting motor dysfunction, but combined EPs serve as a safe,effective and invasive method for intraoperative monitoring of the function of the motor nervous system. Monitoring of combined EPs during microsurgery for lesions adjacent to the brainstem and intracranial aneurysms may detect potentially hazardous maneuvers and improve the safety of subsequent procedures.

  20. Analysis of the mechanisms of rabbit’s brainstem hemorrhage complicated with irritable changes in the alvine mucous membrane

    Science.gov (United States)

    Jin, Xue-Long; Zheng, Yang; Shen, Hai-Ming; Jing, Wen-Li; Zhang, Zhao-Qiang; Huang, Jian-Zhong; Tan, Qing-Lin

    2005-01-01

    AIM: To explore the dynamic changes in the pressure of the lateral ventricle during acute brainstem hemorrhage and the changes of neural discharge of vagus nerve under the load of intracranial hypertension, so as to analyze their effects on the congestive degree of intestinal mucous membrane and the morphologic changes of intestinal mucous membrane. METHODS: An operation was made to open the skull to obtain an acute brainstem hemorrhage animal model. Microcirculatory microscope photography device and video recording system were used to determine the changes continuously in the caliber of jejunal mesenteric artery during brainstem hemorrhage and the changes with time in the congestion of jejunal mucosal villi. We used HE stain morphology to analyze the changes of duodenal mucosal villi. A recording electrode was used to calculate and measure the electric discharge activities of cervical vagus nerve. RESULTS: (1) We observed that the pressure of lateral cerebral ventricle increased transiently during acute brainstem hemorrhage; (2) The caliber of the jejunal mesenteric artery increased during brainstem hemorrhage. Analysis of red color coordinate values indicated transient increase in the congestion of jejunal mucous membrane during acute brainstem hemorrhage; (3) Through the analysis of the pathologic slice, we found enlarged blood vessels, stagnant blood, and transudatory red blood cells in the duodenal submucous layer; (4) Electric discharge of vagus nerve increased and sporadic hemorrhage spots occurred in duodenal mucous and submucous layer, when the lateral ventricle was under pressure. CONCLUSION: Brainstem hemorrhage could cause intracranial hypertension, which would increase the neural discharge of vagus nerve and cause the transient congestion of jejunal mucous membrane. It could cause hyperemia and diffused hemorrhage in the duodenal submucous layer 48 h after brainstem hemorrhage. PMID:15786536

  1. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  2. The relationship between auditory brainstem response, nerve conduction studies, and metabolic risk factors in type II diabetes mellitus

    OpenAIRE

    2016-01-01

    Background Few studies have reported a correlation between auditory brainstem response (ABR) findings and nerve conduction studies (NCSs). The correlation between ABR findings and the metabolic profile of these patients is not well documented in previous studies. The present study was designed to investigate the impact of the disturbed metabolic profile (hyperglyceridemia and hyperlipidemia) in diabetic patients on the peripheral nervous system as well as the auditory brainstem response. ...

  3. Analysis of the mechanisms of rabbit's brainstem hemorrhage complicated with irritable changes in the alvine mucous membrane

    Institute of Scientific and Technical Information of China (English)

    Xue-Long Jin; Yang Zheng; Hai-Ming Shen; Wen-Li Jing; Zhao-Qiang Zhang; Jian-Zhong Huang; Qing-Lin Tan

    2005-01-01

    AIM: To explore the dynamic changes in the pressure of the lateral ventricle during acute brainstem hemorrhage and the changes of neural discharge of vagus nerve under the load of intracranial hypertension, so as to analyze their effects on the congestive degree of intestinal mucous membrane and the morphologic changes of intestinal mucous membrane.METHODS: An operation was made to open the skull to obtain an acute brainstem hemorrhage animal model.Microcirculatory microscope photography device and video recording system were used to determine the changes continuously in the caliber of jejunal mesenteric artery during brainstem hemorrhage and the changes with time in the congestion of jejunal mucosal villi. We used HE stain morphology to analyze the changes of duodenal mucosal villi. A recording electrode was used to calculate and measure the electric discharge activities of cervical vagus nerve.RESULTS: (1) We observed that the pressure of lateral cerebral ventricle increased transiently during acute brainstem hemorrhage; (2) The caliber of the jejunal mesenteric artery increased during brainstem hemorrhage.Analysis of red color coordinate values indicated transient increase in the congestion of jejunal mucous membrane during acute brainstem hemorrhage; (3) Through the analysis of the pathologic slice, we found enlarged blood vessels, stagnant blood, and transudatory red blood cells in the duodenal submucous layer; (4) Electric discharge of vagus nerve increased and sporadic hemorrhage spots occurred in duodenal mucous and submucous layer, when the lateral ventricle was under pressure.CONCLUSION: Brainstem hemorrhage could causeintracranial hypertension, which would increase the neural discharge of vagus nerve and cause the transient congestion of jejunal mucous membrane. It could cause hyperemia and diffused hemorrhage in the duodenal submucous layer 48 h after brainstem hemorrhage.

  4. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  5. Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem.

    Science.gov (United States)

    Duque, Ewing; Mangas, Arturo; Salinas, Pablo; Díaz-Cabiale, Zaida; Narváez, José Angel; Coveñas, Rafael

    2013-01-01

    We have studied the distribution of alpha-neo-endorphin- or neurokinin B-immunoreactive fibres and cell bodies in the adult human brainstem with no prior history of neurological or psychiatric disease. A low density of alpha-neo-endorphin-immunoreactive cell bodies was only observed in the medullary central gray matter and in the spinal trigeminal nucleus (gelatinosa part). Alpha-neo-endorphin-immunoreactive fibres were moderately distributed throughout the human brainstem. A high density of alpha-neo-endorphin-immunoreactive fibres was found only in the solitary nucleus (caudal part), in the spinal trigeminal nucleus (caudal part), and in the gelatinosa part of the latter nucleus. Neurokinin B-immunoreactive cell bodies (low density) were found in the periventricular central gray matter, the reticular formation of the pons and in the superior colliculus. The distribution of the neurokinin-immunoreactive fibres was restricted. In general, for both neuropeptides the density of the immunoreactive fibres was low. In the human brainstem, the proenkephalin system was more widely distributed than the prodynorphin system, and the preprotachykinin A system (neurokinin A) was more widely distributed than the preprotachykinin B system (neurokinin B).

  6. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors.

    Science.gov (United States)

    Papesh, Melissa A; Hurley, Laura M

    2016-02-01

    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  7. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    Science.gov (United States)

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  8. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Science.gov (United States)

    Lehmann, Alexandre; Schönwiesner, Marc

    2014-01-01

    Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  9. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  10. Relationship Between the Hypersensitive c-Reactive Protein (hs-CRP) Level and the Prognosis of Acute Brainstem Infarction.

    Science.gov (United States)

    Zhang, Xia; Huang, Wen-Juan; Yu, Zhi-Gang

    2015-05-01

    The objective of this study is to explore the relationship between the hypersensitive c-reactive protein (hs-CRP) level and the prognosis of acute brainstem infarction. Serum levels of hs-CRP were measured in 68 patients with acute brainstem infarction 72 h after disease onset. The hs-CRP levels in the U.S. National Institutes of Health Stroke Scale (NIHSS) score group and in the modified RANKIN scale (mRS) score group were compared. The independent risk factors of brainstem infarction were analyzed using Logistic binary regression. The hs-CRP level was significantly higher in the group with NIHSS >5 compared with the one with NIHSS ≤ 5 (P = 0.004). In the group with mRS > 2, the age, smoking history, and blood glucose level were significantly higher than those in the group with mRS ≤ 2 (P hs-CRP level was significantly higher (P = 0.001). Age and hs-CRP level were the independent prognostic factors of the brainstem infarction. The serum hs-CRP level is closely related with the severity and prognosis of brainstem infarction, and is an independent risk factor of acute brainstem infarction.

  11. Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry

    Directory of Open Access Journals (Sweden)

    Gabriel Vidal-Álvarez

    2016-03-01

    Full Text Available We present the fabrication and characterization of a suspended microbridge resonator with an embedded nanochannel. The suspended microbridge resonator is electrostatically actuated, capacitively sensed, and monolithically integrated with complementary metal-oxide-semiconductor (CMOS readout circuitry. The device is fabricated using the back end of line (BEOL layers of the AMS 0.35 μm commercial CMOS technology, interconnecting two metal layers with a contact layer. The fabricated device has a 6 fL capacity and has one of the smallest embedded channels so far. It is able to attain a mass sensitivity of 25 ag/Hz using a fully integrable electrical transduction.

  12. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Y; Okun, Alec; Qu, Chaoling; Eyde, Nathan; Ci, Shuang; Ossipov, Michael H; King, Tamara; Fields, Howard L; Porreca, Frank

    2012-12-11

    Relief of pain is rewarding. Using a model of experimental postsurgical pain we show that blockade of afferent input from the injury with local anesthetic elicits conditioned place preference, activates ventral tegmental dopaminergic cells, and increases dopamine release in the nucleus accumbens. Importantly, place preference is associated with increased activity in midbrain dopaminergic neurons and blocked by dopamine antagonists injected into the nucleus accumbens. The data directly support the hypothesis that relief of pain produces negative reinforcement through activation of the mesolimbic reward-valuation circuitry.

  13. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.

    Science.gov (United States)

    Marsh, John E; Campbell, Tom A

    2016-01-01

    The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in

  14. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  15. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.

    Science.gov (United States)

    Kungel, M; Friauf, E

    1995-05-01

    A transient expression of the neuropeptide somatostatin has been described in several brain areas during early ontogeny and several opioid peptides, such as leu-enkephalin, have also been found in the brain at this stage in development. It is therefore believed that somatostatin and leu-enkephalin may play a role in neural maturation. The aim of the present study was to describe the spatiotemporal pattern of somatostatin and leu-enkephalin immunoreactivity in the auditory brainstem nuclei of the developing rat and to correlate it with other developmental events. In order to achieve this goal, we applied peroxidase-antiperoxidase immunocytochemistry to rat brains between embryonic day (E) 17 and adulthood. Somatostatin immunoreactivity (SIR) was found in all nuclei of the auditory brainstem, yet it was temporally restricted in most nuclei. SIR appeared prenatally and reached maximum levels around postnatal day (P) 7, when great numbers of immunoreactive neurons were present in the ventral cochlear nucleus (VCN) and in the lateral lemniscus. At that time relatively low numbers of cells were labeled in the dorsal cochlear nucleus, the lateral superior olive (LSO), and the inferior colliculus (IC). During the same period, when somata in the VCN were somatostatin-immunoreactive (SIR), a dense network of labeled fibers was also present in the LSO, the medial superior olive (MSO), and the medial nucleus of the trapezoid body (MNTB). As these nuclei receive direct input from VCN neurons, and as the distribution and morphology of the somatostatinergic fibers in the superior olivary complex (SOC) was like that of axons from VCN neurons, these findings suggest a transient somatostatinergic connection within the auditory system. Aside from the LSO, MSO, and MNTB, labeled fibers were found to a smaller extent in all other auditory brainstem nuclei. After P7, the SIR decreased and only a few immunoreactive elements were found in the adult auditory brainstem nuclei, indicating

  16. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  17. Brainstem cholinergic modulation of muscle tone in infant rats.

    Science.gov (United States)

    Gall, Andrew J; Poremba, Amy; Blumberg, Mark S

    2007-06-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between these two regions. First, in unanesthetized pups, we found that chemical infusion of the cholinergic agonist carbachol (22 mm, 0.1 microL) within the DLPT produced high muscle tone. Next, chemical lesions of the PnO were used to produce a chronic state of high nuchal muscle tone, at which time the cholinergic antagonist scopolamine (10 mm, 0.1 microL) was infused into the DLPT. Scopolamine effectively decreased nuchal muscle tone, thus suggesting that lesions of the PnO increase muscle tone via cholinergic activation of the DLPT. Using 2-deoxyglucose autoradiography, metabolic activation throughout the DLPT was observed after PnO lesions. Finally, consistent with the hypothesis that PnO inactivation produces high muscle tone, infusion of the sodium channel blocker lidocaine (2%) into the PnO of unanesthetized pups produced rapid increases in muscle tone. We conclude that, even early in infancy, the DLPT is critically involved in the regulation of muscle tone and behavioral state, and that its activity is modulated by a cholinergic mechanism that is directly or indirectly controlled by the PnO.

  18. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry.

    Science.gov (United States)

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-07

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm.

  19. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells.

    Science.gov (United States)

    Thompson, Lachlan H; Björklund, Anders

    2015-07-01

    Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.

  20. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography

    Directory of Open Access Journals (Sweden)

    Maria A. Bobes

    2016-01-01

    Full Text Available Although Capgras delusion (CD patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF and the inferior longitudinal (ILF. The superior longitudinal fasciculus (SLF and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia.

  1. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography

    Science.gov (United States)

    Bobes, Maria A.; Góngora, Daylin; Valdes, Annette; Santos, Yusniel; Acosta, Yanely; Fernandez Garcia, Yuriem; Lage, Agustin; Valdés-Sosa, Mitchell

    2016-01-01

    Although Capgras delusion (CD) patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal (ILF). The superior longitudinal fasciculus (SLF) and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia. PMID:26909325

  2. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography.

    Science.gov (United States)

    Bobes, Maria A; Góngora, Daylin; Valdes, Annette; Santos, Yusniel; Acosta, Yanely; Fernandez Garcia, Yuriem; Lage, Agustin; Valdés-Sosa, Mitchell

    2016-01-01

    Although Capgras delusion (CD) patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal (ILF). The superior longitudinal fasciculus (SLF) and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia.

  3. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  4. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Paul M Forlano

    Full Text Available In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic

  5. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  6. Characteristics of brainstem auditory evoked potentials of students studying folk dance

    Institute of Scientific and Technical Information of China (English)

    Yunxiang Li; Yuzhen Zhu

    2008-01-01

    BACKGROUND:Previous experiments have demonstrated that brainstem auditory evoked potential is affected by exercise,exercise duration,and frequency. OBJECTIVE:Comparing the brainstem auditory evoked potential of students studying folk dance to students studying other subjects.DESIGN:Observational contrast study. SETTING:Physical Education College,Shandong Normal University PARTICIPANTS:Fifty-five female students were enrolled at Shandong Normal University between September and December in 2005,including 21 students that studied folk dance and 34 students that studied other subjects.The age of the folk dance students averaged(19±1)years and dance training length was(6.0 ±1.5)years.The students that studied other subjects had never taken part in dance training or other physical training,and their age averaged(22±1)years,body height averaged(162±5)cm,body mass averaged(51 ±6)kg.All subjects had no prior ear disease or history of other neurological disorders.All students provided informed consent for the experimental project. METHODS:The neural electricity tester,NDI-200(Shanghai Poseidon Medical Electronic Instrument Factory)was used to examine and record Brainstem Auditory Evoked Potential values of the subjects during silence,as well as to transversally analyze the Brainstem Auditory Evoked Potential values.The electrode positions were cleaned and degreased with soapy water,followed by ethanol.The selected bipolar electrodes were situated on the head:recording electrodes were placed at the Baihui acupoint,and the reference electrode was placed at the mastoid of the measured ear,with grounding electrodes in the center of the forehead.Brainstem Auditory Evoked Potential values were elicited by monaural stimulation of a "click" though an earphone; the other ear was sheltered by the white noise.The click intensity was 102 db,the stimulation frequency was 30 Hz,the bandpass filters were 1 000-3 000 Hz,the sensitivity was 5 μV,and a total of 2 000 sweeps were

  7. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    Science.gov (United States)

    dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  8. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    Science.gov (United States)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with

  9. Tactile modulation of whisking via the brainstem loop: statechart modeling and experimental validation.

    Directory of Open Access Journals (Sweden)

    Dana Sherman

    Full Text Available Rats repeatedly sweep their facial whiskers back and forth in order to explore their environment. Such explorative whisking appears to be driven by central pattern generators (CPGs that operate independently of direct sensory feedback. Nevertheless, whisking can be modulated by sensory feedback, and it has been hypothesized that some of this modulation already occurs within the brainstem. However, the interaction between sensory feedback and CPG activity is poorly understood. Using the visual language of statecharts, a dynamic, bottom-up computerized model of the brainstem loop of the whisking system was built in order to investigate the interaction between sensory feedback and CPG activity during whisking behavior. As a benchmark, we used a previously quantified closed-loop phenomenon of the whisking system, touched-induced pump (TIP, which is thought to be mediated by the brainstem loop. First, we showed that TIPs depend on sensory feedback, by comparing TIP occurrence in intact rats with that in rats whose sensory nerve was experimentally cut. We then inspected several possible feedback mechanisms of TIPs using our model. The model ruled out all hypothesized mechanisms but one, which adequately simulated the corresponding motion observed in the rat. Results of the simulations suggest that TIPs are generated via sensory feedback that activates extrinsic retractor muscles in the mystacial pad. The model further predicted that in addition to the touching whisker, all whiskers found on the same side of the snout should exhibit a TIP. We present experimental results that confirm the predicted movements in behaving rats, establishing the validity of the hypothesized interaction between sensory feedback and CPG activity we suggest here for the generation of TIPs in the whisking system.

  10. Cortical and brainstem plasticity in Tourette syndrome and obsessive-compulsive disorder.

    Science.gov (United States)

    Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Berardelli, Isabella; Roselli, Valentina; Pasquini, Massimo; Cardona, Francesco; Berardelli, Alfredo

    2014-10-01

    Gilles de la Tourette syndrome is characterized by motor/vocal tics commonly associated with psychiatric disorders, including obsessive-compulsive disorder. We investigated primary motor cortex and brainstem plasticity in Tourette patients, exposed and unexposed to chronic drug treatment, with and without psychiatric disturbances. We also investigated primary motor cortex and brainstem plasticity in obsessive-compulsive disorder. We studied 20 Tourette patients with and without psychiatric disturbances, 15 with obsessive-compulsive disorder, and 20 healthy subjects. All groups included drug-naïve patients. We conditioned the left primary motor cortex with intermittent/continuous theta-burst stimulation and recorded motor evoked potentials. We conditioned the supraorbital nerve with facilitatory/inhibitory high-frequency stimulation and recorded the blink reflex late response area. In healthy subjects, intermittent theta-burst increased and continuous theta-burst stimulation decreased motor evoked potentials. Differently, intermittent theta-burst failed to increase and continuous theta-burst stimulation failed to decrease motor evoked potentials in Tourette patients, with and without psychiatric disturbances. In obsessive-compulsive disorder, intermittent/continuous theta-burst stimulation elicited normal responses. In healthy subjects and in subjects with obsessive-compulsive disorder, the blink reflex late response area increased after facilitatory high-frequency and decreased after inhibitory high-frequency stimulation. Conversely, in Tourette patients, with and without psychiatric disturbances, facilitatory/inhibitory high-frequency stimulation left the blink reflex late response area unchanged. Theta-burst and high-frequency stimulation elicited similar responses in drug-naïve and chronically treated patients. Tourette patients have reduced plasticity regardless of psychiatric disturbances. These findings suggest that abnormal plasticity contributes to the

  11. Phase locked neural activity in the human brainstem predicts preference for musical consonance.

    Science.gov (United States)

    Bones, Oliver; Hopkins, Kathryn; Krishnan, Ananthanarayan; Plack, Christopher J

    2014-05-01

    When musical notes are combined to make a chord, the closeness of fit of the combined spectrum to a single harmonic series (the 'harmonicity' of the chord) predicts the perceived consonance (how pleasant and stable the chord sounds; McDermott, Lehr, & Oxenham, 2010). The distinction between consonance and dissonance is central to Western musical form. Harmonicity is represented in the temporal firing patterns of populations of brainstem neurons. The current study investigates the role of brainstem temporal coding of harmonicity in the perception of consonance. Individual preference for consonant over dissonant chords was measured using a rating scale for pairs of simultaneous notes. In order to investigate the effects of cochlear interactions, notes were presented in two ways: both notes to both ears or each note to different ears. The electrophysiological frequency following response (FFR), reflecting sustained neural activity in the brainstem synchronised to the stimulus, was also measured. When both notes were presented to both ears the perceptual distinction between consonant and dissonant chords was stronger than when the notes were presented to different ears. In the condition in which both notes were presented to the both ears additional low-frequency components, corresponding to difference tones resulting from nonlinear cochlear processing, were observable in the FFR effectively enhancing the neural harmonicity of consonant chords but not dissonant chords. Suppressing the cochlear envelope component of the FFR also suppressed the additional frequency components. This suggests that, in the case of consonant chords, difference tones generated by interactions between notes in the cochlea enhance the perception of consonance. Furthermore, individuals with a greater distinction between consonant and dissonant chords in the FFR to individual harmonics had a stronger preference for consonant over dissonant chords. Overall, the results provide compelling evidence

  12. Brainstem raphe and substantia nigra echogenicity in idiopathic REM sleep behavior disorder with comorbid depression.

    Science.gov (United States)

    Vilas, Dolores; Iranzo, Alex; Pont-Sunyer, Claustre; Serradell, Mónica; Gaig, Carles; Santamaria, Joan; Tolosa, Eduardo

    2015-07-01

    In Parkinson disease (PD), REM sleep behavior disorder (RBD) and depression may occur before the onset of parkinsonism. Transcranial sonography (TCS) shows that hyperechogenicity of the substantia nigra (SN+) and hypoechogenicity of the brainstem raphe (BR+) are frequent in PD, particularly when depression is associated. Combined SN+ and BR+ identify PD subjects in whom depression antedates parkinsonism onset. It can be speculated that SN+ and BR+ may also identify idiopathic RBD (IRBD) subjects with comorbid depression, supporting the clinical diagnosis of this mood disorder. We aimed to study the brainstem raphe and substantia nigra echogenicity and their ability to predict comorbid depression in IRBD. Seventy-two IRBD patients and 71 age and sex-matched controls underwent TCS. Depression was diagnosed by means of DSM-IV criteria. Depression was more frequent in IRBD patients than in controls (44.4 vs. 18.3 %; p = 0.001). BR+ was more frequent in depressed than in nondepressed IRBD patients (32.0 vs. 11.4 %; p = 0.050). Sensitivity of BR+ to predict depression in IRBD was 32.0 %, specificity was 88.6 %, and relative risk was 1.88. Sensitivity of SN+ to predict depression in IRBD was 72.0 %, specificity was 44.1 %, and relative risk was 1.53. Sensitivity of combined BR+ and SN+ to predict depression in IRBD was 23.1 %, specificity 97.1 %, and relative risk was 2.31. Hypoechogenicity of the brainstem raphe, particularly when combined with hyperechogenicity of the substantia nigra, detects comorbid depression in IRBD. This finding suggests that dysfunction of the serotonergic dorsal raphe may be involved in the pathophysiology of depression in IRBD.

  13. Vagal afferents from the uterus and cervix provide direct connections to the brainstem.

    Science.gov (United States)

    Collins, J J; Lin, C E; Berthoud, H R; Papka, R E

    1999-01-01

    Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in "vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.

  14. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age.

  15. A rare case of acute poster ior reversible encephalopathy syndrome involving brainstem in a child

    Directory of Open Access Journals (Sweden)

    Olfa Chakroun-Walha

    2016-11-01

    Full Text Available Posterior reversible encephalopathy syndrome (PRES is a rare entity involving brainstem in very rare reported cases. We describe here the case of a boy who presented to the emergency department for headaches and strabismus. Diagnosis of PRES was retained by magnetic resonance imaging. The causes were blood pressure urgency and renal failure. Location of lesions was very rarely reported in literature and neurological troubles were persistent. Emergency physicians should evocate PRES each time there is a clinical context associated with neurological troubles by a normal brain CT scan. Early diagnosis is very important to treat its causes and improve prognosis.

  16. A rare case of acute posterior reversible encephalopathy syndrome involving brainstem in a child

    Institute of Scientific and Technical Information of China (English)

    Olfa Chakroun-Walha; Ichrak Bacha; Mehdi Frikha; Kheireddine Ben Mahfoudh; Noureddine Rekik

    2016-01-01

    Posterior reversible encephalopathy syndrome (PRES) is a rare entity involving brainstem in very rare reported cases. We describe here the case of a boy who presented to the emergency department for headaches and strabismus. Diagnosis of PRES was retained by magnetic resonance imaging. The causes were blood pressure urgency and renal failure. Location of lesions was very rarely reported in literature and neurological troubles were persistent. Emergency physicians should evocate PRES each time there is a clinical context associated with neurological troubles by a normal brain CT scan. Early diagnosis is very important to treat its causes and improve prognosis.

  17. Neuroimaging of Infectious and Inflammatory Diseases of the Pediatric Cerebellum and Brainstem.

    Science.gov (United States)

    Rossi, Andrea; Martinetti, Carola; Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico

    2016-08-01

    Cerebellar involvement by infectious-inflammatory conditions is rare in children. Most patients present with acute ataxia, and are typically previously healthy, young (often preschool) children. Viral involvement is the most common cause and ranges from acute postinfectious ataxia to acute cerebellitis MR imaging plays a crucial role in the evaluation of patients suspected of harboring inflammatory-infectious involvement of the cerebellum and brainstem. Knowledge of the imaging features of these disorders and technical competence on pediatric MR imaging are necessary for a correct interpretation of findings, which in turn prompts further management.

  18. Increased astrocytic expression of metallothioneins I + II in brainstem of adult rats treated with 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan; Moos, Torben

    1997-01-01

    The cerebral distribution of metallothioneins I and II (MT-I + II) was studied in adult rats subjected to i.p. injection with the gliotoxin 6-aminonicotinamide (6-AN). Grey matter regions of the brainstem heralded numerous OX-42-positive macrophages and microglia, indicating that 6-AN primarily...... caused damage to this part of the brain. In the grey matter regions infiltrated with OX-42-positive cells, astrocytes identified by anti-GFAP and MT-I + II antibodies were almost absent. By contrast, in the peripheral zone of the lesioned regions numerous reactive GFAP- and MT-I + II-positive astrocytes...

  19. Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster.

    Science.gov (United States)

    Zhang, Xu; Li, Jun-Feng; Wu, Qi-Jiu; Li, Bing; Jiang, Jin-Chang

    2007-02-01

    Previous studies found that elimination of the geomagnetic field (GMF) interferes with the normal brain functions, but the underlying mechanism remains unknown. The present study examined the effects of long-term exposures to a near-zero magnetic environment on the noradrenergic activities in the brainstem of golden hamsters. Both the content of norepinephrine (NE) and the density of NE-immunopositive neurons in the tissue decreased significantly after the treatment, and the effects could be progressive with time. These variations may substantially contribute to behavioral and mood disorders reported in other studies when animals are shielded from the GMF.

  20. Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses.

    Science.gov (United States)

    Beutelmann, Rainer; Laumen, Geneviève; Tollin, Daniel; Klump, Georg M

    2015-01-01

    Although auditory brainstem responses (ABRs), the sound-evoked brain activity in response to transient sounds, are routinely measured in humans and animals there are often differences in ABR waveform morphology across studies. One possible reason may be the method of stimulus calibration. To explore this hypothesis, click-evoked ABRs were measured from seven ears in four Mongolian gerbils (Meriones unguiculatus) using three common spectrum calibration strategies: Minimum phase filter, linear phase filter, and no filter. The results show significantly higher ABR amplitude and signal-to-noise ratio, and better waveform resolution with the minimum phase filtered click than with the other strategies.

  1. Successful removal of an impacted metallic arrowhead penetrating up to the brainstem

    Directory of Open Access Journals (Sweden)

    Paramhans Dharmdas

    2010-01-01

    Full Text Available A case of impacted metallic arrowhead in the brain through an unusual route of the neck and behind the external carotid artery to the base of the skull up to the brainstem is reported. Review of the literature reveals no previous reports of this type of injury. A 35-year-old man was admitted to the hospital after 36 h of injury, being fully conscious and with partial facial palsy. The arrowhead was successfully removed by exploration of the entry wound, without any neurovascular complications. The patient not only survived the operation but was also discharged in an improved neurological condition.

  2. Brainstem auditory-evoked responses with and without sedation in autism and Down's syndrome.

    Science.gov (United States)

    Sersen, E A; Heaney, G; Clausen, J; Belser, R; Rainbow, S

    1990-04-15

    Brainstem auditory-evoked responses (BAER) were obtained from 46 control, 16 Down's syndrome, and 48 autistic male subjects. Six Down's syndrome and 37 autistic subjects were tested with sedation. Sedated and unsedated Down's syndrome subjects displayed shorter absolute and interpeak latencies for early components of the BAER whereas the sedated autistic group showed longer latencies for the middle and late components. The prolongation of latencies in the sedated autistic group was unrelated to age or intellectual level. Although individuals requiring sedation may have a higher probability of neurological impairment, an effect of sedation on the BAER cannot be ruled out.

  3. Painful tonic spasms and brainstem involvement in a patient with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Roman-Filip, Corina; Ungureanu, Aurelian; Cernuşcă-Miţaru, Mihaela

    2016-01-01

    Neuromyelitis optica (NMO) is an inflammatory-demyelinating disease of the central nervous system classically characterized by optic neuritis and severe myelitis. New diagnostic criteria defined neuromyelitis optica spectrum disorder as limited forms of NMO or diverse neurologic presentations in the presence of specific antiaquaporin-4 antibodies. We report the case of a 57-year-old woman admitted in our department for recurrent attacks of optic neuritis, tetraparesis with severe painful tonic spasms of the left limbs and brainstem involvement. Painful tonic spasms have been described as movement disorders associated with multiple sclerosis, but a growing number of reports describe them in cases of NMO.

  4. Design and simulation of a mixer and phase difference measuring circuitry for laser range finding systems

    Science.gov (United States)

    Liu, Guili; Wang, Yanlin; Liu, Gang

    2006-11-01

    This article focuses on the circuit implementation of a mixer and phase difference measurement for laser range finding systems. It will introduce simply the principle of the laser range finding system, which is the basis of the electronic circuitry design. The modulated laser lights of two different frequencies are mixed and the phase difference is detected in order to measure the range. The method of measuring the range is to use the mixer and the phase difference detector. The new and high precision IC that has a high quality makes the circuit simple and reliable. The circuit of the mixer and the phase difference detector for laser range finding systems is designed using AD608 and AD8302 chips.

  5. Broadband Energy Harvesting Using a Metamaterial Resonator Embedded With Non-Foster Impedance Circuitry

    CERN Document Server

    Fu, Guoqing

    2014-01-01

    Radio Frequency Identification (RFID) and implantable biomedical devices need efficient power and data transfer with very low profile antennas. We propose a low profile electrically small antenna for near-field wireless power and data telemetry employing a metamaterial Split Ring Resonator (SRR) antenna. SRRs can be designed for operation over wide frequencies from RF to visible. However, they are inherently narrowband making them sensitive to component mismatch with respect to external transmit antenna. Here we propose an embedding of a non-foster impedance circuitry into the metamaterial SRR structure that imparts conjugate negative complex impedance to this resonator antenna thereby increasing the effective bandwidth and thus overcoming the fundamental limit for efficient signal coupling. We demonstrate the concept through extensive numerical simulations and a prototype system at the board level using discrete off-the-shelf components and printed circuit SRR antenna at 500 MHz. We show that the power trans...

  6. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease.

    Science.gov (United States)

    Petzinger, Giselle M; Fisher, Beth E; McEwen, Sarah; Beeler, Jeff A; Walsh, John P; Jakowec, Michael W

    2013-07-01

    Exercise interventions in individuals with Parkinson's disease incorporate goal-based motor skill training to engage cognitive circuitry important in motor learning. With this exercise approach, physical therapy helps with learning through instruction and feedback (reinforcement) and encouragement to perform beyond self-perceived capability. Individuals with Parkinson's disease become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Aerobic exercise, regarded as important for improvement of blood flow and facilitation of neuroplasticity in elderly people, might also have a role in improvement of behavioural function in individuals with Parkinson's disease. Exercises that incorporate goal-based training and aerobic activity have the potential to improve both cognitive and automatic components of motor control in individuals with mild to moderate disease through experience-dependent neuroplasticity. Basic research in animal models of Parkinson's disease is beginning to show exercise-induced neuroplastic effects at the level of synaptic connections and circuits.

  7. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    Science.gov (United States)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  8. The role of BDNF in depression on the basis of its location in the neural circuitry

    Institute of Scientific and Technical Information of China (English)

    Hui YU; Zhe-yu CHEN

    2011-01-01

    Depression is one of the most prevalent and life-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their roles in depression and antidepressant action. While these regions no doubt play important roles in the mental illness, there is compelling evi-dence that other brain regions are also involved. Brain-derived neurotrophic factor (BDNF) is broadly expressed in the developing and adult mammalian brain and has been implicated in development, neural regeneration, synaptic transmission, synaptic plasticity and neurogenesis. Recently BDNF has been shown to play an important role in the pathophysiology of depression, however there are con-troversial reports about the effects of BDNF on depression. Here, we present an overview of the current knowledge concerning BDNF actions and associated intracellular signaling in hippocampus, prefrontal cortex, nucleus accumbens (NAc) and amygdala as their rela-tion to depression.

  9. Understanding overbidding: using the neural circuitry of reward to design economic auctions.

    Science.gov (United States)

    Delgado, Mauricio R; Schotter, Andrew; Ozbay, Erkut Y; Phelps, Elizabeth A

    2008-09-26

    We take advantage of our knowledge of the neural circuitry of reward to investigate a puzzling economic phenomenon: Why do people overbid in auctions? Using functional magnetic resonance imaging (fMRI), we observed that the social competition inherent in an auction results in a more pronounced blood oxygen level-dependent (BOLD) response to loss in the striatum, with greater overbidding correlated with the magnitude of this response. Leveraging these neuroimaging results, we design a behavioral experiment that demonstrates that framing an experimental auction to emphasize loss increases overbidding. These results highlight a role for the contemplation of loss in understanding the tendency to bid "too high." Current economic theories suggest overbidding may result from either "joy of winning" or risk aversion. By combining neuroeconomic and behavioral economic techniques, we find that another factor, namely loss contemplation in a social context, may mediate overbidding in auctions.

  10. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bobrek, Miljko [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  11. The Impact of Emotional States on Cognitive Control Circuitry and Function.

    Science.gov (United States)

    Cohen, Alexandra O; Dellarco, Danielle V; Breiner, Kaitlyn; Helion, Chelsea; Heller, Aaron S; Rahdar, Ahrareh; Pedersen, Gloria; Chein, Jason; Dyke, Jonathan P; Galvan, Adriana; Casey, B J

    2016-03-01

    Typically in the laboratory, cognitive and emotional processes are studied separately or as a stream of fleeting emotional stimuli embedded within a cognitive task. Yet in life, thoughts and actions often occur in more lasting emotional states of arousal. The current study examines the impact of emotions on actions using a novel behavioral paradigm and functional neuroimaging to assess cognitive control under sustained states of threat (anticipation of an aversive noise) and excitement (anticipation of winning money). Thirty-eight healthy adult participants were scanned while performing an emotional go/no-go task with positive (happy faces), negative (fearful faces), and neutral (calm faces) emotional cues, under threat or excitement. Cognitive control performance was enhanced during the excited state relative to a nonarousing control condition. This enhanced performance was paralleled by heightened activity of frontoparietal and frontostriatal circuitry. In contrast, under persistent threat, cognitive control was diminished when the valence of the emotional cue conflicted with the emotional state. Successful task performance in this conflicting emotional condition was associated with increased activity in the posterior cingulate cortex, a default mode network region implicated in complex processes such as processing emotions in the context of self and monitoring performance. This region showed positive coupling with frontoparietal circuitry implicated in cognitive control, providing support for a role of the posterior cingulate cortex in mobilizing cognitive resources to improve performance. These findings suggest that emotional states of arousal differentially modulate cognitive control and point to the potential utility of this paradigm for understanding effects of situational and pathological states of arousal on behavior.

  12. Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2013-11-01

    Full Text Available We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4(+CD8(+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL, another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4(+CD8(+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4(+CD8(+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and

  13. Neuroanatomical circuitry associated with exploratory eye movement in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Linlin Qiu

    Full Text Available Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS and widespread gray matter density (GMD reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA 17], the left cuneus (BA 18, the left superior occipital cortex (BA 18/19, the left superior frontal gyrus (BA 6, the left cerebellum, the right lingual cortex (BA 17/18, the right middle occipital cortex (BA19, the right inferior temporal cortex (BA 37, the right dorsolateral prefrontal cortex (BA 46 and bilateral precentral gyri (BA 6 extending to the frontal eye fields (FEF, BA 8. To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.

  14. Trigeminal-Rostral Ventromedial Medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury

    Directory of Open Access Journals (Sweden)

    Chai Bryan

    2012-10-01

    Full Text Available Abstract Background Our previous studies have shown that complete Freund’s adjuvant (CFA-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM, a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results Microinjection of the IL-1 receptor antagonist (5 nmol, n=6 into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol and L-733,060 (0.5-11.4 nmol, attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol, attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.

  15. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex

    Science.gov (United States)

    DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.

    2002-01-01

    The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.

  16. Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons.

    Science.gov (United States)

    Spiga, F; Lightman, S L; Shekhar, A; Lowry, C A

    2006-01-01

    The amygdala plays a key role in emotional processing and anxiety-related physiological and behavioral responses. Previous studies have shown that injections of the anxiety-related neuropeptide corticotropin-releasing factor or the related neuropeptide urocortin 1 into the region of the basolateral amygdaloid nucleus induce anxiety-like behavior in several behavioral paradigms. Brainstem serotonergic systems in the dorsal raphe nucleus and median raphe nucleus may be part of a distributed neural system that, together with the basolateral amygdala, regulates acute and chronic anxiety states. We therefore investigated the effect of an acute bilateral injection of urocortin 1 into the basolateral amygdala on behavior in the social interaction test and on c-Fos expression within serotonergic neurons in the dorsal raphe nucleus and median raphe nucleus. Male rats were implanted with bilateral cannulae directed at the region of the basolateral amygdala; 72 h after surgery, rats were injected with urocortin 1 (50 fmol/100 nl) or vehicle (100 nl of 1% bovine serum albumin in distilled water). Thirty minutes after injection, a subgroup of rats from each experimental group was exposed to the social interaction test; remaining animals were left in the home cage. Two hours after injection rats were perfused with paraformaldehyde and brains were removed and processed for immunohistochemistry. Acute injection of urocortin 1 had anxiogenic effects in the social interaction test, reducing total interaction time without affecting locomotor activity or exploratory behavior. These behavioral effects were associated with increases in c-Fos expression within brainstem serotonergic neurons. In home cage rats and rats exposed to the social interaction test, urocortin 1 treatment increased the number of c-Fos-immunoreactive serotonergic neurons within subdivisions of both the dorsal raphe nucleus and median raphe nucleus. These results are consistent with the hypothesis that the

  17. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Tang, Samantha; Machaalani, Rita; Waters, Karen A

    2008-09-26

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a significant role in the regulation of cell growth, survival and death during central nervous system development. The expression of BDNF and TrkB is affected by noxious insults. Two insults during the early post-natal period that are of interest to our laboratory are exposure to nicotine and to intermittent hypercapnic hypoxia (IHH). Piglet models were used to mimic the conditions associated with the risk factors for the sudden infant death syndrome (SIDS) including post-natal cigarette smoke exposure (nicotine model) and prone sleeping where the infant is subjected to re-breathing of expired gases (IHH model). We aimed to determine the effects of nicotine and IHH, alone or in combination, on pro- and rhBDNF and TrkB expression in the developing piglet brainstem. Four piglet groups were studied, with equal gender ratios in each: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry, and studying six nuclei of the caudal medulla, we found that compared to controls, TrkB was the only protein significantly decreased after nicotine and nic+IHH exposure regardless of gender. For pro-BDNF and rhBDNF however, observed changes were more evident in males than females exposed to nicotine and nic+IHH. The implications of these findings are that a prior nicotine exposure makes the developing brainstem susceptible to greater changes in the neurotrophic effects of BDNF and its receptor TrkB in the face of a hypoxic insult, and that the effects are greater in males than females.

  18. Brainstem neurons survive the identical ischemic stress that kills higher neurons: insight to the persistent vegetative state.

    Directory of Open Access Journals (Sweden)

    C Devin Brisson

    Full Text Available Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a 'persistent vegetative state' where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by 'higher' hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT imaging in response to 10 minutes of oxygen/glucose deprivation (OGD revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1-10 nM palytoxin which converts the pump into an open cationic channel. Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival

  19. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  20. c-Fos expression in rat brainstem following intake of sucrose or saccharin

    Institute of Scientific and Technical Information of China (English)

    Ke Chen; Jianqun Yan; Jinrong Li; Bo Lv; Xiaolin Zhao

    2011-01-01

    To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors,we compared the distribution of c-Fos-like immunoreactivity (c-FLI)in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25M sucrose or 0.005 M saccharin solutions.Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST.Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F(2,13) =7.610,P =0.023),in addition to the caudal NST at the level of the area postrema (F(2,13) =10.777,P =0.003) and the NST intermediate zone (F(2,13) =7.193,P =0.014).No significantincrease in the number of c-Fos positive neurons was detected in response to saccharin ingestion,although there was a trend towards a modest increase in a few select NST and PBN nuclei.These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake,but the significantlyenhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.

  1. Rate and adaptation effects on the auditory evoked brainstem response in human newborns and adults.

    Science.gov (United States)

    Lasky, R E

    1997-09-01

    Auditory evoked brainstem response (ABR) latencies increased and amplitudes decreased with increasing stimulus repetition rate for human newborns and adults. The wave V latency increases were larger for newborns than adults. The wave V amplitude decreases were smaller for newborns than adults. These differences could not be explained by developmental differences in frequency responsivity. The transition from the unadapted to the fully adapted response was less rapid in newborns than adults at short (= 10 ms) inter stimulus intervals (ISIs). At longer ISIs (= 20 ms) there were no developmental differences in the transition to the fully adapted response. The newborn transition occurred in a two stage process. The rapid initial stage observed in adults and newborns was complete by about 40 ms. A second slower stage was observed only in newborns although it has been observed in adults in other studies (Weatherby and Hecox, 1982; Lightfoot, 1991; Lasky et al., 1996). These effects were replicated at different stimulus intensities. After the termination of stimulation the return to the wave V unadapted response took nearly 500 ms in newborns. Neither the newborn nor the adult data can be explained by forward masking of one click on the next click. These results indicate human developmental differences in adaptation to repetitive auditory stimulation at the level of the brainstem.

  2. Sedation of children for auditory brainstem response using ketamine-midazolam-atropine combination - a retrospective analysis.

    Science.gov (United States)

    Bocskai, Tímea; Németh, Adrienne; Bogár, Lajos; Pytel, József

    2013-12-01

    Authors investigated sedation quality in children for auditory brainstem response testing. Two-hundred and seventy-six sedation procedures were retrospectively analyzed using recorded data focusing on efficacy of sedation and complications. Intramuscular ketamine-midazolam-atropine combination was administered on sedation preceded by narcotic suppository as pre-medication. On using the combination vital parameters remained within normal range, the complication rate was minimal. Pulse rate, arterial blood pressure and pulse oxymetry readings were stable, hypoventilation developed in 4, apnoea in none of the cases, post-sedation agitation occurred in 3 and nausea and/or vomiting in 2 cases. Repeated administration of narcotic agent was necessary in a single case only. Our practice is suitable for the sedation assisting hearing examinations in children. It has no influence on the auditory brainstem testing, the conditions necessary for the test can be met entirely with minimal side-effects. Our practice provides a more lasting sedation time in children during the examination hence there is no need for the repetition of the narcotics.

  3. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  4. Hearing outcomes after loss of brainstem auditory evoked potentials during microvascular decompression.

    Science.gov (United States)

    Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J

    2015-04-01

    The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V.

  5. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  6. Migraine with brainstem aura presenting as recurrent hypersomnia (Kleine-Levin syndrome).

    Science.gov (United States)

    Nesbitt, Alexander D; Leschziner, Guy D

    2016-10-01

    Recurrent hypersomnia, or Kleine-Levin syndrome, is rare and frequently causes substantial diagnostic anxiety and delay. Patients often undergo multiple investigations to rule out other causes of encephalopathy. The treatment options are unsatisfactory. Migraine with brainstem aura has not previously been widely considered in the medical literature as a differential diagnosis. We describe two patients referred to a tertiary sleep neurology service with a putative diagnosis of Kleine-Levin syndrome. Each described attacks of hypersomnia with elements of migraine with brainstem aura, in addition to having a history of migraine with aura. Simple acute migraine treatment clearly attenuated further attacks. These cases generate discussion as to the common features and potential mechanisms underlying both disorders. Furthermore, they highlight a hitherto underexplored alternative diagnosis of Kleine-Levin syndrome. This provides scope for offering established and effective migraine treatment options to patients who with a potential misdiagnosis of Kleine-Levin syndrome, providing scope for offering established and effective migraine treatment to some patients originally diagnosed with a rare condition for which there is no current consistently effective therapeutic options.

  7. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  8. Brainstem auditory evoked potentials in a case of 'Manto syndrome', or spasmodic torticollis with thoracic outlet syndrome.

    Science.gov (United States)

    Disertori, B; Ducati, A; Piazza, M; Pavani, M

    1982-12-01

    A case of spasmodic torticollis with thoracic outlet syndrome observed for over 18 months is presented and discussed. Maximal head rotation (determining backward gaze) was associated with compression of the brachial plexus between the scaleni muscles and motor, sensory and trophic troubles in the hand. This new syndrome is called after the diviner Manto, quoted by Dante Alighieri in his 'Divina Commedia' (Inferno, XX, 52-56). The etiology was ascribed to subacute toxic effects of methylparathion. Brainstem Auditory Evoked Potentials (BAEPs) demonstrated severe brainstem involvement, maximal in the mesencephalic structures. Clinical and neurophysiological data improved on treatment with L-5-hydroxytryptophan. Finally, BAEPs returned to normal.

  9. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew.

    Science.gov (United States)

    Zhong, Weixia; Chebolu, Seetha; Darmani, Nissar A

    2016-04-01

    Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non

  10. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    Science.gov (United States)

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target.

  11. Micromachined Silicon Stimulating Probes with CMOS Circuitry for Use in the Central Nervous System

    Science.gov (United States)

    Tanghe, Steven John

    1992-01-01

    Electrical stimulation in the central nervous system is a valuable technique for studying neural systems and is a key element in the development of prostheses for deafness and other disorders. This thesis presents a family of multielectrode probe structures, fulfilling the need for chronic multipoint stimulation tools essential for interfacing to the highly complex neural networks in the brain. These probes are batch-fabricated on silicon wafers, employing photoengraving techniques to precisely control the electrode site and array geometries and to allow the integration of on-chip CMOS circuitry for signal multiplexing and stimulus current generation. Silicon micromachining is used to define the probe shapes, which have typical shank dimensions of 3 mm in length by 100 mu m in width by 15 μm in thickness. Each shank supports up to eight planar iridium oxide electrode sites capable of delivering charge densities in excess of 3 mC/cm^2 during current pulse stimulation. Three active probe circuits have been designed with varied complexity and capability. All three can deliver biphasic stimulus currents through 16 sites using only 5 external leads, and they are all compatible with the same external control system. The most complex design interprets site addresses and stimulus current amplitudes from 16-bit words shifted into the probe at 4 MHz. Sixteen on-chip, biphasic, 8-bit digital-to-analog converters deliver analog stimulus currents in the range of +/- 254 muA to any combination of electrode sites. These DACs exhibit full-scale internal linearity to better than +/-1/2 LSB and can be calibrated by varying the positive power supply voltage. The entire probe circuit dissipates only 80 muW from +/-5 V supplies when not delivering stimulus currents, it includes several safety features, and is testable from the input pads. Test results from the fabricated circuits indicate that they all function properly at clocking frequencies as high as 10 MHz, meeting or exceeding

  12. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Directory of Open Access Journals (Sweden)

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  13. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-10-15

    The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging. (orig.)

  14. Study of the correlation of brainstem auditory evoked potentials and magnetic resonance imaging in children with spastic cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Fobe, Lisete Pessoa de Oliveira [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina]. E-mail: lispessoa@yahoo.com

    1999-12-01

    Central auditory evaluation in 21 children with cerebral palsy was done with brainstem auditory evoked potentials (BAEP) and correlated with brain magnetic resonance imaging findings (MRI); 12 boys and 9 girls between 5 and 12 years old were studied. All children had follow-up at the Institute of Orthopedics and Traumatology of Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo. The control group was done with 17 children, 10 boys and 7 girls (mean age 8.06 years, SD 2.27 years). The BAEP abnormalities were: decrease of latency of wave V; decrease of latency III-V and I-IV intervals at the right side. All patients has MRI supratentorial abnormalities and 11 had brainstem atrophy. The MRI pathologic findings were: ventricular enlargement (n=17 or 80.95%), cortical/subcortical atrophy (n=15 or 71.42%), left brainstem atrophy (n=11 or 52.38%), periventricular leukomalacia (n=10 or 47.61%), infarction in the left middle cerebral artery territory (n=6 or 28.57%), and malformations such as schizencephaly and colpocephaly (n=5 or 23.80%). The findings of the decrease latencies in children with cerebral palsy suggest the contribution of decussating auditory fibers at the lower and upper pons and midbrain, the lack of homogeneity of the surrounding volume of the conductor fibres and the presence of several concurrently active potential generators sources, should be facilitating mechanisms for the nervous input to brainstem. (author)

  15. The relationship between auditory brainstem response, nerve conduction studies, and metabolic risk factors in type II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Noha M Abo-Elfetoh

    2016-01-01

    Brainstem dysfunction and ABR changes are common in patients with type II diabetes mellitus. These changes are significantly correlated to NCS parameters on one hand and serum HbA1c% and lipid profile (total cholesterol and triglycerides on the other hand.

  16. Musicians and Tone-Language Speakers Share Enhanced Brainstem Encoding but Not Perceptual Benefits for Musical Pitch

    Science.gov (United States)

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Behavioral and neurophysiological transfer effects from music experience to language processing are well-established but it is currently unclear whether or not linguistic expertise (e.g., speaking a tone language) benefits music-related processing and its perception. Here, we compare brainstem responses of English-speaking musicians/non-musicians…

  17. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults

    Science.gov (United States)

    Cobb, Kensi M.; Stuart, Andrew

    2016-01-01

    Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…

  18. Effect of High-Pass Filtering on the Neonatal Auditory Brainstem Response to Air- and Bone-Conducted Clicks.

    Science.gov (United States)

    Stuart, Andrew; Yang, Edward Y.

    1994-01-01

    Simultaneous 3- channel recorded auditory brainstem responses (ABR) were obtained from 20 neonates with various high-pass filter settings and low intensity levels. Results support the advocacy of less restrictive high-pass filtering for neonatal and infant ABR screening to air-conducted and bone-conducted clicks. (Author/JDD)

  19. Characteristics of multiple sclerosis patient stance control disorders, measured by means of posturography and related to brainstem lesions

    Directory of Open Access Journals (Sweden)

    Dario Alpini

    2012-01-01

    Full Text Available Balance disorders are commonly observed during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and eyes closed standing on a firm surface and on a foam pad. Clinical and/or magnetic resonance imaging evidence of brainstem involvement was observed in 55.3% of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the 0- 0.1 Hz and 0.1-0.25 Hz frequency bands. In conclusion, MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulospinal pathways in at least 55.3% of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.

  20. Implementation of a nation-wide automated auditory brainstem response hearing screening programme in neonatal intensive care units

    NARCIS (Netherlands)

    Straaten, H.L.M. van; Hille, E.T.M.; Kok, J.H.; Verkerk, P.H.; Baerts, W.; Bunkers, C.M.; Smink, E.W.A.; Elburg, R.M. van; Kleine, M.J.K. de; Ilsen, A.; Maingay-Visser, A.P.G.F.; Vries, L.S. de; Weisglas-Kuperus, N.

    2003-01-01

    Aim: As part of a future national neonatal hearing screening programme in the Netherlands, automated auditory brainstem response (AABR) hearing screening was implemented in seven neonatal intensive care units (NICUs). The objective was to evaluate key outcomes of this programme: participation rate,

  1. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  2. Axonal sprouting of a brainstem-spinal pathway after estrogen administration in the adult female rhesus monkey

    NARCIS (Netherlands)

    Vanderhorst, VGJM; Terasawa, E; Ralston, HJ

    2002-01-01

    The nucleus retroambiguus (NRA) is located in the caudal medulla oblongata and contains premotor neurons that project to motoneuronal cell groups in the brainstem and spinal cord. NRA projections to the lumbosacral cord are species specific and might be involved in mating behavior. In the female cat

  3. A case of overlapping Bickerstaff's brainstem encephalitis and Guillain-Barré syndrome

    Institute of Scientific and Technical Information of China (English)

    WANG De-sheng; TANG Ying; WANG Ye

    2006-01-01

    Objective: There is no report on Bickerstaff's brainstem encephalitis (BBE) patients in China. We here report the first case of BBE in China. Methods: Clinical features, results of electromyography, electroencephalography (EEG), magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) examination were studied to clarify the characteristics of this syndrome.Results: A 44-year-old man presented himself at our inpatient department with somnolence and dizziness as his initial symptoms.He developed multiple cranial nerves paralysis especially internal and external ophthalmoplegia, ataxia and tetraparesis within 1 week. His condition rapidly deteriorated, and he experienced coma. Electromyography showed indications of peripheral nerve dysfunction, electroencephalography revealed loss of basic rhythm, MRI demonstrated high-intensity abnormalities on T2-weighted images of medulla oblongata, and CSF albuminocytological dissociation was defined abnormally as high protein. Ten similar clinically; BBE and FS were proposed to be the variant of GBS.

  4. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.

    Science.gov (United States)

    Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A

    2012-05-01

    Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.

  5. Effect of click-polarity on abnormality of intraoperatively monitored brainstem acoustic evoked potentials.

    Science.gov (United States)

    Mokrusch, T; Schramm, J; Hochstetter, A

    1988-01-01

    The configuration of brainstem acoustic evoked potentials (BAEP) is influenced by the type of click stimuli used and may thus affect detectability of abnormalities. In a group of 19 patients with lesions in the posterior fossa BAEP were recorded pre- and intraoperatively. Repeat recordings were performed in each patient in two alternating series with rarefaction and condensation click stimuli. The findings demonstrated that intraoperative potential changes in latency and amplitude were different between the two stimulation modes, but did not vary significantly in their incidence. It was also not possible to predict from the preoperative BAEP which click polarity would demonstrate intraoperative changes more markedly, taking latency and amplitude as parameters. Two conclusions are drawn from this study: None of the two stimulation modes is superior in detecting intraoperative changes and therefore no recommendation can be made which click polarity to use. When working with only one click polarity it is recommended to use occasional control recordings with the other click polarity.

  6. Brainstem Monitoring in the Neurocritical Care Unit: A Rationale for Real-Time, Automated Neurophysiological Monitoring.

    Science.gov (United States)

    Stone, James L; Bailes, Julian E; Hassan, Ahmed N; Sindelar, Brian; Patel, Vimal; Fino, John

    2017-02-01

    Patients with severe traumatic brain injury or large intracranial space-occupying lesions (spontaneous cerebral hemorrhage, infarction, or tumor) commonly present to the neurocritical care unit with an altered mental status. Many experience progressive stupor and coma from mass effects and transtentorial brain herniation compromising the ascending arousal (reticular activating) system. Yet, little progress has been made in the practicality of bedside, noninvasive, real-time, automated, neurophysiological brainstem, or cerebral hemispheric monitoring. In this critical review, we discuss the ascending arousal system, brain herniation, and shortcomings of our current management including the neurological exam, intracranial pressure monitoring, and neuroimaging. We present a rationale for the development of nurse-friendly-continuous, automated, and alarmed-evoked potential monitoring, based upon the clinical and experimental literature, advances in the prognostication of cerebral anoxia, and intraoperative neurophysiological monitoring.

  7. State-dependent variations in brainstem auditory evoked responses in human subjects.

    Science.gov (United States)

    Sersen, E A; Majkowski, J; Clausen, J; Heaney, G M

    1984-12-01

    BAERs from 16 subjects during 3 sessions varied in the latency or amplitude of some components depending upon level of arousal as indicated by EEG patterns. There was a general tendency for activation to produce the fastest responses with the largest amplitudes and for drowsiness to produce the slowest responses with the smallest amplitudes. The latency of P2 was significantly prolonged during drowsiness, relative to those during relaxation or activation. For right-ear stimulation, P5 latency was longest during drowsiness, and shortest during activation while for left-ear stimulation the shortest latency occurred during relaxation. The amplitudes of Wave II and Wave VII were significantly smaller during drowsiness than during activation. Although the differences were below the level of clinical significance, the data indicate a modification in the characteristics of brainstem transmission as a function of concurrent activity in other brain areas.

  8. Aberrant lateralization of brainstem auditory evoked responses by individuals with Down syndrome.

    Science.gov (United States)

    Miezejeski, C M; Heaney, G; Belser, R; Sersen, E A

    1994-01-01

    Brainstem auditory evoked response latencies were studied in 80 males (13 with Down syndrome, 23 with developmental disability due to other causes, and 44 with no disability). Latencies for waves P3 and P5 were shorter for the Down syndrome than for the other groups, though at P5, as compared to latencies for the nondisabled group, the difference was not significant. The pattern of left versus right ear responses in the Down syndrome group differed from those of the other groups. This finding was related to research noting decreased lateralization of and decreased ability at receptive and expressive language among people with Down syndrome. Some individuals required sedation. A lateralized effect of sedation was noted.

  9. Longer brainstem auditory evoked response latencies of individuals with fragile X syndrome related to sedation.

    Science.gov (United States)

    Miezejeski, C M; Heaney, G; Belser, R; Brown, W T; Jenkins, E C; Sersen, E A

    1997-04-18

    Brainstem auditory evoked response latencies were studies in 75 males (13 with fragile X syndrome, 18 with mental retardation due to other causes, and 44 with no disability). Latency values were obtained for each ear for the positive deflections of waves I (P1), III (P3), and V (P5). Some individuals with mental retardation required sedation. Contrary to previous report, latencies obtained for individuals with fragile X did not differ from those obtained for persons without mental retardation. Persons receiving sedation, whether or not their retardation was due to fragile X, had longer latencies for wave P5 than persons who did not receive sedation. This effect of sedation may also explain the previously reported increased latencies for persons with fragile X.

  10. The neural circuitry of visual artistic production and appreciation: A proposition

    Directory of Open Access Journals (Sweden)

    Ambar Chakravarty

    2012-01-01

    Full Text Available The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF, relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.

  11. Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts

    Directory of Open Access Journals (Sweden)

    James Kenneth Moran

    2014-12-01

    Full Text Available Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated ‘appetitive’ aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N=50 presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG. Results show differences in left frontal regions in delta (2-5 Hz and alpha band (8-12 Hz for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry.

  12. Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders

    Science.gov (United States)

    D'Cruz, A-M; Mosconi, M W; Ragozzino, M E; Cook, E H; Sweeney, J A

    2016-01-01

    Restricted and repetitive behaviors, and a pronounced preference for behavioral and environmental consistency, are distinctive characteristics of autism spectrum disorder (ASD). Alterations in frontostriatal circuitry that supports flexible behavior might underlie this behavioral impairment. In an functional magnetic resonance imaging study of 17 individuals with ASD, and 23 age-, gender- and IQ-matched typically developing control participants, reversal learning tasks were used to assess behavioral flexibility as participants switched from one learned response choice to a different response choice when task contingencies changed. When choice outcome after reversal was uncertain, the ASD group demonstrated reduced activation in both frontal cortex and ventral striatum, in the absence of task performance differences. When the outcomes of novel responses were certain, there was no difference in brain activation between groups. Reduced activation in frontal cortex and ventral striatum suggest problems in decision-making and response planning, and in processing reinforcement cues, respectively. These processes, and their integration, are essential for flexible behavior. Alterations in these systems may therefore contribute to a rigid adherence to preferred behavioral patterns in individuals with an ASD. These findings provide an additional impetus for the use of reversal learning paradigms as a translational model for treatment development targeting the domain of restricted and repetitive behaviors in ASD. PMID:27727243

  13. Within-session effect of repeated stress exposure on extinction circuitry function in social anxiety disorder.

    Science.gov (United States)

    Åhs, Fredrik; Gingnell, Malin; Furmark, Tomas; Fredrikson, Mats

    2017-03-30

    Anxiety reduction following repeated exposure to stressful experiences is generally held to depend on neural processes involved in extinction of conditioned fear. We predicted that repeated exposure to stressful experiences would change activity throughout the circuitry serving extinction, including ventromedial prefrontal cortex (vmPFC), the hippocampus and the amygdala. To test this prediction, 36 participants diagnosed with SAD performed two successive speeches in front of an observing audience while regional cerebral blood flow (rCBF) was recorded using positron emission tomography. To control for non-anxiolytic effects of repeated exposure, rCBF was also measured during repeated presentations of neutral and angry facial expressions. Results showed that anxiety ratings and heart rate decreased from the first to the second speech, indicating an anxiolytic effect of repeated exposure. Exposure attenuated rCBF in the amygdala whereas no change in rCBF was observed in the vmPFC or hippocampus. The rCBF-reductions in the amygdala were greater following repetition of the speech task than repetition of face exposure indicating that they were specific to anxiety attenuation and not due to a reduced novelty. Our findings suggest that amygdala-related attenuation processes are key to understanding the working mechanisms of exposure therapy.

  14. Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus.

    Science.gov (United States)

    Mercer, Audrey; Eastlake, Karen; Trigg, Hayley L; Thomson, Alex M

    2012-01-01

    There is a growing recognition that the CA2 region of the hippocampus has its own distinctive properties, inputs, and pathologies. The dendritic and axonal patterns of some interneurons in this region are also strikingly different from those described previously in CA1 and CA3. The local circuitry in this region, however, had yet to be studied in detail. Accordingly, using dual intracellular recordings and biocytin-filling, excitatory and inhibitory connections involving CA2 parvalbumin-positive basket cells were characterized for the first time. CA2 basket cells targeted neighboring pyramidal cells and received excitatory inputs from them. CA2 basket cells that resembled those in CA1 with a fast spiking behavior and dendritic tree confined to the region of origin received depressing excitatory postsynaptic potentials (EPSPs). In contrast, unlike CA1 basket cells but like CA1 Oriens-Lacunosum Moleculare (OLM) cells, the majority of CA2 basket cells had horizontally oriented dendrites in Stratum Oriens (SO), which extended into all three CA subfields, had an adapting firing pattern, presented a "sag" in their voltage responses to hyperpolarizing current injection, and received facilitating EPSPs. The expression of I(h) did not influence the EPSP time courses and paired pulse ratios (PPR). Estimates of the probability of release (p) for the depressing and facilitating EPSPs were correlated with the PPR. Connections with low probabilities of release had higher PPR. Quantal amplitude (q) for the facilitating connections was larger than q at depressing inputs onto fast spiking basket cells.

  15. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  16. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.

    Science.gov (United States)

    Takeuchi, Miki; Matsuda, Koji; Yamaguchi, Shingo; Asakawa, Kazuhide; Miyasaka, Nobuhiko; Lal, Pradeep; Yoshihara, Yoshihiro; Koga, Akihiko; Kawakami, Koichi; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.

  17. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  18. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  19. Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry.

    Science.gov (United States)

    Dinkelacker, V; Grüter, M; Klaver, P; Grüter, T; Specht, K; Weis, S; Kennerknecht, I; Elger, C E; Fernandez, G

    2011-05-01

    Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition.

  20. Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent

    Directory of Open Access Journals (Sweden)

    Meng-Tsen Ke

    2016-03-01

    Full Text Available Super-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we report an optimized optical clearing agent for high-resolution fluorescence imaging (SeeDB2. SeeDB2 matches the refractive indices of fixed tissues to that of immersion oil (1.518, thus minimizing both light scattering and spherical aberrations. During the clearing process, fine morphology and fluorescent proteins were highly preserved. SeeDB2 enabled super-resolution microscopy of various tissue samples up to a depth of >100 μm, an order of magnitude deeper than previously possible under standard mounting conditions. Using this approach, we demonstrate accumulation of inhibitory synapses on spine heads in NMDA-receptor-deficient neurons. In the fly medulla, we found unexpected heterogeneity in axon bouton orientations among Mi1 neurons, a part of the motion detection circuitry. Thus, volumetric super-resolution microscopy of cleared tissues is a powerful strategy in connectomic studies at synaptic levels.

  1. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia.

    Science.gov (United States)

    Calderone, Daniel J; Hoptman, Matthew J; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J; Bar, Moshe; Javitt, Daniel C; Butler, Pamela D

    2013-08-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The "frame and fill" model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object "framing" circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia.

  2. Disturbance in Maternal Environment Leads to Abnormal Synaptic Instability during Neuronal Circuitry Development

    Science.gov (United States)

    Hatanaka, Yusuke; Kabuta, Tomohiro; Wada, Keiji

    2017-01-01

    Adverse maternal environment during gestation and lactation can have negative effects on the developing brain that persist into adulthood and result in behavioral impairment. Recent studies of human and animal models suggest epidemiological and experimental association between disturbances in maternal environments during brain development and the occurrence of neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, anxiety, depression, and neurodegenerative diseases. In this review, we summarize recent advances in understanding the effects of maternal metabolic and hormonal abnormalities on the developing brain by focusing on the dynamics of dendritic spine, an excitatory postsynaptic structure. We discuss the abnormal instability of dendritic spines that is common to developmental disorders and neurological diseases. We also introduce our recent studies that demonstrate how maternal obesity and hyperandrogenism leads to abnormal development of neuronal circuitry and persistent synaptic instability, which results in the loss of synapses. The aim of this review is to highlight the links between abnormal maternal environment, behavioral impairment in offspring, and the dendiric spine pathology of neuropsychiatric disorders.

  3. A current model of neural circuitry active in forming mental images.

    Science.gov (United States)

    Brodziak, Andrzej

    2013-12-12

    My aim here is to formulate a compact, intuitively understandable model of neural circuits active in imagination that would be consistent with the current state of knowledge, but that would be simple enough to be able to use for teaching. I argue that such a model should be based on the recent idea of "concept neurons" and circuits of 2 separate loops necessary for recalling mental images and consolidation of memory traces of long-term memory. This paper discusses the role of the hippocampus and temporal lobe, emphasizing the essential importance of recurrent pathways and oscillations occurring in the upper layers of hierarchical neural structures, as well as oscillations in thalamo-cortical loops. The elaborated model helps explain specific processes such as imagining future situations, novel objects, and anticipated action, as well as imagination concerning oneself, which is indispensable for the sense of identity and self-awareness. I attempt to present this compact, simple model of neural circuitry active in imagination by using some intuitive, demonstrative figures.

  4. Gap prepulse inhibition and auditory brainstem evoked potentials as objective measures for tinnitus in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Susanne eDehmel

    2012-05-01

    Full Text Available Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept.

  5. The role of the auditory brainstem in processing musically relevant pitch.

    Science.gov (United States)

    Bidelman, Gavin M

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners' perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  6. Alterations in peripheral and central components of the auditory brainstem response: a neural assay of tinnitus.

    Directory of Open Access Journals (Sweden)

    Andrea S Lowe

    Full Text Available Chronic tinnitus, or "ringing of the ears", affects upwards of 15% of the adult population. Identifying a cost-effective and objective measure of tinnitus is needed due to legal concerns and disability issues, as well as for facilitating the effort to assess neural biomarkers. We developed a modified gap-in-noise (GIN paradigm to assess tinnitus in mice using the auditory brainstem response (ABR. We then compared the commonly used acoustic startle reflex gap-prepulse inhibition (gap-PPI and the ABR GIN paradigm in young adult CBA/CaJ mice before and after administrating sodium salicylate (SS, which is known to reliably induce a 16 kHz tinnitus percept in rodents. Post-SS, gap-PPI was significantly reduced at 12 and 16 kHz, consistent with previous studies demonstrating a tinnitus-induced gap-PPI reduction in this frequency range. ABR audiograms indicated thresholds were significantly elevated post-SS, also consistent with previous studies. There was a significant increase in the peak 2 (P2 to peak 1 (P1 and peak 4 (P4 to P1 amplitude ratios in the mid-frequency range, along with decreased latency of P4 at higher intensities. For the ABR GIN, peak amplitudes of the response to the second noise burst were calculated as a percentage of the first noise burst response amplitudes to quantify neural gap processing. A significant decrease in this ratio (i.e. recovery was seen only at 16 kHz for P1, indicating the presence of tinnitus near this frequency. Thus, this study demonstrates that GIN ABRs can be used as an efficient, non-invasive, and objective method of identifying the approximate pitch and presence of tinnitus in a mouse model. This technique has the potential for application in human subjects and also indicates significant, albeit different, deficits in temporal processing in peripheral and brainstem circuits following drug induced tinnitus.

  7. Unilateral and bilateral brainstem auditory-evoked response abnormalities in 900 Dalmatian dogs.

    Science.gov (United States)

    Holliday, T A; Nelson, H J; Williams, D C; Willits, N

    1992-01-01

    In a survey of 900 Dalmatian dogs, brainstem auditory-evoked responses (BAER) and clinical observations were used to determine the incidence and sex distribution of bilateral and unilateral BAER abnormalities and their association with heterochromia iridis (HI). To assess the efficacy of BAER testing in guiding breeding programs, data from 749 dogs (subgroup A), considered to be a sample of the population at large, were compared with data from a subgroup (subgroup B; n = 151) in which selection of breeding stock had been based on BAER testing from the beginning of the 4-year survey. Brainstem auditory-evoked responses were elicited by applying click stimuli unilaterally, while applying a white noise masking sound to the contralateral ear. Under these conditions, BAER were either normal, unilaterally absent, or bilaterally absent. Dogs with bilaterally absent BAER were clinically deaf; dogs with unilaterally absent BAER were not clinically deaf but appeared dependent on their BAER-normal ears for their auditory-cued behavior. Dogs with unilaterally absent BAER often were misidentified as normal by uninformed observers. Among the 900 dogs, 648 (72.0%) were normal, 189 (21.0%) had unilateral absence of BAER, and 63 (7.0%) had bilateral absence of BAER or were clinically deaf and assumed to have bilaterally absent BAER (n = 4). Total incidence in the population sampled was assumed to be higher, because some bilaterally affected dogs that would have been members of subgroup A undoubtedly did not come to our attention. Among females, 24.0% were unilaterally abnormal and 8.2% were bilaterally abnormal whereas, among males, 17.8% were unilaterally abnormal and 5.7% were bilaterally abnormal.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird.

    Science.gov (United States)

    Heyers, Dominik; Zapka, Manuela; Hoffmeister, Mara; Wild, John Martin; Mouritsen, Henrik

    2010-05-18

    The upper beak of birds, which contains putative magnetosensory ferro-magnetic structures, is innervated by the ophthalmic branch of the trigeminal nerve (V1). However, because of the absence of replicable neurobiological evidence, a general acceptance of the involvement of the trigeminal nerve in magnetoreception is lacking in birds. Using an antibody to ZENK protein to indicate neuronal activation, we here document reliable magnetic activation of neurons in and near the principal (PrV) and spinal tract (SpV) nuclei of the trigeminal brainstem complex, which represent the two brain regions known to receive primary input from the trigeminal nerve. Significantly more neurons were activated in PrV and in medial SpV when European robins (Erithacus rubecula) experienced a magnetic field changing every 30 seconds for a period of 3 h (CMF) than when robins experienced a compensated, zero magnetic field condition (ZMF). No such differences in numbers of activated neurons were found in comparison structures. Under CMF conditions, sectioning of V1 significantly reduced the number of activated neurons in and near PrV and medial SpV, but not in lateral SpV or in the optic tectum. Tract tracing of V1 showed spatial proximity and regional overlap of V1 nerve endings and ZENK-positive (activated) neurons in SpV, and partly in PrV, under CMF conditions. Together, these results suggest that magnetic field changes activate neurons in and near the trigeminal brainstem complex and that V1 is necessary for this activation. We therefore suggest that V1 transmits magnetic information to the brain in this migratory passerine bird.

  9. Impact of head immobilization position on dose distribution in patients of brainstem glioma

    Directory of Open Access Journals (Sweden)

    Seema Sharma

    2015-03-01

    Full Text Available Purpose: The purpose of this study is to investigate the impact of patient position (supine and prone on conventional bilateral field, three dimensional conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT treatment plans in patients of brainstem glioma with a view to exploring the possibility of avoiding beam entry through immobilization accessories. Methods: Five patients of brainstem glioma were immobilized and scanned in supine and prone positions with a combination of head rest and thermoplastic cast. Each patient was planned with three techniques: (i 2-fields bilateral (ii 3-fields 3DCRT, and (iii 5-fields IMRT. Plan quality was analyzed in terms of planning target volume (PTV coverage and dose to various critical organs at risk (OAR for both the supine and prone treatment positions. Results: In case of bilateral fields (parallel opposed planning, the PTV coverage and dose to the OAR were almost similar for both the supine and prone positions. In 3DCRT plan, although the PTV coverage and dose to critical structures were comparable for both the supine and prone position, dose to cochlea was lower for the prone position plan. A modest decrease in maximum dose to optic nerves and mean dose to temporal lobes were also observed for the prone position plan. In IMRT plans, the PTV coverage and homogeneity were comparable in both the supine and prone positions. Reduction in average maximum and mean doses to all OARs with functional subunit (FSU in series and parallel respectively was observed in the IMRT plan for prone position when compared to the supine position.Conclusion: Supine and prone positions resulted in almost similar dose distribution in all the three techniques applied. At some instances, the prone position showed better normal tissues sparing when compared to supine. Moreover, prone position is more likely to avoid attenuation due to immobilization devices and uncertainty in dose calculation under large

  10. Evaluation of otoacoustic emissions and auditory brainstem responses for hearing screening of high risk infants

    Directory of Open Access Journals (Sweden)

    Tania Nazir

    2016-01-01

    Full Text Available Aim: The objective of the present study is the assessment of otoacoustic emissions (OAEs and auditory brainstem responses (ABRs for hearing screening of high risk infants. Study Design: Prospective, hospital-based. Materials and Methods: Distortion product OAEs (DPOAEs and brainstem evoked response audiometry (BERA recordings were obtained for 30 controls and 100 infants with one or more high risk factors, in a sound treated room and the results were interpreted. ABR peak latencies, amplitudes, and waveform morphology in high risk infants were compared with those in control group. DPOAE as screening test was evaluated in terms of various parameters with BERA/ABR taken as gold standard. Results: Absolute latencies of Wave I and Wave V and interpeak latency of I-V were significantly prolonged in high risk group as compared to control group. The most common causes to contribute significantly for hearing impairment were found to be hyperbilirubinemia, birth asphyxia, meningitis/septicemia. DPOAE when compared with ABR taken as gold standard showed that sensitivity of the test was 87.7% (74.5%-94.9% and specificity was 74.5% (60.0%-85.2%. Positive predictive value was 76.7% (63.2%-86.6% and negative predictive value of the test was 86% (71.9%-94.3%. Positive likelihood ratio was 0.29 (0.18-0.46 and negative likelihood ratio was 6.08 (2.82-13.09. Conclusion : ABR/BERA, though highly reliable, is a tedious and time consuming test. DPOAE is a simple and rapid test with relatively higher acceptability but low sensitivity and specificity; therefore, limits its role as independent screening test. DPOAE-ABR test series is an effective way to screen all the high risk infants at the earliest.

  11. THE EFFECTS OF SALICYLATE ON AUDITORY EVOKED POTENTIAL AMPLITWDE FROM THE AUDITORY CORTEX AND AUDITORY BRAINSTEM

    Institute of Scientific and Technical Information of China (English)

    Brian Sawka; SUN Wei

    2014-01-01

    Tinnitus has often been studied using salicylate in animal models as they are capable of inducing tempo-rary hearing loss and tinnitus. Studies have recently observed enhancement of auditory evoked responses of the auditory cortex (AC) post salicylate treatment which is also shown to be related to tinnitus like behavior in rats. The aim of this study was to observe if enhancements of the AC post salicylate treatment are also present at structures in the brainstem. Four male Sprague Dawley rats with AC implanted electrodes were tested for both AC and auditory brainstem response (ABR) recordings pre and post 250 mg/kg intraperitone-al injections of salicylate. The responses were recorded as the peak to trough amplitudes of P1-N1 (AC), ABR wave V, and ABR waveⅡ. AC responses resulted in statistically significant enhancement of ampli-tude at 2 hours post salicylate with 90 dB stimuli tone bursts of 4, 8, 12, and 20 kHz. Wave V of ABR re-sponses at 90 dB resulted in a statistically significant reduction of amplitude 2 hours post salicylate and a mean decrease of amplitude of 31%for 16 kHz. WaveⅡamplitudes at 2 hours post treatment were signifi-cantly reduced for 4, 12, and 20 kHz stimuli at 90 dB SPL. Our results suggest that the enhancement chang-es of the AC related to salicylate induced tinnitus are generated superior to the level of the inferior colliculus and may originate in the AC.

  12. Auditory Rehabilitation in Rhesus Macaque Monkeys (Macaca mulatta) with Auditory Brainstem Implants

    Institute of Scientific and Technical Information of China (English)

    Zhen-Min Wang; Zhi-Jun Yang; Fu Zhao; Bo Wang; Xing-Chao Wang; Pei-Ran Qu; Pi-Nan Liu

    2015-01-01

    Background:The auditory brainstem implants (ABIs) have been used to treat deafness for patients with neurofibromatosis Type 2 and nontumor patients.The lack of an appropriate animal model has limited the study of improving hearing rehabilitation by the device.This study aimed to establish an animal model of ABI in adult rhesus macaque monkey (Macaca mulatta).Methods:Six adult rhesus macaque monkeys (M.mulatta) were included.Under general anesthesia,a multichannel ABI was implanted into the lateral recess of the fourth ventricle through the modified suboccipital-retrosigmoid (RS) approach.The electrical auditory brainstem response (EABR) waves were tested to ensure the optimal implant site.After the operation,the EABR and computed tomography (CT) were used to test and verify the effectiveness via electrophysiology and anatomy,respectively.The subjects underwent behavioral observation for 6 months,and the postoperative EABR was tested every two weeks from the 1st month after implant surgery.Result:The implant surgery lasted an average of 5.2 h,and no monkey died or sacrificed.The averaged latencies of peaks Ⅰ,Ⅱ and Ⅳ were 1.27,2.34 and 3.98 ms,respectively in the ABR.One-peak EABR wave was elicited in the operation,and one-or two-peak waves were elicited during the postoperative period.The EABR wave latencies appeared to be constant under different stimulus intensities;however,the amplitudes increased as the stimulus increased within a certain scope.Conclusions:It is feasible and safe to implant ABIs in rhesus macaque monkeys (M.mulatta) through a modified suboccipital RS approach,and EABR and CT are valid tools for animal model establishment.In addition,this model should be an appropriate animal model for the electrophysiological and behavioral study of rhesus macaque monkey with ABI.

  13. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  14. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  15. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  16. Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit

    Science.gov (United States)

    Mumphrey, Michael B.; Hao, Zheng; Townsend, R. Leigh; Patterson, Laurel M.; Münzberg, Heike; Morrison, Christopher C.; Ye, Jianping; Berthoud, Hans-Rudolf

    2016-01-01

    Background/Objective Obesity and metabolic diseases are at an alarming level globally and increasingly affect children and adolescents. Gastric bypass and other bariatric surgeries have proven remarkably successful and are increasingly performed worldwide. Reduced desire to eat and changes in eating behavior and food choice account for most of the initial weight loss and diabetes remission after surgery, but the underlying mechanisms of altered gut-brain communication are unknown. Subjects/Methods To explore the potential involvement of a powerful brainstem anorexia pathway centered around the lateral parabrachial nucleus (lPBN) we measured meal-induced neuronal activation by means of c-Fos immunohistochemistry in a new high-fat diet-induced obese mouse model of Roux-en-Y gastric bypass (RYGB) at 10 and 40 days after RYGB or sham surgery. Results Voluntary ingestion of a meal 10 days after RYGB, but not after sham surgery, strongly and selectively activates calcitonin gene-related peptide neurons in the external lPBN as well as neurons in the nucleus tractus solitaries, area postrema, and medial amygdala. At 40 days after surgery, meal-induced activation in all these areas was greatly diminished and did not reach statistical significance. Conclusions The neural activation pattern and dynamics suggest a role of the brainstem anorexia pathway in the early effects of RYGB on meal size and food intake that may lead to adaptive neural and behavioral changes involved in the control of food intake and body weight at a lower level. However, selective inhibition of this pathway will be required for a more causal implication. PMID:26984418

  17. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hongwu; Gan, Yungen [Shenzhen Children' s Hospital, Department of Radiology, Shenzhen (China); Wen, Feiqiu [Shenzhen Children' s Hospital, Department of Neurology, Shenzhen (China); Huang, Wenxian [Shenzhen Children' s Hospital, Department of Respiratory, Shenzhen (China)

    2012-06-15

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  18. The driving system for hippocampal theta in the brainstem: an examination by single neuron recording in urethane-anesthetized rats.

    Science.gov (United States)

    Takano, Yuji; Hanada, Yasuhiro

    2009-05-08

    The brainstem has been shown to be involved in generating hippocampal theta; however, which brainstem region plays the most important role in generating the rhythm has remained unclear. To reveal which brainstem region triggers the theta, the hippocampal local field potential was recorded simultaneously with single unit activity in the brainstem of urethane-anesthetized rat. The firing latencies before theta onset and offset were compared among recording sites (deep mesencephalic nucleus, DpMe; pedunculopontine tegmental nucleus, PPT; nucleus pontis oralis, PnO). We examined the activities of 59 cells; PPT showed the highest proportion of neurons changing their firing rates at theta onset (14/16, 87.5%). The proportion in the PnO was 14/22 (63.6%), but the neurons in the PnO showed the earliest changes in latencies (0.57s before theta onset). The change in the PPT was 0.96s after theta onset. Regarding the theta offset, the PPT showed the highest proportion of neurons changing their firing rates at theta offset (9/16, 56.3%; the proportion in the PnO was 5/22, 22.7%), but the difference in latent time was not significant among recorded regions. The neurons in the DpMe did not show any remarkable firing tendency at theta onset and offset. From these results, we propose a driving system of hippocampal theta, in which neurons in the PnO first trigger the theta onset and then those in the PPT maintain the theta by activating broadly the brainstem areas for the wave.

  19. Mapping the distribution of serotonin transporter in the human brainstem with high-resolution PET: Validation using postmortem autoradiography data.

    Science.gov (United States)

    Fazio, P; Schain, M; Varnäs, K; Halldin, C; Farde, L; Varrone, A

    2016-06-01

    The human brainstem is a complex structure with several small nuclei and neural pathways of interest in the pathophysiology of central nervous system (CNS) disorders. In common with other monoaminergic systems, serotoninergic neurons originate from a group of nuclei located in the brainstem. The present study was designed to validate a user-independent approach for a detailed in vivo quantification of serotonin transporter (5-HTT) availability in the human brainstem using a template-based approach that consisted of three steps. First, 3T-MR images and parametric binding potential (BPND) [(11)C]MADAM images of ten healthy subjects were used to generate a PET template of 5-HTT availability. In the second step, volumes of interest (VOIs) for different brainstem nuclei were obtained using a method in which VOIs are initially delineated on MRI images using anatomical landmarks and then are finally tailored on the distribution of 5-HTT binding using a thresholding approach applied to the 5-HTT template. In the final step, the VOIs were transformed and applied individually to BPND images of 16 healthy subjects (14M/2F, 20-64years). The in vivo distribution of BPND values obtained with the template-based method were in good agreement with an individual-based approach taken as gold standard. Results were also in agreement with 5-HTT quantification using in vitro binding data obtained with autoradiography (ARG) studies using [(3)H]MADAM. The proposed template-based method can be applied to PET data acquired in several CNS disorders in which serotonin neurons in the brainstem might be affected.

  20. Quantitative Magnetic Resonance Imaging of Brainstem Volumes, Plaques, and Surface Area in the Occipital Regions of Patients with Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Alper, F.; Kantarci, M.; Altunkaynak, E.; Varoglu, A. O.; Karaman, A.; Oral, E.; Okur, A. [Ataturk Univ., Erzurum (Turkey). Depts. of Radiology, Histology, Neurology and Embryology, Psychiatry

    2006-07-15

    Purpose: To determine brainstem volumes, number of plaques, and surface areas in the occipital lobes of patients with relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), and to investigate whether there is any correlation between brainstem volume and the number/surface areas of plaque in the occipital lobes. Material and Methods: Magnetic resonance imaging was obtained on 14 relapsing-remitting (RR) and 13 secondary progressive (SP) MS patients and 26 female control subjects. The Cavalieri method was used by modern design stereology to measure brainstem volume. The point-counting grid was used to evaluate sclerotic plaque surface areas in the occipital lobe. The number of plaques in the imaging section was calculated. Results: Brainstem volumes for RR and SP with multiple sclerosis and control subjects were 3647 mm{sup 3} , 3515 mm{sup 3} , and 4517 mm{sup 3} , respectively. Mean number of plaques in the right-left occipital lobe was found to be 2.7-3.4 in RR-MS and 5.2-2.8 in SP-MS. Mean plaque surface area in the right-left occipital lobe was determined to be 58.52-88.24 mm{sup 2} in RR MS and 124.3-64.82 mm{sup 2} in SP MS. Brainstem volumes were significantly reduced in both groups of patients with MS compared to controls ( P <0.01). Conclusion: Magnetic-resonance-estimated volume and surface area values in multiple sclerosis may facilitate our understanding of the clinical situation of patients and provide a simple index for evaluating therapeutic efficiency.

  1. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    Science.gov (United States)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  2. Novel Circuitry Configuration with Paired-Cell Erase Operation for High-Density 90-nm Embedded Resistive Random Access Memory

    Science.gov (United States)

    Sato, Yoshihiro; Tsunoda, Koji; Aoki, Masaki; Sugiyama, Yoshihiro

    2009-04-01

    We propose a novel circuitry configuration for high-density 90-nm embedded resistive random access memory (ReRAM). The memory cells are operated at 2 V, and a small memory cell size of 6F2 consisting of a 1.2-V standard transistor and a resistive junction (1T-1R) is designed, where F is the feature size. The unique circuitry configuration is that each pair of source-lines connects to each source-line selective gate. Therefore, erasing is done by a pair of cells in turn in the whole sector, while the reading or programming is done by a random accessing operation. We simulated the ReRAM circuit for read and write operations with SPICE. As a result, we found that 5-ns high-speed read access was obtained in the 256-word lines (WLs) × 256-bit lines (BLs) and that the SET/RESET operation was stable.

  3. Oxytocin Treatment, Circuitry, and Autism: A Critical Review of the Literature Placing Oxytocin Into the Autism Context.

    Science.gov (United States)

    Guastella, Adam J; Hickie, Ian B

    2016-02-01

    Observed impairment in reciprocal social interaction is a diagnostic hallmark of autism spectrum disorders. There is no effective medical treatment for these problems. Psychological treatments remain costly, time intensive, and developmentally sensitive for efficacy. In this review, we explore the potential of oxytocin-based therapies for social impairments in autism. Evidence shows that acute oxytocin administration improves numerous markers critical to the social circuitry underlying social deficits in autism. Oxytocin may optimize these circuits and enhance reward, motivation, and learning to improve therapeutic outcomes. Despite this, the current evidence of therapeutic benefit from extended oxytocin treatment remains very limited. We highlight complexity in crossing from the laboratory to the autism clinical setting in evaluation of this therapeutic. We discuss a clinical trial approach that provides optimal opportunity for therapeutic response by using personalized methods that better target specific circuitry to define who will obtain benefit, at what stage of development, and the optimal delivery approach for circuitry manipulation. For the autism field, the therapeutic challenges will be resolved by a range of treatment strategies, including greater focus on specific interventions, such as oxytocin, that have a strong basis in the fundamental neurobiology of social behavior. More sophisticated and targeted clinical trials utilizing such approaches are now required, placing oxytocin into the autism context.

  4. Effects of direct social experience on trust decisions and neural reward circuitry

    Directory of Open Access Journals (Sweden)

    Dominic S. Fareri

    2012-10-01

    Full Text Available The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball tossing game with three fictional partners manipulated to be perceived as good, bad or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction-error (PE learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning

  5. 2004 survey of ECMO in the neonate after open heart surgery: circuitry and team roles.

    Science.gov (United States)

    Searles, Bruce; Gunst, Gordy; Terry, Bryan; Melchior, Richard; Darling, Edward

    2005-12-01

    Over the past 20 years, the bulk of the literature and texts published about extracorporeal membrane oxygenation (ECMO) has been written by physicians and nurses. The consensus of this body of printed information would suggest, among other things, that (1) despite significant advancements in extracorporeal technology, the standard ECMO circuit has remained fundamentally unchanged since originally described in 1982, and (2) perfusionists are nearly absent from the staffing algorithm at most centers. While these conclusions may be representative of the extracorporeal life support (ELSO) reporting centers, they may not be representative of the field as a whole. We hypothesized that the use of modern extracorporeal equipment and the involvement of perfusionists in ECMO patient care is largely underreported in previous studies. To study this hypothesis, we developed a standard survey instrument and queried perfusion teams from the hospitals listed on the American Society of Extra-Corporeal Technology Pediatric Registry. All centers were contacted by phone and were asked questions regarding their caseload, circuitry, and staffing algorithms. Data are reported as a percentage of respondents. ECMO is used as a method of mechanical support after neonatal open heart surgery in 94% of centers surveyed. For 60% of the centers, a silicone membrane oxygenator is used exclusively, whereas 40% of the centers have used a hollow fiber oxygenator (HFO), and of that group, 19% use a HFO routinely for neonatal post-cardiopulmonary bypass ECMO. Roller pumps are used exclusively at 65% of the centers, whereas centrifugal pumps are used routinely in 12%, and 23% have used both. Perfusionists are responsible for set-up/initiation (79%) and daily rounding/troubleshooting (71%), and provide around-the-clock bedside care (46%) at the surveyed centers. These data suggest that previously published ELSO-centric ECMO studies may significantly underestimate the contemporary application of modern

  6. Coronary artery disease affects cortical circuitry associated with brain-heart integration during volitional exercise.

    Science.gov (United States)

    Norton, Katelyn N; Badrov, Mark B; Barron, Carly C; Suskin, Neville; Heinecke, Armin; Shoemaker, J Kevin

    2015-08-01

    This study tested the hypothesis that coronary artery disease (CAD) alters the cortical circuitry associated with exercise. Observations of changes in heart rate (HR) and in cortical blood oxygenation level-dependent (BOLD) images were made in 23 control subjects [control; 8 women; 63 ± 11 yr; mean arterial pressure (MAP): 90 ± 9 mmHg] (mean ± SD) and 17 similarly aged CAD patients (4 women; 59 ± 9 yr; MAP: 87 ± 10 mmHg). Four repeated bouts each of 30%, 40%, and 50% of maximal voluntary contraction (MVC) force (LAB session), and seven repeated bouts of isometric handgrip (IHG) at 40% MVC force (fMRI session), were performed, with each contraction lasting 20 s and separated by 40 s of rest. There was a main effect of group (P = 0.03) on HR responses across all IHG intensities. Compared with control, CAD demonstrated less task-dependent deactivation in the posterior cingulate cortex and medial prefrontal cortex, and reduced activation in the right anterior insula, bilateral precentral cortex, and occipital lobe (P < 0.05). When correlated with HR, CAD demonstrated reduced activation in the bilateral insula and posterior cingulate cortex, and reduced deactivation in the dorsal anterior cingulate cortex, and bilateral precentral cortex (P < 0.05). The increased variability in expected autonomic regions and decrease in total cortical activation in response to the IHG task are associated with a diminished HR response to volitional effort in CAD. Therefore, relative to similarly aged and healthy individuals, CAD impairs the heart rate response and modifies the cortical patterns associated with cardiovascular control during IHG.

  7. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    Science.gov (United States)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  8. Chronotype and diurnal patterns of positive affect and affective neural circuitry in primary insomnia.

    Science.gov (United States)

    Hasler, Brant P; Germain, Anne; Nofzinger, Eric A; Kupfer, David J; Krafty, Robert T; Rothenberger, Scott D; James, Jeffrey A; Bi, Wenzhu; Buysse, Daniel J

    2012-10-01

    While insomnia is a well-established risk factor for the initial onset, recurrence or relapse of affective disorders, the specific characteristics of insomnia that confer risk remain unclear. Patients with insomnia with an evening chronotype may be one particularly high-risk group, perhaps due to alterations in positive affect and its related affective circuitry. We explored this possibility by comparing diurnal patterns of positive affect and the activity of positive affect-related brain regions in morning- and evening-types with insomnia. We assessed diurnal variation in brain activity via the relative regional cerebral metabolic rate of glucose uptake by using [(18) F]fluorodeoxyglucose-positron emission tomography during morning and evening wakefulness. We focused on regions in the medial prefrontal cortex and striatum, which have been consistently linked with positive affect and reward processing. As predicted, chronotypes differed in their daily patterns in both self-reported positive affect and associated brain regions. Evening-types displayed diurnal patterns of positive affect characterized by phase delay and smaller amplitude compared with those of morning-types with insomnia. In parallel, evening-types showed a reduced degree of diurnal variation in the metabolism of both the medial prefrontal cortex and the striatum, as well as lower overall metabolism in these regions across both morning and evening wakefulness. Taken together, these preliminary findings suggest that alterations in the diurnal activity of positive affect-related neural structures may underlie differences in the phase and amplitude of self-reported positive affect between morning and evening chronotypes, and may constitute one mechanism for increased risk of mood disorders among evening-type insomniacs.

  9. The banana code – Natural blend processing in the olfactory circuitry of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Marco eSchubert

    2014-02-01

    Full Text Available Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly’s olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I. In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL, the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.

  10. Disrupted Brain Circuitry for Pain-Related Reward/Punishment in Fibromyalgia

    Science.gov (United States)

    Loggia, Marco L.; Berna, Chantal; Kim, Jieun; Cahalan, Christine M.; Gollub, Randy L.; Wasan, Ajay D.; Harris, Richard E.; Edwards, Robert R.; Napadow, Vitaly

    2015-01-01

    Objective While patients suffering from fibromyalgia (FM) are known to exhibit hyperalgesia, the central mechanisms contributing to this altered pain processing are not fully understood. In this study we investigate potential dysregulation of the neural circuitry underlying cognitive and hedonic aspects of the subjective experience of pain such as anticipation of pain and of pain relief. Methods FMRI was performed on 31 FM patients and 14 controls while they received cuff pressure pain stimuli on their leg, calibrated to elicit a pain rating of ∼50/100. During the scan, subjects also received visual cues informing them of impending pain onset (pain anticipation) and pain offset (relief anticipation). Results Patients exhibited less robust activations during both anticipation of pain and anticipation of relief within regions commonly thought to be involved in sensory, affective, cognitive and pain-modulatory processes. In healthy controls, direct searches and region-of-interest analyses in the ventral tegmental area (VTA) revealed a pattern of activity compatible with the encoding of punishment: activation during pain anticipation and pain stimulation, but deactivation during relief anticipation. In FM patients, however, VTA activity during pain and anticipation (of both pain and relief) periods was dramatically reduced or abolished. Conclusion FM patients exhibit disrupted brain responses to reward/punishment. The VTA is a source for reward-linked dopaminergic/GABAergic neurotransmission in the brain and our observations are compatible with reports of altered dopaminergic/GABAergic neurotransmission in FM. Reduced reward/punishment signaling in FM may relate to the augmented central processing of pain and reduced efficacy of opioid treatments in these patients. PMID:24449585

  11. Disrupted working memory circuitry and psychotic symptoms in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    C.A. Montojo

    2014-01-01

    Full Text Available 22q11.2 deletion syndrome (22q11DS is a recurrent genetic mutation that is highly penetrant for psychosis. Behavioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes differential impairment in spatial working memory (WM. Notably, spatial WM has also been proposed as an endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients, we collected functional magnetic resonance imaging (fMRI data while 41 participants (16 22q11DS patients, 25 demographically matched controls performed a spatial capacity WM task that included manipulations of delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during task performance in the intraparietal sulcus (IPS and superior frontal sulcus (SFS. In addition, the typical increases in neural activity within spatial WM-relevant regions with greater memory load were not observed in 22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral WM performance, assessed via the University of Maryland letter–number sequencing (LNS task, and positive psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS, in 22q11DS patients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover, WM load activity within IPS was inversely correlated with the severity of unusual thought content and delusional ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment of brain regions critical for spatial WM function, which may be related to characteristic behavioral manifestations of the disorder.

  12. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry

    Science.gov (United States)

    Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian

    2016-01-01

    Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole‐cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+] measurements, we also employed life‐time imaging of the Ca2+ indicator Oregon Green BAPTA‐1. We found that dopamine triggered a dose‐dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below‐baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine‐induced [Ca2+] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher‐threshold dopamine‐induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter—dopamine—could either elevate or decrease astrocyte [Ca2+] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447–459 PMID:27896839

  13. Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism.

    Science.gov (United States)

    Hernandez, L M; Krasileva, K; Green, S A; Sherman, L E; Ponting, C; McCarron, R; Lowe, J K; Geschwind, D H; Bookheimer, S Y; Dapretto, M

    2016-11-15

    Several common alleles in the oxytocin receptor gene (OXTR) are associated with altered brain function in reward circuitry in neurotypical adults and may increase risk for autism spectrum disorders (ASD). Yet, it is currently unknown how variation in the OXTR relates to brain functioning in individuals with ASD, and, critically, whether neural endophenotypes vary as a function of aggregate genetic risk. Here, for we believe the first time, we use a multi-locus approach to examine how genetic variation across several OXTR single-nucleotide polymorphisms (SNPs) affect functional connectivity of the brain's reward network. Using data from 41 children with ASD and 41 neurotypical children, we examined functional connectivity of the nucleus accumbens (NAcc) - a hub of the reward network - focusing on how connectivity varies with OXTR risk-allele dosage. Youth with ASD showed reduced NAcc connectivity with other areas in the reward circuit as a function of increased OXTR risk-allele dosage, as well as a positive association between risk-allele dosage and symptom severity, whereas neurotypical youth showed increased NAcc connectivity with frontal brain regions involved in mentalizing. In addition, we found that increased NAcc-frontal cortex connectivity in typically developing youth was related to better scores on a standardized measure of social functioning. Our results indicate that cumulative genetic variation on the OXTR impacts reward system connectivity in both youth with ASD and neurotypical controls. By showing differential genetic effects on neuroendophenotypes, these pathways elucidate mechanisms of vulnerability versus resilience in carriers of disease-associated risk alleles.Molecular Psychiatry advance online publication, 15 November 2016; doi:10.1038/mp.2016.209.

  14. Naloxone-Reversible Modulation of Pain Circuitry by Left Prefrontal rTMS

    Science.gov (United States)

    Taylor, Joseph J; Borckardt, Jeffrey J; Canterberry, Melanie; Li, Xingbao; Hanlon, Colleen A; Brown, Truman R; George, Mark S

    2013-01-01

    A 20-minute session of 10 Hz repetitive transcranial magnetic stimulation (rTMS) of Brodmann Area (BA) nine of the left dorsolateral prefrontal cortex (DLPFC) can produce analgesic effects on postoperative and laboratory-induced pain. This analgesia is blocked by pretreatment with naloxone, a μ-opioid antagonist. The purpose of this sham-controlled, double-blind, crossover study was to identify the neural circuitry that underlies the analgesic effects of left DLPFC rTMS, and to examine how the function of this circuit, including midbrain and medulla, changes during opioid blockade. Fourteen healthy volunteers were randomized to receive intravenous saline or naloxone immediately before sham and real left DLPFC rTMS on the same experimental visit. One week later, each participant received the novel pretreatment but the same stimulation paradigm. Using short sessions of heat on capsaicin-sensitized skin, hot allodynia was assessed during 3 Tesla functional magnetic resonance imaging (fMRI) scanning at baseline, post-sham rTMS, and post-real rTMS. Data were analyzed using whole-brain voxel-based analysis, as well as time series extractions from anatomically-defined regions of interest representing midbrain and medulla. Consistent with previous findings, real rTMS significantly reduced hot allodynia pain ratings. This analgesia was associated with elevated blood oxygenation-level dependent (BOLD) signal in BAs 9 and 10, and diminished BOLD signal in the anterior cingulate, thalamus, midbrain, and medulla during pain. Naloxone pretreatment largely abolished rTMS-induced analgesia, as well as rTMS-induced attenuation of BOLD signal response to painful stimuli throughout pain processing regions, including midbrain and medulla. These preliminary results suggest that left DLPFC rTMS drives top-down opioidergic analgesia. PMID:23314221

  15. Empty spiracles is required for the development of olfactory projection neuron circuitry in Drosophila.

    Science.gov (United States)

    Lichtneckert, Robert; Nobs, Lionel; Reichert, Heinrich

    2008-08-01

    In both insects and mammals, second-order olfactory neurons receive input from olfactory receptor neurons and relay olfactory input to higher brain centers. In Drosophila, the wiring specificity of these olfactory projection neurons (PNs) is predetermined by their lineage identity and birth order. However, the genetic programs that control this wiring specificity are not well understood. The cephalic gap gene empty spiracles (ems) encodes a homeodomain transcription factor required for embryonic development of the antennal brain neuromere. Here we show that ems is expressed postembryonically in the progenitors of the two major olfactory PN lineages. Moreover, we show that ems has cell lineage-specific functions in postembryonic PN development. Thus, in the lateral PN lineage, transient ems expression is essential for development of the correct number of PNs; in ems mutants, the number of PNs in the lineage is dramatically reduced by apoptosis. By contrast, in the anterodorsal PN lineage, transient ems expression is necessary for precise targeting of PN dendrites to appropriate glomeruli; in ems mutants, these PNs fail to innervate correct glomeruli, innervate inappropriate glomeruli, or mistarget dendrites to other brain regions. Furthermore, in the anterodorsal PN lineage, ems controls the expression of the POU-domain transcription factor Acj6 in approximately half of the cells and, in at least one glomerulus, ems function in dendritic targeting is mediated through Acj6. The finding that Drosophila ems, like its murine homologs Emx1/2, is required for the formation of olfactory circuitry implies that conserved genetic programs control olfactory system development in insects and mammals.

  16. Regulation of body fat mass by the gut microbiota

    DEFF Research Database (Denmark)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik

    2016-01-01

    New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries...

  17. Voltage Regulator for a dc-to-dc Converter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    New voltage regulator isolates signals from power-switching converter without use of complex circuitry or optical couplers. Only addition is extra secondary winding on existing interstage transformer. Error signals shortcircuit new winding and inhibit converter action. Resistor in series with primary winding limits short-circuit current to prevent damage to circuit components. Extra transformer winding eliminates need for isolation components.

  18. Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: A longitudinal DTI study in adolescents with restrictive eating disorders

    Science.gov (United States)

    Olivo, Gaia; Wiemerslage, Lyle; Swenne, Ingemar; Zhukowsky, Christina; Salonen-Ros, Helena; Larsson, Elna-Marie; Gaudio, Santino; Brooks, Samantha J.; Schiöth, Helgi B.

    2017-01-01

    Few studies have used diffusion tensor imaging (DTI) to investigate the micro-structural alterations of WM in patients with restrictive eating disorders (rED), and longitudinal data are lacking. Twelve patients with rED were scanned at diagnosis and after one year of family-based treatment, and compared to twenty-four healthy controls (HCs) through DTI analysis. A tract-based spatial statistics procedure was used to investigate diffusivity parameters: fractional anisotropy (FA) and mean, radial and axial diffusivities (MD, RD and AD, respectively). Reduced FA and increased RD were found in patients at baseline in the corpus callosum, corona radiata and posterior thalamic radiation compared with controls. However, no differences were found between follow-up patients and controls, suggesting a partial normalization of the diffusivity parameters. In patients, trends for a negative correlation were found between the baseline FA of the right anterior corona radiata and the Eating Disorder Examination Questionnaire total score, while a positive trend was found between the baseline FA in the splenium of corpus callosum and the weight loss occurred between maximal documented weight and time of admission. A positive trend for correlation was also found between baseline FA in the right anterior corona radiata and the decrease in the Obsessive-Compulsive Inventory Revised total score over time. Our results suggest that the integrity of the limbic–thalamo–cortical projections and the reward-related circuitry are important for cognitive control processes and reward responsiveness in regulating eating behavior. PMID:28248991

  19. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available BACKGROUND: The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding. METHODOLOGY/PRINCIPAL FINDINGS: Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings. CONCLUSIONS: It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  20. Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging.

    Science.gov (United States)

    Steenweg, Marianne E; Pouwels, Petra J W; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S

    2011-11-01

    Leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is a white matter disorder caused by DARS2 mutations. The pathology is unknown. We observed striking discrepancies between improvement on longitudinal conventional magnetic resonance images and clinical deterioration and between large areas of high signal on diffusion-weighted imaging and small areas with low apparent diffusion coefficient values. These observations prompted a longitudinal and quantitative magnetic resonance imaging study. We investigated eight patients (two males, mean age 27 years). Maps of T(2) relaxation times, fractional anisotropy, apparent diffusion coefficients, signal on diffusion-weighted imaging, and axial and radial diffusivities were generated. Brain metabolites, obtained by chemical shift imaging, were quantified. Data analysis focused on: (i) white matter with low apparent diffusion coefficient; (ii) white matter with high T(2) values; (iii) white matter with intermediate T(2) values; and (iv) normal-appearing white matter. The areas were compared with similarly located areas in eight matched controls. In five patients, T(2)-weighted images, spectroscopy, apparent diffusion coefficient maps and diffusion-weighted imaging maps were compared with those obtained 5-7 years ago. In white matter with low apparent diffusion coefficient, axial and radial diffusivities were decreased and fractional anisotropy was high. T(2) values were intermediate. These areas with truly restricted diffusion were small and often observed at the periphery of areas with high T(2) values. In the white matter with high and intermediate T(2) values, apparent diffusion coefficients and axial and radial diffusivities were increased and fractional anisotropy decreased. The signal on diffusion-weighted imaging was highest in white matter with high T(2) values, an effect of T(2) shinethrough. Chemical shift imaging in both white matter types showed increased lactate, increased myo

  1. Radiofrequency trigeminal rhizolysis for the treatment of trigeminal neuralgia secondary to brainstem infarction. Report of two cases.

    Science.gov (United States)

    Foroohar, M; Herman, M; Heller, S; Levy, R M

    1997-01-15

    Although percutaneous radiofrequency trigeminal rhizolysis (RFL) has been used to treat idiopathic trigeminal neuralgia thought secondary to multiple sclerosis, the use of RFL for trigeminal neuralgia caused by brainstem infarction has not been advocated. The authors report two patients with trigeminal neuralgia following pontine infarction in whom aggressive medical management failed, but who were successfully treated with RFL. Pain relief has persisted for the 3- and 6-year duration of follow-up examinations. Descending trigeminal reticular fibers may be affected by brainstem infarction and result in trigeminal neuralgia; thus, treatment by rhizotomy may be effective in decreasing the peripheral afferent input into the spinal trigeminal nucleus thus decreasing the pain. These two cases demonstrate the utility of RFL in the relief of ischemia-induced trigeminal neuralgia and lead the authors to suggest that its use be broadened to include this indication.

  2. Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

    DEFF Research Database (Denmark)

    Federowicz, Stephen; Kim, Donghyuk; Ebrahim, Ali

    2014-01-01

    -scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes...... that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic...

  3. Agmatine promotes expression of brain-derived neurotrophic factor in brainstem facial nucleus in the rat facial nerve injury model

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Wenlong Luo

    2008-01-01

    BACKGROUND: Studies have shown that agmatine can reduce inhibition of neuronal regeneration by increasing cyclic adenosine monophosphate and brain-derived neurotrophic factor (BDNF) in the hippocampus of morphine-dependent rats. The hypothesis that agmatine exerts similar effects on facial nerve injury deserves further analysis.OBJECTIVE: To study the effects of peritoneal agmatine injection on BDNF levels in the rat brainstem after facial nerve injury.DESIGN, TIME AND SETTING: A controlled animal experiment was performed at the Department of Otolaryngology-Head and Neck Surgery at the Second Affiliated Hospital, Chongqing University of Medical Sciences (Chongqing, China), between October and December in 2007.MATERIALS: Twenty-four male Sprague-Dawley rats were randomly divided into a control, a lesion, and an agmatine treatment group, with eight rats in each group. Bilateral facial nerve anastomosis was induced in the lesion and agmatine treatment groups, while the control group remained untreated. A rat BDNF Enzyme-linked immunosorbent assay kit was used to measure BDNF levels in the brainstem facial nucleus.METHODS: Starting on the day of lesion, the agmatine group received a peritoneal injection of 100 mg/kg agmatine, once per day, for a week, whereas rats in the lesion group received saline injections.MAIN OUTCOME MEASURES: BDNF levels in the brainstem containing facial nucleus were measured by ELISA.RESULTS: Twenty-four rats were included in the final analysis without any loss. Two weeks after lesion, BDNF levels were significantly higher in the lesion group than in the control group (P<0.01). A significant increase was noted in the agmatine group compared to the lesion group (P<0.01).CONCLUSION: Agmatine can substantially increase BDNF levels in the rat brainstem after facial nerve injury.

  4. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems

    OpenAIRE

    Bianciardi, Marta; Toschi, Nicola; Edlow, Brian L.; Eichner, Cornelius; Setsompop, Kawin; Polimeni, Jonathan R; Brown, Emery N.; Kinney, Hannah C.; Bruce R. Rosen; Wald, Lawrence L.

    2015-01-01

    Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7...

  5. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception

    OpenAIRE

    Marion Cousineau; Bidelman, Gavin M.; Isabelle Peretz; Alexandre Lehmann

    2015-01-01

    Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). "Neural Pitch Salience" (NPS) measured fr...

  6. Experiences from Cochlear Implantation and Auditory Brainstem Implantation in Adults and Children : Electrophysiological Measurements, Hearing Outcomes and Patient Satisfaction

    OpenAIRE

    Lundin, Karin

    2016-01-01

    Cochlear implants (CIs) and auditory brainstem implants (ABIs) are prostheses for hearing used in patients with profound hearing impairment. A CI requires an operational cochlear nerve to function in contrast to an ABI. ABIs were initially designed for adult patients with neurofibromatosis type 2 (NF2), suffering from bilateral vestibular schwannomas. Now ABIs are also used for patients, both adults and children, with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, and c...

  7. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine.

    Science.gov (United States)

    Akerman, Simon; Holland, Philip R; Lasalandra, Michele P; Goadsby, Peter J

    2013-09-11

    Activation and sensitization of trigeminovascular nociceptive pathways is believed to contribute to the neural substrate of the severe and throbbing nature of pain in migraine. Endocannabinoids, as well as being physiologically analgesic, are known to inhibit dural trigeminovascular nociceptive responses. They are also involved in the descending modulation of cutaneous-evoked C-fiber spinal nociceptive responses from the brainstem. The purpose of this study was to determine whether endocannabinoids are involved in the descending modulation of dural and/or cutaneous facial trigeminovascular nociceptive responses, from the brainstem ventrolateral periaqueductal gray (vlPAG). CB1 receptor activation in the vlPAG attenuated dural-evoked Aδ-fiber neurons (maximally by 19%) and basal spontaneous activity (maximally by 33%) in the rat trigeminocervical complex, but there was no effect on cutaneous facial receptive field responses. This inhibitory vlPAG-mediated modulation was inhibited by specific CB1 receptor antagonism, given via the vlPAG, and with a 5-HT1B/1D receptor antagonist, given either locally in the vlPAG or systemically. These findings demonstrate for the first time that brainstem endocannabinoids provide descending modulation of both basal trigeminovascular neuronal tone and Aδ-fiber dural-nociceptive responses, which differs from the way the brainstem modulates spinal nociceptive transmission. Furthermore, our data demonstrate a novel interaction between serotonergic and endocannabinoid systems in the processing of somatosensory nociceptive information, suggesting that some of the therapeutic action of triptans may be via endocannabinoid containing neurons in the vlPAG.

  8. Brainstem involvement as a cause of central sleep apnea: pattern of microstructural cerebral damage in patients with cerebral microangiopathy.

    Directory of Open Access Journals (Sweden)

    Thomas Duning

    Full Text Available BACKGROUND: The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD, an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. PATIENTS AND METHODS: Genetically proven FD patients (n = 23 and age-matched healthy controls (n = 44 underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI analysis. RESULTS: In 5 of 23 Fabry patients (22% CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. CONCLUSION: Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than

  9. DEVELOPING ‘STANDARD NOVEL ‘VAD’ TECHNIQUE’ AND ‘NOISE FREE SIGNALS’ FOR SPEECH AUDITORY BRAINSTEM RESPONSES FOR HUMAN SUBJECTS

    OpenAIRE

    Ranganadh Narayanam*

    2016-01-01

    In this research as a first step we have concentrated on collecting non-intra cortical EEG data of Brainstem Speech Evoked Potentials from human subjects in an Audiology Lab in University of Ottawa. The problems we have considered are the most advanced and most essential problems of interest in Auditory Neural Signal Processing area in the world: The first problem is the Voice Activity Detection (VAD) in Speech Auditory Brainstem Responses (ABR); The second problem is to identify the best De-...

  10. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    OpenAIRE

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to deliver tone bursts ranging in frequency from 1 - 32 kHz for frequency-specific assessment of the cochlea in dogs. Brainstem auditory evoked responses to a click (CS) and to 1, 2, 4, 8, 12, 16, 24, a...

  11. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  12. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shelton, Jacob H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-03-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios when human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments because of the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is a report of the activities involving Task 3 of the Nuclear Energy Enabling Technologies (NEET) 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays [1]. Evaluation of the performance of the system for both pre- and post-irradiation as well as operation at elevated temperature will be performed. Detailed performance of the system will be documented to ensure the design meets requirements prior to any extended evaluation. A suite of tests will be developed which will allow evaluation before and after irradiation and during temperature. Selection of the radiation exposure facilities will be determined in the early phase of the project. Radiation exposure will consist of total integrated dose (TID) up to 200 kRad or above with several intermediate doses during test. Dose rates will be in various ranges determined by the facility that will be used with a target of 30 kRad/hr. Many samples of the pre-commercial devices to be used will have been tested in previous projects to doses of at least 300 kRad and temperatures up to 125C. The complete systems will therefore be tested for performance at intermediate doses. Extended temperature testing will be performed up to the limit of the commercial sensors. The test suite performed at each test point will consist of operational testing of the three basic

  13. NOISE-INDUCED TOUGHENING EFFECT IN WISTAR RATS: ENHANCED AUDITORY BRAINSTEM RESPONSES ARE RELATED TO CALRETININ AND NITRIC OXIDE SYNTHASE UPREGULATION.

    Directory of Open Access Journals (Sweden)

    Juan Carlos eAlvarado

    2016-03-01

    Full Text Available An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this toughening effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with ‘toughening’ and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN. Auditory brainstem responses (ABR were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1h every 72h, 4 times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR and neuronal nitric oxide synthase (nNOS. Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signalling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.

  14. [Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) associated with swelling in the brainstem: a case report].

    Science.gov (United States)

    Tani, Hiroki; Nakajima, Hideto; Yamane, Kazushi; Ohnishi, Hiroyuki; Kimura, Fumiharu; Hanafusa, Toshiaki

    2014-01-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare central nervous system inflammatory disease characterized by the punctate gadolinium enhancement peppering the pons and the cerebellar peduncles as neuroimaging. We report the case of a 66-year-old woman who presented with CLIPPERS associated with swelling in the brainstem. She was hospitalized because of gait ataxia and consciousness disturbance. MRI of the brain showed FLAIR hyperintense lesions in the pons, cerebellar peduncles, cerebellum and the subcortical white matter lesion in the right occipital lobe with significant swelling in the brainstem. Diffusion-weighted MRI did not show an abnormal signal, indicating vasogenic edema. Post-contrast T1-weighted MRI showed enhanced area in the right occipital lobe and panctate gadolinium enhancement peppering brainstem. Treatment with steroids led to rapid improvement. However, she showed exacerbation of clinical and radiological findings during the tapering schedule of steroid. The biopsy from the occipital lobe revealed intense perivascular and parenchymal lymphocytic infiltrates composed of primarily T cells, B cells and macrophages. The patient was diagnosed with CLIPPERS, and treatment with increased dose of corticosteroid induced a clinical improvement. Previous reports well described a characteristic MRI finding of punctate enhancement peppering the pons. In addition, the pons and cerebellar peduncles swelling can occur in this disorder.

  15. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2009-10-01

    Full Text Available Abstract Introduction Brainstem gliomas are rare in adults. They most commonly occur in the pons and are most likely to be high-grade lesions. The diagnosis of a high-grade brainstem glioma is usually reached due to the presentation of rapidly progressing brainstem, cranial nerve and cerebellar symptoms. These symptoms do, however, overlap with a variety of other central nervous system disorders. Magnetic resonance imaging is the radiographic modality of choice, but can still be misleading. Case presentation A 48-year-old Caucasian woman presented with headache and vomiting followed by cerebellar signs and confusion. Magnetic resonance imaging findings were suggestive of a demyelinating process, but the patient failed to respond to therapy. Her condition rapidly progressed and she died. At autopsy, a high-grade invasive pontine tumor was identified. Histological evaluation revealed glioblastoma multiforme. Conclusion While pontine gliomas are rare in adults, those that do occur tend to be high-grade and rapidly progressive. Progression of symptoms from non-specific findings of headache and vomiting to rapid neurological deterioration, as occurred in our patient, is common in glioblastoma multiforme. While radiographic findings are often suggestive of the underlying pathology, this case represents the possibility of glioblastoma multiforme presenting as a deceptively benign appearing lesion.

  16. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.

    Directory of Open Access Journals (Sweden)

    Marion Cousineau

    Full Text Available Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR. "Neural Pitch Salience" (NPS measured from FFRs-essentially a time-domain equivalent of the classic pattern recognition models of pitch-has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.

  17. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.

    Science.gov (United States)

    Cousineau, Marion; Bidelman, Gavin M; Peretz, Isabelle; Lehmann, Alexandre

    2015-01-01

    Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). "Neural Pitch Salience" (NPS) measured from FFRs-essentially a time-domain equivalent of the classic pattern recognition models of pitch-has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.

  18. Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study

    Institute of Scientific and Technical Information of China (English)

    Feng Han; Yu-Fei Zhang; Yun-Qing Li

    2003-01-01

    AIM: To prove that neurons in the different structures of the brainstem that express tyrosine hydroxylase (TH) are involved in the transmission and modulation of visceral or somatic nociceptive information in rat.METHODS: Immunohistochemical double-staining method was used to co-localize TH and Fos expression in neurons of the rat brainstem in visceral or subcutaneous noxious stimulation models.RESULTS: Neurons co-expressing TH/Fos were observed in lateral reticular nucleus (LRT), rostroventrolateral reticular nucleus (RVL), solitary tract nucleus (SOL), locus coeruleus (LC), A5, A7 neuronal groups and ventrolateral subdivision of the periaqueductal gray (vlPAG) in both models. But the proportion and number of the double-labeled neurons responding to the two noxious stimuli were significantly different in the LRT, RVL and LC nuclei. The proportion and number of the TH/Fos double-labeled neurons in the visceral pain model were smaller than that in the subcutaneous pain model. However, in the case of SOL, they were similar in the two models.CONCLUSION: Differences of Fos expression in TH immunoreactive neurons in animals after visceral and somatic noxious stimulation indicate that the mechanisms of the transmission and modulation of visceral nociceptive information in the brainstem may be different from that of somatic nociceptive information.

  19. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  20. The Transformation of Adaptation Specificity to Whisker Identity from Brainstem to Thalamus

    Science.gov (United States)

    Jubran, Muna; Mohar, Boaz; Lampl, Ilan

    2016-01-01

    Stimulus specific adaptation has been studied extensively in different modalities. High specificity implies that deviant stimulus induces a stronger response compared to a common stimulus. The thalamus gates sensory information to the cortex, therefore, the specificity of adaptation in the thalamus must have a great impact on cortical processing of sensory inputs. We studied the specificity of adaptation to whisker identity in the ventral posteromedial nucleus of the thalamus (VPM) in rats using extracellular and intracellular recordings. We found that subsequent to repetitive stimulation that induced strong adaptation, the response to stimulation of the same, or any other responsive whisker was equally adapted, indicating that thalamic adaptation is non-specific. In contrast, adaptation of single units in the upstream brainstem principal trigeminal nucleus (PrV) was significantly more specific. Depolarization of intracellularly recorded VPM cells demonstrated that adaptation is not due to buildup of inhibition. In addition, adaptation increased the probability of observing complete synaptic failures to tactile stimulation. In accordance with short-term synaptic depression models, the evoked synaptic potentials in response to whisker stimulation, subsequent to a response failure, were facilitated. In summary, we show that local short-term synaptic plasticity is involved in the transformation of adaptation in the trigemino-thalamic synapse and that the low specificity of adaptation in the VPM emerges locally rather than cascades from earlier stages. Taken together we suggest that during sustained stimulation, local thalamic mechanisms equally suppress inputs arriving from different whiskers before being gated to the cortex. PMID:27445716

  1. Cellular and molecular bases of neuroplasticity: brainstem effects after cochlear damage.

    Science.gov (United States)

    Gil-Loyzaga, Pablo; Carricondo, Francisco; Bartolomé, Maria V; Iglesias, Mari C; Rodríguez, Fernando; Poch-Broto, Joaquin

    2010-03-01

    After a cochlear lesion or auditory nerve damage, afferent connections from auditory ganglia can be highly altered. This results in a clear reduction of auditory input and an alteration of connectivity of terminals on cochlear nuclei neurons. Such a process could stimulate the reorganization of the neural circuits and neuroplasticity. Cochlea removal has been demonstrated to be a good model in which to analyse brainstem neuroplasticity, particularly with regard to the cochlear nuclei. After cochlea removal three main periods of degeneration and regeneration were observed. Early effects, during the first week post lesion, involved acute degeneration with nerve ending oedema and degeneration. During the second and, probably, the third post lesion weeks, degeneration was still present, even though a limited and diffuse expression of GAP-43 started. Around 1 month post lesion, degeneration at the cochlear nuclei progressively disappeared and a relevant GAP-43 expression was found. We conclude that neuroplasticity leads neurons to modify their activity and/or their synaptic tree as a consequence of animal adaptation to learning and memory. For the human being neuroplasticity is involved in language learning and comprehension, particularly the acquisition of a second language. Neuroplasticity is important for therapeutic strategies, such as hearing aids and cochlear implants.

  2. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  3. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hultcrantz, M.

    1988-09-01

    Pregnant CBA/CBA mice were exposed to 0.5, 1 and 2 Grey (Gy), (1 Gy = 100 rad) in single doses with whole body gamma-irradiation on the 12th, 13th and 16th gestational days, respectively. The animals were tested at an age of one month for vestibular and cochlear function. Thereafter the inner ears were analyzed with scanning electron microscopy. A morphological analysis with cytocochleograms was performed. Morphological changes in the vestibular part showed gross malformations in the cristae ampullares. Hair cells of type I seemed to be more severely changed than hair cells type II. The macula utriculi also showed malformations of the otoconia. All these changes were more pronounced when the irradiation was given early during pregnancy and with the highest doses used, except the otoconia which were more injured when irradiated day 16 of gestation. No disturbances of the equilibrium reflexes were noted. In the cochlea a dose-dependent, time-related damage pattern was demonstrated with pathological changes of outer (OHC) and inner (IHC) hair cells. When tested electrophysiologically for auditory function with auditory brainstem recordings (ABR), elevated thresholds were revealed different in shape depending on when during pregnancy irradiation took place. A good correlation existed between the morphological changes as seen in the cytocochleograms and the functional changes documented with the ABR.

  4. Large-scale synchronized activity in the embryonic brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Yoko eMomose-Sato

    2013-04-01

    Full Text Available In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca2+- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.

  5. Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness.

    Science.gov (United States)

    Maslin, M R D; Lloyd, S K; Rutherford, S; Freeman, S; King, A; Moore, D R; Munro, K J

    2015-10-01

    Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.

  6. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  7. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  8. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    Directory of Open Access Journals (Sweden)

    Farah I. Corona-Strauss

    2012-02-01

    Full Text Available It has been shown recently that chirp-evoked auditory brainstem responses (ABRs show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs.

  9. Atlas-based segmentation of brainstem regions in neuromelanin-sensitive magnetic resonance images

    Science.gov (United States)

    Puigvert, Marc; Castellanos, Gabriel; Uranga, Javier; Abad, Ricardo; Fernández-Seara, María. A.; Pastor, Pau; Pastor, María. A.; Muñoz-Barrutia, Arrate; Ortiz de Solórzano, Carlos

    2015-03-01

    We present a method for the automatic delineation of two neuromelanin rich brainstem structures -substantia nigra pars compacta (SN) and locus coeruleus (LC)- in neuromelanin sensitive magnetic resonance images of the brain. The segmentation method uses a dynamic multi-image reference atlas and a pre-registration atlas selection strategy. To create the atlas, a pool of 35 images of healthy subjects was pair-wise pre-registered and clustered in groups using an affinity propagation approach. Each group of the atlas is represented by a single exemplar image. Each new target image to be segmented is registered to the exemplars of each cluster. Then all the images of the highest performing clusters are enrolled into the final atlas, and the results of the registration with the target image are propagated using a majority voting approach. All registration processes used combined one two-stage affine and one elastic B-spline algorithm, to account for global positioning, region selection and local anatomic differences. In this paper, we present the algorithm, with emphasis in the atlas selection method and the registration scheme. We evaluate the performance of the atlas selection strategy using 35 healthy subjects and 5 Parkinson's disease patients. Then, we quantified the volume and contrast ratio of neuromelanin signal of these structures in 47 normal subjects and 40 Parkinson's disease patients to confirm that this method can detect neuromelanin-containing neurons loss in Parkinson's disease patients and could eventually be used for the early detection of SN and LC damage.

  10. Eye movement prediction by oculomotor plant Kalman filter with brainstem control

    Institute of Scientific and Technical Information of China (English)

    Oleg V.KOMOGORTSEV; Javed I.KHAN

    2009-01-01

    Our work addresses one of the core issues related to Human Computer Interaction (HCI) systems that use eye gaze as an input.This issue is the sensor,transmission and other delays that exist in any eye tracker-based system,reducing its performance.A delay effect can be compensated by an accurate prediction of the eye movement trajectories.This paper introduces a mathematical model of the human eye that uses anatomical properties of the Human Visual System to predict eye movement trajectories.The eye mathematical model is transformed into a Kalman filter form to provide continuous eye position signal prediction during all eye movement types.The model presented in this paper uses brainstem control properties employed during transitions between fast (saccade) and slow (fixations,pursuit) eye movements.Results presented in this paper indicate that the proposed eye model in a Kalman filter form improves the accuracy of eye move-ment prediction and is capable of a real-time performance.In addition to the HCI systems with the direct eye gaze input,the proposed eye model can be immediately applied for a bit-rate/computational reduction in real-time gaze-contingent systems.

  11. Proposed Toxic and Hypoxic Impairment of a Brainstem Locus in Autism

    Directory of Open Access Journals (Sweden)

    Woody R. McGinnis

    2013-12-01

    Full Text Available Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain’s point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion—the “pNTS”—permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate, competition for hemoglobin (carbon monoxide, nitrates/nitrites, and higher blood viscosity (net systemic oxidative stress are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism.

  12. INFLUENCE OF ACUPUNCTURE ("JIN'S SAN ZHEN") ON BRAINSTEM EVOKED POTENTIALS IN MENTAL RETARDATION CHILDREN

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing; MA Ruiling; JIN Rui

    2002-01-01

    Objective: To investigate the effect of acupuncture ("JIN's San Zhen") on infantile mental retardation (MR) .Methods: 44 cases of MR children were attributed to treatment group and 39 normal children to control group.P3(event-related potential) and brainstem evoked potentials were used as the indexes. Acupoints "Si-shen Zhen","Head Zhi San Zhen", "Hand Zhi San Zhen", "Foot Zhi San Zhen" were punctured with filiform needles, and stimulated by manipulating the needle once every 5 minutes with uniform reinforcing-reducing method. The treatment was conducted once daily, 6 times every week, with 4 months being a therapeutic course. Results: In comparison with normal children, the latency of P3 was longer and its amplitude lower in MR children. After 4 months' acupuncture treatment,the latency was shortened and the amplitude increased significantly in comparison with pre-treatment ( P<0.01,0.05). Results of the total inteiiigence quotient (TIQ) evaluation showed a 70.3% coincidence rate compared with improvement of P3. Conclusion: Changes of P3 and BAEP(brain auditory evoked potential) after acupuncture treatment may be related to the effect of "JIN's San Zhen" in bettering clinical symptoms and signs of MR infantile patients.

  13. 脑干卒中111例临床特点分析%Clinical analysis of brainstem stroke in 111 cases

    Institute of Scientific and Technical Information of China (English)

    孙庆华; 尹琳

    2012-01-01

    [Objective] To explore the clinical characteristics of brainstem stroke in order to enhance the knowledge of this disease. [Methods] Clinical and radiological data in 111 patients with brainstem stroke were collected, including 77 males and 40 females. The clinical characteristics of brainstem stroke were studied. [Results] ①Hypertension and atherosclerosis were the major factors causing brainstem stroke. ②The most common clinical manifestations of brainstem stroke were limb paralysis, central facial palsy and central hypoglossal palsy. Classical brainstem syndromes were presented in just 20% cases. ③Of 111 brainstem stroke, 92 strokes were in single - section. Ischemia was the main type of stroke 77.48% (86/111). All brainstem haemorrhage occurred in the pons. [ Conclusions ] The clinical manifestations of brainstem stroke are complicated. Classical brainstem syndrome is uncommon. Examinations of cranial imaging, CT and MRI are mandatory for the diagnosis of the disease.ins%[目的]探讨脑干卒中的临床特点,提高对脑干卒中的认识.[方法]收集111例脑干卒中患者的临床资料,男性71例,女40例,对其危险因素、临床表现、影像学检查等进行统计分析.[结果]①脑干卒中患者最常见的危险因素是高血压和动脉粥样硬化.②脑干卒中最常见的临床表现是肢体活动不灵、中枢性面舌瘫等;本组出现经典脑干综合征的病例占20%.③111例脑干卒中患者中,单一节段脑干卒中92例;一个脑干节段合并其它脑干节段或其它部位的卒中19例;缺血性卒中86例,出血性卒中22例,混合型卒中3例.[结论]脑干卒中临床表现复杂多样,经典脑干综合征少见,必须结合颅脑影像学检查(CT和/或MRI)才能做出准确诊断.

  14. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    Science.gov (United States)

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  15. The Neural Code for Motor Control in the Cerebellum and Oculomotor Brainstem.

    Science.gov (United States)

    Chaisanguanthum, Kris S; Joshua, Mati; Medina, Javier F; Bialek, William; Lisberger, Stephen G

    2014-01-01

    A single extra spike makes a difference. Here, the size of the eye velocity in the initiation of smooth eye movements in the right panel depends on whether a cerebellar Purkinje cell discharges 3 (red), 4 (green), 5 (blue), or 6 (black) spikes in the 40-ms window indicated by the gray shading in the rasters on the left. Spike trains are rich in information that can be extracted to guide behaviors at millisecond time resolution or across longer time intervals. In sensory systems, the information usually is defined with respect to the stimulus. Especially in motor systems, however, it is equally critical to understand how spike trains predict behavior. Thus, our goal was to compare systematically spike trains in the oculomotor system with eye movement behavior on single movements. We analyzed the discharge of Purkinje cells in the floccular complex of the cerebellum, floccular target neurons in the brainstem, other vestibular neurons, and abducens neurons. We find that an extra spike in a brief analysis window predicts a substantial fraction of the trial-by-trial variation in the initiation of smooth pursuit eye movements. For Purkinje cells, a single extra spike in a 40 ms analysis window predicts, on average, 0.5 SDs of the variation in behavior. An optimal linear estimator predicts behavioral variation slightly better than do spike counts in brief windows. Simulations reveal that the ability of single spikes to predict a fraction of behavior also emerges from model spike trains that have the same statistics as the real spike trains, as long as they are driven by shared sensory inputs. We think that the shared sensory estimates in their inputs create correlations in neural spiking across time and across each population. As a result, one or a small number of spikes in a brief time interval can predict a substantial fraction of behavioral variation.

  16. Auditory brainstem response changes during exposure to GSM-900 radiation: an experimental study.

    Science.gov (United States)

    Kaprana, Antigoni E; Chimona, Theognosia S; Papadakis, Chariton E; Velegrakis, Stylianos G; Vardiambasis, Ioannis O; Adamidis, Georgios; Velegrakis, George A

    2011-01-01

    The objective of the present study was to investigate the possible electrophysiological time-related changes in auditory pathway during mobile phone electromagnetic field exposure. Thirty healthy rabbits were enrolled in an experimental study of exposure to GSM-900 radiation for 60 min and auditory brainstem responses (ABRs) were recorded at regular time-intervals during exposure. The study subjects were radiated via an adjustable power and frequency radio transmitter for GSM-900 mobile phone emission simulation, designed and manufactured according to the needs of the experiment. The mean absolute latency of waves III-V showed a statistically significant delay (p < 0.05) after 60, 45 and 15 min of exposure to electromagnetic radiation of 900 MHz, respectively. Interwave latency I-III was found to be prolonged after 60 min of radiation exposure in correspondence to wave III absolute latency delay. Interwave latencies I-V and III-V were found with a statistically significant delay (p < 0.05) after 30 min of radiation. No statistically significant delay was found for the same ABR parameters in recordings from the ear contralateral to the radiation source at 60 min radiation exposure compared with baseline ABR. The ABR measurements returned to baseline recordings 24 h after the exposure to electromagnetic radiation of 900 MHz. The prolongation of interval latencies I-V and III-V indicates that exposure to electromagnetic fields emitted by mobile phone can affect the normal electrophysiological activity of the auditory system, and these findings fit the pattern of general responses to a stressor.

  17. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.

    Science.gov (United States)

    Henry, Kenneth S; Kale, Sushrut; Scheidt, Ryan E; Heinz, Michael G

    2011-10-01

    Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity.

  18. Autism spectrum disorders and the amplitude of auditory brainstem response wave I.

    Science.gov (United States)

    Santos, Mariline; Marques, Cristina; Nóbrega Pinto, Ana; Fernandes, Raquel; Coutinho, Miguel Bebiano; Almeida E Sousa, Cecília

    2017-04-01

    To determine whether children with autism spectrum disorders (ASDs) have an increased number of wave I abnormal amplitudes in auditory brainstem responses (ABRs) than age- and sex-matched typically developing children. This analytical case-control study compared patients with ASDs between the ages of 2 and 6 years and children who had a language delay not associated with any other pathology. Amplitudes of ABR waves I and V; absolute latencies (ALs) of waves I, III, and V; and interpeak latencies (IPLs) I-III, III-IV, and I-V at 90 dB were compared between ASD patients and normally developing children. The study enrolled 40 children with documented ASDs and 40 age- and sex-matched control subjects. Analyses of the ABR showed that children with ASDs exhibited higher amplitudes of wave 1 than wave V (35%) more frequently than the control group (10%), and this difference between groups reached statistical significance by Chi-squared analysis. There were no significant differences in ALs and IPLs between ASD children and matched controls. To the best of our knowledge, this is the first case-control study testing the amplitudes of ABR wave I in ASD children. The reported results suggest a potential for the use of ABR recordings in children, not only for the clinical assessment of hearing status, but also for the possibility of using amplitude of ABR wave I as an early marker of ASDs allowing earlier diagnosis and intervention. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Brainstem gliomas - A clinicopathological study of 45 cases with p53 immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Badhe Prerna

    2004-01-01

    Full Text Available BACKGROUND: Brainstem tumors represent 10% of central nervous system tumors, accounting for 30% of pediatric posterior fossa tumors. AIMS: The aim of this study was to clinicopathologically correlate 45 cases of brain stem gliomas and determine the occurrence and prognostic significance of p53 expression. MATERIALS AND METHOD: 45 cases of brain stem gliomas encountered during a 19-year period. 30 were diagnosed by surgical biopsy and 15 at autopsy. In 25 cases p53 immunohistochemistry (Avidin Biotinylated technique was performed. The WHO brain tumor classification and Stroink's CT classification were applied. STATISTICAL ANALYSIS USED: Chi square test. RESULTS AND CONCLUSIONS: 51 % of gliomas were observed in the first decade of life. The female to male ratio was 1.04: 1. The commonest presenting features were cranial nerve palsies (33% and cerebellar signs (29.8%. 55.55% of cases were located in the pons, 31.01% in the medulla and 13.33% in the midbrain. Diffuse astrocytomas were seen in 40 cases (5% were Grade I, 47.5%Grade II, 32.5% Grade III and 15% Grade IV and pilocytic astrocytomas in 5 cases. Grade IV patients had 2- 3 mitoses /10 high power fields and had a poorer survival rate. Grade II astrocytomas were treated with excision and radiotherapy, while grade III and IV tumors were treated with radiotherapy and chemotherapy (CCNU. Improvement was noted in 20% of patients postoperatively. The outcome was better in patients who were treated surgically. p53 is a frequently mutated gene in brain stem astrocytomas. It was found in 50 % of glioblastoma multiforme, 28.57% of grade III astrocytoma and 12.5% of grade II astrocytoma, while grade 1 astrocytomas failed to express p53 protein. p53 positivity was more in high grade lesions, decreasing significantly in lower grade lesions.

  20. Auditory brainstem responses to clicks and tone bursts in C57 BL/6J mice.

    Science.gov (United States)

    Scimemi, P; Santarelli, R; Selmo, A; Mammano, F

    2014-08-01

    In auditory research, hearing function of mouse mutants is assessed in vivo by evoked potential recording. Evaluation of the response parameters should be performed with reference to the evoked responses recorded from wild-type mice. This study reports normative data calculated on auditory brainstem responses (ABRs) obtained from 20 wild-type C57 BL/6J mice at a postnatal age between 21 and 45 days. Acoustic stimuli consisted tone bursts at 8, 14, 20, 26, 32 kHz, and clicks. Each stimulus was delivered in free field at stimulation intensity starting from a maximum of 100 dB peak equivalent SPL (dB peSPL) at decreasing steps of 10 dB with a repetition rate of 13/sec. Evoked responses were recorded by needle electrodes inserted subcutaneously. At high intensity stimulation, five response waveforms, each consisting of a positive peak and a subsequent negative valley, were identified within 7 msec, and were labelled with sequential capital Roman numerals from I to V. Peak IV was the most robust and stable at low intensities for both tone burst and click stimuli, and was therefore utilized to estimate hearing thresholds. Both latencies and amplitudes of ABR peaks showed good reproducibility with acceptable standard deviations. Mean wave IV thresholds measured across all animals ranged from a maximum of 23 dB peSPL for clicks to a minimum of 7 dB peSPL for 20 kHz-tone burst stimuli. Statistical analysis of the distribution of latencies and amplitudes of peaks from I to V performed for each stimulus type yielded a normative data set which was utilised to obtain the most consistent fitting-curve model. This could serve as a reference for further studies on murine models of hearing loss.

  1. [Brainstem auditory evoked potentials and somatosensory evoked potentials in Chiari malformation].

    Science.gov (United States)

    Moncho, Dulce; Poca, María A; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan

    2013-06-16

    Introduccion. La malformacion de Chiari (MC) incluye una serie de anomalias congenitas que tienen como comun denominador la ectopia de las amigdalas del cerebelo por debajo del foramen magno, lo que puede condicionar fenomenos compresivos del troncoencefalo, la medula espinal alta y los nervios craneales, alterando las respuestas de los potenciales evocados auditivos del tronco cerebral (PEATC) y de los potenciales evocados somatosensoriales (PESS). Sin embargo, las indicaciones de ambas exploraciones en las MC han sido motivo de estudio en un numero limitado de publicaciones, centradas en series cortas y heterogeneas de pacientes. Objetivo. Revisar los hallazgos de los PEATC y los PESS en los estudios publicados en pacientes con MC tipo 1 (MC-1) o tipo 2 (MC-2), y su indicacion en el diagnostico, tratamiento y seguimiento, especialmente en la MC-1. Desarrollo. Es un estudio de revision realizado mediante analisis de los estudios publicados en Medline desde 1966, localizados mediante PubMed, utilizando combinaciones de las palabras clave 'Chiari malformation', 'Arnold-Chiari malformation', 'Chiari type 1 malformation', 'Arnold-Chiari type 1 malformation', 'evoked potentials', 'brainstem auditory evoked potentials' y 'somatosensory evoked potentials', asi como informacion de pacientes con MC-1 valorados en los servicios de neurocirugia y neurofisiologia clinica del Hospital Universitari Vall d'Hebron. Conclusiones. Los hallazgos mas comunes de los PESS son la reduccion en la amplitud cortical para el nervio tibial posterior, la reduccion o ausencia del potencial cervical del nervio mediano y el aumento del intervalo N13-N20. En el caso de los PEATC, los hallazgos mas frecuentes descritos son el aumento del intervalo I-V y la alteracion periferica o coclear.

  2. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  3. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  4. Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in iv mice.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Goto

    Full Text Available Although left-right (L-R asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B subunits. We further examined the ε2 asymmetry in the inversus viscerum (iv mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L-R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory.

  5. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  6. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells.

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C; Côté, Maxime C; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-14

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  7. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo

    DEFF Research Database (Denmark)

    Panaro, Brandon L; Tough, Iain R; Engelstoft, Maja S;

    2014-01-01

    The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furtherm......The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon...

  8. Molecular Mechanisms of Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Ji Hee Yu

    2012-12-01

    Full Text Available The prevalence of obesity has been rapidly increasing worldwide over the last several decades and has become a major health problem in developed countries. The brain, especially the hypothalamus, plays a key role in the control of food intake by sensing metabolic signals from peripheral organs and modulating feeding behaviors. To accomplish these important roles, the hypothalamus communicates with other brain areas such as the brainstem and reward-related limbic pathways. The adipocyte-derived hormone leptin and pancreatic β-cell-derived insulin inform adiposity to the hypothalamus. Gut hormones such as cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide 1, and oxyntomodulin transfer satiety signals to the brain and ghrelin relays hunger signals. The endocannabinoid system and nutrients are also involved in the physiological regulation of food intake. In this article, we briefly review physiological mechanisms of appetite regulation.

  9. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems

    Science.gov (United States)

    Toschi, Nicola; Edlow, Brian L.; Eichner, Cornelius; Setsompop, Kawin; Polimeni, Jonathan R.; Brown, Emery N.; Kinney, Hannah C.; Rosen, Bruce R.; Wald, Lawrence L.

    2015-01-01

    Abstract Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7 Tesla scanner equipped with multi-channel receive-coil array, which provided high magnetic resonance imaging sensitivity, and a multi-contrast (diffusion fractional anisotropy and T2-weighted) echo-planar-imaging approach, which provided complementary contrasts for Bn anatomy with matched geometric distortions and resolution. Through a combined examination of 1.3 mm3 multi-contrast anatomical images acquired in healthy human adults, we semi-automatically generated in vivo probabilistic Bn labels of the ascending arousal (median and dorsal raphe), autonomic (raphe magnus, periaqueductal gray), and motor (inferior olivary nuclei, two subregions of the substantia nigra compatible with pars compacta and pars reticulata, two subregions of the red nucleus, and, in the diencephalon, two subregions of the subthalamic nucleus) systems. These labels constitute a first step toward the development of an in vivo neuroimaging template of Bn in standard space to facilitate future clinical and research investigations of human brainstem function and pathology. Proof-of-concept clinical use of this template is demonstrated in a minimally conscious patient with traumatic brainstem hemorrhages precisely localized to the raphe Bn involved in arousal. PMID:26066023

  10. Auditory brain-stem response, CT and MR imaging in a family with classical type Pelizaeus-Merzbacher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Shiomi, M.; Ookuni, H.; Sugita, T.

    1987-05-01

    A family in which 5 males in successive generations were clinically suspected to be affected with the classical X-linked recessive form of Pelizaeus-Merzbacher disease (PMD) is presented. Two brothers and their maternal uncle were examined by one of the authors (MS). In two brothers, aged 3 years and 2 years, the disease became obvious within a month after birth with nystagmus and head tremor. Head control and sitting were achieved at the age of 18 months at which time they began to speak. They could not stand nor walk without support. They had dysmetria, weakness and hyper-reflexia of lower extremities, and mild mental retardation. Their maternal uncle, aged 37 years, showed psychomotor retardation from birth and subsequently developed spastic paraplegia. He had been able to walk with crutches until adolescence. He had dysmetria, scanning speech, athetoid posture of fingers and significant intellectual deficits. Auditory brainstem response in both brothers revealed well defined waves I and II, low amplitude wave III and an absence of all subsequent components. CT demonstrated mild cerebral atrophy in the elder brother and was normal in the younger brother, but in their uncle, CT showed atrophy of the brainstem, cerebellum and cerebrum, and low density of the white matter of the centrum semiovale. MRI was performed in both brothers. Although the brainstem, the internal capsule and the thalamus were myelinated, the myelination in the subcortical white matter was restricted to periventricular regions on IR sequence scans. On SE sequence, the subcortical white matter was imaged as a brighter area than the cerebral cortex. These results demonstrate that the degree of myelination in these patients was roughly equal to that of 3-to 6-month old infants.

  11. Effect of noise pollution on hearing in auto-rickshaw drivers: A brainstem auditory-evoked potentials study

    Directory of Open Access Journals (Sweden)

    Bhupendra Marotrao Gathe

    2016-01-01

    Full Text Available Context: Auditory brainstem response is the most important tool in differential diagnosis and degree of hearing impairment. Many studies have been carried out to ascertain the effects of noise on human beings but very less on the transportation workers; hence, considering the need of time and use of brainstem auditory-evoked potentials (BAEP, this study was conducted to analyze the effect of noise pollution on auto-rickshaw drivers (ARDs. Aim: The aim of this study was to evaluate I, II, III, IV, and V wave latencies in ARDs and comparing it with control subjects in Central India. Settings and Design: This was a case-control study done on ARDs as participants and compared it with normal healthy individual BAEP pattern. Materials and Methods: We recorded BAEP from fifty healthy control subjects and fifty ARDs from the community of same sex and geographical setup. The absolute latencies were measured and compared. Recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Statistical Analysis Used: All the data related with subjects were filled in Excel sheet and analyzed with the help of EPI 6.0 info software with Student′s t-test. Results: There were prolongations of all absolute wave latencies of II, III, IV, and V in the ARDs as compared to control subjects. Conclusions: The prolongation of all absolute latencies of II, III, IV, and V suggests abnormality in brainstem auditory pathway mainly affecting the retrocochlear pathways in group of ARDs (noise exposure >10 years than other group who had exposed for <10 years and is more significant on the right ear than left.

  12. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Michael eVilliger

    2015-05-01

    Full Text Available Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI. However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI.We used tensor-based morphometry (TBM to analyze longitudinal brain volume changes associated with intensive virtual reality (VR-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions. Before training, voxel-based morphometry (VBM and voxel-based cortical thickness (VBCT assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, reductions in VBM of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training.

  13. AT1a Receptor Has Interacted with Angiotensin-converting Enzymes 2 mRNA Expression in Mouse Brainstem

    Institute of Scientific and Technical Information of China (English)

    Zhanyi Lin; Shuguang Lin

    2008-01-01

    Objectives To examine in vivo interactions between angiotensin Ⅱ(Ang Ⅱ) AT1a receptor (AT1aR),angiotensin-converting enzymes (ACE) and ACE2 using small hairpin RNA (shRNA) gene-silencing methods in mice brainstem nucleus ttactus solitarius (NTS).Methods C57BL mice (n=8) were used as animal model.Method of microinjection in the nucleus of NTS was adopted.After ten days,mice were killed and their brain tissue were fixed and sectioned.The expression levels of AT1 aR,ACE and ACE2 mRNA at both sides of NTS were examined by in situ hybridization.Based on compared t-test,the changing for mRNA expression was examined.Results After the expression of AT1aR mRNA was significantly inhibited (61.6%±6.8% ) by AT1aR-shRNA,it was associated with decreases in ACE2 mRNA expression from (1.05±0.12) μCi/mg to (0.74±0.09) μCi/mg (29.0%±14.5%,P<0.01) on the same side of the brainstem.ACE mRNA expression was consistent at both sides (0.50 μCi/mg±0.09 μCi/mg and 0.53 μCi/mg±0.08 μCi/mg),with insignificant difference (P>0.05).Condusions The gene silencing result showed that there were interactions between brainstem AT1aR and ACE2.ACE mRNA expression was not altered by RNA interference treatment at AT1aR.

  14. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  15. Common stemness regulators of embryonic and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Christiana; Hadjimichael; Konstantina; Chanoumidou; Natalia; Papadopoulou; Panagiota; Arampatzi; Joseph; Papamatheakis; Androniki; Kretsovali

    2015-01-01

    Pluripotency of embryonic stem cells(ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal trans-ducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors(cancer stem cells), provides a common conceptual and research frame-work for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  16. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Gajjar, Amar; Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Li Yimei [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Glenn, George R.; Kun, Larry E.; Ogg, Robert J. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-04-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4-39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54-59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6-5.0 years). The median mean dose to the pons was 56 Gy (range, 7-59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response in

  17. A compound heterozygous EARS2 mutation associated with mild leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL).

    Science.gov (United States)

    Güngör, Olcay; Özkaya, Ahmet Kağan; Şahin, Yavuz; Güngör, Gülay; Dilber, Cengiz; Aydın, Kürşad

    2016-10-01

    Mitochondrial glutamyl-tRNA synthetase is a major component of protein biosynthesis that loads tRNAs with cognate amino acids. Mutations in the gene encoding this enzyme have been associated with a variety of disorders related to oxidative phosphorylation. Here, we present a case of leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) presenting a biphasic clinical course characterized by delayed psychomotor development and seizure. High-throughput sequencing revealed a novel compound heterozygous mutation in mitochondrial glutamyl-tRNA synthetase 2 (EARS2), which appears to be causative of disease symptoms.

  18. Anesthesia mumps resulting in temporary facial nerve paralysis after the auditory brainstem implantation in a 3-year-old child.

    Science.gov (United States)

    Özdek, Ali; Bayır, Ömer; Işık, Murat Eray; Tatar, Emel Çadallı; Saylam, Güleser; Korkmaz, Hakan

    2014-01-01

    An acute transient sialadenitis of the major salivary glands in the early postoperative period is called 'anesthesia mumps'. It has been reported in different surgical procedures especially in neurosurgical procedures. Anesthesia mumps develops very fast after the extubation period but it usually regresses with no sequelae within a few hours. However, sometimes serious complication can occur such as respiratory distress. In this report, we present a 3-year-old girl with an anesthesia mumps and facial palsy occurring after successful auditory brainstem implantation and we discuss the cause and the management of this rare complication in this report.

  19. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  20. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  1. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    Science.gov (United States)

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph

  2. Respiratory activity in the facial nucleus in an in vitro brainstem of tadpole, Rana catesbeiana.

    Science.gov (United States)

    Liao G-S; Kubin, L; Galante, R J; Fishman, A P; Pack, A I

    1996-04-15

    1. In studies of the central neural control of breathing, little advantage has been taken of comparative approaches. We have developed an in vitro brainstem preparation using larval Rana catesbeiana which generates two rhythmic neural activities characteristic of lung and gill ventilation. Based on the pattern of the facial (VII) nerve activity both lung and gill rhythm-related respiratory cycles were divided into three distinct phases. The purpose of this study was to characterize and classify membrane potential trajectories of respiratory motoneurons in the VII nucleus at intermediate stages (XII-XVII) of development. 2. Seventy-five respiratory-modulated neurons were recorded intracellularly within the facial motor nucleus region. Their resting membrane potential was between -40 and -80 mV. Sixty of them were identified as VII motoneurons and fifteen were non-antidromically activated. Membrane potentials of fifty-six of the seventy-five neurons were modulated with both lung (5-27 mV) and gill rhythms (3-15 mV) and the remaining nineteen neurons had only a modulation with lung rhythmicity (6-23 mV). No cells with gill modulation alone were observed. 3. All of the cells modulated with lung rhythmicity had only phase-bound depolarizing or hyperpolarizing membrane potential swings which could be categorized into four distinct patterns. In contrast, of the fifty-six cells modulated with gill rhythmicity, thirty-two were phasically depolarized during distinct phases of the gill cycle (four patterns were distinguished), whereas the remaining twenty-four were phase spanning with two distinct patterns. The magnitudes of lung and gill modulations were proportionally related to each other in the cells modulated with both rhythms. 4. In all sixteen neurons studied, a reduction or a reversal of phasic inhibitory inputs during a portion of the lung or gill respiratory cycle was observed following a negative current or chloride ion (Cl-) injection. The phasic membrane

  3. The effect of lead on brainstem auditory evoked potentials in children

    Institute of Scientific and Technical Information of China (English)

    邹朝春; 赵正言; 唐兰芳; 陈志敏; 杜立中

    2003-01-01

    Objective To determine whether lead affects brainstem auditory evoked potentials (BAEPs) in low-to-moderate lead exposed children. Methods BAEPs were recorded from 114 asymptomatic children aged 1-6 years. Average values were calculated for peak latency (PL) and amplitude (Amp). Whole blood lead (PbB) levels were assessed by graphite furnace atomic absorption spectroscopy. Based on their PbB levels, subjects were divided into low lead (PbB<100 μg/L) and high lead subgroups (PbB ≥100 μg/L). Results The PbB levels of the 114 subjects ranged from 32.0 to 380.0 μg/L in a positively skewed distribution. The median of PbB levels was 90.0 μg/L while the arithmetic average was 88.0 μg/L. Of the subjects, 43.0% (49/114) had levels equal to or greater than 100 μg/L. Bilateral PLs Ⅰ, Ⅴ, and Ⅲ of the left ear in the high lead subgroup were significantly longer than those in the low lead subgroup (P<0.05). A positive correlation was found between PbB levels and bilateral PLs Ⅰ, Ⅴ and Ⅲ of the left ear (P<0.05), after controlling for age and gender as confounding factors. A significant and positive correlation between PbB levels and PL Ⅰ of the left ear, even when PbB levels were lower than 100 μg/L, in the low subgroup (r=0.295, P=0.019) was also found.Conclusions Lead poisoning in children younger than 6 years old is a very serious problem to which close attention should be paid. The indications that lead prolongs partial PLs may imply that lead, even at PbB levels lower than 100 μg/L, impairs both the peripheral and the central portions of the auditory system. BAEPs may be a sensitive detector of subclinical lead exposure effects on the nervous system in children.

  4. CyberKnife radiosurgery for brainstem metastases: Management and outcomes and a review of the literature.

    Science.gov (United States)

    Liu, Szu-Hao; Murovic, Judith; Wallach, Jonathan; Cui, Guosheng; Soltys, Scott G; Gibbs, Iris C; Chang, Steven D

    2016-03-01

    To our knowledge this paper is the first to use recursive partitioning analysis (RPA) for brainstem metastasis (BSM) patient outcomes, after CyberKnife radiosurgery (CKRS; Accuray, Sunnyvale, CA, USA); nine similar previous publications used mainly Gamma Knife radiosurgery (Elekta AB, Stockholm, Sweden). Retrospective chart reviews from 2006-2013 of 949 CKRS-treated brain metastasis patients showed 54 BSM patients (5.7%): 35 RPA Class II (65%) and 19 Class III (35%). There were 30 women (56%) and 24 men (44%). The median age was 59 years (range 36-80) and median follow-up was 5 months (range 1-52). Twenty-three patients (43%) had lung carcinoma BSM and 12 (22%) had breast cancer BSM. Fifty-four RPA Class II and III BSM patients had a median overall survival (OS) of 5 months, and for each Class 8 and 2 months, respectively. Of 36 RPA Class II and III patients with available symptoms (n=31) and findings (n=33), improvement/stability occurred in the majority for symptoms (86%) and findings (92%). Of 35 cases, 28 (80%) achieved BSM local control (LC); 13/14 with breast histology (93%) and 10/13 with lung histology (77%). All six RPA Class II and III patients with controlled extracranial systemic disease (ESD) experienced LC. Median tumor volume was 0.14 cm(3); of 34 RPA Class II and III cases, 26 LC patients had a 0,13 cm(3) median tumor volume while it was 0.27 cm(3) in the eight local failures. Of 35 cases, single session equivalent dosages less than the median (n=13), at the 17.9 Gy median (n=5) and greater than the median (n=17) had BSM LC in 10 (77%), four (80%) and 14 cases (82%), respectively. Univariate analysis showed Karnofsky Performance Score, RPA Class and ESD-control predicted OS. CKRS is useful for RPA Class II and III BSM patients with effective clinical and local BSM control.

  5. Electroencephalogram and brainstem auditory evoked potential in 539 patients with central coordination disorder

    Institute of Scientific and Technical Information of China (English)

    Huijia Zhang; Hua Yan; Paoqiu Wang; Jihong Hu; Hongtao Zhou; Rong Qin

    2008-01-01

    BACKGROUND: Electroencephalogram (EEG) and brainstem auditory evoked potential (BAEP) are objective non-invasive means of measuring brain electrophysiology.OBJECTIVE: To analyze the value of EEG and BAEP in early diagnosis, treatment and prognostic evaluation of central coordination disorder.DESIGN, TIME AND SETTING: This case analysis study was performed at the Rehabilitation Center of Hunan Children's Hospital from January 2002 to January 2006.PARTICIPANTS: A total of 593 patients with severe central coordination disorder, comprising 455 boys and 138 girls, aged 1--6 months were enrolled for this study.METHODS: EEG was monitored using electroencephalography. BAEP was recorded using a Keypoint electromyogram device. Intelligence was tested by professionals using the Gesell scale.MAIN OUTCOME MEASURES: (1) The rate of abnormal EEG and BAEP, (2) correlation of abnormalities of EEG and BAEP with associated injuries, (3) correlation of abnormalities of EEG and BAEP with high risk factors.RESULTS: The rate of abnormal EEG was 68.6% (407/593 patients), and was increased in patients who also had mental retardation (P < 0.05). The rate of abnormal BAEP was 21.4% (127/593 patients). These 127 patients included 67 patients (52.8%) with peripheral auditory damage and 60 patients (47.2%) with central and mixed auditory damage. The rate of abnormal BAEP was significantly increased in patients who also had mental retardation (P < 0.01). Logistic regression analysis showed that asphyxia (P < 0.05), jaundice,preterm delivery, low birth weight and the umbilical cord around the neck were closely correlated with abnormal EEG in patients with central coordination disorder. Intracranial hemorrhage, jaundice (P < 0.05),low birth weight and intrauterine infection (P < 0.05) were closely correlated with abnormal BAEP in patients with central coordination disorder.CONCLUSION: Central coordination disorder is often associated with abnormal EEG and BAEP. The rate of EEG or BAEP abnormality

  6. A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

    Directory of Open Access Journals (Sweden)

    Salvatore Fusco

    2016-02-01

    Full Text Available Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1 is modulated in neural stem and progenitor cells (NSCs by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein and Sirt-1 (Sirtuin 1, two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis.

  7. Role of Autism Susceptibility Gene, CNTNAP2, in Neural Circuitry for Vocal Communication

    Science.gov (United States)

    2013-10-01

    properly ( Clovis , Enard, Marinaro, Huttner, & De Pietri Tonelli, 2012). FOXP2 regulates gene activity by binding to DNA either as a homodimer, or by...synaptic morphology (Konopka et al., 2010). miR-9 represses both Foxp1 (Otaegi et al., 2011) and Foxp2 ( Clovis et al., 2012; Shi et al., 2013...subventricular zone stem cell niche. Nature Neuroscience, 12(4), 399–408. doi:10.1038/nn.2294 Clovis , Y. M., Enard, W., Marinaro, F., Huttner, W. B

  8. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.

    Science.gov (United States)

    Song, Juan; Sun, Jiaqi; Moss, Jonathan; Wen, Zhexing; Sun, Gerald J; Hsu, Derek; Zhong, Chun; Davoudi, Heydar; Christian, Kimberly M; Toni, Nicolas; Ming, Guo-Li; Song, Hongjun

    2013-12-01

    Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.

  9. Determining the control circuitry of redox metabolism at the genome-scale.

    Directory of Open Access Journals (Sweden)

    Stephen Federowicz

    2014-04-01

    Full Text Available Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs, ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2 (p<1e-6 correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.

  10. Kölliker–Fuse neurons send collateral projections to multiple hypoxia-activated and nonactivated structures in rat brainstem and spinal cord.

    Science.gov (United States)

    Song, Gang; Wang, Hui; Xu, Hui; Poon, Chi-Sang

    2012-10-01

    The Kölliker–Fuse nucleus (KFN) in dorsolateral pons has been implicated in many physiological functions via its extensive efferent connections. Here, we combine iontophoretic anterograde tracing with posthypoxia c-Fos immunohistology to map KFN axonal terminations among hypoxia-activated/nonactivated brain stem and spinal structures in rats. Using a set of stringent inclusion/exclusion criteria to align visualized axons across multiple coronal brain sections, we were able to unequivocally trace axonal trajectories over a long rostrocaudal distance perpendicular to the coronal plane. Structures that were both richly innervated by KFN axonal projections and immunopositive to c-Fos included KFN (contralateral side), ventrolateral pontine area, areas ventral to rostral compact/subcompact ambiguus nucleus, caudal (lateral) ambiguus nucleus, nucleus retroambiguus, and commissural–medial subdivisions of solitary tract nucleus. The intertrigeminal nucleus, facial and hypoglossal nuclei, retrotrapezoid nucleus, parafacial region and spinal cord segment 5 were also richly innervated by KFN axonal projections but were only weakly (or not) immunopositive to c-Fos. The most striking finding was that some descending axons from KFN sent out branches to innervate multiple (up to seven) pontomedullary target structures including facial nucleus, trigeminal sensory nucleus, and various parts of ambiguus nucleus and its surrounding areas. The extensive axonal fan-out from single KFN neurons to multiple brainstem and spinal cord structures("one-to-many relationship"’) provides anatomical evidence that KFN may coordinate diverse physiological functions including hypoxic and hypercapnic respiratory responses, respiratory pattern generation and motor output,diving reflex, modulation of upper airways patency,coughing and vomiting abdominal expiratory reflex, as well as cardiovascular regulation and cardiorespiratory coupling.

  11. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.

    Science.gov (United States)

    Kuenzel, Thomas; Wirth, Marcus J; Luksch, Harald; Wagner, Hermann; Mey, Jörg

    2009-12-11

    In the auditory system voltage-activated currents mediated by potassium channels Kv1.1 and Kv3.1b and their interaction with sodium inward currents play a crucial role for computational function. However, it is unresolved how these potassium channels are developmentally regulated. We have therefore combined a biochemical investigation of Kv1.1 and Kv3.1b protein expression with electrophysiological recordings of membrane currents to characterize neuronal differentiation in the auditory brain stem of the chick. Differentiation in vitro was compared with cells prepared from corresponding embryonic stages in vivo. Using a computer model based on the empirical data we were then able to predict physiological properties of developing auditory brain stem neurons. In vivo Kv3.1b expression increased strongly between E10 and E14, a time of functional synaptogenesis in the auditory brainstem. We also found this increase of expression in vitro, again coinciding with synaptogenesis in the cultures. Whole-cell patch recordings revealed a corresponding increase of the (Kv3.1-like) high threshold potassium current. In contrast, Kv1.1 protein expression failed to increase in vitro, and changes in (Kv1.1-like) low threshold potassium current with time in culture were not significant. Electrophysiological recordings revealed that sodium inward currents increased with cultivation time. Thus, our data suggest that Kv3.1b expression occurs with the onset of functional synaptogenesis, while a different signal, absent from cultures of dissociated auditory brain stem, is needed for Kv1.1 expression. A biophysical model constructed with parameters from our recordings was used to investigate the functional impact of the currents mediated by these channels. We found that during development both high and low threshold potassium currents need to be increased in a concerted manner with the sodium conductance for the neurons to exhibit fast and phasic action potential firing and a narrow time

  12. Association of potassium channel Kv3.4 subunits with pre- and post-synaptic structures in brainstem and spinal cord.

    Science.gov (United States)

    Brooke, R E; Atkinson, L; Batten, T F C; Deuchars, S A; Deuchars, J

    2004-01-01

    Voltage-gated K+ channels (Kv) are divided into eight subfamilies (Kv1-8) and play a major role in determining the excitability of neurones. Members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique pattern of expression, although single neurones can express more than one subtype. Of the Kv3 subunits relatively little is known of the Kv3.4 subunit distribution in the nervous system, particularly in the brainstem and spinal cord of the rat. We performed immunohistochemistry to determine both the cellular and sub-cellular distribution of the Kv3.4 subunit in these areas. Kv3.4 subunit immunoreactivity (Kv3.4-IR) was widespread, with dense, punctate staining in many regions including the intermediolateral cell column (IML) and the dorsal vagal nucleus (DVN), nucleus ambiguus (NA) and nucleus tractus solitarius (NTS). In the ventral horn a presynaptic location was confirmed by co-localization of Kv3.4-IR with the synaptic vesicle protein, SV2 and also with the glutamate vesicle markers vesicular glutamate transporter (VGluT) 1, VGluT2 or the glycine transporter GlyT2, suggesting a role for the channel in both excitatory and inhibitory neurotransmission. Electron microscopy confirmed a presynaptic terminal location of Kv3.4-IR in the VH, IML, DVN, NA and NTS. Interestingly however, patches of Kv3.4-IR were also revealed postsynaptically in dendritic and somatic structures throughout these areas. This staining was striking due to its localization at synaptic junctions at terminals with morphological features consistent with excitatory functions, suggesting an association with the postsynaptic density. Therefore the pre and postsynaptic localization of Kv3.4-IR suggests a role both in the control of transmitter release and in regulating neuronal excitability.

  13. In search of the next memory inside the circuitry from the oldest to the emerging non-volatile memories

    CERN Document Server

    Campardo, Giovanni

    2017-01-01

    This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the...

  14. Characteristics of brainstem auditory evoked potential of neonates with mild or moderate hyperbilirubinemia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Brainstem auditory evoked potential (BAEP) has been widely used to evaluate the functional integrity and development of injured auditory system and brain, especially to objectively evaluate the function of auditory system and brain stem of very young babies, such as neonates and sick babies.OBJECTIVE: To observe the changes of BAEP of neonates with hyperbilirubinemia, and to investigate the relationship of bilirubin concentration and BAEP.DESIGN: An observation experiment.SETTING: Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA.PARTICIPANTS: Fifty-eight neonates with mild or moderate hyperbilirubinemia exhibiting jaundice within 24 hours after born, who received the treatment in the Department of Pediatrics, the 309 Clinical Division, General Hospital of Chinese PLA between January 2004 and May 2007, were recruited in this study. The involved neonates, 31 boys and 27 girls, had gestational age of 37 to 46 weeks. They had no history of birth asphyxia, and were scored 8 to 10 points when born. Written informed consents of examination and treatment were obtained from the guardians of the neonates. This study was approved by the Hospital Ethics Committee. According to serum total bilirubin value, the neonates were assigned into 3 groups: low-concentration bilirubin group (n =16), moderate-concentration bilirubin group (n =27) and high-concentration bilirubin group (n =15). According to mean daily bilirubin increase, the subjects were sub-assigned into bilirubin rapid increase group (n =39) and bilirubin slow increase group (n =19).METHODS: After admission, all the neonates received drug treatment. Meanwhile, their 116 ears were examined with a myoelectricity evoked potential equipment (KEYPOINT) in latency, wave duration,amplitude and wave shape differentiation of each wave of BAEP. BAEP abnormal type was observed and abnormal rate of BAEP was calculated.MAIN OUTCOME MEASURES: ① Abnormal rate and abnormal type of BAEP

  15. Effects of 12 months continuous positive airway pressure on sympathetic activity related brainstem function and structure in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2016-03-01

    Full Text Available Muscle sympathetic nerve activity (MSNA is greatly elevated in patients with obstructive sleep apnoea (OSA during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 subjects with OSA prior to and following 6 and 12 months of continuous positive airway pressure (CPAP treatment. We found that 6 and 12 months of CPAP treatment significantly reduced the elevated resting MSNA in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MNSA likely due to its effects on restoring brainstem structure and function.

  16. Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants.

    Science.gov (United States)

    Mallard, C; Tolcos, M; Leditschke, J; Campbell, P; Rees, S

    1999-03-01

    The cholinergic neurotransmitter system is vital for several brainstem functions including cardiorespiratory control and central chemosensitivity. This study has examined aspects of the cholinergic neurotransmitter system in the brainstem of sudden infant death syndrome (SIDS) and control infants. The cellular localisation and the optical density of the immunoreactivity of the cholinergic enzyme choline acetyltransferase (CHAT-IR) and the muscarinic acetylcholine receptor m2 (m2-IR) in the medulla was described in 14 SIDS and 9 control cases. There was a reduction in the number of CHAT-IR neurons in the hypoglossal nucleus (control: 71.2+/-8.3% vs SIDS: 46.1+/-5.3%) and the dorsal motor nucleus of the vagus (DMV) (control: 77.2+/-5.0% vs SIDS: 52.5+/-7.4%) and reduced optical density of CHAT-IR in the hypoglossal nucleus (control: 0.20+/-0.01 vs SIDS; 0.14+/-0.02) in SIDS infants. In contrast there were no changes in the optical density of m2-IR in the hypoglossal nucleus, the DMV, or the arcuate nucleus. Hypoplasia of the arcuate nucleus was observed in one SIDS infant. These results suggest that there is a specific defect in some cholinergic motor neurons in the medulla of SIDS infants. This could lead to abnormal control of cardiovascular and respiratory function and airway patency and may be one of the contributing factors in the etiology of SIDS.

  17. Topological characteristics of brainstem lesions in clinically definite and clinically probable cases of multiple sclerosis: An MRI-study

    Energy Technology Data Exchange (ETDEWEB)

    Brainin, M.; Omasits, M.; Reisner, T.; Neuhold, A.; Wicke, L.

    1987-11-01

    Disseminated lesions in the white matter of the cerebral hemispheres and confluent lesions at the borders of the lateral ventricles as seen on MRI are both considered acceptable paraclinical evidence for the diagnosis of multiple sclerosis. Similar changes are, however, also found in vascular diseases of the brain. We therefore aimed at identifying those additional traits in the infratentorial region, which in our experience are not frequently found in cerebrovascular pathology. We evaluated MR brain scans of 68 patients and found pontine lesions in 71% of cases with a clinically definite diagnosis (17 out of 24) and in 33% of cases with a probable diagnosis (14 out of 43). Lesions in the medulla oblongata were present in 50% and 16%, respectively, and in the midbrain in 25% and 7%, respectively. With rare exceptions all brainstem lesions were contiguous with the cisternal or ventricular cerebrospinal fluid spaces. In keeping with post-mortem reports the morphological spectrum ranged from large confluent patches to solitary, well delineated paramedian lesions or discrete linings of the cerebrospinal fluid border zones and were most clearly depicted from horizontal and sagittal T2 weighted SE-sequences. If there is a predilection for the outer or inner surfaces of the brainstem, such lesions can be considered an additional typical feature of multiple sclerosis and can be more reliably weighted as paraclinical evidence for a definite diagnosis.

  18. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  19. Cochlear and brainstem audiologic findings in normal hearing tinnitus subjects in comparison with non-tinnitus control group.

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-11-01

    Full Text Available While most tinnitus cases have some degree of hearing impairment, a small percent of the patients admitted to Ear, Nose and Throat Clinics or Hearing Evaluation Centers are those who complain of tinnitus despite having normal hearing thresholds. Present study was performed in order to better understanding of the probable causes of tinnitus and to investigate possible changes in the cochlear and auditory brainstem function in normal hearing patients with chronic tinnitus. Altogether, 63 ears (31 ears with tinnitus and 32 ears without tinnitus were examined. The prevalence of transient evoked otoacoustic emissions and characteristics of the auditory brainstem response components including wave latencies and wave amplitudes was determined in the two groups and analyzed with appropriate statistical methods. There was no difference between the prevalence of transient evoked emissions in the two groups. The mean difference between absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that were not statistically significant. Also, the interpeak latency values of I-III, III-V and I-V in both groups had no significant difference. Only the V/I amplitude ratio in the tinnitus group was significantly larger than the other group (p =0.04. The changes observed in amplitude of waves, especially in the later ones, can be considered as an Audiologic finding in normal hearing tinnitus subjects and its possible role in generation of tinnitus in these patients must be investigated.

  20. Cochlear and brainstem audiologic findings in normal hearing tinnitus subjects in comparison with non-tinnitus control group.

    Science.gov (United States)

    Nemati, Shadman; Faghih Habibi, Ali; Panahi, Rasool; Pastadast, Masoomeh

    2014-01-01

    While most tinnitus cases have some degree of hearing impairment, a small percent of the patients admitted to Ear, Nose and Throat Clinics or Hearing Evaluation Centers are those who complain of tinnitus despite having normal hearing thresholds. Present study was performed in order to better understanding of the probable causes of tinnitus and to investigate possible changes in the cochlear and auditory brainstem function in normal hearing patients with chronic tinnitus. Altogether, 63 ears (31 ears with tinnitus and 32 ears without tinnitus) were examined. The prevalence of transient evoked otoacoustic emissions and characteristics of the auditory brainstem response components including wave latencies and wave amplitudes was determined in the two groups and analyzed with appropriate statistical methods. There was no difference between the prevalence of transient evoked emissions in the two groups. The mean difference between absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that were not statistically significant. Also, the interpeak latency values of I-III, III-V and I-V in both groups had no significant difference. Only the V/I amplitude ratio in the tinnitus group was significantly larger than the other group (p =0.04). The changes observed in amplitude of waves, especially in the later ones, can be considered as an Audiologic finding in normal hearing tinnitus subjects and its possible role in generation of tinnitus in these patients must be investigated.

  1. One Nursing Case of Brain-stem Hemorrhage from Newborn Infant%1例新生儿脑干出血的护理

    Institute of Scientific and Technical Information of China (English)

    杜爱红

    2011-01-01

    The paper summarizes a nursing case of infant patient who suffers from brainstem hemorrhage through an emergency cure and carefillly nursing of brainstem hemorrhage from newborn infant.%通过对l例新生儿脑干出血的急救治疗,并进行了精心细致的护理,患者康复出院,并安全度过新生儿期。本文对其护理进行总结介绍。

  2. Comparison of the developmental changes of the brainstem auditory evoked response (BAER) in taurine-supplemented and taurine-deficient kittens.

    Science.gov (United States)

    Vallecalle-Sandoval, M H; Heaney, G; Sersen, E; Sturman, J A

    1991-01-01

    A similar development of the brainstem auditory evoked response is present in taurine-supplemented and taurine-deficient kittens between the second postnatal week and the third month of life. Between birth and the second postnatal week kittens from mothers fed the 1% taurine diet showed earlier maturation of the brainstem auditory evoked response as indicated by lower threshold, shorter P1 latency and shorter central conduction time when compared to the kittens from mothers fed the 0.05% taurine diet. These results suggest an important role of taurine in the anatomical and functional development of the auditory system.

  3. Identification of the CART neuropeptide circuitry processing TMT-induced predator stress.

    Science.gov (United States)

    Sharma, Anju; Rale, Abhishek; Utturwar, Kaweri; Ghose, Aurnab; Subhedar, Nishikant

    2014-12-01

    Abundance of cocaine- and amphetamine-regulated transcript (CART) neuropeptide in the limbic areas like the olfactory system, central nucleus of amygdala (CeA), ventral bed nucleus of stria terminalis (vBNST) and the hypothalamus suggests involvement of the peptide in emotive processing. We examined the role of CART in mediating fear, a strong emotion with profound survival value. Rats, exposed to 2,4,5-trimethyl-3-thiazoline (TMT), a predator related cue extracted from fox feces, showed significant increase in freezing, escape and risk assessment behavior, whereas grooming was reduced. Neuronal activity was up-regulated in the CeA and vBNST in terms of increased immunoreactivity in CART elements and c-Fos expression. Increased expression of both the markers was also seen in some discrete magnocellular as well as parvicellular subdivisions of the paraventricular nucleus (PVN). However, CART containing mitral cells in the main or accessory olfactory bulb did not respond. CART antibody was stereotaxically injected bilaterally into the CeA to locally immunoneutralize endogenous CART. On exposure to TMT, these rats showed reduced freezing, risk assessment and escape behavior while grooming was restored to normal value. We suggest that the CART signaling in the CeA and vBNST, but not in the olfactory system, might be an important component of the innate fear processing, and expression of stereotypic behavior, while CART in the PVN subdivisions might mediate the neuroendocrine response to predator stress.

  4. Risperidone and Divalproex Differentially Engage the Fronto-Striato-Temporal Circuitry in Pediatric Mania: A Pharmacological Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Pavuluri, Mani N.; Passarotti, Alessandra M.; Fitzgerald, Jacklynn M.; Wegbreit, Ezra; Sweeney, John A.

    2012-01-01

    Objective: The current study examined the impact of risperidone and divalproex on affective and working memory circuitry in patients with pediatric bipolar disorder (PBD). Method: This was a six-week, double-blind, randomized trial of risperidone plus placebo versus divalproex plus placebo for patients with mania (n = 21; 13.6 [plus or minus] 2.5…

  5. 窒息状态下ABR及其脑干功能的实验研究%Experimental study of the auditory brainstem response and brainstem function in apnea

    Institute of Scientific and Technical Information of China (English)

    张榕; 林才朱; 殷羽白

    2001-01-01

    目的 通过观察豚鼠在窒息状态下ABR电位变化及其脑干功能的自然转归,探讨听觉通路损伤程度和临床意义。方法 听觉诱发电位仪和心电脉搏氧饱和度监测仪检测3组不同窒息时限的豚鼠的ABR各波潜伏期及波间期,氧饱和度(SO2)及心率(HR)等。结果 波Ⅴ最易受缺氧的影响,波Ⅲ次之,波Ⅰ最后消失和最早恢复。窒息时限影响脑干功能,导致1组和2组的各波潜伏期和波间期差有统计学上的意义。窒息时间超过5min30s,实验豚鼠均死亡。结论 ABR可作为窒息状态下判断脑功能及脑死亡的重要辅助指标。应争分夺秒抢救窒息并及时处理心脑的损害。%Objective To find some reasonable signs for hearing pathway injury during different apnea times in guinea pigs by using the change of the auditory brainstem response (ABR) and brainstem function. Methods Twenty-six guinea pigs divided into 3 groups were tested with ABR audiometer and electrocaidio-pules-SO2 monitor during different apnea times. Results Wave Ⅴ was the most easily affected in apnea, Wave Ⅲ was also easily affected, and Wave Ⅰ was less affected. The time of apnea over 330 seconds caused the death of all the experimetal guinea pigs. Conclusion ABR may be used as an important measure to monitor the brainstem function during apnea. It is important to deal with the situation of the brain and heart as soon as possible.

  6. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): Assessment of the involved white matter tracts by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Hassan [Department of Radiology, Benha University (Egypt); Wafaie, Ahmed, E-mail: a_wafaie@yahoo.com [Department of Radiology, Cairo University (Egypt); Abdelfattah, Sherif [Department of Radiology, Cairo University (Egypt); Farid, Tarek [Pediatric Department, Egyptian National Research Center (Egypt)

    2014-01-15

    Background and purpose: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. Patients and methods: We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy ({sup 1}H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. Results: In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable

  7. Multiple types of cerebellar target neurons and their circuitry in the vestibulo-ocular reflex.

    Science.gov (United States)

    Shin, Minyoung; Moghadam, Setareh H; Sekirnjak, Chris; Bagnall, Martha W; Kolkman, Kristine E; Jacobs, Richard; Faulstich, Michael; du Lac, Sascha

    2011-07-27

    The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits through which Purkinje cells influence an oculomotor behavior controlled by the cerebellum, the horizontal vestibulo-ocular reflex, which involves only two eye muscles. Using a combination of anatomical tracing and electrophysiological recordings in transgenic mouse lines, we identified several classes of neurons in the medial vestibular nucleus that receive Purkinje cell synapses from the cerebellar flocculus. Glycinergic and glutamatergic flocculus target neurons (FTNs) with somata densely surrounded by Purkinje cell terminals projected axons to the ipsilateral abducens and oculomotor nuclei, respectively. Of three additional types of FTNs that were sparsely innervated by Purkinje cells, glutamatergic and glycinergic neurons projected to the contralateral and ipsilateral abducens, respectively, and GABAergic neurons projected to contralateral vestibular nuclei. Densely innervated FTNs had high spontaneous firing rates and pronounced postinhibitory rebound firing, and were physiologically homogeneous, whereas the intrinsic excitability of sparsely innervated FTNs varied widely. Heterogeneity in the molecular expression, physiological properties, and postsynaptic targets of FTNs implies that Purkinje cell activity influences the neural control of eye movements in several distinct ways. These results indicate that the cerebellum regulates a simple reflex behavior via at least five different cell types that are postsynaptic to Purkinje cells.

  8. Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions.

    Science.gov (United States)

    Gautron, Laurent; Lee, Charlotte; Funahashi, Hisayuki; Friedman, Jeffrey; Lee, Syann; Elmquist, Joel

    2010-01-01

    Vagal afferents regulate energy balance by providing a link between the brain and postprandial signals originating from the gut. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the nodose ganglion, where the cell bodies of vagal sensory afferents reside. By using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found GFP expression in approximately one-third of nodose ganglion neurons. By using immunohistochemistry combined with in situ hybridization, we also demonstrated that approximately 20% of GFP-positive neurons coexpressed cholecystokinin receptor A. In addition, we found that the GFP is transported to peripheral tissues by both vagal sensory afferents and motor efferents, which allowed us to assess the sites innervated by MC4R-GFP neurons. GFP-positive efferents that co-expressed choline acetyltransferase specifically terminated in the hepatic artery and the myenteric plexus of the stomach and duodenum. In contrast, GFP-positive afferents that did not express cholinergic or sympathetic markers terminated in the submucosal plexus and mucosa of the duodenum. Retrograde tracing experiments confirmed the innervation of the duodenum by GFP-positive neurons located in the nodose ganglion. Our findings support the hypothesis that MC4R signaling in vagal afferents may modulate the activity of fibers sensitive to satiety signals such as cholecystokinin, and that MC4R signaling in vagal efferents may contribute to the control of the liver and gastrointestinal tract.

  9. Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations.

    Science.gov (United States)

    Chandler, Daniel J

    2016-06-15

    The brainstem nucleus locus coeruleus (LC) innervates the entire central nervous system and is the primary source of norepinephrine (NE) to the neocortex. While classically considered a homogenous modulator of forebrain activity by virtue of highly widespread and divergent axons, recent behavioral and pharmacological evidence suggest this nucleus may execute distinct operations within functionally distinct terminal fields. Summarized in this review are the anatomical and physiological properties of the nucleus within a historical context that led to the interpretation of the nucleus as a homogeneous entity with uniform and simultaneous actions throughout its terminal fields. Also included are findings from several laboratories which point to a more nuanced model of LC/NE function that parallels that seen in other forebrain-projecting monoaminergic nuclei. Such compartmentalized models of the nucleus promote the idea that specific LC circuits are involved in discrete behavioral operations, and therefore, by identifying the networks that are engaged by LC, the substrates for these behaviors can be identified and manipulated. Perturbations in the functional anatomy and physiology of this system may be related to neuropsychiatric conditions associated with dysregulation of the LC-noradrenergic system such as attention deficit hyperactivity disorder. Recent findings regarding the organization and operation of the LC/NE system collectively challenge the classical view of the nucleus as a relatively homogenous modulator of forebrain activity and provide the basis for a renewed scientific interest in this region of the brain. This article is part of a Special Issue entitled SI: Noradrenergic System.

  10. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    NARCIS (Netherlands)

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to de

  11. Cerebellar and brainstem hypoplasia in a child with a partial monosomy for the short arm of chromosome 5 and partial trisomy for the short arm of chromosome 10

    NARCIS (Netherlands)

    Arts, W F M; Hofstee, Y; Drejer, G F; Beverstock, G C; Oosterwijk, J C

    1995-01-01

    A child with hypoplasia of the cerebellum and brainstem in association with an unbalanced translocation, resulting in a partial deletion of the short arm of chromosome 5 and a partial trisomy of the short arm of chromosome 10, is described. A balanced translocation was present in his mother and mate

  12. New Evidence of Cerebellar and Brainstem Hypoplasia in Autistic Infants, Children and Adolescents: The MR Imaging Study by Hashimoto and Colleagues.

    Science.gov (United States)

    Courchesne, Eric

    1995-01-01

    In a study by Toshiaki Hashimoto and colleagues (EC 611 142), 10 infants with developmental delay, poor eye contact, and poor facial expression underwent magnetic resonance brain imaging and were later diagnosed with autism. This offered direct evidence of abnormality of the cerebellar vermis and the brainstem at the beginning stages of behavioral…

  13. Immediate, irreversible, posttraumatic coma: a review indicating that bilateral brainstem injury rather than widespread hemispheric damage is essential for its production.

    Science.gov (United States)

    Rosenblum, William I

    2015-03-01

    Traumatic brain injury may result in immediate long-lasting coma. Much attention has been given to predicting this outcome from the initial examination because these predictions can guide future treatment and interactions with the patient's family. Reports of diffuse axonal injury in these cases have ascribed the coma to widespread damage in the deep white matter that disconnects the hemispheres from the ascending arousal system (AAS). However, brainstem lesions are also present in such cases, and the AAS may be interrupted at the brainstem level. This review examines autopsy and imaging literature that assesses the presence, extent, and predictive value of lesions in both sites. The evidence suggests that diffuse injury to the deep white matter is not the usual cause of immediate long-lasting posttraumatic coma. Instead, brainstem lesions in the rostral pons or midbrain are almost always the cause but only if