WorldWideScience

Sample records for brains small worlds

  1. Brain networks: small-worlds, after all?

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Lyle; Destexhe, Alain; Rudolph-Lilith, Michelle [Unité de Neurosciences, Information et Complexité (UNIC), Centre National de la Recherche Scientifique (CNRS), 1 Avenue de la Terrasse, Gif-sur-Yvette (France)

    2014-10-01

    Since its introduction, the ‘small-world’ effect has played a central role in network science, particularly in the analysis of the complex networks of the nervous system. From the cellular level to that of interconnected cortical regions, many analyses have revealed small-world properties in the networks of the brain. In this work, we revisit the quantification of small-worldness in neural graphs. We find that neural graphs fall into the ‘borderline’ regime of small-worldness, residing close to that of a random graph, especially when the degree sequence of the network is taken into account. We then apply recently introducted analytical expressions for clustering and distance measures, to study this borderline small-worldness regime. We derive theoretical bounds for the minimal and maximal small-worldness index for a given graph, and by semi-analytical means, study the small-worldness index itself. With this approach, we find that graphs with small-worldness equivalent to that observed in experimental data are dominated by their random component. These results provide the first thorough analysis suggesting that neural graphs may reside far away from the maximally small-world regime. (paper)

  2. Brain networks: small-worlds, after all?

    International Nuclear Information System (INIS)

    Muller, Lyle; Destexhe, Alain; Rudolph-Lilith, Michelle

    2014-01-01

    Since its introduction, the ‘small-world’ effect has played a central role in network science, particularly in the analysis of the complex networks of the nervous system. From the cellular level to that of interconnected cortical regions, many analyses have revealed small-world properties in the networks of the brain. In this work, we revisit the quantification of small-worldness in neural graphs. We find that neural graphs fall into the ‘borderline’ regime of small-worldness, residing close to that of a random graph, especially when the degree sequence of the network is taken into account. We then apply recently introducted analytical expressions for clustering and distance measures, to study this borderline small-worldness regime. We derive theoretical bounds for the minimal and maximal small-worldness index for a given graph, and by semi-analytical means, study the small-worldness index itself. With this approach, we find that graphs with small-worldness equivalent to that observed in experimental data are dominated by their random component. These results provide the first thorough analysis suggesting that neural graphs may reside far away from the maximally small-world regime. (paper)

  3. The lesioned brain: still a small world?

    Directory of Open Access Journals (Sweden)

    Linda Douw

    2010-11-01

    Full Text Available The intra-arterial amobarbital procedure (IAP or Wada test is used to determine language lateralization and contralateral memory functioning in patients eligible for neurosurgery because of pharmaco-resistant epilepsy. During unilateral sedation, functioning of the contralateral hemisphere is assessed by means of neuropsychological tests. We use the IAP as a reversible model for the effect of lesions on brain network topology. Three artifact free epochs (4096 samples were selected from each EEG record before and after amobarbital injection. Functional connectivity was assessed by means of the synchronization likelihood (SL. The resulting functional connectivity matrices were constructed for all six epochs per patient in four frequency bands, and weighted network analysis was performed. The clustering coefficient, average path length, small-world-index, and edge weight correlation were calculated. Recordings of 33 patients were available. Network topology changed significantly after amobarbital injection: clustering decreased in all frequency bands, while path length decreased in the theta and lower alpha band, indicating a shift towards a more random network topology. Likewise, the edge weight correlation decreased after injection of amobarbital in the theta and beta bands. Network characteristics after injection of amobarbital were correlated with memory score: higher theta band small-world-index and increased upper alpha path length were related to better memory score. The whole-brain network topology in patients eligible for epilepsy surgery becomes more random and less optimally organized after selective sedation of one hemisphere, as has been reported in studies with brain tumor patients. Furthermore, memory functioning after injection seems related to network topology, indicating that functional performance is related to topological network properties of the brain.

  4. The Efficiency of a Small-World Functional Brain Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan

    2012-01-01

    We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.

  5. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Statistical complexity is maximized in a small-world brain.

    Directory of Open Access Journals (Sweden)

    Teck Liang Tan

    Full Text Available In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.

  7. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  8. Small-world organization of self-similar modules in functional brain networks

    Science.gov (United States)

    Sigman, Mariano; Gallos, Lazaros; Makse, Hernan

    2012-02-01

    The modular organization of the brain implies the parallel nature of brain computations. These modules have to remain functionally independent, but at the same time they need to be sufficiently connected to guarantee the unitary nature of brain perception. Small-world architectures have been suggested as probable structures explaining this behavior. However, there is intrinsic tension between shortcuts generating small-worlds and the persistence of modularity. In this talk, we study correlations between the activity in different brain areas. We suggest that the functional brain network formed by the percolation of strong links is highly modular. Contrary to the common view, modules are self-similar and therefore are very far from being small-world. Incorporating the weak ties to the network converts it into a small-world preserving an underlying backbone of well-defined modules. Weak ties are shown to follow a pattern that maximizes information transfer with minimal wiring costs. This architecture is reminiscent of the concept of weak-ties strength in social networks and provides a natural solution to the puzzle of efficient infomration flow in the highly modular structure of the brain.

  9. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  10. Abnormal small-world brain functional networks in obsessive-compulsive disorder patients with poor insight.

    Science.gov (United States)

    Lei, Hui; Cui, Yan; Fan, Jie; Zhang, Xiaocui; Zhong, Mingtian; Yi, Jinyao; Cai, Lin; Yao, Dezhong; Zhu, Xiongzhao

    2017-09-01

    There are limited data on neurobiological correlates of poor insight in obsessive-compulsive disorder (OCD). This study explored whether specific changes occur in small-world network (SWN) properties in the brain functional network of OCD patients with poor insight. Resting-state electroencephalograms (EEGs) were recorded for 12 medication-free OCD patients with poor insight, 50 medication-free OCD patients with good insight, and 36 healthy controls. Both of the OCD groups exhibited topological alterations in the brain functional network characterized by abnormal small-world parameters at the beta band. However, the alterations at the theta band only existed in the OCD patients with poor insight. A relatively small sample size. Subjects were naïve to medications and those with Axis I comorbidity were excluded, perhaps limiting generalizability. Disrupted functional integrity at the beta bands of the brain functional network may be related to OCD, while disrupted functional integrity at the theta band may be associated with poor insight in OCD patients, thus this study might provide novel insight into our understanding of the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A review of structural and functional brain networks: small world and atlas.

    Science.gov (United States)

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  12. Big words, halved brains and small worlds: complex brain networks of figurative language comprehension.

    Science.gov (United States)

    Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham

    2011-04-27

    Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.

  13. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.

    Science.gov (United States)

    Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano

    2012-02-21

    The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.

  15. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Reduced small world brain connectivity in probands with a family history of epilepsy.

    Science.gov (United States)

    Bharath, R D; Chaitanya, G; Panda, R; Raghavendra, K; Sinha, S; Sahoo, A; Gohel, S; Biswal, B B; Satishchandra, P

    2016-12-01

    The role of inheritance in ascertaining susceptibility to epilepsy is well established, although the pathogenetic mechanisms are still not very clear. Interviewing for a positive family history is a popular epidemiological tool in the understanding of this susceptibility. Our aim was to visualize and localize network abnormalities that could be associated with a positive family history in a group of patients with hot water epilepsy (HWE) using resting-state functional magnetic resonance imaging (rsfMRI). Graph theory analysis of rsfMRI (clustering coefficient γ; path length λ; small worldness σ) in probands with a positive family history of epilepsy (FHE+, 25) were compared with probands without FHE (FHE-, 33). Whether a closer biological relationship was associated with a higher likelihood of network abnormalities was also ascertained. A positive family history of epilepsy had decreased γ, increased λ and decreased σ in bilateral temporofrontal regions compared to FHE- (false discovery rate corrected P ≤ 0.0062). These changes were more pronounced in probands having first degree relatives and siblings with epilepsy. Probands with multiple types of epilepsy in the family showed decreased σ in comparison to only HWE in the family. Graph theory analysis of the rsfMRI can be used to understand the neurobiology of diseases like genetic susceptibility in HWE. Reduced small worldness, proportional to the degree of relationship, is consistent with the current understanding that disease severity is higher in closer biological relations. © 2016 EAN.

  17. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  18. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    Science.gov (United States)

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis.

    Science.gov (United States)

    Vecchio, Fabrizio; Di Iorio, Riccardo; Miraglia, Francesca; Granata, Giuseppe; Romanello, Roberto; Bramanti, Placido; Rossini, Paolo Maria

    2018-04-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique able to modulate cortical excitability in a polarity-dependent way. At present, only few studies investigated the effects of tDCS on the modulation of functional connectivity between remote cortical areas. The aim of this study was to investigate-through graph theory analysis-how bipolar tDCS modulate cortical networks high-density EEG recordings were acquired before and after bipolar cathodal, anodal and sham tDCS involving the primary motor and pre-motor cortices of the dominant hemispherein 14 healthy subjects. Results showed that, after bipolar anodal tDCS stimulation, brain networks presented a less evident "small world" organization with a global tendency to be more random in its functional connections with respect to prestimulus condition in both hemispheres. Results suggest that tDCS globally modulates the cortical connectivity of the brain, modifying the underlying functional organization of the stimulated networks, which might be related to changes in synaptic efficiency of the motor network and related brain areas. This study demonstrated that graph analysis approach to EEG recordings is able to intercept changes in cortical functions mediated by bipolar anodal tDCS mainly involving the dominant M1 and related motor areas. Concluding, tDCS could be an useful technique to help understanding brain rhythms and their topographic functional organization and specificity.

  20. Small-world Bias of Correlation Networks: From Brain to Climate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, J.; Paluš, Milan

    2017-01-01

    Roč. 27, č. 3 (2017), č. článku 035812. ISSN 1054-1500 R&D Projects: GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : statistical properties * networks * brain * time series analysis * computer modeling Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.283, year: 2016

  1. Small-worldness and gender differences of large scale brain metabolic covariance networks in young adults: a FDG PET study of 400 subjects.

    Science.gov (United States)

    Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming

    2015-02-01

    Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. The Academic Life: Small Worlds, Different Worlds

    Science.gov (United States)

    Locke, William

    2010-01-01

    "The Academic Life: Small Worlds, Different Worlds" represented an impressive investigation of the largest and most complex national academic community in the world, which seriously attempted a detailed representation of the variations in its form. Its ethnographic orientation to understanding the internal academic life through exploratory…

  3. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  4. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  5. Small Worlds and Cultural Polarization

    NARCIS (Netherlands)

    Flache, Andreas; Macy, Michael W.

    2011-01-01

    Building on Granovetter's theory of the "strength of weak ties,'' research on "small-world'' networks suggests that bridges between clusters in a social network (long-range ties) promote cultural diffusion, homogeneity, and integration. We show that this macro-level implication of network structure

  6. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  7. World Small Hydropower Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heng; Esser, Lara [ICSGP (China); Masera, Diego [UNIDO, Vienna (Austria)

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  8. World Small Hydropower Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heng; Esser, Lara (ICSGP (China)); Masera, Diego (UNIDO, Vienna (Austria))

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  9. Small Worldness in Dense and Weighted Connectomes

    Science.gov (United States)

    Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas

    2016-05-01

    The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.

  10. A novel Direct Small World network model

    Directory of Open Access Journals (Sweden)

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  11. Epidemics in interconnected small-world networks

    NARCIS (Netherlands)

    Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks

  12. Epidemics in interconnected small-world networks.

    Science.gov (United States)

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  13. Epidemics in interconnected small-world networks.

    Directory of Open Access Journals (Sweden)

    Meng Liu

    Full Text Available Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  14. Scaling in small-world resistor networks

    International Nuclear Information System (INIS)

    Korniss, G.; Hastings, M.B.; Bassler, K.E.; Berryman, M.J.; Kozma, B.; Abbott, D.

    2006-01-01

    We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l -α . In this case we find that the average effective system resistance diverges for any non-zero value of α

  15. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Science.gov (United States)

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific

  16. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    Science.gov (United States)

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the

  17. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  18. Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study

    NARCIS (Netherlands)

    Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J.

    2011-01-01

    Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving

  19. Searching in small-world networks

    International Nuclear Information System (INIS)

    Moura, Alessandro P.S. de; Motter, Adilson E.; Grebogi, Celso

    2003-01-01

    We study the average time it takes to find a desired node in the Watts-Strogatz family of networks. We consider the case when the look-up time can be neglected and when it is important, where the look-up time is the time needed to choose one among all the neighboring nodes of a node at each step in the search. We show that in both cases, the search time is minimum in the small-world regime, when an appropriate distance between the nodes is defined. Through an analytical model, we show that the search time scales as N 1/D(D+1) for small-world networks, where N is the number of nodes and D is the dimension of the underlying lattice. This model is shown to be in agreement with numerical simulations

  20. Hierarchical regular small-world networks

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan

    2008-01-01

    Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)

  1. Blackmail propagation on small-world networks

    Science.gov (United States)

    Shao, Zhi-Gang; Jian-Ping Sang; Zou, Xian-Wu; Tan, Zhi-Jie; Jin, Zhun-Zhi

    2005-06-01

    The dynamics of the blackmail propagation model based on small-world networks is investigated. It is found that for a given transmitting probability λ the dynamical behavior of blackmail propagation transits from linear growth type to logistical growth one with the network randomness p increases. The transition takes place at the critical network randomness pc=1/N, where N is the total number of nodes in the network. For a given network randomness p the dynamical behavior of blackmail propagation transits from exponential decrease type to logistical growth one with the transmitting probability λ increases. The transition occurs at the critical transmitting probability λc=1/, where is the average number of the nearest neighbors. The present work will be useful for understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  2. A small trip in the quantum world

    International Nuclear Information System (INIS)

    Klein, E.

    2004-01-01

    In 1905 a new physics was born: quantum mechanics that opened the way to the infinitely small made of atoms, particles and their interactions. For the first time in the history of sciences a discipline has required a thorough work of interpretation before being understood and applied. The author reviews the different interpretations and their inferences that have been postulated since the very beginning of quantum physics. Despite endless discussions about the true nature of quantum physics, this branch of physics remains an extraordinarily efficient tool to explain the world and has produced promising applications from laser to cryptography and to computers. The author describes all the challenges that have faced physicists concerning quantum physics among them: the wave-particle duality, the concept of reality, the significance of measuring or the collapse of the wave packet. (A.C.)

  3. The developing brain in a multitasking world.

    Science.gov (United States)

    Rothbart, Mary K; Posner, Michael I

    2015-03-01

    To understand the problem of multitasking, it is necessary to examine the brain's attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development.

  4. World Small Hydropower Development Report 2013 - Zimbabwe

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available in 2006. With the current economic and political situation in Zimbabwe improving, the drive by the Government to encourage independent power producers, the prospects for the development of small hydropower are promising....

  5. Algebraic approach to small-world network models

    Science.gov (United States)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  6. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  7. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  8. Dawn of small worlds dwarf planets, asteroids, comets

    CERN Document Server

    Moltenbrey, Michael

    2016-01-01

    This book gives a detailed introduction to the thousands and thousands of smaller bodies in the solar system. Written for interested laymen, amateur astronomers and students it describes the nature and origin of asteroids, dwarf planets and comets, and gives detailed information about their role in the solar system. The author nicely reviews the history of small-world-exploration and describes past, current and future space craft missions studying small worlds, and presents their results. Readers will learn that small solar system worlds have a dramatically different nature and appearance than the planets. Even though research activity on small worlds has increased in the recent past many of their properties are still in the dark and need further research.

  9. Walking and Talking Geography: A Small-World Approach

    Science.gov (United States)

    Fertig, Gary; Silverman, Rick

    2007-01-01

    When teaching geography to students in the primary grades, teachers should provide firsthand experiences that young children need to make meaningful sense of their world. David Sobel, author of "Mapmaking with Children: Sense of Place Education for the Elementary Years," suggests that teachers in the early grades adopt a small-world approach to…

  10. Influence of choice of null network on small-world parameters of structural correlation networks.

    Directory of Open Access Journals (Sweden)

    S M Hadi Hosseini

    Full Text Available In recent years, coordinated variations in brain morphology (e.g., volume, thickness have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1 networks constructed by topology randomization (TOP, 2 networks matched to the distributional properties of the observed covariance matrix (HQS, and 3 networks generated from correlation of randomized input data (COR. The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.

  11. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    Science.gov (United States)

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  12. Creative Brains: Designing in the Real World

    Directory of Open Access Journals (Sweden)

    Vinod eGoel

    2014-04-01

    Full Text Available The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches, to being very precise, concrete, unambiguous, and determinate (like contract documents. The former types of symbol systems support associative processes that facilitate lateral (or divergent transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex.

  13. Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Zhang Guiqing; Chen Tianlun

    2008-01-01

    Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.

  14. Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis.

    Directory of Open Access Journals (Sweden)

    Tun-Wei Hsu

    Full Text Available Hepatic encephalopathy (HE is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a 'small-world' network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI. Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions

  15. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    Science.gov (United States)

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  16. Navigating a 2D Virtual World using Direct Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Darby M. Losey

    2016-11-01

    Full Text Available Can the human brain learn to interpret inputs from a virtual world delivered directly through brain stimulation? We answer this question by describing the first demonstration of humans playing a computer game utilizing only direct brain stimulation and no other sensory inputs. The demonstration also provides the first instance of artificial sensory information, in this case depth, being delivered directly to the human brain through noninvasive methods. Our approach utilizes transcranial magnetic stimulation (TMS of the human visual cortex to convey binary information about obstacles in a virtual maze. At certain intensities, TMS elicits visual percepts known as phosphenes, which transmits information to the subject about their current location within the maze. Using this computer-brain interface (CBI, five subjects successfully navigated an average of 92% of all the steps in a variety of virtual maze worlds. They also became more accurate in solving the task over time. These results suggest that humans can learn to utilize information delivered directly and noninvasively to their brains to solve tasks that cannot be solved using their natural senses, opening the door to human sensory augmentation and novel modes of human-computer interaction.

  17. Spatial prisoner's dilemma optimally played in small-world networks

    International Nuclear Information System (INIS)

    Masuda, Naoki; Aihara, Kazuyuki

    2003-01-01

    Cooperation is commonly found in ecological and social systems even when it apparently seems that individuals can benefit from selfish behavior. We investigate how cooperation emerges with the spatial prisoner's dilemma played in a class of networks ranging from regular lattices to random networks. We find that, among these networks, small-world topology is the optimal structure when we take into account the speed at which cooperative behavior propagates. Our results may explain why the small-world properties are self-organized in real networks

  18. A dynamical characterization of the small world phase

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Tanya; Vilela Mendes, R.; Seixas, Joao

    2003-12-08

    Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clustering coefficient and the characteristic path length have been used in the past for a qualitative characterization of these networks. Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts-Strogatz {beta}-model, a coupled map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behavior of the ergodic invariants of the dynamics.

  19. A dynamical characterization of the small world phase

    International Nuclear Information System (INIS)

    Araujo, Tanya; Vilela Mendes, R.; Seixas, Joao

    2003-01-01

    Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clustering coefficient and the characteristic path length have been used in the past for a qualitative characterization of these networks. Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts-Strogatz β-model, a coupled map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behavior of the ergodic invariants of the dynamics

  20. Small-worldness characteristics and its gender relation in specific hemispheric networks.

    Science.gov (United States)

    Miraglia, F; Vecchio, F; Bramanti, P; Rossini, P M

    2015-12-03

    Aim of this study was to verify whether the topological organization of human brain functional networks is different for males and females in resting state EEGs. Undirected and weighted brain networks were computed by eLORETA lagged linear connectivity in 130 subjects (59 males and 71 females) within each hemisphere and in four resting state networks (Attentional Network (AN), Frontal Network (FN), Sensorimotor Network (SN), Default Mode Network (DMN)). We found that small-world (SW) architecture in the left hemisphere Frontal network presented differences in both delta and alpha band, in particular lower values in delta and higher in alpha 2 in males respect to females while in the right hemisphere differences were found in lower values of SW in males respect to females in gamma Attentional, delta Sensorimotor and delta and gamma DMNs. Gender small-worldness differences in some of resting state networks indicated that there are specific brain differences in the EEG rhythms when the brain is in the resting-state condition. These specific regions could be considered related to the functions of behavior and cognition and should be taken into account both for research on healthy and brain diseased subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Small Worlds Week: Raising Curiosity and Contributing to STEM

    Science.gov (United States)

    Ng, C.; Mayo, L.; Stephenson, B. E.; Keck, A.; Cline, T. D.; Lewis, E. M.

    2015-12-01

    Dwarf planets, comets, asteroids, and icy moons took center stage in the years 2014-2015 as multiple spacecraft (New Horizons, Dawn, Rosetta, Cassini) and ground-based observing campaigns observed these small and yet amazing celestial bodies. Just prior to the historic New Horizons encounter with the Pluto system, NASA celebrated Small Worlds Week (July 6-10) as a fully online program to highlight small worlds mission discoveries. Small Worlds Week leveraged the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  2. Hodge Decomposition of Information Flow on Small-World Networks.

    Science.gov (United States)

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  3. Hodge decomposition of information flow on small-world networks

    Directory of Open Access Journals (Sweden)

    Taichi Haruna

    2016-09-01

    Full Text Available We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  4. A Small State Maneuvering in the Changing World Order

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2016-01-01

    , especially the Danish approach to the BRICs, has developed in recent years, I show how Denmark – a small state – is trying to maneuver in the changing world order through a “creative agency” approach characterized by pragmatic low-profile activism. I develop a neoclassical realist framework and use...

  5. Exploring the story, science, and adventure of small worlds

    Science.gov (United States)

    Swann, J. L.; Elkins-Tanton, L. T.; Anbar, A. D.; Klug Boonstra, S.; Tamer, A. J.; Mead, C.; Hunsley, D.

    2017-12-01

    Small worlds are a strategic focus at NASA, reflected by missions such as Osiris Rex and Psyche among others. The Infiniscope project, with funding from NASA SMD, is building on this scientific and public interest to teach formal and informal learners about asteroids and other small worlds. The digital learning experience, "Where are the small worlds?", and future Infiniscope experiences, incorporate a design theory that we describe as "education through exploration" (ETX) which is provided through an adaptive e-learning platform. This design ensures that learners actively engage in exploration and discovery, while receiving targeted feedback to push through challenges. To ensure that this and future experiences reach and meet the needs of as many educators as possible, Infiniscope includes a digital teaching network to host the experiences and support the reuse and adaptation of digital resources in new lessons. "Where are the small worlds?" puts learners in an interactive simulation of the solar system and provides a mission structure in which they hunt for "astrocaches" on near earth objects, main belt asteroids, and Kuiper-belt objects. These activities allow the learner to discover the locations of the small worlds in the solar system and develop an intuitive understanding for the relative motion of objects at various distances from the Sun. The experience is NGSS-aligned and accompanied by a lesson plan for integration into the classroom. In testing with more than 500 middle-school students, 83% of participants said they wanted to do more experiences like "Where are the small worlds?" They also found the experience both "fun" and "interesting" while being moderately difficult. "Where are the small worlds?" is one of many visualizations and lessons that is available within the Infiniscope teaching network. The network already has hundreds of members and is expected to grow in both numbers and engagement over time. Currently, educators can search and use pre

  6. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  7. Assessment of the world market for small and medium reactors

    International Nuclear Information System (INIS)

    Csik, B.J.

    2000-01-01

    In the past decades, the major focus for nuclear power has been the design and construction of nuclear plants of ever increasing size. This was appropriate for many industrialized countries, which could readily add generation capability to their electrical grids in large increments. However, recently there has been an increasing emphasis on the development of small and medium reactors especially to meet needs in developing countries where electrical grids cannot accept the additional capacity of a large nuclear plant. The paper presents an estimation of the world market for small and medium sized reactors giving the basic assumptions, criteria, scope, methods and important factors. (author)

  8. Small-world networks of fuzzy chaotic oscillators

    CERN Document Server

    Bucolo, M; Fortuna, L

    2003-01-01

    Small-world topology has been used to build lattices of nonlinear fuzzy systems. Chaotic units, ruled by linguistic description and with specified Lyapunov exponent, have been realized and connected using linear diffusion coefficient. The dynamic features of the networks versus the number of systems connected have been investigated to underline phenomena like spatiotemporal chaos and complete regularization. The synchronization characteristics in case of sparse long-term connections and the performances comparison with regular and random network configurations are shown.

  9. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  10. Can recurrence networks show small-world property?

    International Nuclear Information System (INIS)

    Jacob, Rinku; Harikrishnan, K.P.; Misra, R.; Ambika, G.

    2016-01-01

    Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.

  11. Can recurrence networks show small-world property?

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rinku, E-mail: rinku.jacob.vallanat@gmail.com [Department of Physics, The Cochin College, Cochin, 682002 (India); Harikrishnan, K.P., E-mail: kp_hk2002@yahoo.co.in [Department of Physics, The Cochin College, Cochin, 682002 (India); Misra, R., E-mail: rmisra@iucaa.in [Inter University Centre for Astronomy and Astrophysics, Pune, 411007 (India); Ambika, G., E-mail: g.ambika@iiserpune.ac.in [Indian Institute of Science Education and Research, Pune, 411008 (India)

    2016-08-12

    Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.

  12. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  13. Fastest learning in small-world neural networks

    International Nuclear Information System (INIS)

    Simard, D.; Nadeau, L.; Kroeger, H.

    2005-01-01

    We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition

  14. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  15. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  16. a Model Study of Small-Scale World Map Generalization

    Science.gov (United States)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  17. Value of brain computed tomography in small cell lung cancers

    International Nuclear Information System (INIS)

    Fernet, M.; Breau, J.L.; Goldlust, D.; Israel, L.

    1988-01-01

    88 patients with small cell lung cancer were studied. Brain scans were performed first at initial staging and repeated at regular intervals during the survey. The results confirm the limited value of brain scans in the detection of metastases in neurologically asymptomatic patients [fr

  18. Extraction of network topology from multi-electrode recordings: Is there a small-world effect?

    Directory of Open Access Journals (Sweden)

    Felipe eGerhard

    2011-02-01

    Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

  19. Movement: How the Brain Communicates with the World.

    Science.gov (United States)

    Schwartz, Andrew B

    2016-03-10

    Voluntary movement is a result of signals transmitted through a communication channel that links the internal world in our minds to the physical world around us. Intention can be considered the desire to effect change on our environment, and this is contained in the signals from the brain, passed through the nervous system to converge on muscles that generate displacements and forces on our surroundings. The resulting changes in the world act to generate sensations that feed back to the nervous system, closing the control loop. This Perspective discusses the experimental and theoretical underpinnings of current models of movement generation and the way they are modulated by external information. Movement systems embody intentionality and prediction, two factors that are propelling a revolution in engineering. Development of movement models that include the complexities of the external world may allow a better understanding of the neuronal populations regulating these processes, as well as the development of solutions for autonomous vehicles and robots, and neural prostheses for those who are motor impaired. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Phase multistability in a dynamical small world network

    Energy Technology Data Exchange (ETDEWEB)

    Shabunin, A. V., E-mail: shabuninav@info.sgu.ru [Radiophysics and Nonlinear Dynamics Department, Saratov State University, Saratov (Russian Federation)

    2015-01-15

    The effect of phase multistability is explored in a small world network of periodic oscillators with diffusive couplings. The structure of the network represents a ring with additional non-local links, which spontaneously arise and vanish between arbitrary nodes. The dynamics of random couplings is modeled by “birth” and “death” stochastic processes by means of the cellular automate approach. The evolution of the network under gradual increasing of the number of random couplings goes through stages of phases fluctuations and spatial cluster formation. Finally, in the presence of non-local couplings the phase multistability “dies” and only the in-phase regime survives.

  1. CXCR4/CXCL12 in Non-Small-Cell Lung Cancer Metastasis to the Brain

    Directory of Open Access Journals (Sweden)

    Sebastiano Cavallaro

    2013-01-01

    Full Text Available Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC and the pharmacological tools that may be used to interfere with this signaling axis.

  2. Altered small-world properties of gray matter networks in breast cancer

    Directory of Open Access Journals (Sweden)

    Hosseini S M

    2012-05-01

    Full Text Available Abstract Background Breast cancer survivors, particularly those treated with chemotherapy, are at significantly increased risk for long-term cognitive and neurobiologic impairments. These deficits tend to involve skills that are subserved by distributed brain networks. Additionally, neuroimaging studies have shown a diffuse pattern of brain structure changes in chemotherapy-treated breast cancer survivors that might impact large-scale brain networks. Methods We therefore applied graph theoretical analysis to compare the gray matter structural networks of female breast cancer survivors with a history of chemotherapy treatment and healthy age and education matched female controls. Results Results revealed reduced clustering coefficient and small-world index in the brain network of the breast cancer patients across a range of network densities. In addition, the network of the breast cancer group had less highly interactive nodes and reduced degree/centrality in the frontotemporal regions compared to controls, which may help explain the common impairments of memory and executive functioning among these patients. Conclusions These results suggest that breast cancer and chemotherapy may decrease regional connectivity as well as global network organization and integration, reducing efficiency of the network. To our knowledge, this is the first report of altered large-scale brain networks associated with breast cancer and chemotherapy.

  3. Network marketing on a small-world network

    Science.gov (United States)

    Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.

    2006-02-01

    We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.

  4. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  5. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  6. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    Science.gov (United States)

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Relapsing pattern of brain metastasis after brain irradiation in small cell lung cancer

    International Nuclear Information System (INIS)

    Murakami, Masao; Kuroda, Yasumasa; Okamoto, Yoshiaki; Kono, Koichi; Yoden, Eisaku; Mori, Takeki

    1997-01-01

    Many reports concerning radiation therapy for brain metastasis have been published, and which of the various methods urged by these reports provide optional control is still controversial. According to developing diagnosis of metastasis in CNS, therapeutic problems should be referred. We reviewed 67 patients with small cell lung cancer and brain metastasis who underwent brain irradiation (Ave. 47 Gy/5W), and all 15 patients with brain relapse after the irradiation. Relapsing patterns in this clinical setting were divided into local regrowth in the same lesions and re-metastasis (reseeding) in other regions, by reviewing follow up CT and MRI studies. Total survival among 15 patients with brain relapse and 52 without relapse was longer in the former cases than the later: 1-, and 2-year survival (47/19%, 13/8%) and MST (10.8/5.7 months), from the initial brain irradiation. The concerned significant factors limited in younger age, low value of LDH and improvement of NF. Of the 15 patients with brain relapse, 4 developed local regrowth and 11 did re-metastasis. The period of remission since brain irradiation were 172±94.4 and 393±281 days, respectively. Lower number of brain metastasis and lower value of LDH were shown in re-metastasis patients. At the time of brain relapse, 11 patients had recurrence of carcinomatous meningitis. 4 patients were treated with whole brain re-irradiation. All patients died of cancer, including 12 of relapsing CNS diseases and 3 of primary lesion and hepatic metastasis. Leukoencephalopathy developed in 2 patients. Survival since the brain relapse was 2 to 238 days without significant difference in cases of local regrowth and re-metastasis. According to our data on relapsing pattern of brain metastasis after conventional fractionated brain irradiation with an objective dose of 50 Gy, 75% of brain relapse were re-metastasis, we appreciate this irradiation for initial brain metastasis if limited to the brain. (author)

  8. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  9. Disease spreading with epidemic alert on small-world networks

    International Nuclear Information System (INIS)

    Han, Xiao-Pu

    2007-01-01

    Base on two-dimension small-world networks, a susceptible-infected model with epidemic alert is proposed in this Letter. In this model, if some parts of the network are alarmed as dangerous, a fraction of edges between the alarmed parts and others will be removed, and two cases of alerting rules that the degree and frequency of contacts kept unchanged are considered respectively. The numerical simulations show that the spreading velocity is reduced by the accurate and timely epidemic alert, and the more accurate and timely, the stronger the deceleration effect. This model indicates that to broadcast epidemic alert timely is helpful and necessary in the control of epidemic spreading, and in agreement with the general view of epidemic alert. This work is helpful to understand the effects of epidemic alert on disease spreading

  10. Multiobjective Bak-Sneppen model on a small-world network

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2005-01-01

    Small-world networks (SWN) are relevant to biological systems. We study the dynamics of the Bak-Sneppen (BS) model on small-world network, including the concepts of extremal dynamics, multiobjective optimization and coherent noise. We find that the small-world structure stabilizes the system. Also, it is more realistic to augment the Bak-Sneppen model by these concepts

  11. Multiobjective Bak-Sneppen model on a small-world network

    International Nuclear Information System (INIS)

    Elettreby, M.

    2004-09-01

    Small-world networks (SWN) are relevant to biological systems. We study the dynamics of the Bak-Sneppen (BS) model on small-world network, including the concepts of extremal dynamics, multiobjective optimization and coherent noise. We find that the small-world structure stabilizes the system. Also, it is more realistic to augment the Bak-Sneppen model by these concepts. (author)

  12. Small-World and Scale-Free Network Models for IoT Systems

    Directory of Open Access Journals (Sweden)

    Insoo Sohn

    2017-01-01

    Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.

  13. The small world yields the most effective information spreading

    International Nuclear Information System (INIS)

    Lü Linyuan; Chen Duanbing; Zhou Tao

    2011-01-01

    The spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society (Centola D 2010 Science 329 1194). At the same time, the simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More importantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. This work provides insights into the role of local clustering in information spreading. (paper)

  14. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  15. Time reversibility of quantum diffusion in small-world networks

    Science.gov (United States)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  16. The lesioned brain: still a small-world?

    NARCIS (Netherlands)

    Douw, L.; van Dellen, E.; Baayen, J.C.; Klein, M.; Velis, D.N.; Alpherts, W.C.J.; Heimans, J.J.; Reijneveld, J.C.; Stam, C.J.

    2010-01-01

    The intra-arterial amobarbital procedure (IAP or Wada test) is used to determine language lateralization and contralateral memory functioning in patients eligible for neurosurgery because of pharmaco-resistant epilepsy. During unilateral sedation, functioning of the contralateral hemisphere is

  17. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni; La Rocca, Rosanna; Toma, Andrea; Barberio, Marianna; Cancedda, Laura; Di Fabrizio, Enzo M.; Decuzzi, Paolo C W; Gentile, Francesco T.

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  18. Financing patterns around the world: Are small firms different?.

    OpenAIRE

    Beck, T.H.L.; Demirgüc-Kunt, A.; Maksimovic, V.

    2008-01-01

    Using a firm-level survey database covering 48 countries, we investigate how financial and institutional development affects financing of large and small firms. Our database is not limited to large firms but includes small and medium-size firms and data on a broad spectrum of financing sources, including leasing, supplier, development, and informal finance. Small firms and firms in countries with poor institutions use less external finance, especially bank finance. Protection of property righ...

  19. Small launchers (current and future projects in the world)

    Science.gov (United States)

    Naumann, W. G.

    1993-01-01

    Small satellites need launching services using small launchers capable of injecting 100 to 1000 kg into a polar orbit at an altitude of 1000 km. Operational small launchers are reviewed as well as developing and planned ones. Launcher characteristics, constraints, performance, and status are detailed. Few technical problems are encountered, as most launcher projects call for existing components and well known technologies. Most of the difficulties have come from launch site availability and from financial considerations.

  20. The art of being small : brain-body size scaling in minute parasitic wasps

    NARCIS (Netherlands)

    Woude, van der Emma

    2017-01-01

    Haller’s rule states that small animals have relatively larger brains than large animals. This brain-body size relationship may enable small animals to maintain similar levels of brain performance as large animals. However, it also causes small animals to spend an exceptionally large proportion

  1. Financing patterns around the world : Are small firms different?

    NARCIS (Netherlands)

    Beck, T.H.L.; Demirgüc-Kunt, A.; Maksimovic, V.

    2008-01-01

    Using a firm-level survey database covering 48 countries, we investigate how financial and institutional development affects financing of large and small firms. Our database is not limited to large firms, but includes small and medium firms and data on a broad spectrum of financing sources,

  2. World Small Hydropower Development Report 2013 - South Africa

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available of the world's biggest dry-cooled power stations - Matimba Power Station (coal-fired; installed capacity 3,990 MW). South Africa, which for many years operated with overcapacity, has begun to experience a power crisis induced by rapid growth in electricity...

  3. World Small Hydropower Development Report 2013 - Southern Africa

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available of electricity. Lesotho has a very small electricity sector, thus recognizes the benefits of renewable energies. By 2020 the target for Lesotho is that 35 per cent of its electricity for rural electrification should come from renewables....

  4. Six Degrees of Information Seeking: Stanley Milgram and the Small World of the Library

    Science.gov (United States)

    James, Kathryn

    2006-01-01

    Stanley Milgram's 1967 "small world" social connectivity study is used to analyze information connectivity, or patron information-seeking behavior. The "small world" study, upon examination, offers a clear example of the failure of social connectivity. This failure is used to highlight the importance of the subjectivities of patron experience of…

  5. Origin of a small cosmological constant in a brane world

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Yahiro, Masanobu

    2002-01-01

    We address the relation between the parameters of an accelerating brane universe embedded in five-dimensional bulk space. It is pointed out that the tiny cosmological constant of our world can be obtained as quantum corrections around a given brane solution in the bulk theory or in the field theory on the boundary from a holographic viewpoint. Some implications to the cosmology and constraints on the parameters are also given

  6. Immunizations on small worlds of tree-based wireless sensor networks

    International Nuclear Information System (INIS)

    Li Qiao; Zhang Bai-Hai; Cui Ling-Guo; Fan Zhun; Vasilakos Athanasios, V.

    2012-01-01

    The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered. The oscillations come from the small-world structure and the temporary immunization. Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies. (general)

  7. Dynamics in small worlds of tree topologies of wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Baihai; Fan, Zhun

    2012-01-01

    Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...... rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks...

  8. Stability of a neural network model with small-world connections

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2003-01-01

    Small-world networks are highly clustered networks with small distances among the nodes. There are many biological neural networks that present this kind of connection. There are no special weightings in the connections of most existing small-world network models. However, this kind of simply connected model cannot characterize biological neural networks, in which there are different weights in synaptic connections. In this paper, we present a neural network model with weighted small-world connections and further investigate the stability of this model

  9. Small Business Research in a World of Skewed Returns

    Science.gov (United States)

    2012-04-30

    57(12), 1052–1059. Angrist, J. D., & Krueger, A. B. (1999). Empirical strategies in labor economics . In O. C. Card (Ed.), Handbook of labor ... economics (pp. 1277–1366). Elesevier. Archibald, R. B., & Finifter, D. H. (2003). Evaluating the NASA Small Business Innovation Research program

  10. [Analysis of the Characteristics of Infantile Small World Neural Network Node Properties Correlated with the Influencing Factors].

    Science.gov (United States)

    Qu, Haibo; Lu, Su; Zhang, Wenjing; Xiao, Yuan; Ning, Gang; Sun, Huaiqiang

    2016-10-01

    We applied resting-state functional magnetic resonance imaging(rfMRI)combined with graph theory to analyze 90 regions of the infantile small world neural network of the whole brain.We tried to get the following two points clear:1 whether the parameters of the node property of the infantile small world neural network are correlated with the level of infantile intelligence development;2 whether the parameters of the infantile small world neural network are correlated with the children’s baseline parameters,i.e.,the demographic parameters such as gender,age,parents’ education level,etc.Twelve cases of healthy infants were included in the investigation(9males and 3females with the average age of 33.42±8.42 months.)We then evaluated the level of infantile intelligence of all the cases and graded by Gesell Development Scale Test.We used a Siemens 3.0T Trio imaging system to perform resting-state(rs)EPI scans,and collected the BOLD functional Magnetic Resonance Imaging(fMRI)data.We performed the data processing with Statistical Parametric Mapping 5(SPM5)based on Matlab environment.Furthermore,we got the attributes of the whole brain small world and node attributes of 90 encephalic regions of templates of Anatomatic Automatic Labeling(ALL).At last,we carried out correlation study between the above-mentioned attitudes,intelligence scale parameters and demographic data.The results showed that many node attributes of small world neural network were closely correlated with intelligence scale parameters.Betweeness was mainly centered in thalamus,superior frontal gyrus,and occipital lobe(negative correlation).The r value of superior occipital gyrus associated with the individual and social intelligent scale was-0.729(P=0.007);degree was mainly centered in amygdaloid nucleus,superior frontal gyrus,and inferior parietal gyrus(positive correlation).The r value of inferior parietal gyrus associated with the gross motor intelligent scale was 0.725(P=0.008);efficiency was mainly

  11. Dreams of Small Nations in a Polycentric Fashion World

    DEFF Research Database (Denmark)

    Skov, Lise

    2011-01-01

    takes on national significance, in terms of staging events and displays, and engaging with cultural references outside the field of fashion. This article explores how such place-making abilities structure the polycentric world of fashion, taking the United Nations Security Council as a model......Fashion production has been split between a globalized clothing industry, which tends towards extreme centralization, and localized designer fashion sectors, acting as intermediaries between international suppliers and national events, media, and public. Under these conditions, designer fashion...... for the interaction between first- and second-tier fashion cities. The article analyzes the rhetoric of new fashion centers as a traveling discourse that detaches fashion design from the concerns of textile and clothing industries and links it with those of cultural institutions and governments. It also examines how...

  12. Optimal network structure to induce the maximal small-world effect

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (> 500), the small rewiring probability (≍ 0.02) and the small average connection probability (< 0.1). Many previous research results support our results. (interdisciplinary physics and related areas of science and technology)

  13. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  14. Immunizations on small worlds of tree-based wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo

    2012-01-01

    , are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world......The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization...

  15. Interictal to Ictal Phase Transition in a Small-World Network

    Science.gov (United States)

    Nemzer, Louis; Cravens, Gary; Worth, Robert

    Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.

  16. Local stability and Hopf bifurcation in small-world delayed networks

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2004-01-01

    The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis

  17. Local stability and Hopf bifurcation in small-world delayed networks

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunguang E-mail: cgli@uestc.edu.cn; Chen Guanrong E-mail: gchen@ee.cityu.edu.hk

    2004-04-01

    The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis.

  18. Network 'small-world-ness': a quantitative method for determining canonical network equivalence.

    Directory of Open Access Journals (Sweden)

    Mark D Humphries

    Full Text Available BACKGROUND: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges. This semi-quantitative definition leads to a categorical distinction ('small/not-small' rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model--the Watts-Strogatz (WS model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. METHODOLOGY/PRINCIPAL FINDINGS: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S>1--an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. CONCLUSIONS/SIGNIFICANCE: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.

  19. Measuring the Size of a Small, Frost World

    Science.gov (United States)

    2006-01-01

    Observing a very rare occultation of a star by Pluto's satellite Charon from three different sites, including Paranal, home of the VLT, astronomers were able to determine with great accuracy the radius and density of the satellite to the farthest planet. The density, 1.71 that of water, is indicative of an icy body with about slightly more than half of rocks. The observations also put strong constraints on the existence of an atmosphere around Charon. ESO PR Photo 02a/06 ESO PR Photo 02a/06 Artist's Impression of the Pluto-Charon system Since its discovery in 1978, Charon and Pluto have appeared to form a double planet, rather than a planet-satellite couple. Actually, Charon is about twice as small as Pluto in size, and about eight times less massive. However, there have been considerable discussions concerning the precise radii of Pluto and Charon, as well as about the presence of a tenuous atmosphere around Charon. In August 2004, Australian amateur astronomer Dave Herald predicted that the 15-magnitude star UCAC2 26257135 should be occulted by Charon on 11 July 2005. The occultation would be observable from some parts of South America, including Cerro Paranal, in the northern Atacama Desert, the location of ESO's Very Large Telescope (VLT). Stellar occultations have proved to be powerful tools to both measure sizes - at km-level accuracy, i.e. a factor ten better than what is feasible with other techniques - and detect very tenuous atmosphere - at microbar levels or less. Unfortunately, in the case of Charon, such occultations are extremely rare, owing to the very small angular diameter of the satellite on the sky: 55 milli-arcsec, i.e. the size of a one Euro coin observed from 100 km away! This explains why only one occultation by Charon was ever observed before 2005, namely on 7 April 1980 by Alistair Walker, from the South Africa Astronomical Observatory. Similarly, only in 1985, 1988 and 2002 could astronomers observe stellar occultations by Pluto. Quite

  20. Elective brain irradiation in patients with small-cell carcinoma of the lung: preliminary report

    International Nuclear Information System (INIS)

    Katsenis, A.T.; Karpasitis, N.; Giannakakis, D.; Maragoudakis, N.; Kiparissiadis, P.

    1982-01-01

    The brain is a common site of metastases in small-cell carcinoma of the lung. Prophylactic brain irradiation with doses of 4000-4500 rads in 3-4 weeks appears to decrease the occurrence of brain metastases although it does not prevent this completely. In a group of patients with small-cell carcinoma of the lung and without evidence of brain metastases, the authors review the site and extent of the primary, the methods of treatment, the techniques of brain irradiation, and the relapses rate in relation to the status of the primary and the rate of brain metastases in another group without prophylactic brain irradiation. They further attempt to investigate combined modalities of treatment which would prolong life and prevent neurological complications in the small number of long survivors with small-cell carcinoma of the lung. (Auth.)

  1. "The Most Famous Brain in the World" Performance and Pedagogy on an Amnesiac's Brain

    Science.gov (United States)

    Sweaney, Katherine W.

    2012-01-01

    Project H.M. was just the sort of thing one might expect the Internet to latch onto: it was a live streaming video of a frozen human brain being slowly sliced apart. Users who clicked the link on Twitter or Facebook between the 2nd and 4th of December 2009 were immediately confronted with a close-up shot of the brain's interior, which was…

  2. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  3. An effective method to improve the robustness of small-world networks under attack

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario. (interdisciplinary physics and related areas of science and technology)

  4. Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhang, Liping [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Qiang [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhao, Tie Zhu [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China)

    2014-10-15

    Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE.

  5. Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fMRI study

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Zheng, Gang; Zhang, Liping; Zhong, Jianhui; Li, Qiang; Zhao, Tie Zhu; Lu, Guang Ming

    2014-01-01

    Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE

  6. On the structural properties of small-world networks with range-limited shortcut links

    Science.gov (United States)

    Jia, Tao; Kulkarni, Rahul V.

    2013-12-01

    We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.

  7. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  8. Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes

    International Nuclear Information System (INIS)

    Li Yong; Fang Jinqing; Liu Qiang; Liang Yong

    2006-01-01

    Based on the model of the same degree of all nodes we proposed before, a new algorithm, the so-called 'spread all over vertices' (SAV) algorithm, is proposed for generating small-world properties from a regular ring lattices. During randomly rewiring connections the SAV is used to keep the unchanged number of links. Comparing the SAV algorithm with the Watts-Strogatz model and the 'spread all over boundaries' algorithm, three methods can have the same topological properties of the small world networks. These results offer diverse formation of small world networks. It is helpful to the research of some applications for dynamics of mutual oscillator inside nodes and interacting automata associated with networks.

  9. Stability of the spreading in small-world network with predictive controller

    International Nuclear Information System (INIS)

    Bao, Z.J.; Jiang, Q.Y.; Yan, W.J.; Cao, Y.J.

    2010-01-01

    In this Letter, we apply the predictive control strategy to suppress the propagation of diseases or viruses in small-world network. The stability of small-world spreading model with predictive controller is investigated. The sufficient and necessary stability condition is given, which is closely related to the controller parameters and small-world rewiring probability p. Our simulations discover a phenomenon that, with the fixed predictive controller parameters, the spreading dynamics become more and more stable when p decreases from a larger value to a smaller one, and the suitable controller parameters can effectively suppress the spreading behaviors even when p varies within the whole spectrum, and the unsuitable controller parameters can lead to oscillation when p lies within a certain range.

  10. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    Science.gov (United States)

    Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing

    2017-01-01

    Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  11. Potts Model in One-Dimension on Directed Small-World Networks

    Science.gov (United States)

    Aquino, Édio O.; Lima, F. W. S.; Araújo, Ascânio D.; Costa Filho, Raimundo N.

    2018-06-01

    The critical properties of the Potts model with q=3 and 8 states in one-dimension on directed small-world networks are investigated. This disordered system is simulated by updating it with the Monte Carlo heat bath algorithm. The Potts model on these directed small-world networks presents in fact a second-order phase transition with a new set of critical exponents for q=3 considering a rewiring probability p=0.1. For q=8 the system exhibits only a first-order phase transition independent of p.

  12. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...

  13. Systemic Chemotherapy for Progression of Brain Metastases in Extensive-Stage Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nagla Abdel Karim

    2015-01-01

    Full Text Available Lung cancer is the most common cause of cancer related mortality in men and women. Approximately 15% of lung cancers are small cell type. Chemotherapy and radiation are the mainstay treatments. Currently, the standard chemotherapy regimen includes platinum/etoposide. For extensive small cell lung cancer, irinotecan and cisplatin have also been used. Patients with relapsed small cell lung cancer have a very poor prognosis, and the morbidity increases with brain metastases. Approximately 10%–14% of small cell lung cancer patients exhibit brain metastases at the time of diagnosis, which increases to 50%–80% as the disease progresses. Mean survival with brain metastases is reported to be less than six months, thus calling for improved regimens. Here we present a case series of patients treated with irinotecan for progressive brain metastases in small cell lung cancer, which serves as a reminder of the role of systemic chemotherapy in this setting.

  14. Small-world topology of functional connectivity in randomly connected dynamical systems

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2012-01-01

    Roč. 22, č. 3 (2012), art no 033107 ISSN 1054-1500 R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : graph theory * nonlinear dynamical systems * small-world networks Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.188, year: 2012

  15. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  16. Avoiding the "It's a Small World" Effect: A Lesson Plan to Explore Diversity

    Science.gov (United States)

    Endacott, Jason L.; Bowles, Freddie A.

    2013-01-01

    Classroom instruction about other cultures all too often resembles the Disney version of "It's a Small World" with Fantasyland-like cultural stereotypes, ceremonial activities, and traditional dress that can lead to serious misunderstandings about the depth and complexity of global societies. Social studies instruction presents the…

  17. SYSTEMATIC ANALYSIS OF REAL-WORLD DRIVING BEHAVIOR FOLLOWING FOCAL BRAIN LESIONS

    OpenAIRE

    Thompson, Kelsey; Read, Katherine; Anderson, Steven; Rizzo, Matthew

    2011-01-01

    Many patients with circumscribed brain injuries, such as those caused by stroke or focal trauma, return to driving after a period of acute recovery. These persons often have chronic residual cognitive deficits that may impact on driving safety, but little is known about their driving behavior in the real world. Extant studies tend to rely on driving simulators or controlled on-road drives. These methods of observation are not able to capture the complexities of the typical driving environment...

  18. Genetics Home Reference: COL4A1-related brain small-vessel disease

    Science.gov (United States)

    ... hemorrhage Johns Hopkins Medicine Department of Neurology and Neurosurgery: Intracerebral Hemorrhage Johns Hopkins Medicine Department of Neurology and Neurosurgery: Stroke MalaCards: col4a1-related brain small-vessel disease ...

  19. Seroprevalence and characterization of pestivirus infections in small ruminants and new world camelids in Switzerland.

    Science.gov (United States)

    Danuser, R; Vogt, H-R; Kaufmann, Th; Peterhans, E; Zanoni, R

    2009-03-01

    The seroprevalence of pestivirus infections in small ruminants and new world camelids in Switzerland was determined. In 5'059 sera of sheep from 382 herds, 503 sera of goats from 54 herds and 109 sera of alpacas and lamas from 53 herds, population prevalences of 16.1% (sheep), 25.4% (goats) and 4.6% (new world camelids), respectively, were found. In order to determine the source of infection, the serological reactions were further characterized by cross-neutralization against two pestiviruses representing the genotypes BVDV (Bovine Virus Diarrhea Virus)-1 and BDV (Border Disease Virus)-1. Based on the ratio of respective antibody titres, 56.1% of the infections in sheep were induced by a BDV-1, 12.9% by a BVDV-1 and 31.0% by an unresolved pestivirus. In goats, the corresponding proportions were 23.4%, 10.2% and 66.4%, respectively. In Alpacas and Lamas, the source of infection of 1 animal was BDV-1 and that of 4 seropositive animals remained unresolved. In view of the phylogenetic relationship between pestiviruses, the unresolved source of infection is most probably attributable to other pestivirus genotypes circulating in small ruminants and new world camelids. Due to the predominance of pestiviral genotypes other than BVDV-1, the risk of transmission of BVDV from persistently infected small ruminants and new world camelids to cattle appears to be moderate, apart from close direct contact in mixed animal husbandry, communal pasturing and grazing in the Alps.

  20. The Brain Rotation and Brain Diffusion Strategies of Small Islanders: Considering "Movement" in Lieu of "Place"

    Science.gov (United States)

    Baldacchino, Godfrey

    2006-01-01

    The "brain drain" phenomenon is typically seen as a zero-sum game, where one party's gain is presumed to be another's drain. This corresponds to deep-seated assumptions about what is "home" and what is "away". This article challenges the view, driven by much "brain drain" literature, that the dynamic is an…

  1. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology

    International Nuclear Information System (INIS)

    Zhang Ang-Hui; Li Xiao-Wen; Su Gui-Feng; Zhang Yi

    2015-01-01

    We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series. (paper)

  2. World trend - a 10% growth per year for small wind turbines

    International Nuclear Information System (INIS)

    Kane, M.

    2016-01-01

    A decline was expected for small wind turbine business with the advent of bigger wind turbines but it is really not the case. In 2014 the growth rate was about 10 % with a cumulated power installed that year of 830 MW for small wind turbines. China (41% of the installed capacity), United-States (30%) and Great-Britain (15%) are the 3 main players. About 1 million wind turbines are operating in the world - it means 8.3% (∼ 70.000 units) more than a year before. (A.C.)

  3. Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology

    International Nuclear Information System (INIS)

    Liu Qiang; Fang Jinqing; Li Yong

    2007-01-01

    The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.

  4. Critical behavior of the contact process on small-world networks

    Science.gov (United States)

    Ferreira, Ronan S.; Ferreira, Silvio C.

    2013-11-01

    We investigate the role of clustering on the critical behavior of the contact process (CP) on small-world networks using the Watts-Strogatz (WS) network model with an edge rewiring probability p. The critical point is well predicted by a homogeneous cluster-approximation for the limit of vanishing clustering ( p → 1). The critical exponents and dimensionless moment ratios of the CP are in agreement with those predicted by the mean-field theory for any p > 0. This independence on the network clustering shows that the small-world property is a sufficient condition for the mean-field theory to correctly predict the universality of the model. Moreover, we compare the CP dynamics on WS networks with rewiring probability p = 1 and random regular networks and show that the weak heterogeneity of the WS network slightly changes the critical point but does not alter other critical quantities of the model.

  5. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    Directory of Open Access Journals (Sweden)

    Mozart B C Menezes

    Full Text Available Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  6. Storage capacity and retrieval time of small-world neural networks

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Odagaki, Takashi

    2007-01-01

    To understand the influence of structure on the function of neural networks, we study the storage capacity and the retrieval time of Hopfield-type neural networks for four network structures: regular, small world, random networks generated by the Watts-Strogatz (WS) model, and the same network as the neural network of the nematode Caenorhabditis elegans. Using computer simulations, we find that (1) as the randomness of network is increased, its storage capacity is enhanced; (2) the retrieval time of WS networks does not depend on the network structure, but the retrieval time of C. elegans's neural network is longer than that of WS networks; (3) the storage capacity of the C. elegans network is smaller than that of networks generated by the WS model, though the neural network of C. elegans is considered to be a small-world network

  7. Two-dimensional small-world networks: Navigation with local information

    International Nuclear Information System (INIS)

    Chen Jianzhen; Liu Wei; Zhu Jianyang

    2006-01-01

    A navigation process is studied on a variant of the Watts-Strogatz small-world network model embedded on a square lattice. With probability p, each vertex sends out a long-range link, and the probability of the other end of this link falling on a vertex at lattice distance r away decays as r -α . Vertices on the network have knowledge of only their nearest neighbors. In a navigation process, messages are forwarded to a designated target. For α 1, a dynamic small world effect is observed, and the behavior of the scaling function at large enough pL is obtained. At α=2 and 3, this kind of scaling breaks down, and different functions of the average actual path length are obtained. For α>3, the average actual path length is nearly linear with network size

  8. Phase Transitions of an Epidemic Spreading Model in Small-World Networks

    Science.gov (United States)

    Hua, Da-Yin; Gao, Ke

    2011-06-01

    We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts—Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatio-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.

  9. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    Science.gov (United States)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  10. Complete and phase synchronization in a heterogeneous small-world neuronal network

    International Nuclear Information System (INIS)

    Fang, Han; Qi-Shao, Lu; Quan-Bao, Ji; Marian, Wiercigroch

    2009-01-01

    Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh–Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony. (general)

  11. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  12. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Huang Xu-Hui; Hu Gang

    2014-01-01

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  13. Critical features of coupling parameter in synchronization of small world neural networks

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Xu Wenke; Li Hongbo; Wu Min

    2008-01-01

    The critical features of a coupling parameter in the synchronization of small world neural networks are investigated. A power law decay form is observed in this spatially extended system, the larger linked degree becomes, the larger critical coupling intensity. There exists maximal and minimal critical coupling intensity for synchronization in the extended system. An approximate synchronization diagram has been constructed. In the case of partial coupling, a primary result is presented about the critical coupling fraction for various linked degree of networks

  14. Complex Behavior in an Integrate-and-Fire Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Lin Min; Chen Tianlun

    2005-01-01

    Based on our previously pulse-coupled integrate-and-fire neuron model in small world networks, we investigate the complex behavior of electroencephalographic (EEG)-like activities produced by such a model. We find EEG-like activities have obvious chaotic characteristics. We also analyze the complex behaviors of EEG-like signals, such as spectral analysis, reconstruction of the phase space, the correlation dimension, and so on.

  15. Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices

    International Nuclear Information System (INIS)

    Lima, F.W.S.

    2016-01-01

    On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium. (paper)

  16. Optimal convergence in naming game with geography-based negotiation on small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Liu Runran, E-mail: runran@mail.ustc.edu.c [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Wang Wenxu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Lai Yingcheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (Hong Kong); Wang Binghong [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Research Center for Complex System Science, University of Shanghai for Science and Technology and Shanghai Academy of System Science, Shanghai 200093 (China)

    2011-01-17

    We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.

  17. Optimal convergence in naming game with geography-based negotiation on small-world networks

    International Nuclear Information System (INIS)

    Liu Runran; Wang Wenxu; Lai Yingcheng; Chen Guanrong; Wang Binghong

    2011-01-01

    We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.

  18. The Topological Analysis of Urban Transit System as a Small-World Network

    OpenAIRE

    Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang

    2011-01-01

    This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...

  19. Small Worlds Week: An online celebration of planetary science using social media to reach millions

    Science.gov (United States)

    Mayo, Louis

    2015-11-01

    In celebration of the many recent discoveries from New Horizons, Dawn, Rosetta, and Cassini, NASA launched Small Worlds Week, an online, social media driven outreach program leveraging the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating social media event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success with 37 million potential views of the social media Q&A posts. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  20. On the agreement between small-world-like OFC model and real earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Douglas S.R., E-mail: douglas.ferreira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Paracambi, RJ (Brazil); Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Papa, Andrés R.R., E-mail: papa@on.br [Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Instituto de Física, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Menezes, Ronaldo, E-mail: rmenezes@cs.fit.edu [BioComplex Laboratory, Computer Sciences, Florida Institute of Technology, Melbourne (United States)

    2015-03-20

    In this article we implemented simulations of the OFC model for earthquakes for two different topologies: regular and small-world, where in the latter the links are randomly rewired with probability p. In both topologies, we have studied the distribution of time intervals between consecutive earthquakes and the border effects present in each one. In addition, we also have characterized the influence that the probability p produces in certain characteristics of the lattice and in the intensity of border effects. From the two topologies, networks of consecutive epicenters were constructed, that allowed us to analyze the distribution of connectivities of each one. In our results distributions arise belonging to a family of non-traditional distributions functions, which agrees with previous studies using data from actual earthquakes. Our results reinforce the idea that the Earth is in a critical self-organized state and furthermore point towards temporal and spatial correlations between earthquakes in different places. - Highlights: • OFC model simulations for regular and small-world topologies. • For small-world topology distributions agree remarkably well with actual earthquakes. • Reinforce the idea of a critical self-organized state for the Earth's crust. • Point towards temporal and spatial correlations between far earthquakes in far places.

  1. Small-world network effects on innovation: evidences from nanotechnology patenting

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuan [University of Maryland, Robert H. Smith School of Business (United States); Guan, JianCheng, E-mail: guanjianch@ucas.ac.cn [University of Chinese Academy of Sciences, School of Economics and Management (China)

    2016-11-15

    This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.

  2. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  3. Stretched exponential dynamics of coupled logistic maps on a small-world network

    Science.gov (United States)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  4. On the agreement between small-world-like OFC model and real earthquakes

    International Nuclear Information System (INIS)

    Ferreira, Douglas S.R.; Papa, Andrés R.R.; Menezes, Ronaldo

    2015-01-01

    In this article we implemented simulations of the OFC model for earthquakes for two different topologies: regular and small-world, where in the latter the links are randomly rewired with probability p. In both topologies, we have studied the distribution of time intervals between consecutive earthquakes and the border effects present in each one. In addition, we also have characterized the influence that the probability p produces in certain characteristics of the lattice and in the intensity of border effects. From the two topologies, networks of consecutive epicenters were constructed, that allowed us to analyze the distribution of connectivities of each one. In our results distributions arise belonging to a family of non-traditional distributions functions, which agrees with previous studies using data from actual earthquakes. Our results reinforce the idea that the Earth is in a critical self-organized state and furthermore point towards temporal and spatial correlations between earthquakes in different places. - Highlights: • OFC model simulations for regular and small-world topologies. • For small-world topology distributions agree remarkably well with actual earthquakes. • Reinforce the idea of a critical self-organized state for the Earth's crust. • Point towards temporal and spatial correlations between far earthquakes in far places

  5. Small-world network effects on innovation: evidences from nanotechnology patenting

    International Nuclear Information System (INIS)

    Shi, Yuan; Guan, JianCheng

    2016-01-01

    This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.

  6. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2014-01-01

    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  7. Brain anatomical networks in world class gymnasts: a DTI tractography study.

    Science.gov (United States)

    Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang

    2013-01-15

    The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Atom land guided tour through the strange (and impossibly small) world of particle physics

    CERN Document Server

    Butterworth, Jon

    2018-01-01

    For fans of Seven Brief Lessons on Physics and Astrophysics for People in a Hurry: a richly conjured world, in map and metaphor, of particle physics. Atom Land brings the impossibly small world of particle physics to life, taking readers on a guided journey through the subatomic world. Readers will sail the subatomic seas in search of electron ports, boson continents, and hadron islands. The sea itself is the quantum field, complete with quantum waves. Beware dark energy and extra dimensions, embodied by fantastical sea creatures prowling the far edges of the known world. Your tour guide through this whimsical—and highly instructive— world is Jon Butterworth, leading physicist at CERN (the epicenter of today’s greatest findings in physics). Over a series of journeys, he shows how everything fits together, and how a grasp of particle physics is key to unlocking a deeper understanding of many of the most profound mysteries—and science’s possible answers—in the known universe.

  9. Effect of the small-world structure on encoding performance in the primary visual cortex: an electrophysiological and modeling analysis.

    Science.gov (United States)

    Shi, Li; Niu, Xiaoke; Wan, Hong

    2015-05-01

    The biological networks have been widely reported to present small-world properties. However, the effects of small-world network structure on population's encoding performance remain poorly understood. To address this issue, we applied a small world-based framework to quantify and analyze the response dynamics of cell assemblies recorded from rat primary visual cortex, and further established a population encoding model based on small world-based generalized linear model (SW-GLM). The electrophysiological experimental results show that the small world-based population responses to different topological shapes present significant variation (t test, p 0.8), while no significant variation was found for control networks without considering their spatial connectivity (t test, p > 0.05; effect size: Hedge's g < 0.5). Furthermore, the numerical experimental results show that the predicted response under SW-GLM is more accurate and reliable compared to the control model without small-world structure, and the decoding performance is also improved about 10 % by taking the small-world structure into account. The above results suggest the important role of the small-world neural structure in encoding visual information for the neural population by providing electrophysiological and theoretical evidence, respectively. The study helps greatly to well understand the population encoding mechanisms of visual cortex.

  10. A family of small-world network models built by complete graph and iteration-function

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2018-02-01

    Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also

  11. Critical behavior of the XY-rotor model on regular and small-world networks

    Science.gov (United States)

    De Nigris, Sarah; Leoncini, Xavier

    2013-07-01

    We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.

  12. Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons

    International Nuclear Information System (INIS)

    Ma Jun; Zhang Cairong; Yang Lijian; Wu Ying

    2010-01-01

    The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave. (interdisciplinary physics and related areas of science and technology)

  13. [Problems resulting from the absorption of small towns into urban areas in major Third World cities].

    Science.gov (United States)

    Mckee, D L

    1985-01-01

    The tendency toward hypertrophy of large metropolitan areas in the Third World has been a subject of concern to economists and other social scientists for some time. Inability to absorb vast waves of migrants into the organized labor force or to provide adequate infrastructure and services are serious problems in many growing cities of Asia, Africa, and Latin America. A different phenomenon created by perpetual urban expansion has been relatively neglected: the problems caused when preexisting urban areas are absorbed into the metropolis. The tendency of squatter settlements to constrict normal urban growth and expansion and to impede rational provision of services has been recognized, but the absorption of small cities does not necessarily produce identical problems. Small cities absorbed into a metropolis lose their identity in the successive waves of suburban proliferation. Los Angeles in the US may be considered the prototype of the phenomenon in which multiple preexisting urban zones are absorbed into the same metropolis without formation of any visible center of gravity. In some cases, small cities may be completely engulfed by the encroaching metropolis, if transit routes or availability of land makes them interesting to developers. The livelihood of residents may be threatened if they are no longer able to cultivate gardens or raise small animals. Local services may deteriorate. The youngest and most able residents are likely to abandon such places for the greater opportunities of the city, leaving the aged and less qualified to fend for themselves. Jobs may disappear and traditional commercial relations may be destroyed without being replaced. The future wellbeing of residents depends on their ability to maneuver in the new metropolitan environment, but many will be unable to adjust for lack of training, the weight of immovable property, or diverse personal considerations. Planning could help to reduce the problems that occasional survival of some small

  14. [Microsurgery assisted by intraoperative magnetic resonance imaging and neuronavigation for small lesions in deep brain].

    Science.gov (United States)

    Song, Zhi-jun; Chen, Xiao-lei; Xu, Bai-nan; Sun, Zheng-hui; Sun, Guo-chen; Zhao, Yan; Wang, Fei; Wang, Yu-bo; Zhou, Ding-biao

    2012-01-03

    To explore the practicability of resecting small lesions in deep brain by intraoperative magnetic resonance imaging (iMRI) and neuronavigator-assisted microsurgery and its clinical efficacies. A total of 42 cases with small lesions in deep brain underwent intraoperative MRI and neuronavigator-assisted microsurgery. The drifting of neuronavigation was corrected by images acquired from intraoperative MR rescanning. All lesions were successfully identified and 40 cases totally removed without mortality. Only 3 cases developed new neurological deficits post-operatively while 2 of them returned to normal neurological functions after a follow-up duration of 3 months to 2 years. The application of intraoperative MRI can effectively correct the drifting of neuronavigation and enhance the accuracy of microsurgical neuronavigation for small lesions in deep brain.

  15. Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks.

    Science.gov (United States)

    Lehmann, Jörg; Bernasconi, Jakob

    2017-03-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  16. Chaos in complex motor networks induced by Newman—Watts small-world connections

    International Nuclear Information System (INIS)

    Wei Du-Qu; Luo Xiao-Shu; Zhang Bo

    2011-01-01

    We investigate how dynamical behaviours of complex motor networks depend on the Newman—Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory. (interdisciplinary physics and related areas of science and technology)

  17. Small-world effect induced by weight randomization on regular networks

    International Nuclear Information System (INIS)

    Li, Menghui; Fan, Ying; Wang, Dahui; Li, Daqing; Wu, Jinshan; Di, Zengru

    2007-01-01

    The concept of edge weight provides additional depth for describing and adjusting the properties of networks. Redistribution of edge weight can effectively change the properties of networks even though the corresponding binary topology remains unchanged. Based on regular networks with initially homogeneous dissimilarity weights, random redistribution of edge weight can be enough to induce small world phenomena. The effects of random weight redistribution on both static properties and dynamical models of networks are investigated. The results reveal that randomization of weight can enhance the ability of synchronization of chaotic systems dramatically

  18. Order parameters and synchronization of FitzHugh–Nagumo small-world networks

    International Nuclear Information System (INIS)

    Yan-Long, Li; Jun, Ma; Yan-Jun, Liu; Wei, Zhang

    2009-01-01

    This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh–Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g. (cross-disciplinary physics and related areas of science and technology)

  19. New approach to small scale power could light up much of the developing world

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.

    2011-01-15

    The modern conveniences requiring electricity have been out of reach for almost half of the world's population because they live too far from the grid. Innovative technology combined with creative new business models could significantly improve the quality of life for millions of people. This article discussed a small scale renewable energy system that could ensure that villages all over the world have access to radios, lights, refrigeration and other critical technologies. The article also noted the potential implications in terms of health, education and the general standard of living for millions of people. The basic model involves setting up small solar panels in a good location in a village or on a farm. The panels can be used to charge up equipment that is either on-site or portable. This article described how to achieve economies of scale through mass production of many similar units. The project has been tested in Brazil and a donation to the project of $100,000 will be used to install a solar-powered public infrastructure comprised of water pumping, school and an Internet station. The funds will also be used to provide 70 solar lanterns for children living in two villages on the Rio Tapajos, a tributary to the Amazon near Santarem. 1 fig.

  20. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian

    2010-01-01

    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  1. Smallest-Small-World Cellular Harmony Search for Optimization of Unconstrained Benchmark Problems

    Directory of Open Access Journals (Sweden)

    Sung Soo Im

    2013-01-01

    Full Text Available We presented a new hybrid method that combines cellular harmony search algorithms with the Smallest-Small-World theory. A harmony search (HS algorithm is based on musical performance processes that occur when a musician searches for a better state of harmony. Harmony search has successfully been applied to a wide variety of practical optimization problems. Most of the previous researches have sought to improve the performance of the HS algorithm by changing the pitch adjusting rate and harmony memory considering rate. However, there has been a lack of studies to improve the performance of the algorithm by the formation of population structures. Therefore, we proposed an improved HS algorithm that uses the cellular automata formation and the topological structure of Smallest-Small-World network. The improved HS algorithm has a high clustering coefficient and a short characteristic path length, having good exploration and exploitation efficiencies. Nine benchmark functions were applied to evaluate the performance of the proposed algorithm. Unlike the existing improved HS algorithm, the proposed algorithm is expected to have improved algorithmic efficiency from the formation of the population structure.

  2. Evaluating the transport in small-world and scale-free networks

    International Nuclear Information System (INIS)

    Juárez-López, R.; Obregón-Quintana, B.; Hernández-Pérez, R.; Reyes-Ramírez, I.; Guzmán-Vargas, L.

    2014-01-01

    We present a study of some properties of transport in small-world and scale-free networks. Particularly, we compare two types of transport: subject to friction (electrical case) and in the absence of friction (maximum flow). We found that in clustered networks based on the Watts–Strogatz (WS) model, for both transport types the small-world configurations exhibit the best trade-off between local and global levels. For non-clustered WS networks the local transport is independent of the rewiring parameter, while the transport improves globally. Moreover, we analyzed both transport types in scale-free networks considering tendencies in the assortative or disassortative mixing of nodes. We construct the distribution of the conductance G and flow F to evaluate the effects of the assortative (disassortative) mixing, finding that for scale-free networks, as we introduce different levels of the degree–degree correlations, the power-law decay in the conductances is altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze the effect on the conductance and the flow of the minimum degree and the shortest path between the source and destination nodes, finding notable differences between these two types of transport

  3. CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine

    International Nuclear Information System (INIS)

    Shively, J.; Reeve, J.R. Jr.; Eysselein, V.E.; Ben-Avram, C.; Vigna, S.R.; Walsh, J.H.

    1987-01-01

    The purpose of this study is to purify and to characterize chemically cholecystokinin (CCK)-like peptides present in brain and gut extracts that elute from gel filtration after the octapeptide. Canine small intestinal mucosa and brain were boiled in water and then extracted in cold trifluoroacetic acid, and cholecystokinin-like immunoreactivity was determined by carboxyl-terminal specific radioimmunoassay. Gel permeation chromatography on Sephadex G-50 revealed a form of CCK apparently smaller than CCK-8. Microsequence analysis showed that the amino terminal primary sequence of this small CCK was Gly-Trp-Met-Asp. Immunochemical and chromatographic analysis indicated that the carboxyl-terminal residue was Phe-NH 2 and thus the full sequence is Gly-Trp-Met-Asp-Phe-NH 2 . An antibody that recognizes synthetic CCK-8, CCK-5, and CCK-equally did not reveal the presence of significant amounts of CCK-4. These results indicate that CCK-5 is the major CCK form smaller than the octapeptide present in brain and small intestine. This finding, coupled with the demonstration by others that CCK-5 interacts with high-affinity brain CCK receptors, indicates that CCK-5 may play a physiological role in brain function

  4. Brain development, intelligence and cognitive outcome in children born small for gestational age.

    Science.gov (United States)

    de Bie, H M A; Oostrom, K J; Delemarre-van de Waal, H A

    2010-01-01

    Intrauterine growth restriction (IUGR) can lead to infants being born small for gestational age (SGA). SGA is associated with increased neonatal morbidity and mortality as well as short stature, cardiovascular disease, insulin resistance, diabetes mellitus type 2, dyslipidemia and end-stage renal disease in adulthood. In addition, SGA children have decreased levels of intelligence and cognition, although the effects are mostly subtle. The overall outcome of each child is the result of a complex interaction between intrauterine and extrauterine factors. Animal and human studies show structural alterations in the brains of individuals with IUGR/SGA. The presence of growth hormone (GH) receptors in the brain implies that the brain is also a target for GH. Exogenous GH theoretically has the ability to act on the brain. This is exemplified by the effects of GH on cognition in GH-deficient adults. In SGA children, data on the effect of exogenous GH on intelligence and cognition are scant and contradictory.

  5. The Subject of Conceptual Mapping: Theological Anthropology across Brain, Body, and World

    Directory of Open Access Journals (Sweden)

    Kidd Erin

    2018-02-01

    Full Text Available Research in conceptual metaphor and conceptual blending-referred to collectively as “conceptual mapping”-identifies human thought as a process of making connections across fields of meaning. Underlying the theory of conceptual mapping is a particular understanding of the mind as embodied. Over the past few decades, researchers in the cognitive sciences have been “putting brain, body, and world back together again.” The result is a picture of the human being as one who develops in transaction with her environment, and whose highest forms of intelligence and meaning-making are rooted in the body’s movement in the world. Conceptual mapping therefore not only gives us insight into how we think, but also into who we are. This calls for a revolution in theological anthropology. Our spirituality must be understood in light of the fact that we are embodied beings, embedded in our environment, whose identities are both material and discursive. Finally, using the example of white supremacy, I show how this revolution in understanding the human person can be useful for ethical reflection, and in thinking about sin and redemption.

  6. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  7. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Directory of Open Access Journals (Sweden)

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  8. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  9. Market-oriented Programming Using Small-world Networks for Controlling Building Environments

    Science.gov (United States)

    Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa

    The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.

  10. Modeling and Analysis of Epidemic Diffusion within Small-World Network

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2012-01-01

    Full Text Available To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-Recovered-Susceptible (SEIRS model and the Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible (SEIQRS model, are proposed and analyzed within small-world network in this paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition for the occurrence of disease diffusion is explored. Then, the existence and global stability of the disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical example which includes key parameters analysis and critical topic discussion is presented to test how well the proposed two models may be applied in practice. These works may provide some guidelines for decision makers when coping with epidemic diffusion controlling problems.

  11. Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2005-01-01

    By using a semianalytical dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 70, 066107 (2004)], we have studied the synchronization of stochastic, small-world (SW) networks of FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity between results for diffusive and sigmoid couplings have been discussed. It has been shown that with introducing the weak heterogeneity to regular networks, the synchronization may be slightly increased for diffusive couplings, while it is decreased for sigmoid couplings. This increase in the synchronization for diffusive couplings is shown to be due to their local, negative feedback contributions, but not due to the short average distance in SW networks. Synchronization of SW networks depends not only on their structure but also on the type of couplings

  12. Mapping Koch curves into scale-free small-world networks

    International Nuclear Information System (INIS)

    Zhang Zhongzhi; Gao Shuyang; Zhou Shuigeng; Chen Lichao; Zhang Hongjuan; Guan Jihong

    2010-01-01

    The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems-a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, a small diameter and average path length and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.

  13. Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system

    Science.gov (United States)

    Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing

    2016-06-01

    A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.

  14. Transmission of severe acute respiratory syndrome in dynamical small-world networks

    Science.gov (United States)

    Masuda, Naoki; Konno, Norio; Aihara, Kazuyuki

    2004-03-01

    The outbreak of severe acute respiratory syndrome (SARS) is still threatening the world because of a possible resurgence. In the current situation that effective medical treatments such as antiviral drugs are not discovered yet, dynamical features of the epidemics should be clarified for establishing strategies for tracing, quarantine, isolation, and regulating social behavior of the public at appropriate costs. Here we propose a network model for SARS epidemics and discuss why superspreaders emerged and why SARS spread especially in hospitals, which were key factors of the recent outbreak. We suggest that superspreaders are biologically contagious patients, and they may amplify the spreads by going to potentially contagious places such as hospitals. To avoid mass transmission in hospitals, it may be a good measure to treat suspected cases without hospitalizing them. Finally, we indicate that SARS probably propagates in small-world networks associated with human contacts and that the biological nature of individuals and social group properties are factors more important than the heterogeneous rates of social contacts among individuals. This is in marked contrast with epidemics of sexually transmitted diseases or computer viruses to which scale-free network models often apply.

  15. Prolonged survival after resection and radiotherapy for solitary brain metastases from non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chee, R. J.; Bydder, S.; Cameron, F.

    2007-01-01

    Selected patients with brain metastases from non-small-cell lung cancer benefit from aggressive treatment. This report describes three patients who developed solitary brain metastases after previous resection of primary adenocarcinoma of the lung. Each underwent surgical resection of their brain metastasis followed by cranial irradiation and remain disease free 10 or more years later. Two patients developed cognitive impairment approximately 8 years after treatment of their brain metastasis, which was felt to be due to their previous brain irradiation. Here we discuss the treatment of solitary brain metastasis, particularly the value of combined method approaches in selected patients and dose-volume considerations

  16. Selection of optimal treatment scheme for brain metastases of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dong Mingxin; Zhao Tong; Huang Jingzi; Yu Shukun; Ma Yan; Tian Zhongcheng; Jin Xiangshun; Quan Jizhong; Liu Jin; Wang Dongxu

    2006-01-01

    Objective: To select the optimal treatment scheme for brain metastases of non-small cell lung cancers (NSCLCs). Methods: Seventy-two NSCLC cases diagnosesd by pathology with brain metastases were randomly classified into three groups, Group I, 24 cases with whole brain conventional external fractioned irradiation of D T 36-41 Gy/4-5 w, Group II, 22 eases with y-knife treatment plus whole brain conventional external fractioned irradiation, and Group III, 26 cases with γ-knife plus whole brain conventional external fractioned irradiation in combination with chemotherapy of Vm-26. The surrounding area of tumor was strictly covered with 50% para-central-dosal curve in γ-knife treatment (D T 16-25 Gy with a mean of 16 Gy). The muirleaf collimator was selected according to the volume of tumors. Chemotherapy of Vm-26 (60 mg/m 2 d1-3) was applied during the treatment with whole brain conventional external fractioned irradiation (D T 19-29 Gy/2-3 w), 21 days in a period, 2 periods in total. Results: The median survival time was estimated to be 6.0 months (ranged from 1.2 to 19.0 months) in the Group I, 9.2 months (4.4-30 months) in the Group II, and 10.8 months (5.2-42.2 months) in the Group III. The 1-year and 2-year survival rates were 34.6% and 12.6% , 62.2% and 30.2%, and 70.8% and 35.6% respectively in Group I, Group II, and Group III, respectively. Conclusion: For brain metastases of NSCLC, γ-knife plus whole brain conventional external fractioned irradiation combined with treatment of Vm-26 had a significantly beneficial influence on improvement of the local control and 1-year and 2-year survival. There was no complaint about the side-effects of the treatment. (authors)

  17. Therapeutic potential of brain-derived neurotrophic factor (BDNF and a small molecular mimics of BDNF for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary Wurzelmann

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF, a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  18. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  19. Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.F.; Yu, B.; Zhang, R.Q.; Wang, X.H.; Li, C.; Wang, P.; Zhang, Y.; Han, B.; Gao, X.X.; Zhang, L. [Taian City Central Hospital, Taian, Shandong (China); Jiang, Z.M., E-mail: dmyh2436@126.com [Qianfoshan Hospital of Shandong Province, Shandong University, Ji’nan, Shandong (China)

    2018-02-01

    Non-small-cell lung cancer (NSCLC) patients who experience brain metastases are usually associated with poor prognostic outcomes. This retrospective study proposed to assess whether bevacizumab or gefitinib can be used to improve the effectiveness of whole brain radiotherapy (WBRT) in managing patients with brain metastases. A total of 218 NSCLC patients with multiple brain metastases were retrospectively included in this study and were randomly allocated to bevacizumab-gefitinibWBRT group (n=76), gefitinib-WBRT group (n=77) and WBRT group (n=75). Then, tumor responses were evaluated every 2 months based on Response Evaluation Criteria in Solid Tumors version 1.0. Karnofsky performance status and neurologic examination were documented every 6 months after the treatment. Compared to the standard WBRT, bevacizumab and gefitinib could significantly enhance response rate (RR) and disease control rate (DCR) of WBRT (Po0.001). At the same time, RR and DCR of patients who received bevacizumab-gefitinib-WBRT were higher than those who received gefitinib-WBRT. The overall survival (OS) rates and progression-free survival (PFS) rates also differed significantly among the bevacizumab-gefitinib-WBRT (48.6 and 29.8%), gefitinib-WBRT (36.7 and 29.6%) and WBRT (9.8 and 14.6%) groups (Po0.05). Although bevacizumabgefitinib-WBRT was slightly more toxic than gefitinib-WBRT, the toxicity was tolerable. As suggested by prolonged PFS and OS status, bevacizumab substantially improved the overall efficacy of WBRT in the management of patients with NSCLC. (author)

  20. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  1. An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces.

    Science.gov (United States)

    Descombes, Xavier; Kruggel, Frithjof; Wollny, Gert; Gertz, Hermann Josef

    2004-02-01

    This paper is concerned with the detection of multiple small brain lesions from magnetic resonance imaging (MRI) data. A model based on the marked point process framework is designed to detect Virchow-Robin spaces (VRSs). These tubular shaped spaces are due to retraction of the brain parenchyma from its supplying arteries. VRS are described by simple geometrical objects that are introduced as small tubular structures. Their radiometric properties are embedded in a data term. A prior model includes interactions describing the clustering property of VRS. A Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC) optimizes the proposed model, obtained by multiplying the prior and the data model. Example results are shown on T1-weighted MRI datasets of elderly subjects.

  2. Four cases of small, traumatic hemorrhage in the deep midline portion of the brain

    International Nuclear Information System (INIS)

    Kim, Suho; Tsukahara, Tetsuya; Iwama, Mitsuru; Nishikawa, Michio

    1981-01-01

    Four cases recently encountered are presented in which computerized tomography (CT) demonstrated a small, traumatic hemorrhage in the deep midline portion of the brain. The lesions of hemorrhage revealed by CT were: Case 1, in the septum pellucidum and left lateral ventricle; Case 2, in the Monro's foramen and right lateral ventricle and Case 3, midbrain. These three cases had no other abnormal findings. In addition, a hemorrhage of the corpus callosum and diffuse brain damage were seen in Case 4. These small hemorrhages might be caused not only by the direct damage, but also by a local tendency to bleed due to hystoiogical fragility or the existence of a vascular anomaly, such as AVM or cryptic angioma. The prognoses quod vitam of our cases were relatively better than the previous reports of these hemorrhages, but the prognoses quod functionem were poor. The patients have shown prolonged psychoneurological disorder; these symptoms might be caused by damage to the limbic system. (author)

  3. Pathways for Small Molecule Delivery to the Central Nervous System Across the Blood-Brain Barrier

    OpenAIRE

    Mikitsh, John L; Chacko, Ann-Marie

    2014-01-01

    The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their abi...

  4. SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results

    Science.gov (United States)

    Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.

    2009-12-01

    We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in

  5. The future of the brain essays by the world's leading neuroscientists

    CERN Document Server

    Freeman, Jeremy

    2015-01-01

    An unprecedented look at the quest to unravel the mysteries of the human brain, The Future of the Brain takes readers to the absolute frontiers of science. Original essays by leading researchers such as Christof Koch, George Church, Olaf Sporns, and May-Britt and Edvard Moser describe the spectacular technological advances that will enable us to map the more than eighty-five billion neurons in the brain, as well as the challenges that lie ahead in understanding the anticipated deluge of data and the prospects for building working simulations of the human brain. A must-read for anyone trying to understand ambitious new research programs such as the Obama administration's BRAIN Initiative and the European Union’s Human Brain Project, The Future of the Brain sheds light on the breathtaking implications of brain science for medicine, psychiatry, and even human consciousness itself.

  6. A fault-tolerant small world topology control model in ad hoc networks for search and rescue

    Science.gov (United States)

    Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing

    2018-02-01

    Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.

  7. Critical behavior and correlations on scale-free small-world networks: Application to network design

    Science.gov (United States)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  8. Phase synchronization of non-Abelian oscillators on small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Ming [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhao, Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: zhutou@ustc.edu; Zhu, Chen-Ping [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Bing-Hong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2007-02-26

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.

  9. Dynamic Evolution with Limited Learning Information on a Small-World Network

    International Nuclear Information System (INIS)

    Dong Linrong

    2010-01-01

    This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition. (interdisciplinary physics and related areas of science and technology)

  10. Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-09-01

    Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.

  11. Phase synchronization of non-Abelian oscillators on small-world networks

    International Nuclear Information System (INIS)

    Gu, Zhi-Ming; Zhao, Ming; Zhou, Tao; Zhu, Chen-Ping; Wang, Bing-Hong

    2007-01-01

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems

  12. The dynamic consequences of cooperation and competition in small-world networks.

    Directory of Open Access Journals (Sweden)

    Iván Y Fernández-Rosales

    Full Text Available We present a study of the social dynamics among cooperative and competitive actors interacting on a complex network that has a small-world topology. In this model, the state of each actor depends on its previous state in time, its inertia to change, and the influence of its neighboring actors. Using numerical simulations, we determine how the distribution of final states of the actors and measures of the distances between the values of the actors at local and global levels, depend on the number of cooperative to competitive actors and the connectivity of the actors in the network. We find that similar numbers of cooperative and competitive actors yield the lowest values for the local and global measures of the distances between the values of the actors. On the other hand, when the number of either cooperative or competitive actors dominate the system, then the divergence is largest between the values of the actors. Our findings make new testable predictions on how the dynamics of a conflict depends on the strategies chosen by groups of actors and also have implications for the evolution of behaviors.

  13. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    Science.gov (United States)

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  15. Finite Memory Walk and Its Application to Small-World Network

    Science.gov (United States)

    Oshima, Hiraku; Odagaki, Takashi

    2012-07-01

    In order to investigate the effects of cycles on the dynamical process on both regular lattices and complex networks, we introduce a finite memory walk (FMW) as an extension of the simple random walk (SRW), in which a walker is prohibited from moving to sites visited during m steps just before the current position. This walk interpolates the simple random walk (SRW), which has no memory (m = 0), and the self-avoiding walk (SAW), which has an infinite memory (m = ∞). We investigate the FMW on regular lattices and clarify the fundamental characteristics of the walk. We find that (1) the mean-square displacement (MSD) of the FMW shows a crossover from the SAW at a short time step to the SRW at a long time step, and the crossover time is approximately equivalent to the number of steps remembered, and that the MSD can be rescaled in terms of the time step and the size of memory; (2) the mean first-return time (MFRT) of the FMW changes significantly at the number of remembered steps that corresponds to the size of the smallest cycle in the regular lattice, where ``smallest'' indicates that the size of the cycle is the smallest in the network; (3) the relaxation time of the first-return time distribution (FRTD) decreases as the number of cycles increases. We also investigate the FMW on the Watts--Strogatz networks that can generate small-world networks, and show that the clustering coefficient of the Watts--Strogatz network is strongly related to the MFRT of the FMW that can remember two steps.

  16. Use of aspiration method for collecting brain samples for rabies diagnosis in small wild animals.

    Science.gov (United States)

    Iamamoto, K; Quadros, J; Queiroz, L H

    2011-02-01

    In developing countries such as Brazil, where canine rabies is still a considerable problem, samples from wildlife species are infrequently collected and submitted for screening for rabies. A collaborative study was established involving environmental biologists and veterinarians for rabies epidemiological research in a specific ecological area located at the Sao Paulo State, Brazil. The wild animals' brains are required to be collected without skull damage because the skull's measurements are important in the identification of the captured animal species. For this purpose, samples from bats and small mammals were collected using an aspiration method by inserting a plastic pipette into the brain through the magnum foramen. While there is a progressive increase in the use of the plastic pipette technique in various studies undertaken, it is also appreciated that this method could foster collaborative research between wildlife scientists and rabies epidemiologists thus improving rabies surveillance. © 2009 Blackwell Verlag GmbH.

  17. Retarded coordinates based at a world line and the motion of a small black hole in an external universe

    International Nuclear Information System (INIS)

    Poisson, Eric

    2004-01-01

    In the first part of this article I present a system of retarded coordinates based at an arbitrary world line of an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line's acceleration vector and the spacetime's Riemann tensor evaluated at the world line. The formalism is illustrated in two examples, the first involving a comoving world line of a spatially flat cosmology, the other featuring an observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented in the second part of the article, in which I consider the motion of a small black hole in an empty external universe. I use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal field of the external universe, and the metric of the external universe perturbed by the presence of the black hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole

  18. Outcome of small cell lung cancer (SCLC) patients with brain metastases in a routine clinical setting

    International Nuclear Information System (INIS)

    Lekic, Mirko; Kovac, Viljem; Triller, Nadja; Knez, Lea; Sadikov, Aleksander; Cufer, Tanja

    2012-01-01

    Small cell lung cancer (SCLC) represents approximately 13 to 18% of all lung cancers. It is the most aggressive among lung cancers, mostly presented at an advanced stage, with median survival rates of 10 to12 months in patients treated with standard chemotherapy and radiotherapy. In approximately 15-20% of patients brain metastases are present already at the time of primary diagnosis; however, it is unclear how much it influences the outcome of disease according the other metastatic localisation. The objective of this analysis was to evaluate the median survival of SCLC patients treated by specific therapy (chemotherapy and/or radiotherapy) with regard to the presence or absence of brain metastases at the time of diagnosis. All SCLC patients have been treated in a routine clinical practice and followed up at the University Clinic Golnik in Slovenia. In the retrospective study the medical files from 2002 to 2007 were review. All patients with cytological or histological confirmed disease and eligible for specific oncological treatment were included in the study. They have been treated according to the guidelines valid at the time. Chemotherapy and regular followed-up were carried out at the University Clinic Golnik and radiotherapy at the Institute of Oncology Ljubljana. We found 251 patients eligible for the study. The median age of them was 65 years, majority were male (67%), smokers or ex-smokers (98%), with performance status 0 to 1 (83%). At the time of diagnosis no metastases were found in 64 patients (25.5%) and metastases outside the brain were presented in 153 (61.0%). Brain metastases, confirmed by a CT scan, were present in 34 patients (13.5%), most of them had also metastases at other localisations. All patients received chemotherapy and all patients with confirmed brain metastases received whole brain irradiation (WBRT). The radiotherapy with radical dose at primary tumour was delivered to 27 patients with limited disease and they got 4–6 cycles of

  19. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    International Nuclear Information System (INIS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-01-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks

  20. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  1. An original emission tomograph for in vivo brain imaging of small animals

    International Nuclear Information System (INIS)

    Ochoa, A.V.; Ploux, L.; Mastrippolito, R.

    1996-01-01

    The principle of a new tomograph TOHR dedicated for small volume analysis with very high resolution is presented in this paper. We use uncorrelated multi-photons (X or gamma rays) radioisotopes and a large solid angle focusing collimator to make tomographic imaging without reconstruction algorithm. With this original device, detection efficiency and resolution are independent and submillimetric resolution can be achieved. A feasibility study shows that, made achieve the predicted performances of TOHR. We discuss its potential in rat brain tomography by simulating a realistic neuropharmacological experiment using a 1.4 mm resolution prototype of TOHR under development

  2. Natural Learning for a Connected World: Education, Technology, and the Human Brain

    Science.gov (United States)

    Caine, Renate N.; Caine, Geoffrey

    2011-01-01

    Why do video games fascinate kids so much that they will spend hours pursuing a difficult skill? Why don't they apply this kind of intensity to their schoolwork? These questions are answered by the authors who pioneered brain/mind learning with the publication of "Making Connections: Teaching and the Human Brain". In their new book, "Natural…

  3. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  4. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  5. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  6. Big brains, small worlds: material culture and the evolution of the mind.

    Science.gov (United States)

    Coward, Fiona; Gamble, Clive

    2008-06-12

    New developments in neuroimaging have demonstrated that the basic capacities underpinning human social skills are shared by our closest extant primate relatives. The challenge for archaeologists is to explain how complex human societies evolved from this shared pattern of face-to-face social interaction. We argue that a key process was the gradual incorporation of material culture into social networks over the course of hominin evolution. Here we use three long-term processes in hominin evolution-encephalization, the global human diaspora and sedentism/agriculture-to illustrate how the cultural transmission of material culture allowed the 'scaling up' of face-to-face social interactions to the global societies known today. We conclude that future research by neuroimagers and archaeologists will need to investigate the cognitive mechanisms behind human engagement with material culture as well as other persons.

  7. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media

    International Nuclear Information System (INIS)

    Perc, Matjaz

    2007-01-01

    We present an overview of possible effects of small-world connectivity on noise-induced temporal and spatial order in a two-dimensional network of excitable neural media with FitzHugh-Nagumo local dynamics. Small-world networks are characterized by a given fraction of so-called long-range couplings or shortcut links that connect distant units of the system, while all other units are coupled in a diffusive-like manner. Interestingly, already a small fraction of these long-range couplings can have wide-ranging effects on the temporal as well as spatial noise-induced dynamics of the system. Here we present two main effects. First, we show that the temporal order, characterized by the autocorrelation of a firing-rate function, can be greatly enhanced by the introduction of small-world connectivity, whereby the effect increases with the increasing fraction of introduced shortcut links. Second, we show that the introduction of long-range couplings induces disorder of otherwise ordered, spiral-wave-like, noise-induced patterns that can be observed by exclusive diffusive connectivity of spatial units. Thereby, already a small fraction of shortcut links is sufficient to destroy coherent pattern formation in the media. Although the two results seem contradictive, we provide an explanation considering the inherent scale-free nature of small-world networks, which on one hand, facilitates signal transduction and thus temporal order in the system, whilst on the other hand, disrupts the internal spatial scale of the media thereby hindering the existence of coherent wave-like patterns. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed

  8. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  9. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    Science.gov (United States)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  10. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Ciampi de Andrade, Daniel; Lefaucheur, Jean-Pascal; Galhardoni, Ricardo; Ferreira, Karine S L; Brandão Paiva, Anderson Rodrigues; Bor-Seng-Shu, Edson; Alvarenga, Luciana; Myczkowski, Martin L; Marcolin, Marco Antonio; de Siqueira, Silvia R D T; Fonoff, Erich; Barbosa, Egberto Reis; Teixeira, Manoel Jacobsen

    2012-05-01

    The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P=.019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.

    Science.gov (United States)

    Bhavsar, Mit Balvantray; Heinrich, Ralf; Stumpner, Andreas

    2015-12-30

    Grasshoppers have been used as a model system to study the neuronal basis of insect acoustic behavior. Auditory neurons have been described from intracellular recordings. The growing interest to study population activity of neurons has been satisfied so far with artificially combining data from different individuals. We for the first time used multielectrode recordings from a small grasshopper brain. We used three 12μm tungsten wires (combined in a multielectrode) to record from local brain neurons and from a population of auditory neurons entering the brain from the thorax. Spikes of the recorded units were separated by sorting algorithms and spike collision analysis. The tungsten wires enabled stable recordings with high signal to noise ratio. Due to the tight temporal coupling of auditory activity to the stimulus spike collisions were frequent and collision analysis retrieved 10-15% of additional spikes. Marking the electrode position was possible using a fluorescent dye or electrocoagulation with high current. Physiological identification of units described from intracellular recordings was hard to achieve. 12μm tungsten wires gave a better signal to noise ratio than 15μm copper wires previously used in recordings from bees' brains. Recording the population activity of auditory neurons in one individual prevents interindividual and trial-to-trial variability which otherwise reduce the validity of the analysis. Double intracellular recordings have quite low success rate and therefore are rarely achieved and their stability is much lower than that of multielectrode recordings which allows sampling of data for 30min or more. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    Science.gov (United States)

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  13. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  14. An audit of traumatic brain injury (TBI) in a busy developing-world ...

    African Journals Online (AJOL)

    Committee in Neurotraumatology.[7] Four years later, at the ... the resources necessary to manage severe TBI according to interna- ... An audit of traumatic brain injury (TBI) in a busy .... The danger with this approach is that it risks becoming a.

  15. Decoder calibration with ultra small current sample set for intracortical brain-machine interface

    Science.gov (United States)

    Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping

    2018-04-01

    Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application

  16. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks

    Science.gov (United States)

    Song, H. Francis; Wang, Xiao-Jing

    2014-12-01

    Small-world networks—complex networks characterized by a combination of high clustering and short path lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.

  17. A hybrid small-world network/semi-physical model for predicting wildfire spread in heterogeneous landscapes

    International Nuclear Information System (INIS)

    Billaud, Y; Kaiss, A; Drissi, M; Pizzo, Y; Porterie, B; Zekri, N; Acem, Z; Collin, A; Boulet, P; Santoni, P-A; Bosseur, F

    2012-01-01

    This paper presents the latest developments and validation results of a hybrid model which combines a broad-scale stochastic small-world network model with a macroscopic deterministic approach, to simulate the effects of large fires burning in heterogeneous landscapes. In the extended version of the model, vegetation is depicted as an amorphous network of combustible cells, and both radiation and convection from the flaming zone are considered in the preheating process of unburned cells. Examples are given to illustrate small-world effects and fire behavior near the percolation threshold. The model is applied to a Mediterranean fire that occurred in Corsica in 2009 showing a good agreement in terms of rate of spread, and area and shape of the burn. A study, based on a fractional factorial plan, is conducted to evaluate the influence of variations of model parameters on fire propagation.

  18. Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes

    International Nuclear Information System (INIS)

    Erkaymaz, Okan; Ozer, Mahmut

    2016-01-01

    Artificial intelligent systems have been widely used for diagnosis of diseases. Due to their importance, new approaches are attempted consistently to increase the performance of these systems. In this study, we introduce a new approach for diagnosis of diabetes based on the Small-World Feed Forward Artificial Neural Network (SW- FFANN). We construct the small-world network by following the Watts–Strogatz approach, and use this architecture for classifying the diabetes, and compare its performance with that of the regular or the conventional FFANN. We show that the classification performance of the SW-FFANN is better than that of the conventional FFANN. The SW-FFANN approach also results in both the highest output correlation and the best output error parameters. We also perform the accuracy analysis and show that SW-FFANN approach exhibits the highest classifier performance.

  19. In a world of big data, small effects can still matter: a reply to Boyce, Daly, Hounkpatin, and Wood (2017)

    OpenAIRE

    Matz, SC; Gladstone, JJ; Stillwell, David John

    2017-01-01

    We make three points in response to Boyce, Daly, Hounkpatin, and Wood (2017). First, we clarify a misunderstanding of the goal of our analyses, which was to investigate the links between life satisfaction and spending patterns, rather than spending volume. Second, we report a simulation study we ran to demonstrate that our results were not driven by the proposed statistical artifact. Finally, we discuss the broader issue of why, in a world of big data, small but reliable effect sizes can be v...

  20. A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2013-01-01

    European energy policy pursues the objective of a sustainable, competitive and reliable supply of energy. In 2007, the European Commission adopted a proper energy policy for Europe supported by several documents and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and systemic view of energy interchanges between states was missing. In this paper, a Small-World methodology of analysis of Interchange Energy-Networks (IENs) is presented, with the aim of providing a useful tool for planning sustainable energy policies. A proof case is presented to validate the methodology by considering the European IEN behaviour in the period of economical crisis. This network is approached as a Small World Net from a modelling point of view, by supposing that connections between States are characterised by a probability value depending on economic/political relations between countries. - Highlights: • Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. • Panel data from 1996 to 2010 as part of a network of exchanges was considered from Eurostat official database. • The European import/export energy flows modelled as a network with Small World phenomena, interpreting the evolution over the years. • Interesting systemic tool for ruling and governing energy flows between countries

  1. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  2. Detection of small traumatic hemorrhages using a computer-generated average human brain CT.

    Science.gov (United States)

    Afzali-Hashemi, Liza; Hazewinkel, Marieke; Tjepkema-Cloostermans, Marleen C; van Putten, Michel J A M; Slump, Cornelis H

    2018-04-01

    Computed tomography is a standard diagnostic imaging technique for patients with traumatic brain injury (TBI). A limitation is the poor-to-moderate sensitivity for small traumatic hemorrhages. A pilot study using an automatic method to detect hemorrhages [Formula: see text] in diameter in patients with TBI is presented. We have created an average image from 30 normal noncontrast CT scans that were automatically aligned using deformable image registration as implemented in Elastix software. Subsequently, the average image was aligned to the scans of TBI patients, and the hemorrhages were detected by a voxelwise subtraction of the average image from the CT scans of nine TBI patients. An experienced neuroradiologist and a radiologist in training assessed the presence of hemorrhages in the final images and determined the false positives and false negatives. The 9 CT scans contained 67 small haemorrhages, of which 97% was correctly detected by our system. The neuroradiologist detected three false positives, and the radiologist in training found two false positives. For one patient, our method showed a hemorrhagic contusion that was originally missed. Comparing individual CT scans with a computed average may assist the physicians in detecting small traumatic hemorrhages in patients with TBI.

  3. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  4. [Timing of Brain Radiation Therapy Impacts Outcomes in Patients with 
Non-small Cell Lung Cancer Who Develop Brain Metastases].

    Science.gov (United States)

    Wang, Yang; Fang, Jian; Nie, Jun; Dai, Ling; Hu, Weiheng; Zhang, Jie; Ma, Xiangjuan; Han, Jindi; Chen, Xiaoling; Tian, Guangming; Wu, Di; Han, Sen; Long, Jieran

    2016-08-20

    Radiotherapy combined with chemotherapy or molecular targeted therapy remains the standard of treatment for brain metastases from non-small cell lung cancer (NSCLC). The aim of this study is to determine if the deferral of brain radiotherapy impacts patient outcomes. Between May 2003 and December 2015, a total of 198 patients with brain metastases from NSCLC who received both brain radiotherapy and systemic therapy (chemotherapy or targeted therapy) were identified. The rate of grade 3-4 adverse reactions related to chemotherapy and radiotherapy had no significant difference between two groups. 127 patients received concurrent brain radiotherapy and systemic therapy, and 71 patients received deferred brain radiotherapy after at least two cycles of chemotherapy or targeted therapy. Disease specific-graded prognostic assessment was similar in early radiotherapy group and deferred radiotherapy group. Median overall survival (OS) was longer in early radiotherapy group compared to deferred radiotherapy group (17.9 months vs 12.6 months; P=0.038). Progression free survival (PFS) was also improved in patients receiving early radiotherapy compared to those receiving deferred radiotherapy (4.0 months vs 3.0 months; Pbrain metastases as any line therapy improved the OS (20.0 months vs 10.7 months; Pbrain radiotherapy may resulted in inferior OS in patients with NSCLC who develop brain metastases. A prospective multi-central randomized study is imminently needed.

  5. Oscillatory activity in the infant brain and the representation of small numbers

    Directory of Open Access Journals (Sweden)

    Sumie eLeung

    2016-02-01

    Full Text Available Gamma-band oscillatory activity (GBA is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6- to 8-month-old infants during occlusion periods after the representation of two objects versus that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants’ representation of small numbers.

  6. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers.

    Science.gov (United States)

    Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy

    2016-01-01

    Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6-8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants' representation of small numbers.

  7. Intracranial pressure monitoring in diffuse brain injury-why the developing world needs it more?

    Science.gov (United States)

    Vora, Tarang K; Karunakaran, Sudish; Kumar, Ajay; Chiluka, Anil; Srinivasan, Harish; Parmar, Kanishk; Vasu, Srivatsan Thirumalai; Srinivasan, Rahul; Chandan, H A; Vishnu, P S; Raheja, Lakshay

    2018-06-01

    Use of ICP monitoring is considered to be part of "standard of care" in management of severe traumatic brain injury, but it is rarely used in developing countries. The authors present a study which evaluates the efficacy and outcomes of ICP monitoring at a high-volume trauma center in India. Data on management and outcomes for 126 patients who were admitted with diffuse traumatic brain injury (GCS 3-8) were studied prospectively over an 18-month period. These patients were treated by one of the two specific protocols: ICP monitoring-based or non-ICP monitoring-based. The primary outcome was measured based on 2 weeks mortality and GOS-E at 1, 3, and 6 months. Secondary outcome was measured based on need for brain-specific treatment, length of ICU stay, and radiation exposure. Mortality in a subset of patients who underwent surgical intervention later due to increased ICP values, drop in GCS, or radiological deterioration was noted to be significantly lower in the ICP monitoring group (p = 0.03), in spite of statistically insignificant difference in overall mortality rates between groups. GOS-E scores at 1 month were significantly better (p = 0.033) in ICP monitoring group, even though they equalized at 3 and 6 months. The need for brain-specific treatment (p < 0.001), radiation exposure (p < 0.001), and length of ICU stay (p = 0.013) was significantly lower in the ICP monitoring group. ICP monitoring-based treatment protocol helps in achieving faster recovery; lowers mortality rates in operated patients; and reduces ICU stay, radiation exposure, and the need for brain-specific treatment.

  8. Risk of intracranial hemorrhage and cerebrovascular accidents in non-small cell lung cancer brain metastasis patients.

    Science.gov (United States)

    Srivastava, Geetika; Rana, Vishal; Wallace, Suzy; Taylor, Sarah; Debnam, Matthew; Feng, Lei; Suki, Dima; Karp, Daniel; Stewart, David; Oh, Yun

    2009-03-01

    Brain metastases confer significant morbidity and a poorer survival in non-small cell lung cancer (NSCLC). Vascular endothelial growth factor-targeted antiangiogenic therapies (AAT) have demonstrated benefit for patients with metastatic NSCLC and are expected to directly inhibit the pathophysiology and morbidity of brain metastases, yet patients with brain metastases have been excluded from most clinical trials of AAT for fear of intracranial hemorrhage (ICH). The underlying risk of ICH from NSCLC brain metastases is low, but needs to be quantitated to plan clinical trials of AAT for NSCLC brain metastases. Data from MD Anderson Cancer Center Tumor Registry and electronic medical records from January 1998 to March 2006 was interrogated. Two thousand one hundred forty-three patients with metastatic NSCLC registering from January 1998 to September 2005 were followed till March 2006. Seven hundred seventy-six patients with and 1,367 patients without brain metastases were followed till death, date of ICH, or last date of study, whichever occurred first. The incidence of ICH seemed to be higher in those with brain metastasis compared with those without brain metastases, in whom they occurred as result of cerebrovascular accidents. However, the rates of symptomatic ICH were not significantly different. All ICH patients with brain metastasis had received radiation therapy for them and had been free of anticoagulation. Most of the brain metastasis-associated ICH's were asymptomatic, detected during increased radiologic surveillance. The rates of symptomatic ICH, or other cerebrovascular accidents in general were similar and not significantly different between the two groups. In metastatic NSCLC patients, the incidence of spontaneous ICH appeared to be higher in those with brain metastases compared with those without, but was very low in both groups without a statistically significant difference. These data suggest a minimal risk of clinically significant ICH for NSCLC

  9. Towards Practical Brain-Computer Interfaces Bridging the Gap from Research to Real-World Applications

    CERN Document Server

    Dunne, Stephen; Leeb, Robert; Millán, José; Nijholt, Anton

    2013-01-01

    Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.

  10. The world can look better: enhancing beauty experience with brain stimulation.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Flexas, Albert; Nadal, Marcos; Munar, Enric; Cela-Conde, Camilo J

    2014-11-01

    Aesthetic appreciation is part of our everyday life: it is a subjective judgment we make when looking at a painting, a landscape, or--in fact--at another person. Neuroimaging and electrophysiological evidence suggests that the left dorsolateral prefrontal cortex (DLPFC) plays a critical role in aesthetic judgments. Here, we show that the experience of beauty can be artificially enhanced with brain stimulation. Specifically, we show that aesthetic appreciation of representational paintings and photographs can be increased by applying anodal (excitatory) transcranial direct current stimulation on the left DLPFC. Our results thus show that beauty is in the brain of the beholder, and offer a novel view on the neural networks underlying aesthetic appreciation. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Memory Self-Efficacy Beliefs Modulate Brain Activity when Encoding Real-World Future Intentions

    OpenAIRE

    Kalpouzos, Gr?goria; Eriksson, Johan

    2013-01-01

    Background: While the use of different cognitive strategies when encoding episodic memory information has been extensively investigated, modulation of brain activity by memory self-efficacy beliefs has not been studied yet. Methodology/Principal Findings: Sixteen young adults completed the prospective and retrospective metamemory questionnaire, providing individual subjective judgments of everyday memory function. The day after, using functional magnetic resonance imaging, the participants ha...

  12. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    Science.gov (United States)

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  13. Haematopoietic stem cell transplantation survivorship and quality of life: is it a small world after all?

    Science.gov (United States)

    Brice, Lisa; Gilroy, Nicole; Dyer, Gemma; Kabir, Masura; Greenwood, Matt; Larsen, Stephen; Moore, John; Kwan, John; Hertzberg, Mark; Brown, Louisa; Hogg, Megan; Huang, Gillian; Tan, Jeff; Ward, Christopher; Gottlieb, David; Kerridge, Ian

    2017-02-01

    The aim of this qualitative study was to gain a rich understanding of the impact that haematopoietic stem cell transplantation (HSCT) has on long-term survivor's quality of life (QoL). Participants included 441 survivors who had undergone HSCT for a malignant or non-malignant disease. Data were obtained by a questionnaire positing a single open-ended question asking respondents to list the three issues of greatest importance to their QoL in survivorship. Responses were analysed and organised into QoL themes and subthemes. Major themes identified included the following: the failing body and diminished physical effectiveness, the changed mind, the loss of social connectedness, the loss of the functional self and the patient for life. Each of these themes manifests different ways in which HSCT survivor's world and opportunities had diminished compared to the unhindered and expansive life that they enjoyed prior to the onset of disease and subsequent HSCT. HSCT has a profound and pervasive impact on the life of survivors-reducing their horizons and shrinking various parts of their worlds. While HSCT survivors can describe the ways in which their life has changed, many of their fears, anxieties, regrets and concerns are existential in nature and are ill-defined-making it exceeding unlikely that they would be adequately captured by standard psychometric measures of QoL post HSCT.

  14. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  15. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  16. Application of Texture Analysis to Study Small Vessel Disease and Blood–Brain Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Maria del C. Valdés Hernández

    2017-07-01

    Full Text Available ObjectivesWe evaluate the alternative use of texture analysis for evaluating the role of blood–brain barrier (BBB in small vessel disease (SVD.MethodsWe used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal–Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF with Fazekas scores.ResultsTextural “homogeneity” increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural “homogeneity” increased with age, basal ganglia perivascular spaces scores (p < 0.01 and SVD scores (p < 0.05 and was significantly higher in hypertensive patients (p < 0.002 and lacunar stroke (p = 0.04. Hypertension (74% patients, WMH load (median = 1.5 ± 1.6% of intracranial volume, and age (mean = 65.6 years, SD = 11.3 predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast.ConclusionA consistent general pattern of increasing textural “homogeneity” with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.

  17. Noise influence on spike activation in a Hindmarsh–Rose small-world neural network

    International Nuclear Information System (INIS)

    Zhe, Sun; Micheletto, Ruggero

    2016-01-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh−Rose (H−R) neural networks. (paper)

  18. Noise influence on spike activation in a Hindmarsh-Rose small-world neural network

    Science.gov (United States)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.

  19. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  20. Supply of appropriate nuclear technology for the developing world: small power reactors for electricity generation

    International Nuclear Information System (INIS)

    Heising-Goodman, C.D.

    1981-01-01

    This paper reviews the supply of small nuclear power plants (200 to 500 MWe electrical generating capacity) available on today's market, including the pre-fabricated designs of the United Kingdom's Rolls Royce Ltd and the French Alsthom-Atlantique Company. Also, the Russian VVER-440 conventionally built light-water reactor design is reviewed, including information on the Soviet Union's plans for expansion of its reactor-building capacity. A section of the paper also explores the characteristics of LDC electricity grids, reviewing methods available for incorporating larger plants into smaller grids as the Israelis are planning. Future trends in reactor supply and effects on proliferation rates are also discussed, reviewing the potential of the Indian 220 MWe pressurised heavy-water reactor, South Korean and Jananese potential for reactor exports in the Far East, and the Argentine-Brazilian nuclear programme in Latin America. This study suggests that small reactor designs for electrical power production and other applications, such as seawater desalination, can be made economical relative to diesel technology if traditional scaling laws can be altered by adopting and standardising a pre-fabricated nuclear power plant design. Also, economy can be gained if sufficient attention is concentrated on the design, construction and operating experience of suitably sized conventionally built reactor systems. (author)

  1. Berlin, Maryland - How One Small City is Using Science to Change its World

    Science.gov (United States)

    Allen, L.; Silbergeld, E.

    2016-12-01

    Small cities are uniquely challenged to mitigate environmental issues in their communities because they usually lack the financial resources and technical expertise to address them. The Town of Berlin, population 4,500, recently purchased approximately 60 acres of private property located at 9943 Old Ocean City Boulevard. The property was previously owned by Tyson Chicken, Inc. and contains a chicken processing plant which has not been in use for over 10 years. Historically the plant emitted significant odors which limited the Town's ability to diversify its economic base. The plant closure provided an opportunity to convert the property to another use, but the downturn in the economy delayed that change. The Town intends to establish recreation oriented uses on the property with the following goals in mind: Create a common ground for the people of Berlin that will unite various neighborhoods. Create synergy between ecological sustainability and community resilience Upgrade the ponds on the property to make them the design focal point Through the Thriving Earth Exchange, the Town of Berlin connected with Dr. Ellen Silbergeld to resolve the question of how to remediate the ponds. Dr. Silbergeld is trained as an environmental engineer and public health researcher, with substantial experience in environmental issues in the poultry industry. This case study will show how one small city is working with a volunteer scientist to convert a blighted piece of property into a multi-use public space for the benefit of its residents and guests.

  2. Evaluation of anesthesia effects on [{sup 18}F]FDG uptake in mouse brain and heart using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi E-mail: htoyama@fujita-hu.ac.jp; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B

    2004-02-01

    This study evaluates effects of anesthesia on {sup 18}F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used.

  3. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B.

    2004-01-01

    This study evaluates effects of anesthesia on 18 F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used

  4. Brain metastasis from prostate small cell carcinoma: not to be neglected.

    NARCIS (Netherlands)

    Erasmus, C.E.; Verhagen, W.I.M.; Wauters, C.A.P.; Lindert, E.J. van

    2002-01-01

    BACKGROUND: Symptomatic brain metastases from prostatic carcinoma are rare (0.05% to 0.5%). CASE REPORT: A 70-year-old man presented with a homonymous hemianopsia due to brain metastatic prostatic carcinoma shortly before becoming symptomatic of prostatic disease. CT and MRI of the brain showed a

  5. The brain rotation and brain diffusion strategies of small islanders : considering ‘movement’ in lieu of ‘place’

    OpenAIRE

    Baldacchino, Godfrey

    2006-01-01

    The ‘brain drain’ phenomenon is typically seen as a zero-sum game, where one party’s gain is presumed to be another’s drain. This corresponds to deep-seated assumptions about what is ‘home’ and what is ‘away’. This article challenges the view, driven by much ‘brain drain’ literature, that the dynamic is an epi-phenomenon of the relationship between neo-liberal globalisation and education. Instead, the article invites a consideration of an alternative, cyclical and multiple migration model, bo...

  6. Small-Town Touch, Big-City Innovation, World-Class Aspirations.

    Science.gov (United States)

    Forgey, Warren L; Dye, Tammy

    2015-01-01

    The healthcare system in the United States is at a critical crossroads. Costs are rising, measures of healthcare quality are well below those of other industrialized nations, and public and regulatory scrutiny is increasing. Healthcare leaders are searching for more effective, efficient, and sustainable operational models to address the mounting challenges they face. We at Schneck Medical Center in Seymour, Indiana, chose the Baldrige Excellence Framework to guide our organization, to accelerate our performance improvement journey, and to create sustainable results in our core services. The Baldrige Framework uses a systematic approach to innovation and improvement in seven key management areas. These seven areas were leadership; strategic planning; customer focus; measurement, analysis, and knowl- edge management; workforce focus; operations focus; and results (Baldrige Performance Excellence Program 2015). In this article, we describe our Baldrige journey. We address why we chose to use the Framework, how we engaged our key stakeholders, and what challenges we faced and lessons we learned along the way. In addition, we detail how Schneck's focus on performance improvement has resulted in significant returns to the organization. Throughout the article, we refer to our pursuit of performance excellence as a "journey," and it is indeed just that. Quality improvement takes time, because it is a transformation with many steps. World-class performance is attainable only with years of work and constant refinement.

  7. Quality of Care as an Emergent Phenomenon out of a Small-World Network of Relational Actors.

    Science.gov (United States)

    Fiorini, Rodolfo; De Giacomo, Piero; Marconi, Pier Luigi; L'Abate, Luciano

    2014-01-01

    In Healthcare Decision Support System, the development and evaluation of effective "Quality of Care" (QOC) indicators, in simulation-based training, are key feature to develop resilient and antifragile organization scenarios. Is it possible to conceive of QOC not only as a result of a voluntary and rational decision, imposed or even not, but also as an overall system "emergent phenomenon" out of a small-world network of relational synthetic actors, endowed with their own personality profiles to simulate human behaviour (for short, called "subjects")? In order to answer this question and to observe the phenomena of real emergence we should use computational models of high complexity, with heavy computational load and extensive computational time. Nevertheless, De Giacomo's Elementary Pragmatic Model (EPM) intrinsic self-reflexive functional logical closure enables to run simulation examples to classify the outcomes grown out of a small-world network of relational subjects fast and effectively. Therefore, it is possible to take note and to learn of how much strategic systemic interventions can induce context conditions of QOC facilitation, which can improve the effectiveness of specific actions, which otherwise might be paradoxically counterproductive also. Early results are so encouraging to use EPM as basic block to start designing more powerful Evolutive Elementary Pragmatic Model (E2PM) for real emergence computational model, to cope with ontological uncertainty at system level.

  8. EEG can track the time course of successful reference resolution in small visual worlds

    Directory of Open Access Journals (Sweden)

    Christian eBrodbeck

    2015-11-01

    Full Text Available Previous research has shown that language comprehenders resolve reference quickly and incrementally, but not much is known about the neural processes and representations that are involved. Studies of visual short-term memory suggest that access to the representation of an item from a previously seen display is associated with a negative evoked potential at posterior electrodes contralateral to the spatial location of that item in the display. In this paper we demonstrate that resolving the reference of a noun phrase in a recently seen visual display is associated with an event-related potential that is analogous to this effect. Our design was adapted from the visual world paradigm: in each trial, participants saw a display containing 3 simple objects, followed by a question about the objects, such as Was the pink fish next to a boat?, presented word by word. Questions differed in whether the color adjective allowed the reader to identify the referent of the noun phrase or not (i.e., whether one or more objects of the named color were present. Consistent with our hypothesis, we observed that reference resolution by the adjective was associated with a negative evoked potential at posterior electrodes contralateral to spatial location of the referent, starting approximately 333 ms after the onset of the adjective. The fact that the laterality of the effect depended upon the location of the referent within the display suggests that reference resolution in visual domains involves, at some level, a modality-specific representation. In addition, the effect gives us an estimate of the time course of processing from perception of the written word to the point at which its meaning is brought into correspondence with the referential domain.

  9. World Small Animal Veterinary Association Renal Pathology Initiative: Classification of Glomerular Diseases in Dogs.

    Science.gov (United States)

    Cianciolo, R E; Mohr, F C; Aresu, L; Brown, C A; James, C; Jansen, J H; Spangler, W L; van der Lugt, J J; Kass, P H; Brovida, C; Cowgill, L D; Heiene, R; Polzin, D J; Syme, H; Vaden, S L; van Dongen, A M; Lees, G E

    2016-01-01

    Evaluation of canine renal biopsy tissue has generally relied on light microscopic (LM) evaluation of hematoxylin and eosin-stained sections ranging in thickness from 3 to 5 µm. Advanced modalities, such as transmission electron microscopy (TEM) and immunofluorescence (IF), have been used sporadically or retrospectively. Diagnostic algorithms of glomerular diseases have been extrapolated from the World Health Organization classification scheme for human glomerular disease. With the recent establishment of 2 veterinary nephropathology services that evaluate 3-µm sections with a panel of histochemical stains and routinely perform TEM and IF, a standardized objective species-specific approach for the diagnosis of canine glomerular disease was needed. Eight veterinary pathologists evaluated 114 parameters (lesions) in renal biopsy specimens from 89 dogs. Hierarchical cluster analysis of the data revealed 2 large categories of glomerular disease based on the presence or absence of immune complex deposition: The immune complex-mediated glomerulonephritis (ICGN) category included cases with histologic lesions of membranoproliferative or membranous patterns. The second category included control dogs and dogs with non-ICGN (glomerular amyloidosis or focal segmental glomerulosclerosis). Cluster analysis performed on only the LM parameters led to misdiagnosis of 22 of the 89 cases-that is, ICGN cases moved to the non-ICGN branch of the dendrogram or vice versa, thereby emphasizing the importance of advanced diagnostic modalities in the evaluation of canine glomerular disease. Salient LM, TEM, and IF features for each pattern of disease were identified, and a preliminary investigation of related clinicopathologic data was performed. © The Author(s) 2015.

  10. Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Rades, Dirk; Nadrowitz, Roger; Buchmann, Inga; Meller, Birgit; Hunold, Peter; Noack, Frank; Schild, Steven E.

    2010-01-01

    Background and Purpose: The addition of systemic drugs to whole-brain irradiation has not improved the survival of patients with multiple brain metastases, most likely because the agents did not readily cross the blood-brain barrier (BBB). Radiolabeling of cetuximab was performed to investigate whether this antibody crosses the BBB. Case Report: A patient with multiple brain lesions from non-small cell lung cancer was investigated. The largest metastasis (40 x 33 x 27 mm) was selected the reference lesion. On day 1, 200 mg/m 2 cetuximab (0.25% hot and 99.75% cold antibody) were given. On day 3, 200 mg/m 2 cetuximab (cold antibody) were given. Weekly doses of 250 mg/m 2 cetuximab were administered for 3 months. Results: The reference lesion showed enhancement of radiolabeled cetuximab ( 123 I-Erbi) on scintigraphy; 123 I-Erbi crossed the BBB and accumulated in the lesion. The reference lesion measured 31 x 22 x 21 mm at 4 months. Enhancement of contrast medium was less pronounced. Conclusion: This is the first demonstration of cetuximab crossing the BBB and accumulating in brain metastasis. (orig.)

  11. Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Rades, Dirk; Nadrowitz, Roger [Dept. of Radiation Oncology, Univ. of Luebeck (Germany); Buchmann, Inga; Meller, Birgit [Section of Nuclear Medicine, Univ. of Luebeck (Germany); Hunold, Peter [Dept. of Radiology, Univ. of Luebeck (Germany); Noack, Frank [Inst. of Pathology, Univ. of Luebeck (Germany); Schild, Steven E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2010-08-15

    Background and Purpose: The addition of systemic drugs to whole-brain irradiation has not improved the survival of patients with multiple brain metastases, most likely because the agents did not readily cross the blood-brain barrier (BBB). Radiolabeling of cetuximab was performed to investigate whether this antibody crosses the BBB. Case Report: A patient with multiple brain lesions from non-small cell lung cancer was investigated. The largest metastasis (40 x 33 x 27 mm) was selected the reference lesion. On day 1, 200 mg/m{sup 2} cetuximab (0.25% hot and 99.75% cold antibody) were given. On day 3, 200 mg/m{sup 2} cetuximab (cold antibody) were given. Weekly doses of 250 mg/m{sup 2} cetuximab were administered for 3 months. Results: The reference lesion showed enhancement of radiolabeled cetuximab ({sup 123}I-Erbi) on scintigraphy; {sup 123}I-Erbi crossed the BBB and accumulated in the lesion. The reference lesion measured 31 x 22 x 21 mm at 4 months. Enhancement of contrast medium was less pronounced. Conclusion: This is the first demonstration of cetuximab crossing the BBB and accumulating in brain metastasis. (orig.)

  12. Effective plasmid DNA and small interfering RNA delivery to diseased human brain microvascular endothelial cells.

    Science.gov (United States)

    Slanina, H; Schmutzler, M; Christodoulides, M; Kim, K S; Schubert-Unkmeir, A

    2012-01-01

    Expression of exogenous DNA or small interfering RNA (siRNA) in vitro is significantly affected by the particular delivery system utilized. In this study, we evaluated the transfection efficiency of plasmid DNA and siRNA into human brain microvascular endothelial cells (HBMEC) and meningioma cells, which constitute the blood-cerebrospinal fluid barrier, a target of meningitis-causing pathogens. Chemical transfection methods and various lipofection reagents including Lipofectamin™, FuGene™, or jetPRIME®, as well as physical transfection methods and electroporation techniques were applied. To monitor the transfection efficiencies, HBMEC and meningioma cells were transfected with the reporter plasmid pTagGFP2-actin vector, and efficiency of transfection was estimated by fluorescence microscopy and flow cytometry. We established protocols based on electroporation using Cell Line Nucleofector® Kit V with the Amaxa® Nucleofector® II system from Lonza and the Neon® Transfection system from Invitrogen resulting in up to 41 and 82% green fluorescent protein-positive HBMEC, respectively. Optimal transfection solutions, pulse programs and length were evaluated. We furthermore demonstrated that lipofection is an efficient method to transfect meningioma cells with a transfection efficiency of about 81%. Finally, we applied the successful electroporation protocols to deliver synthetic siRNA to HBMEC and analyzed the role of the actin-binding protein cortactin in Neisseria meningitidis pathogenesis. Copyright © 2012 S. Karger AG, Basel.

  13. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals.

    Science.gov (United States)

    Ye, Xuesong; Wang, Peng; Liu, Jun; Zhang, Shaomin; Jiang, Jun; Wang, Qingbo; Chen, Weidong; Zheng, Xiaoxiang

    2008-09-30

    A portable multi-channel telemetry system which can be used for brain stimulation and neuronal activity recording in freely behaving small animals is described here. This system consists of three major components of headstage, backpack and portable Personal Digital Assistant (PDA). The headstage contains high precision instrument amplifiers with high input impedance. The backpack is comprised of two parts: (1) a main board (size: 36 mm x 22 mm x 3.5 mm and weight: 40 g with batteries, 20 g without), with current/voltage stimulator and special circuit suitable for neuronal activity recording and (2) and a bluetooth transceiver, with a high data transmission rate up to 70 kb/s, suitable for downloading stimulation commands and uploading acquired data. We recorded neuronal activities of the primary motor area of a freely behaving rat with 12-bit resolution at 12 k samples/s. The recorded data and analysis results showed that the system was successful by comparing with the commercial equipment Cerebus 128-Channel Data Acquisition System (Cyberkinetics Inc.). Using the PDA, we can control stimulation and recording. It provides a flexible method to do some research work in the circumstances where other approaches would be difficult or impossible.

  14. Design of a Small Modified Minkowski Fractal Antenna for Passive Deep Brain Stimulation Implants

    Directory of Open Access Journals (Sweden)

    Sara Manafi

    2014-01-01

    Full Text Available A small planar modified Minkowski fractal antenna is designed and simulated in dual frequency bands (2.4 and 5.8 GHz for wireless energy harvesting by deep brain stimulation (DBS devices. The designed antenna, physically being confined inside a miniaturized structure, can efficiently convert the wireless signals in dual ISM frequency bands to the energy source to recharge the DBS battery or power the pulse generator directly. The performance metrics such as the return loss, the specific absorption rate (SAR, and the radiation pattern within skin and muscle-fat-skin tissues are evaluated for the designed antenna. The gain of the proposed antenna is 3.2 dBi at 2.4 GHz and 4.7 dBi at 5.8 GHz; also the averaged SAR of the antenna in human body tissue is found to be well below the legally allowed limit at both frequency bands. The link budget shows the received power at the distance of 25 cm at 2.4 GHz and 5.8 GHz are around 0.4 mW and 0.04 mW, which can empower the DBS implant. The large operational bandwidth, the physical compactness, and the efficiency in wireless signal reception make this antenna suitable in being used in implanted biomedical devices such as DBS pulse generators.

  15. Small brain lesions and incident stroke and mortality: A cohort study

    Science.gov (United States)

    Windham, B Gwen; Deere, Bradley; Griswold, Michael E.; Wang, Wanmei; Bezerra, Daniel C; Shibata, Dean; Butler, Kenneth; Knopman, David; Gottesman, Rebecca F; Heiss, Gerardo; Mosley, Thomas H

    2015-01-01

    Background Although cerebral lesions ≥3mm on imaging are associated with incident stroke, lesions stroke risks associated with subclinical brain lesions by size (stroke; average 14.5 years follow-up. Measurements MRI lesions: none (n=1611), stroke (n=157), overall mortality (n=576), stroke mortality (n=50). Hazard Ratios (HR) estimated with proportional hazards models. Results Compared to no lesions, stroke risk was tripled with lesions Stroke risk doubled with WMH ≥3 (HR=2.14, 95% CI:1.45-3.16). Stroke mortality risk tripled with lesions stroke events (n=147), especially hemorrhagic (n=15); limited numbers of participants with only lesions ≤3mm (n=50) or with both lesions ≤3mm and 3–20mm (n=35). Conclusions Very small cerebrovascular lesions may be associated with increased risks of stroke and mortality; having both < 3 mm and ≥3 mm lesions may represent a particularly striking risk increase. Larger studies are needed to confirm findings and provide more precise estimates. PMID:26148278

  16. Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks.

    Science.gov (United States)

    Kleczkowski, Adam; Oleś, Katarzyna; Gudowska-Nowak, Ewa; Gilligan, Christopher A

    2012-01-07

    We present a combined epidemiological and economic model for control of diseases spreading on local and small-world networks. The disease is characterized by a pre-symptomatic infectious stage that makes detection and control of cases more difficult. The effectiveness of local (ring-vaccination or culling) and global control strategies is analysed by comparing the net present values of the combined cost of preventive treatment and illness. The optimal strategy is then selected by minimizing the total cost of the epidemic. We show that three main strategies emerge, with treating a large number of individuals (global strategy, GS), treating a small number of individuals in a well-defined neighbourhood of a detected case (local strategy) and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal strategy is governed mainly by a relative cost of palliative and preventive treatments. If the disease spreads within the well-defined neighbourhood, the local strategy is optimal unless the cost of a single vaccine is much higher than the cost associated with hospitalization. In the latter case, it is most cost-effective to refrain from prevention. Destruction of local correlations, either by long-range (small-world) links or by inclusion of many initial foci, expands the range of costs for which the NS is most cost-effective. The GS emerges for the case when the cost of prevention is much lower than the cost of treatment and there is a substantial non-local component in the disease spread. We also show that local treatment is only desirable if the disease spreads on a small-world network with sufficiently few long-range links; otherwise it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction ratio, R(0), does not depend on the rate of responsive treatment in this case and the disease always invades

  17. EEG-based decoding of error-related brain activity in a real-world driving task

    Science.gov (United States)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  18. Assessing Disease and Mortality among Small Cetaceans Stranded at a World Heritage Site in Southern Brazil.

    Directory of Open Access Journals (Sweden)

    Isabela G Domiciano

    Full Text Available Cetaceans are considered environmental sentinels and their health often reflects either anthropogenic or natural spatio-temporal disturbances. This study investigated the pathological findings and mortality of small cetaceans with the aim of detecting hazards and monitoring health trends in a high-biodiversity area. Between 2007 and 2012, 218 stranded cetaceans were recorded on the Paraná coast, southern Brazil. Fifty-seven (26.1% of these animals, including 50 Sotalia guianensis, 2 Pontoporia blainvillei, 2 Stenella frontalis, 1 Stenella longirostris, 1 Tursiops truncatus and 1 Globicephala melas were necropsied and samples were collected for histopathology. Causes of death were determined in 46 of the 57 (80.7% animals and most (30 or 65.2% were ascribed to anthropogenic activities, including fisheries bycatch (28/30 and trauma (2/30. The remaining 16 fatalities were considered natural, and attributed to pneumonia (10/16, emaciation (3/16, septicemia (1/16, neonatal pathology (1/16 and choking via food obstruction (1/16. Irrespective of the cause, bronchointerstitial pneumonia, associated with parasitism, lymphadenitis and membranous glomerulonephritis were common findings among all fatalities. These results suggest, that while anthropogenic activities are a leading cause of cetacean strandings in Paraná, underlying pre-existing diseases may contribute towards deaths. Although the studied area is considered a biosphere reserve by UNESCO, complex anthropogenic and natural interactions might be occurring, increasing cetacean susceptibility to hazards. This study may help facilitate developing an effective conservation plan for coastal cetaceans focusing on reducing fisheries interactions, habitat degradation and pollution as mechanisms for ultimately increasing species resilience.

  19. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer

    Science.gov (United States)

    DENG, YANMING; FENG, WEINENG; WU, JING; CHEN, ZECHENG; TANG, YICONG; ZHANG, HUA; LIANG, JIANMIAO; XIAN, HAIBING; ZHANG, SHUNDA

    2014-01-01

    It has been demonstrated that erlotinib is effective in treating patients with brain metastasis from non-small-cell lung cancer. However, the number of studies determining the erlotinib concentration in these patients is limited. The purpose of this study was to measure the concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung carcinoma. Six patients were treated with the standard recommended daily dose of erlotinib (150 mg) for 4 weeks. All the patients had previously received chemotherapy, but no brain radiotherapy. At the end of the treatment period, blood plasma and cerebrospinal fluid samples were collected and the erlotinib concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average erlotinib concentration in the blood plasma and the cerebrospinal fluid was 717.7±459.7 and 23.7±13.4 ng/ml, respectively. The blood-brain barrier permeation rate of erlotinib was found to be 4.4±3.2%. In patients with partial response (PR), stable disease (SD) and progressive disease (PD), the average concentrations of erlotinib in the cerebrospinal fluid were 35.5±19.0, 19.1±8.7 and 16.4±5.9 ng/ml, respectively. In addition, the efficacy rate of erlotinib for metastatic brain lesions was 33.3%, increasing to 50% in patients with EGFR mutations. However, erlotinib appeared to be ineffective in cases with wild-type EGFR. In conclusion, a relatively high concentration of erlotinib was detected in the cerebrospinal fluid of patients with brain metastases from non-small-cell lung cancer. Thus, erlotinib may be considered as a treatment option for this patient population. PMID:24649318

  20. Prognostic indices in stereotactic radiotherapy of brain metastases of non-small cell lung cancer.

    Science.gov (United States)

    Kaul, David; Angelidis, Alexander; Budach, Volker; Ghadjar, Pirus; Kufeld, Markus; Badakhshi, Harun

    2015-11-26

    Our purpose was to analyze the long-term clinical outcome and to identify prognostic factors after Linac-based stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) on patients with brain metastases (BM) from non-small cell lung cancer (NSCLC). We performed a retrospective analysis of survival on 90 patients who underwent SRS or FSRT of intracranial NSCLC metastases between 04/2004 and 05/2014 that had not undergone prior surgery or whole brain radiotherapy (WBRT) for BM. Follow-up data was analyzed until May 2015. Potential prognostic factors were examined in univariable and multivariable analyses. The Golden Grading System (GGS), the disease-specific graded prognostic assessment (DS-GPA), the RADES II prognostic index as well as the NSCLC-specific index proposed by Rades et al. in 2013 (NSCLC-RADES) were calculated and their predictive values were tested in univariable analysis. The median follow-up time of the surviving patients was 14 months. The overall survival (OS) rate was 51 % after 6 months and 29.9 % after 12 months. Statistically significant factors of better OS after univariable analysis were lower International Union Against Cancer (UICC) stage at first diagnosis, histology of adenocarcinoma, prior surgery of the primary tumor and lower total BM volume. After multivariable analysis adenocarcinoma histology remained a significant factor; higher Karnofsky Performance Score (KPS) and the presence of extracranial metastases (ECM) were also significant. The RADES II and the NSCLC-RADES indices were significant predictors of OS. However, the NSCLC-RADES failed to differentiate between intermediate- and low-risk patients. The DS-GPA and GGS were not statistically significant predictors of survival in univariable analysis. The ideal prognostic index has not been defined yet. We believe that more specific indices will be developed in the future. Our results indicate that the histologic subtype of NSCLC could add to the prognostic

  1. Brain metastasis of small cell lung carcinoma. Comparison of Gd-DTPA enhanced magnetic resonance imaging and enhanced computerized tomography

    International Nuclear Information System (INIS)

    Nomoto, Yasushi; Yamaguchi, Yutaka; Miyamoto, Tadaaki.

    1994-01-01

    Small cell carcinoma of the lung (SCLC) frequently metastasizes into the brain, resulting in serious influences upon prognosis. Delayed brain damage caused by prophylactic cranial irradiation (PCI) is also problematic. Gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI) was performed to detect early brain metastasis from SCLC, and its usefulness was compared with contrast computerized tomography (CT). Among 25 SCLC patients, brain metastasis was detected in 11 by MRI and in 10 by CT, although six of them were completely asymptomatic. In the 11 patients, 6.3 and 2.4 lesions were respectively detected on average by MRI and CT. The ability of MRI to detect metastatic lesions of ≥15 mm diameter did not differ from that of CT, but became different as lesions became smaller (P<0.002), and MRI had a decided advantage over CT because as many as 30 lesions of ≤5 mm diameter were detected by MRI, whereas such lesions visualized on CT numbered only one (P<0.0001). MRI was incomparably superior to CT (P<0.0004) for subtentorial lesions since 18 lesions were detected on MRI, but only three, measuring ≥25 mm in diameter, were demonstrated on CT. Gd-DTPA enhanced MRI was determined to be extremely useful in the early diagnosis of SCLC brain metastasis. MRI was thought to reduce delayed brain damage caused by PCI if performed according to an adequate schedule. (author)

  2. Brain Functional Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: an ICA fMRI Study

    Science.gov (United States)

    Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.

    2017-11-01

    Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.

  3. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    Science.gov (United States)

    Bai, Hao; Xu, Jianlin; Yang, Haitang; Jin, Bo; Lou, Yuqing; Wu, Dan; Han, Baohui

    2016-01-01

    Introduction Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. Methods From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS) or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital. Results A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS) were available for survival analysis. The overall survival (OS) for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9) and 16.4 months (95% CI 8.8–24.1), respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08). Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2), compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46). Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. Conclusion There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit. PMID:27471395

  4. Role of prophylactic brain irradiation in limited stage small cell lung cancer: clinical, neuropsychologic, and CT sequelae

    International Nuclear Information System (INIS)

    Laukkanen, E.; Klonoff, H.; Allan, B.; Graeb, D.; Murray, N.

    1988-01-01

    Ninety-four patients with limited stage small cell lung cancer treated between 1981 and 1985 with a regimen including prophylactic brain irradiation (PBI) after combination chemotherapy were assessed for compliance with PBI, brain relapse, and neurologic morbidity. Seventy-seven percent of patients had PBI and of these, 22% developed brain metastases after a median time of 11 months post treatment. The brain was the apparent unique initial site of relapse in 10% of PBI cases but more commonly brain relapse was preceded or accompanied by failure at other sites, especially the chest. Brain metastases were the greatest cause of morbidity in 50% of PBI failures. Twelve of 14 PBI patients alive 2 years after treatment had oncologic, neurologic, and neuropsychological evaluation, and brain CT. All long-term survivors were capable of self care and none fulfilled diagnostic criteria for dementia, with three borderline cases. One third had pretreatment neurologic dysfunction and two thirds post treatment neurologic symptoms, most commonly recent memory loss. Fifty percent had subtle motor findings. Intellectual functioning was at the 38th percentile with most patients having an unskilled occupational history. Neuropsychologic impairment ratings were borderline in three cases and definitely impaired in seven cases. CT scans showed brain atrophy in all cases with mild progression in those having a pre-treatment baseline. Periventricular and subcortical low density lesions identical to the CT appearance of subcortical arteriosclerotic encephalopathy were seen in 82% of posttreatment CT studies, and lacunar infarcts in 54%. Neuropsychologic impairment scores and the extent of CT periventricular low density lesions were strongly associated

  5. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    Science.gov (United States)

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  6. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    International Nuclear Information System (INIS)

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K

    2014-01-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra

  7. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    International Nuclear Information System (INIS)

    Angelis, G I; Kyme, A Z; Ryder, W J; Fulton, R R; Meikle, S R

    2014-01-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies. (paper)

  8. Complex networks generated by the Penna bit-string model: Emergence of small-world and assortative mixing

    Science.gov (United States)

    Li, Chunguang; Maini, Philip K.

    2005-10-01

    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.

  9. Phase I Study of Concurrent Whole Brain Radiotherapy and Erlotinib for Multiple Brain Metastases From Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lind, Joline S.W.; Lagerwaard, Frank J.; Smit, Egbert F.; Senan, Suresh

    2009-01-01

    Purpose: Erlotinib has shown activity in patients with brain metastases from non-small-cell lung cancer. The present dose-escalation Phase I trial evaluated the toxicity of whole brain radiotherapy (WBRT) with concurrent and maintenance erlotinib in this patient group. Methods and Materials: Erlotinib (Cohort 1, 100 mg/d; Cohort 2, 150 mg/d) was started 1 week before, and continued during, WBRT (30 Gy in 10 fractions). Maintenance erlotinib (150 mg/d) was continued until unacceptable toxicity or disease progression. Results: A total of 11 patients completed WBRT, 4 in Cohort 1 and 7 in Cohort 2. The median duration of erlotinib treatment was 83 days. No treatment-related neurotoxicity was observed. No treatment-related Grade 3 or greater toxicity occurred in Cohort 1. In Cohort 2, 1 patient developed a Grade 3 acneiform rash and 1 patient had Grade 3 fatigue. Two patients in Cohort 2 developed erlotinib-related interstitial lung disease, contributing to death during maintenance therapy. The median overall survival and interval to progression was 133 and 141 days, respectively. Six patients developed extracranial progression; only 1 patient had intracranial progression. In 7 patients with follow-up neuroimaging at 3 months, 5 had a partial response and 2 had stable disease. Conclusion: WBRT with concurrent erlotinib is well tolerated in patients with brain metastases from non-small-cell lung cancer. The suggestion of a high intracranial disease control rate warrants additional study.

  10. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hao; Jiang Huijun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-10-15

    Highlights: > We compare neuronal dynamics in dependence on two types of delayed coupling. > Distinct results induced by different delayed coupling can be achieved. > Time delays in type 1 coupling can induce a most spatiotemporal ordered state. > For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {l_brace}x{sub j}(t - {tau}) - x{sub i}(t){r_brace} and {l_brace}x{sub j}(t - {tau}) - x{sub i}(t - {tau}){r_brace}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time {tau} is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  11. Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling

    International Nuclear Information System (INIS)

    Wu Hao; Jiang Huijun; Hou Zhonghuai

    2011-01-01

    Highlights: → We compare neuronal dynamics in dependence on two types of delayed coupling. → Distinct results induced by different delayed coupling can be achieved. → Time delays in type 1 coupling can induce a most spatiotemporal ordered state. → For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {x j (t - τ) - x i (t)} and {x j (t - τ) - x i (t - τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.

  12. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units

    International Nuclear Information System (INIS)

    Kuegler, S.; Lingor, P.; Schoell, U.; Zolotukhin, S.; Baehr, M.

    2003-01-01

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology

  13. The UNDP/World Bank monitoring program on small scale biomass gasifiers (BTG's experience on tar measurements)

    Energy Technology Data Exchange (ETDEWEB)

    Knoef, H.A.M. [Biomass Technology Group BTG, Enschede (Netherlands)

    2000-07-01

    By the time that small-scale biomass gasifiers were 'rediscovered' and promoted for use in developing countries (1970s), UNDP and the World Bank were well aware of the pitfalls of previous attempts to diffuse decentralized energy technologies. Therefore they decided to initiate a technology assessment programme before endorsing and/or stimulating a widespread gasifier introduction programme in developing countries. On July 1, 1983, the UNDP/WB worldwide Small-scale biomass gasifier monitoring was initiated, which was to {sup c}ollect uniform data on the actual field performance, economics, safety and public acceptability of biomass gasifiers currently operating in developing countries{sup .} For the UNDP/WB program BTG developed a tar measuring protocol which was used at twenty gasifiers worldwide (Indonesia, Philippines, Brazil, Mali, Seychelles, Vanuatu and Burundi). Other parameters monitored include pressure and temperatures at various spots, gasflow, fuel consumption, lubrication oil analyses, gas-composition analyses, emission measurements. The seven year programme showed that most of donor funded projects failed, mainly because there was not sufficient commitment from involved parties. National programs on the utilization of loca available biomass resources mostly failed because the fuel did not suit the requirements of gasifier reactor. In case of proper project design/set-up most of the small scale biomass gasifiers operated without major problems. Examples of such projects are the ones in Balong and Majalengka (Indonesia) Onesua (Vanuatu), Espara Feliz (Brazil) and Dogofiry (Mali). A motivated team of technicians, operators, managers is one the most important items within this respect. Most of the heat gasifiers are installed commercially and are much more successful compared to the subsidized power gasifiers. Local manufactured gasifiers are generally constructed of low quality materials causing frequent technical problems. However, locally

  14. Accelerated Fractionation In The Treatment of Brain Metastasis From Non-Small Cell Carcinoma of The Lung

    International Nuclear Information System (INIS)

    Hong, Seong Eon

    1994-01-01

    Purpose: Metastatic cancer to the brain is a major problem for the patients with bronchogenic carcinoma, and most of these patients have a limited survival expectancy. To increase tumor control and/or to decrease late morbidity with possible shortening in over-all treatment period, multiple daily fraction technique for brain metastasis was performed. The author represented the results of accelerated fractionation radiotherapy in patients with brain metastases from non-small cell lung cancer. Materials and Methods: Twenty-six patients with brain metastases from non-small cell lung cancer between 1991 and 1993 received brain radiotherapy with a total dose of 48 Gy, at 2 Gy per fraction, twice a day with a interfractional period of 6 hours, and delivered 5 days a week. The whole brain was treated to 40 Gy and boost dose escalated to 8 Gy for single metastatic lesion by reduced field. Twenty-four of the 26 patients completed the radiotherapy. Radiotherapy was interrupted in two patients suggesting progressive intracerebral disease. Results: This radiotherapy regimen appears to be comparable to the conventional schema in relief from symptoms. Three of the 24 patients experienced nausea and or vomiting during the course of treatment because of acute irradiation toxicity. The author observed no excessive toxicity with escalating dose of irradiation. An increment in median survival, although not statistically significant (p>0.05), was noted with escalating doses(48 Gy) of accelerated fractionation (7 months) compared to conventional treatment(4.5 months). Median survival also increased in patients with brain solitary metastasis(9 months) compared to multiple extrathoracic sites(4 months), and in patients with good performance status(9 months versus 3.5 months), they were statistically significant(p<0.01). Conclusion: The increment in survival in patients with good prognostic factors such as controlled primary lesion, metastasis in brain only, and good performance status

  15. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    Directory of Open Access Journals (Sweden)

    Bai H

    2016-07-01

    Full Text Available Hao Bai,1,* Jianlin Xu,1,* Haitang Yang,2,* Bo Jin,1 Yuqing Lou,1 Dan Wu,3 Baohui Han1 1Department of Pulmonary, 2Department of Pathology, 3Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Introduction: Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. Methods: From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital.Results: A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS were available for survival analysis. The overall survival (OS for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9 and 16.4 months (95% CI 8.8–24.1, respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08. Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2, compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46. Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. Conclusion: There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit. Keywords: non-small-cell lung carcinoma

  16. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi [Amakusa Medical Center, Department of Radiology, Amakusa, Kumamoto (Japan); Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2017-09-15

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  17. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    International Nuclear Information System (INIS)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi; Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki; Harada, Kazunori

    2017-01-01

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  18. Statistical investigation of avalanches of three-dimensional small-world networks and their boundary and bulk cross-sections

    Science.gov (United States)

    Najafi, M. N.; Dashti-Naserabadi, H.

    2018-03-01

    In many situations we are interested in the propagation of energy in some portions of a three-dimensional system with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-range links (α ) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two regimes of α are considered in this work. For sufficiently small α s the dominant behavior of the system is just like that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding ghost model) m2˜α for the three-dimensional system as well as its two-dimensional cross-sections.

  19. Topology of the Italian airport network: A scale-free small-world network with a fractal structure?

    International Nuclear Information System (INIS)

    Guida, Michele; Maria, Funaro

    2007-01-01

    In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected

  20. Validation of the RTOG recursive partitioning analysis (RPA) classification for small-cell lung cancer-only brain metastases

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Adelstein, David J.; Mekhail, Tarek M.; Rice, Thomas W.; Stevens, Glen H.J.; Lee, S.-Y.; Suh, John H.

    2007-01-01

    Purpose: Radiation Therapy Oncology Group (RTOG) developed a prognostic classification based on a recursive partitioning analysis (RPA) of patient pretreatment characteristics from three completed brain metastases randomized trials. Clinical trials for patients with brain metastases generally exclude small-cell lung cancer (SCLC) cases. We hypothesize that the RPA classes are valid in the setting of SCLC brain metastases. Methods and Materials: A retrospective review of 154 SCLC patients with brain metastases treated between April 1983 and May 2005 was performed. RPA criteria used for class assignment were Karnofsky performance status (KPS), primary tumor status (PT), presence of extracranial metastases (ED), and age. Results: Median survival was 4.9 months, with 4 patients (2.6%) alive at analysis. Median follow-up was 4.7 months (range, 0.3-40.3 months). Median age was 65 (range, 42-85 years). Median KPS was 70 (range, 40-100). Number of patients with controlled PT and no ED was 20 (13%) and with ED, 27 (18%); without controlled PT and ED, 34 (22%) and with ED, 73 (47%). RPA class distribution was: Class I: 8 (5%); Class II: 96 (62%); Class III: 51 (33%). Median survivals (in months) by RPA class were: Class I: 8.6; Class II: 4.2; Class III: 2.3 (p = 0.0023). Conclusions: Survivals for SCLC-only brain metastases replicate the results from the RTOG RPA classification. These classes are therefore valid for brain metastases from SCLC, support the inclusion of SCLC patients in future brain metastases trials, and may also serve as a basis for historical comparisons

  1. Emergence of ultrafast sparsely synchronized rhythms and their responses to external stimuli in an inhomogeneous small-world complex neuronal network.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2017-09-01

    We consider an inhomogeneous small-world network (SWN) composed of inhibitory short-range (SR) and long-range (LR) interneurons, and investigate the effect of network architecture on emergence of synchronized brain rhythms by varying the fraction of LR interneurons p long . The betweenness centralities of the LR and SR interneurons (characterizing the potentiality in controlling communication between other interneurons) are distinctly different. Hence, in view of the betweenness, SWNs we consider are inhomogeneous, unlike the "canonical" Watts-Strogatz SWN with nearly the same betweenness centralities. For small p long , the load of communication traffic is much concentrated on a few LR interneurons. However, as p long is increased, the number of LR connections (coming from LR interneurons) increases, and then the load of communication traffic is less concentrated on LR interneurons, which leads to better efficiency of global communication between interneurons. Sparsely synchronized rhythms are thus found to emerge when passing a small critical value p long (c) (≃0.16). The population frequency of the sparsely synchronized rhythm is ultrafast (higher than 100 Hz), while the mean firing rate of individual interneurons is much lower (∼30 Hz) due to stochastic and intermittent neural discharges. These dynamical behaviors in the inhomogeneous SWN are also compared with those in the homogeneous Watts-Strogatz SWN, in connection with their network topologies. Particularly, we note that the main difference between the two types of SWNs lies in the distribution of betweenness centralities. Unlike the case of the Watts-Strogatz SWN, dynamical responses to external stimuli vary depending on the type of stimulated interneurons in the inhomogeneous SWN. We consider two cases of external time-periodic stimuli applied to sub-populations of the LR and SR interneurons, respectively. Dynamical responses (such as synchronization suppression and enhancement) to these two cases of

  2. Designing Agricultural Development Projects for the Small Scale Farmers: Some Lessons from the World Bank Assistance Small Holder Oil Palm Development Scheme in Nigeria

    Science.gov (United States)

    Orewa, S. I.

    The study was carried out to investigate farmers reasons for intercropping their oil palm farms with food and other cash crops rather than the sole oil palm planting arrangement specified for participation in the World Bank Assistance Smallholder Oil Palm development project financed during the 1975-83 period. The study was conducted at the Ekuku-Agbor Tree Crop Unit Zone (to the East) and Mosogar Tree Crop Unit Zone (to the Southwest) of the old Bendel State of Nigeria. A total of 35 oil palm farmers were randomly selected from each zone for the study. The study tried to identify the size of oil palm cultivated, types of food and cash crops planted and the proportion consumed and sold and the sufficiency of labour for various farm activities. The study showed that the average oil palm farm size at Ekuku-Agbor zone was smaller (about 1.57 ha) and more fragmented while for Mosogar zone it was 2.28 ha. However a greater percentage (over 65%) of the farms at both locations were within 0.01-2.00 ha farm size range which could be said to be relatively small. The study revealed that among other factors the farmers desire to ensure adequate family food needs which equates to food security and some cash to meet regular family financial needs necessitated their intercropping of the oil palm farms. Others include the need to maximize the returns from the use of labour which they considered a major limiting factor in farm maintenance and to take advantage of the relative high unit price of cassava and its products that prevailed then by cultivating on any available land space including the palm plantations and thereby increasing their farm income.

  3. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors.

    Science.gov (United States)

    Miladi, Imen; Duc, Géraldine Le; Kryza, David; Berniard, Aurélie; Mowat, Pierre; Roux, Stéphane; Taleb, Jacqueline; Bonazza, Pauline; Perriat, Pascal; Lux, François; Tillement, Olivier; Billotey, Claire; Janier, Marc

    2013-09-01

    Gadolinium-based nanoparticles are novel objects with interesting physical properties, allowing their use for diagnostic and therapeutic applications. Gadolinium-based nanoparticles were imaged following intravenous injection in healthy rats and rats grafted with 9L gliosarcoma tumors using magnetic resonance imaging and scintigraphic imaging. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles were rapidly cleared essentially by renal excretion. Accumulation of these nanoparticles in 9L gliosarcoma tumors implanted in the rat brain was quantitated. This passive and long-duration accumulation of gadolinium-based nanoparticles in tumor, which is related to disruption of the blood-brain barrier, is in good agreement with the use of these nanoparticles as radiosensitizers for brain tumors.

  4. Small-World Optimization Algorithm and Its Application in a Sequencing Problem of Painted Body Storage in a Car Company

    Directory of Open Access Journals (Sweden)

    Tian Zhipeng

    2015-01-01

    Full Text Available In the car company, the painted body storage (PBS is set up between the paint shop and the assembly shop. It stores the vehicles in production and reorders the vehicles sequence. To improve production efficiency of assembly shop, a mathematical model is developed aiming at minimizing the consumption rate of options and the total overtime and idle time. As the PBS sequencing process contains upstream sequence inbound and downstream sequence outbound, this paper proposes an algorithm with two phases. In the first phase, the discrete small-world optimization algorithm (DSWOA is applied to schedule the inbound sequence by employing the short-range nodes and the long-range nodes in order to realize the global searching. In the second phase, the heuristic algorithm is applied to schedule the outbound sequencing. The proposed model and algorithm are applied in an automobile enterprise. The results indicate that the two-phase algorithm is suitable for the PBS sequencing problem and the DSWOA has a better searching performance than GA in this problem. The sensitivity of model parameters is analyzed as well.

  5. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  7. Outcome and prognostic factors in single brain metastases from small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Denise; Koenig, Laila [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Adeberg, Sebastian; Debus, Juergen [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Bozorgmehr, Farastuk; Thomas, Michael; Steins, Martin [Heidelberg University, Department of Thoracic Oncology, Thoraxklinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); Opfermann, Nils; Hoerner-Rieber, Juliane; Rieken, Stefan [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Kappes, Jutta [Heidelberg University, Department of Pneumology, Thoraxklinik, Heidelberg (Germany); Unterberg, Andreas [University Hospital Heidelberg, Department of Neurosurgery, INF 400, Heidelberg (Germany); Herth, Felix [Heidelberg University, Department of Pneumology, Thoraxklinik, Heidelberg (Germany); German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); Heussel, Claus Peter [German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); University of Heidelberg, Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, Heidelberg (Germany); University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg (Germany); Warth, Arne [German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (DE); Heidelberg University, Institute of Pathology, Heidelberg (DE)

    2018-02-15

    Whole brain radiation therapy (WBRT) is historically the standard of care for patients with brain metastases (BM) from small-cell lung cancer (SCLC), although locally ablative treatments are the standard of care for patients with 1-4 BM from other solid tumors. The objective of this analysis was to find prognostic factors influencing overall survival (OS) and intracranial progression-free survival (iPFS) in SCLC patients with single BM (SBM) treated with WBRT. A total of 52 patients were identified in the authors' cancer center database with histologically confirmed SCLC and contrast-enhanced magnet resonance imaging (MRI) or computed tomography (CT), which confirmed SBM between 2006 and 2015 and were therefore treated with WBRT. A Kaplan-Meier survival analysis was performed for OS analyses. The log-rank (Mantel-Cox) test was used to compare survival curves. Univariate Cox proportional-hazards ratios (HRs) were used to assess the influence of cofactors on OS and iPFS. The median OS after WBRT was 5 months and the median iPFS after WBRT 16 months. Patients that received surgery prior to WBRT had a significantly longer median OS of 19 months compared to 5 months in the group receiving only WBRT (p = 0.03; HR 2.24; 95% confidence interval [CI] 1.06-4.73). Patients with synchronous disease had a significantly longer OS compared to patients with metachronous BM (6 months vs. 3 months, p = 0.005; HR 0.27; 95% CI 0.11-0.68). Univariate analysis for OS revealed a statistically significant effect for metachronous disease (HR 2.25; 95% CI 1.14-4.46; p = 0.019), initial response to first-line chemotherapy (HR 0.58; 95% CI 0.35-0.97; p = 0.04), and surgical resection (HR 0.36; 95% CI 0.15-0.88; p = 0.026). OS was significantly affected by metachronous disease in multivariate analysis (HR 2.20; 95% CI 1.09-4.45; p = 0.028). Univariate analysis revealed that surgery followed by WBRT can improve OS in patients with SBM in SCLC. Furthermore, synchronous disease and response

  8. Benefit of brain prophylactic irradiation in patients suffering from a small-cell bronchial cancer: retrospective study on 289 cases

    International Nuclear Information System (INIS)

    Assouline, A.; Tai, P.; Jancewicz, M.; Joseph, K.; Krzisch, C.; Yu, E.

    2011-01-01

    The authors report a study which aimed at determining the benefit of a brain prophylactic irradiation for patients suffering from a localized small-cell bronchial cancer and in partial response to the local-regional treatment of their disease. A retrospective analysis has been performed on a set of 289 patients who had been treated by chemo-radiotherapy with or without brain prophylactic irradiation between 1981 and 2007. Data are discussed in terms of remission level, survival with respect to the level of response to the local-regional treatment. Depending on this response level the irradiation increases or not the probability of global survival, or the probability of specific survival. Short communication

  9. A small frog that makes a big difference: brain wave testing of TV advertisements.

    Science.gov (United States)

    Ohme, Rafal; Matukin, Michal

    2012-01-01

    It is important for the marketing industry to better understand the role of the unconscious and emotions in advertising communication and shopping behavior. Yet, traditional consumer research is not enough for such a purpose. Conventional paper-and-pencil or verbal declarations favor conscious pragmatism and functionality as the principles underlying consumer decisions and motives. These approaches should be combined with an emerging discipline (consumer neuroscience or neuromarketing) to examine the brain and its functioning in the context of consumer choices. It has been widely acknowledged that patterns of brain activity are closely related to consumers cognition and behavior. Thus, the analysis of consumers neurophysiology may increase the understanding of how consumers process incoming information and how they use their memory and react emotionally (See "Three Types of Brain Wave Research on TV Advertisements"): Moreover, as the majority of consumer mental processes occur below the level of conscious awareness, observations of the brain reactions enable researchers to reach the very core (which is consciously inaccessible) foundations of consumer decisions, emotions, motivations, and preferences.

  10. Brain regions for sound processing and song release in a small grasshopper.

    Science.gov (United States)

    Balvantray Bhavsar, Mit; Stumpner, Andreas; Heinrich, Ralf

    2017-05-01

    We investigated brain regions - mostly neuropils - that process auditory information relevant for the initiation of response songs of female grasshoppers Chorthippus biguttulus during bidirectional intraspecific acoustic communication. Male-female acoustic duets in the species Ch. biguttulus require the perception of sounds, their recognition as a species- and gender-specific signal and the initiation of commands that activate thoracic pattern generating circuits to drive the sound-producing stridulatory movements of the hind legs. To study sensory-to-motor processing during acoustic communication we used multielectrodes that allowed simultaneous recordings of acoustically stimulated electrical activity from several ascending auditory interneurons or local brain neurons and subsequent electrical stimulation of the recording site. Auditory activity was detected in the lateral protocerebrum (where most of the described ascending auditory interneurons terminate), in the superior medial protocerebrum and in the central complex, that has previously been implicated in the control of sound production. Neural responses to behaviorally attractive sound stimuli showed no or only poor correlation with behavioral responses. Current injections into the lateral protocerebrum, the central complex and the deuto-/tritocerebrum (close to the cerebro-cervical fascicles), but not into the superior medial protocerebrum, elicited species-typical stridulation with high success rate. Latencies and numbers of phrases produced by electrical stimulation were different between these brain regions. Our results indicate three brain regions (likely neuropils) where auditory activity can be detected with two of these regions being potentially involved in song initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Cruz-Lemini, Mónica; Bargalló, Núria; Gratacós, Eduard; Sanz-Cortés, Magdalena

    2015-08-01

    We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. A total of 40 infants born small (birthweight growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. On-Orbit Verification of Luminance Based Target Tracking and Faint Body Extractions by a Small Telescope on the World's First Micro-Interplanetary Space Probe

    OpenAIRE

    Ariu, Kaito; Ikari, Satoshi; Kawabata, Yosuke; Nagata, Kazutaka; Matsuguma, Toshihiro; Inamori, Takaya; Miyamura, Norihide; Funase, Ryu; Nakasuka, Shinichi

    2016-01-01

    In recent years, low cost and quick development of very small satellites ranging from CubeSats of 1 kg to micro-satellites of approximately 50 kg have allowed advances in space development and application. Although most of these satellites are in Earth orbits, a small spacecraft for deep-space missions has been developed and launched for the first time in the world. The Proximate Object Close Flyby with Optical Navigation (PROCYON) micro-interplanetary spacecraft, developed by the University ...

  13. X-ray microdiffraction on a small piece of skin of the world-famous 'OETZI' (Tyrolean mummified glacier man)

    International Nuclear Information System (INIS)

    Brechbuehl, J.; Kern, A.; Jakob, H.; Tessadri, R.

    2002-01-01

    Full text: Recently we performed microdiffraction measurements on a small piece of skin (2 mm x 2 mm) of the world-famous 'Oetzi' which is one of the best preserved mummified humans ever discovered (EDWARDS et al., 1996). He has been found in a glacial field in the Tyrolean Oetztaler Alps between Austria and Italy in 1991. His age is estimated to about 5300 years. An interesting mineralogical detail of the Iceman is the growth of the mineral vivianite Fe 3 (PO 4 ) 2 .8H 2 O on the skin in contact with the surrounding weathered rocks. Vivianite is not uncommon in connection with mummies from bogs (anaerobic, non oxidizing conditions); in the case of the Iceman this seems to be the first report of vivianite from mummified humans in glacier environment (TESSADRI et al., 1996). Measurements have been performed using the Bruker AXS D8 Discover with GADDS fitted with the HI-STAR area detector. This system allows the identification and characterisation of smallest phase amounts (a few micrograms in the present case) in the shortest time possible. The blue-coloured vivianite is not continuously dispersed over the skin of 'Oetzi'; it is concentrated in form of visible particles of microscopic dimensions. With the help of the laser-video-microscope of the GADDS these particles can be recognized and precisely adjusted for microdiffraction measurements with high local resolution. Unlikely to former powder measurements with conventional diffractometers we were able to detect much more diffraction lines than the strongest reflections of vivianite. The given results impressively demonstrate the efficiency and capability of the GADDS for the phase identification in micron regions even under unpropitious conditions (weak line intensities, high background radiation). Copyright (2002) Australian X-ray Analytical Association Inc

  14. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain

    International Nuclear Information System (INIS)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob

    2006-01-01

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  15. Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Lin Min; Chen Tianlun

    2005-01-01

    A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced. We find that our model displays the power-law behavior accompanied with the large-scale synchronized activities among the units. And the different connectivity topologies lead to different behaviors in models of integrate-and-fire neurons.

  16. Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems

    Science.gov (United States)

    Aldrich, Preston R.; El-Zabet, Jermeen; Hassan, Seerat; Briguglio, Joseph; Aliaj, Enela; Radcliffe, Maria; Mirza, Taha; Comar, Timothy; Nadolski, Jeremy; Huebner, Cynthia D.

    2015-11-01

    Several studies have shown that human transportation networks exhibit small-world structure, meaning they have high local clustering and are easily traversed. However, some have concluded this without statistical evaluations, and others have compared observed structure to globally random rather than planar models. Here, we use Monte Carlo randomizations to test US transportation infrastructure data for small-worldness. Coarse-grained network models were generated from GIS data wherein nodes represent the 3105 contiguous US counties and weighted edges represent the number of highway or railroad links between counties; thus, we focus on linkage topologies and not geodesic distances. We compared railroad and highway transportation networks with a simple planar network based on county edge-sharing, and with networks that were globally randomized and those that were randomized while preserving their planarity. We conclude that terrestrial transportation networks have small-world architecture, as it is classically defined relative to global randomizations. However, this topological structure is sufficiently explained by the planarity of the graphs, and in fact the topological patterns established by the transportation links actually serve to reduce the amount of small-world structure.

  17. Coronal in vivo forward-imaging of rat brain morphology with an ultra-small optical coherence tomography fiber probe

    Science.gov (United States)

    Xie, Yijing; Bonin, Tim; Löffler, Susanne; Hüttmann, Gereon; Tronnier, Volker; Hofmann, Ulrich G.

    2013-02-01

    A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 μm axial resolution was used. A composite 125 μm diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 μm) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery.

  18. Use of Stereotactic Radiosurgery for Brain Metastases From Non-Small Cell Lung Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Lia M., E-mail: lhalasz@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Weeks, Jane C.; Neville, Bridget A.; Taback, Nathan [Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Punglia, Rinaa S. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2013-02-01

    Purpose: The indications for treatment of brain metastases from non-small cell lung cancer (NSCLC) with stereotactic radiosurgery (SRS) remain controversial. We studied patterns, predictors, and cost of SRS use in elderly patients with NSCLC. Methods and Materials: Using the Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we identified patients with NSCLC who were diagnosed with brain metastases between 2000 and 2007. Our cohort included patients treated with radiation therapy and not surgical resection as initial treatment for brain metastases. Results: We identified 7684 patients treated with radiation therapy within 2 months after brain metastases diagnosis, of whom 469 (6.1%) cases had billing codes for SRS. Annual SRS use increased from 3.0% in 2000 to 8.2% in 2005 and varied from 3.4% to 12.5% by specific SEER registry site. After controlling for clinical and sociodemographic characteristics, we found SRS use was significantly associated with increasing year of diagnosis, specific SEER registry, higher socioeconomic status, admission to a teaching hospital, no history of participation in low-income state buy-in programs (a proxy for Medicaid eligibility), no extracranial metastases, and longer intervals from NSCLC diagnosis. The average cost per patient associated with radiation therapy was 2.19 times greater for those who received SRS than for those who did not. Conclusions: The use of SRS in patients with metastatic NSCLC increased almost 3-fold from 2000 to 2005. In addition, we found significant variations in SRS use across SEER registries and socioeconomic quartiles. National practice patterns in this study suggested both a lack of consensus and an overall limited use of the approach among elderly patients before 2008.

  19. Use of Stereotactic Radiosurgery for Brain Metastases From Non-Small Cell Lung Cancer in the United States

    International Nuclear Information System (INIS)

    Halasz, Lia M.; Weeks, Jane C.; Neville, Bridget A.; Taback, Nathan; Punglia, Rinaa S.

    2013-01-01

    Purpose: The indications for treatment of brain metastases from non-small cell lung cancer (NSCLC) with stereotactic radiosurgery (SRS) remain controversial. We studied patterns, predictors, and cost of SRS use in elderly patients with NSCLC. Methods and Materials: Using the Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we identified patients with NSCLC who were diagnosed with brain metastases between 2000 and 2007. Our cohort included patients treated with radiation therapy and not surgical resection as initial treatment for brain metastases. Results: We identified 7684 patients treated with radiation therapy within 2 months after brain metastases diagnosis, of whom 469 (6.1%) cases had billing codes for SRS. Annual SRS use increased from 3.0% in 2000 to 8.2% in 2005 and varied from 3.4% to 12.5% by specific SEER registry site. After controlling for clinical and sociodemographic characteristics, we found SRS use was significantly associated with increasing year of diagnosis, specific SEER registry, higher socioeconomic status, admission to a teaching hospital, no history of participation in low-income state buy-in programs (a proxy for Medicaid eligibility), no extracranial metastases, and longer intervals from NSCLC diagnosis. The average cost per patient associated with radiation therapy was 2.19 times greater for those who received SRS than for those who did not. Conclusions: The use of SRS in patients with metastatic NSCLC increased almost 3-fold from 2000 to 2005. In addition, we found significant variations in SRS use across SEER registries and socioeconomic quartiles. National practice patterns in this study suggested both a lack of consensus and an overall limited use of the approach among elderly patients before 2008.

  20. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains.

    Directory of Open Access Journals (Sweden)

    Barbara L Finlay

    2016-09-01

    Full Text Available The cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features.

  1. Pencilbeam irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model.

    Science.gov (United States)

    Schültke, Elisabeth; Trippel, Michael; Bräuer-Krisch, Elke; Renier, Michel; Bartzsch, Stefan; Requardt, Herwig; Döbrössy, Máté D; Nikkhah, Guido

    2013-01-01

    We have conducted the first in-vivo experiments in pencilbeam irradiation, a new synchrotron radiation technique based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. In an animal model of adult C57 BL/6J mice we have determined technical and physiological limitations with the present technical setup of the technique. Fifty-eight animals were distributed in eleven experimental groups, ten groups receiving whole brain radiotherapy with arrays of 50 µm wide beams. We have tested peak doses ranging between 172 Gy and 2,298 Gy at 3 mm depth. Animals in five groups received whole brain radiotherapy with a center-to-center (ctc) distance of 200 µm and a peak-to-valley ratio (PVDR) of ∼ 100, in the other five groups the ctc was 400 µm (PVDR ∼ 400). Motor and memory abilities were assessed during a six months observation period following irradiation. The lower dose limit, determined by the technical equipment, was at 172 Gy. The LD50 was about 1,164 Gy for a ctc of 200 µm and higher than 2,298 Gy for a ctc of 400 µm. Age-dependent loss in motor and memory performance was seen in all groups. Better overall performance (close to that of healthy controls) was seen in the groups irradiated with a ctc of 400 µm.

  2. [Three Essential Shared Capabilities for Young Psychiatrists: Brain, Real-world, and Life-course Principles toward Values-based Psychiatry].

    Science.gov (United States)

    Kasai, Kiyoto

    2015-01-01

    The discipline of psychiatry promotes well-being and recovery based on a comprehensive understanding of the patient from the perspectives of the brain, real-world, and life-course. Pursuant to efforts toward addressing social issues at a regional and national level, it is assumed that the psychiatrist can assist individuals based on an understanding of these three perspectives. This tripartite relationship goes beyond the history of extreme reductionism in neuroscience and the aftermath resulting from the anti-psychiatry movement to provide a foundation for the development of psychiatry and a theoretical groundwork for such basic psychiatric issues as what role pharmacotherapy plays in psychiatric treatment, just why the lives of people living in the community are thought to be important to an individual's well-being, and just what constitutes recovery. Humans have come to possess highly developed brain and mental functions as a result of the adaptation to the social environment that takes place as part of the evolutionary process. While mental functions are thus dictated in large part by evolution of the brain, they also consist of important features that are not attributable to reductionist models of the brain. That is, human mental functioning forms a foundation for metacognition and sophisticated language functions, and through interactions with others and society, one's mental functioning allows for further brain transformation and development (self-regulation of mental functions). Humans develop their own brain and mental functions through mutual exchanges with others, and their dealings with other people and society form their individual modes of living in the real-world. The human brain and mental functions have evolved in such a way as to provide for a better mode of living. Accordingly, for the individual, the makeup of his or her mode of living in the real-world is the source of the well-being that serves to support that individual's values. The

  3. Brain Development, Intelligence and Cognitive Outcome in Children Born Small for Gestational Age

    NARCIS (Netherlands)

    de Bie, H.M.A.; Oostrom, K.J.; Delemarre-van d Waal, H.A.

    2010-01-01

    Intrauterine growth restriction (IUGR) can lead to infants being born small for gestational age (SGA). SGA is associated with increased neonatal morbidity and mortality as well as short stature, cardiovascular disease, insulin resistance, diabetes mellitus type 2, dyslipidemia and end-stage renal

  4. Combining Whole-Brain Radiotherapy with Gefitinib/Erlotinib for Brain Metastases from Non-Small-Cell Lung Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mao-hua Zheng

    2016-01-01

    Full Text Available Background. To comprehensively assess the efficacy and safety of whole-brain radiotherapy (WBRT combined with gefitinib/erlotinib for treatment of brain metastases (BM from non-small-cell lung cancer (NSCLC. Methods. Databases including PubMed, EMBASE.com, Web of Science, and Cochrane Library were searched from inception to April 12, 2015. Studies on randomized controlled trials (RCTs and case-control trials comparing WBRT combined with gefitinib/erlotinib versus WBRT alone for BM from NSCLC were included. Literature selection, data extraction, and quality assessment were performed independently by two trained reviewers. RevMan 5.3 software was used to analyze data. Results. A total of 7 trials involving 622 patients were included. Compared with WBRT alone or WBRT plus chemotherapy, WBRT plus gefitinib/erlotinib could significantly improve response rate (OR = 2.16, 95% CI: 1.35–3.47; P=0.001, remission rate of central nervous system (OR = 6.06, 95% CI: 2.57–14.29; P<0.0001, disease control rate (OR = 3.34, 95% CI: 1.84–6.07; P<0.0001, overall survival (HR = 0.72, 95% CI: 0.58–0.89; P=0.002, and 1-year survival rate (OR = 2.43, 95% CI: 1.51–3.91; P=0.0002. In adverse events (III-IV, statistically significant differences were not found, except for rash (OR = 7.96, 95% CI: 2.02–31.34; P=0.003 and myelosuppression (OR = 0.19, 95% CI: 0.07–0.51; P=0.0010. Conclusions. WBRT plus gefitinib/erlotinib was superior to WBRT alone and well tolerated in patients with BM from NSCLC.

  5. Estimation of extremely small field radiation dose for brain stereotactic radiotherapy using the Vero4DRT system.

    Science.gov (United States)

    Nakayama, Shinichi; Monzen, Hajime; Onishi, Yuichi; Kaneshige, Soichiro; Kanno, Ikuo

    2018-06-01

    The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 using ionization chambers of 0.01 or 0.04 cm 3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm 2 ) for five brain SRT cases irradiated with dynamic conformal arcs. The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm 2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 were +0.48%, +0.56%, -0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were -0.35% (range, -0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively. The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm 2 . Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    International Nuclear Information System (INIS)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-01-01

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  7. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Haksoo; Welford, Scott [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W., E-mail: jason.sohn@case.edu [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106 (United States); Sloan, Andrew [Department of Neurosurgery, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm

  8. Treatment of small cell carcinoma of lung with combined high dose mediastinal irradiation, whole brain prophylaxis and chemotherapy

    International Nuclear Information System (INIS)

    Shank, B.; Natale, R.B.; Hilaris, B.S.; Wittes, R.E.

    1981-01-01

    Survival of patients with small cell carcinoma of lung, treated on a new combined radiotherapy-chemotherapy protocol, compares favorably with other regimens in the literature and our own previous combined approaches. Radiation, given after induction chemotherapy, consisted of whole brain prophylaxis in all 44 evaluable patients. Patients with limited disease were also treated to the primary and mediastinum to a high dose (5000 rad equivalent) using multiple fields. The new chemotherapy regimen consisted of induction with cyclophosphamide, doxorubicin, and vincristine alternated with cis-platinum and VP-16 (an epipodophyllotoxin) for two cycles, followed by consolidation with low dose cyclophosphamide and vincristine concurrent with irradiation. Patients with limited disease who achieved less than complete response, and all patients with extensive disease were not continued on maintenance chemotherapy. Out of 24 evaluable patients with limited disease, there was 73% survival at 1 year by life-table analysis, measured from treatment initiation. After induction, 16/24 of these limited disease patients were CR (complete responders): 20/24 were CR at completion of their irradiation. Out of 20 evaluable patients with extensive disease, there was 59% survival at 1 year by life-table analysis. Only 4/44 (9%) brain parenchymal relapses occurred, one at 3 months and one at 6 months after local failure and two in patients who did not become CRs, implicating a possible re-seeding mechanism. Five patients had central nervous system relapses outside of brain parenchyma (spinal epidural and leptomeningeal); in three patients this was the initial site of failure. Significant complications included leukopenia (50%) and thrombocytopenia (24%) primarily during induction, and chronic pulmonary fibrosis (25%), possibly contributing to two deaths

  9. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial

    OpenAIRE

    Mulvenna, Paula; Nankivell, Matthew; Barton, Rachael; Faivre-Finn, Corinne; Wilson, Paula; McColl, Elaine; Moore, Barbara; Brisbane, Iona; Ardron, David; Holt, Tanya; Morgan, Sally; Lee, Caroline; Waite, Kathryn; Bayman, Neil; Pugh, Cheryl

    2016-01-01

    Summary Background Whole brain radiotherapy (WBRT) and dexamethasone are widely used to treat brain metastases from non-small cell lung cancer (NSCLC), although there have been no randomised clinical trials showing that WBRT improves either quality of life or overall survival. Even after treatment with WBRT, the prognosis of this patient group is poor. We aimed to establish whether WBRT could be omitted without a significant effect on survival or quality of life. Methods The Quality of Life a...

  10. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV.

    Directory of Open Access Journals (Sweden)

    Margaret R Lentz

    Full Text Available There are currently no widely accepted neuro-HIV small animal models. We wanted to validate the HIV-1 Transgenic rat (Tg as an appropriate neuro-HIV model and then establish in vivo imaging biomarkers of neuropathology, within this model, using MR structural and diffusion tensor imaging (DTI.Young and middle-aged Tg and control rats were imaged using MRI. A subset of middle-aged animals underwent longitudinal repeat imaging six months later. Total brain volume (TBV, ventricular volume (VV and parenchymal volume (PV = TBV-VV were measured. Fractional anisotropy (FA and mean diffusivity (MD values of the corpus callosum (CC were calculated from DTI data.TBV and PV were smaller in Tg compared to control rats in young and middle-aged cohorts (p0.05.We detected brain volume loss in the Tg rat, probably due to astrocytic dysfunction/loss, loss of structural/axonal matrix and striatal neuronal loss as suggested by immunofluorescence. Increased MD and decreased FA in the CC probably reflect microstructural differences between the Tg and Control rats which could include increased extracellular space between white matter tracts, demyelination and axonal degeneration, among other pathologies. We believe that the Tg rat is an adequate model of neuropathology in HIV and that volumetric MR and DTI measures can be potentially used as biomarkers of disease progression.

  11. Edema is not a reliable diagnostic sign to exclude small brain metastases.

    Directory of Open Access Journals (Sweden)

    Tanja Schneider

    Full Text Available No prior systematic study on the extent of vasogenic edema (VE in patients with brain metastases (BM exists. Here, we aim to determine 1 the general volumetric relationship between BM and VE, 2 a threshold diameter above which a BM shows VE, and 3 the influence of the primary tumor and location of the BM in order to improve diagnostic processes and understanding of edema formation. This single center, retrospective study includes 173 untreated patients with histologically proven BM. Semi-manual segmentation of 1416 BM on contrast-enhanced T1-weighted images and of 865 VE on fluid-attenuated inversion recovery/T2-weighted images was conducted. Statistical analyses were performed using a paired-samples t-test, linear regression/generalized mixed-effects model, and receiver-operating characteristic (ROC curve controlling for the possible effect of non-uniformly distributed metastases among patients. For BM with non-confluent edema (n = 545, there was a statistically significant positive correlation between the volumes of the BM and the VE (P < 0.001. The optimal threshold for edema formation was a diameter of 9.4 mm for all BM. The primary tumors as interaction term in multivariate analysis had a significant influence on VE formation whereas location had not. Hence VE development is dependent on the volume of the underlying BM and the site of the primary neoplasm, but not from the location of the BM.

  12. Empirical Analysis on Evolution and Small World Effect of Chinese Enterprise-Enterprise Patent Cooperation Network: From the Perspective of Open Innovation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-10-01

    Full Text Available The patent cooperation network which enterprises join is a very important network platform for enterprises’ open innovation. However, very limited work has been done to empirically investigate the dynamic change process of the network in China. To address this issue, this paper analyzes dynamic change process of cooperation network of enterprises and the small-world effect of the biggest subgroup according to the data of 36731 items of cooperative patents between enterprises from 1985 to 2010 published by the State Intellectual Property Office of China. A conclusion can be drawn from the analysis results that the biggest subgroup has the characteristics of small-world effect, but the overall network structure also has some defects, which limit the development of open innovation. For the first time, suggestions on open innovation strategies are put forward to provide theoretical reference for both the government and enterprises.

  13. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University.

    Science.gov (United States)

    Caruso, Joseph P; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J; Saunders, Mary Jane

    2016-03-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested "The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery" to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014-15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  14. Sustaining “Lilliputs” in the Global Knowledge-Based Economy: Prospects for Micro, Small, and Medium-Scale Enterprises in the Developing World

    OpenAIRE

    Maria Divina Gracia Z. Roldan

    2015-01-01

    Micro, small, and medium-scale enterprises (MSMEs) comprise bulk of business entities in the developing world. Their contribution is seen in terms of employment generation and capital formation. Seen as the engine of growth in present knowledge-based economies, MSMEs play a crucial role in the economic sustainability of Asian developing countries. This paper discusses the role of MSMEs in Asia, with the Philippines as a case in point. It examines issues and challenges these enterprises face, ...

  15. Energy compensation in the real world. Good compensation for small portions of chocolate and biscuits over short time periods in complicit consumers using commercially available foods.

    OpenAIRE

    Appleton, Katherine; McKeown, P.P.; Woodside, J.V.

    2014-01-01

    While investigations using covert food manipulations tend to suggest that individuals are poor at adjusting for previous energy intake, in the real world adults rarely consume foods with which they are ill-informed. This study investigated the impact in fully complicit consumers of consuming commercially available dark chocolate, milk chocolate, sweet biscuits and fruit bars on subsequent appetite. Using a repeated measures design, participants received four small portions (4 × 10-11 g) of ei...

  16. Risk Factors for Brain Metastases in Locally Advanced Non-Small Cell Lung Cancer With Definitive Chest Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhe; Bi, Nan; Wang, Jingbo; Hui, Zhouguang; Xiao, Zefen; Feng, Qinfu; Zhou, Zongmei; Chen, Dongfu; Lv, Jima; Liang, Jun; Fan, Chengcheng; Liu, Lipin; Wang, Luhua, E-mail: wlhwq@yahoo.com

    2014-06-01

    Purpose: We intended to identify risk factors that affect brain metastases (BM) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving definitive radiation therapy, which may guide the choice of selective prevention strategies. Methods and Materials: The characteristics of 346 patients with stage III NSCLC treated with thoracic radiation therapy from January 2008 to December 2010 in our institution were retrospectively reviewed. BM rates were analyzed by the Kaplan-Meier method. Multivariate Cox regression analysis was performed to determine independent risk factors for BM. Results: The median follow-up time was 48.3 months in surviving patients. A total of 74 patients (21.4%) experienced BM at the time of analysis, and for 40 (11.7%) of them, the brain was the first site of failure. The 1-year and 3-year brain metastasis rates were 15% and 28.1%, respectively. In univariate analysis, female sex, age ≤60 years, non-squamous cell carcinoma, T3-4, N3, >3 areas of lymph node metastasis, high lactate dehydrogenase and serum levels of tumor markers (CEA, NSE, CA125) before treatment were significantly associated with BM (P<.05). In multivariate analysis, age ≤60 years (P=.004, hazard ratio [HR] = 0.491), non-squamous cell carcinoma (P=.000, HR=3.726), NSE >18 ng/mL (P=.008, HR=1.968) and CA125 ≥ 35 U/mL (P=.002, HR=2.129) were independent risk factors for BM. For patients with 0, 1, 2, and 3 to 4 risk factors, the 3-year BM rates were 7.3%, 18.9%, 35.8%, and 70.3%, respectively (P<.001). Conclusions: Age ≤60 years, non-squamous cell carcinoma, serum NSE >18 ng/mL, and CA125 ≥ 35 U/mL were independent risk factors for brain metastasis. The possibilities of selectively using prophylactic cranial irradiation in higher-risk patients with LA-NSCLC should be further explored in the future.

  17. A small number of abnormal brain connections predicts adult autism spectrum disorder.

    Science.gov (United States)

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez, José E; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-04-14

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

  18. Long-Term Survival in a Patient with Multiple Brain Metastases from Small-Cell Lung Cancer Treated with Gamma Knife Radiosurgery on Four Occasions: A Case Report

    Science.gov (United States)

    Elaimy, Ameer L.; Thumma, Sudheer R.; Lamm, Andrew F.; Mackay, Alexander R.; Lamoreaux, Wayne T.; Fairbanks, Robert K.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.

    2012-01-01

    Brain metastases are the most common cancerous neoplasm in the brain. The treatment of these lesions is challenging and often includes a multimodality management approach with whole-brain radiation therapy, stereotactic radiosurgery, and neurosurgery options. Although advances in biomedical imaging technologies and the treatment of extracranial cancer have led to the overall increase in the survival of brain metastases patients, the finding that select patients survive several years remains puzzling. For this reason, we present the case of a 70-year-old patient who was diagnosed with multiple brain metastases from small-cell lung cancer five years ago and is currently alive following treatment with chemotherapy for the primary cancer and whole-brain radiation therapy and Gamma Knife radiosurgery on four separate occasions for the neurological cancer. Since the diagnosis of brain metastases five years ago, the patient's primary cancer has remained controlled. Furthermore, multiple repeat GKRS procedures provided this patient with high levels of local tumor control, which in combination with a stable primary cancer led to an extended period of survival and a highly functional life. Further analysis and clinical research will be valuable in assessing the durability of multiple GKRS for brain metastases patients who experience long-term survival. PMID:23091748

  19. Radiotherapy for asymptomatic brain metastasis in epidermal growth factor receptor mutant non-small cell lung cancer without prior tyrosine kinase inhibitors treatment: a retrospective clinical study

    International Nuclear Information System (INIS)

    Liu, SongRan; Qiu, Bo; Chen, LiKun; Wang, Fang; Liang, Ying; Cai, PeiQiang; Zhang, Li; Chen, ZhaoLin; Liu, ShiLiang; Liu, MengZhong; Liu, Hui

    2015-01-01

    Non-small cell lung cancer (NSCLC) with brain metastasis (BM) harboring an epidermal growth factor receptor (EGFR) mutation shows good response to tyrosine kinase inhibitors (TKIs). This study is to assess the appropriate timing of brain radiotherapy (RT) for asymptomatic BM in EGFR mutant NSCLC patients. There were 628 patients diagnosed with EGFR mutant NSCLC between October 2005 and December 2011. Treatment outcomes had been retrospectively evaluated in 96 patients with asymptomatic BM without prior TKI treatment. 39 patients received first-line brain RT, 23 patients received delayed brain RT, and 34 patients did not receive brain RT. With a median follow-up of 26 months, the 2-year OS was 40.6 %. Univariate analyses revealed that ECOG performance status (p = 0.006), other distant metastases (p = 0.002) and first line systemic treatment (p = 0.032) were significantly associated with overall survival (OS). Multivariate analyses revealed that other sites of distant metastases (p = 0.030) were prognostic factor. The timing of brain RT was not significantly related to OS (p = 0.246). The 2-year BM progression-free survival (PFS) was 26.9 %. Brain RT as first-line therapy failed to demonstrate a significant association with BM PFS (p = 0.643). First-line brain RT failed to improve long-term survival in TKI-naïve EGFR mutant NSCLC patients with asymptomatic BM. Prospective studies are needed to validate these clinical findings

  20. Predictors of Individual Tumor Local Control After Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd; Simpson, Joseph R.; Huang, Jiayi; Drzymala, Robert E.; Barani, Igor J.; Dowling, Joshua L.; Rich, Keith M.; Chicoine, Michael R.; Kim, Albert H.; Leuthardt, Eric C.; Robinson, Clifford G.

    2014-01-01

    Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. A P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective

  1. A neonatal piglet model for investigating brain and cognitive development in small for gestational age human infants.

    Directory of Open Access Journals (Sweden)

    Emily C Radlowski

    Full Text Available The piglet was investigated as a potential model for studying brain and cognitive deficits associated with being born small for gestational age (SGA. Naturally farrowed SGA (0.7-1.0 kg BW and average for gestational age (AGA, 1.3-1.6 kg BW piglets were obtained on postnatal day (PD 2, placed in individual cages, and provided a nutritionally adequate milk replacer diet (285 ml/kg/d. Beginning at PD14, performance in a spatial T-maze task was assessed. At PD28, piglets were anesthetized for magnetic resonance (MR imaging to assess brain structure (voxel-based morphometry, connectivity (diffusion-tensor imaging and metabolites in the hippocampus and corpus callosum (proton MR spectroscopy. Piglets born SGA showed compensatory growth such that BW of SGA and AGA piglets was similar (P>0.05, by PD15. Birth weight affected maze performance, with SGA piglets taking longer to reach criterion than AGA piglets (p<0.01. Total brain volume of SGA and AGA piglets was similar (P<0.05, but overall, SGA piglets had less gray matter than AGA piglets (p<0.01 and tended to have a smaller internal capsule (p = 0.07. Group comparisons between SGA and AGA piglets defined 9 areas (≥ 20 clusters where SGA piglets had less white matter (p<0.01; 2 areas where SGA piglets had more white matter (p<0.01; and 3 areas where SGA piglets had more gray matter (p<0.01. The impact of being born SGA on white matter was supported by a lower (p<0.04 fractional anisotropy value for SGA piglets, suggesting reduced white matter development and connectivity. None of the metabolites measured were different between groups. Collectively, the results show that SGA piglets have spatial learning deficits and abnormal development of white matter. As learning deficits and abnormalities in white matter are common in SGA human infants, the piglet is a tractable translational model that can be used to investigate SGA-associated cognitive deficits and potential interventions.

  2. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A; Kwizera, Chantal; Sijbesma, Jurgen W A; Ishiwata, Kiichi; Willemsen, Antoon T M; Elsinga, Philip H; Dierckx, Rudi A J O; van Waarde, Aren

    2011-08-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX) and PET. This study aims to test whether (11)C-MPDX can be used for quantitative studies of cerebral A(1)R in rodents. (11)C-MPDX was injected (intravenously) into isoflurane-anesthetized male Wistar rats (300 g). A dynamic scan of the central nervous system was obtained, using a small-animal PET camera. A cannula in a femoral artery was used for blood sampling. Three groups of animals were studied: group 1, controls (saline-treated); group 2, animals pretreated with the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg, intraperitoneally); and group 3, animals pretreated (intraperitoneally) with a 20% solution of ethanol in saline (2 mL) plus the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine dihydrochloride (ABT-702) (1 mg). DPCPX is known to occupy cerebral A(1)R, whereas ethanol and ABT-702 increase extracellular adenosine. In groups 1 and 3, the brain was clearly visualized. High uptake of (11)C-MPDX was noted in striatum, hippocampus, and cerebellum. In group 2, tracer uptake was strongly suppressed and regional differences were abolished. The treatment of group 3 resulted in an unexpected 40%-45% increase of the cerebral uptake of radioactivity as indicated by increases of PET standardized uptake value, distribution volume from Logan plot, nondisplaceable binding potential from 2-tissue-compartment model fit, and standardized uptake value from a biodistribution study performed after the PET scan. The partition coefficient of the tracer (K(1)/k(2) from the model fit) was not altered under the study conditions. (11)C-MPDX shows a regional distribution in rat brain consistent with binding to A(1)R. Tracer binding is blocked by the selective A

  3. Vorinostat and Concurrent Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases: A Phase 1 Dose Escalation Trial.

    Science.gov (United States)

    Choi, Clara Y H; Wakelee, Heather A; Neal, Joel W; Pinder-Schenck, Mary C; Yu, Hsiang-Hsuan Michael; Chang, Steven D; Adler, John R; Modlin, Leslie A; Harsh, Griffith R; Soltys, Scott G

    2017-09-01

    To determine the maximum tolerated dose (MTD) of vorinostat, a histone deacetylase inhibitor, given concurrently with stereotactic radiosurgery (SRS) to treat non-small cell lung cancer (NSCLC) brain metastases. Secondary objectives were to determine toxicity, local failure, distant intracranial failure, and overall survival rates. In this multicenter study, patients with 1 to 4 NSCLC brain metastases, each ≤2 cm, were enrolled in a phase 1, 3 + 3 dose escalation trial. Vorinostat dose levels were 200, 300, and 400 mg orally once daily for 14 days. Single-fraction SRS was delivered on day 3. A dose-limiting toxicity (DLT) was defined as any Common Terminology Criteria for Adverse Events version 3.0 grade 3 to 5 acute nonhematologic adverse event related to vorinostat or SRS occurring within 30 days. From 2009 to 2014, 17 patients were enrolled and 12 patients completed study treatment. Because no DLTs were observed, the MTD was established as 400 mg. Acute adverse events were reported by 10 patients (59%). Five patients discontinued vorinostat early and withdrew from the study. The most common reasons for withdrawal were dyspnea (n=2), nausea (n=1), and fatigue (n=2). With a median follow-up of 12 months (range, 1-64 months), Kaplan-Meier overall survival was 13 months. There were no local failures. One patient (8%) at the 400-mg dose level with a 2.0-cm metastasis developed histologically confirmed grade 4 radiation necrosis 2 months after SRS. The MTD of vorinostat with concurrent SRS was established as 400 mg. Although no DLTs were observed, 5 patients withdrew before completing the treatment course, a result that emphasizes the need for supportive care during vorinostat administration. There were no local failures. A larger, randomized trial may evaluate both the tolerability and potential local control benefit of vorinostat concurrent with SRS for brain metastases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Network Analysis of Resting State EEG in the Developing Young Brain: Structure Comes With Maturation

    NARCIS (Netherlands)

    Boersma, M.; Smit, D.J.A.; de Bie, H.M.A.; van Baal, G.C.M.; Boomsma, D.I.; de Geus, E.J.C.; Delemarre-van de Waal, H.A.; Stam, C.J.

    2011-01-01

    During childhood, brain structure and function changes substantially. Recently, graph theory has been introduced to model connectivity in the brain. Small-world networks, such as the brain, combine optimal properties of both ordered and random networks, i.e., high clustering and short path lengths.

  5. Factors Affecting the Risk of Brain Metastasis in Small Cell Lung Cancer With Surgery: Is Prophylactic Cranial Irradiation Necessary for Stage I-III Disease?

    International Nuclear Information System (INIS)

    Gong Linlin; Wang, Q.I.; Zhao Lujun; Yuan Zhiyong; Li Ruijian; Wang Ping

    2013-01-01

    Purpose: The use of prophylactic cranial irradiation (PCI) in small cell lung cancer (SCLC) with surgical resection has not been fully identified. This study undertook to assess the factors affecting the risk of brain metastases in patients with stage I-III SCLC after surgical resection. The implications of PCI treatment for these patients are discussed. Methods and Materials: One hundred twenty-six patients treated with surgical resection for stage I-III SCLC from January 1998-December 2009 were retrospectively analyzed to elucidate the risk factors of brain metastases. Log-rank test and Cox regression model were used to determine the risk factors of brain metastases. Results: The median survival time for this patient population was 34 months, and the 5-year overall survival rate was 34.9%. For the whole group, 23.0% (29/126) of the patients had evidence of metastases to brain. Pathologic stage not only correlated with overall survival but also significantly affected the risk of brain metastases. The 5-year survival rates for patients with pathologic stages I, II, and III were 54.8%, 35.6%, and 14.1%, respectively (P=.001). The frequency of brain metastases in patients with pathologic stages I, II, and III were 6.25% (2/32), 28.2% (11/39), and 29.1% (16/55) (P=.026), respectively. A significant difference in brain metastases between patients with complete resection and incomplete resection was also observed (20.5% vs 42.9%, P=.028). The frequency of brain metastases was not found to be correlated with age, sex, pathologic type, induction chemotherapy, adjuvant chemotherapy, or adjuvant radiation therapy. Conclusions: Stage I SCLC patients with complete resection had a low incidence of brain metastases and a favorable survival rate. Stage II-III disease had a higher incidence of brain metastases. Thus, PCI might have a role for stage II-III disease but not for stage I disease.

  6. Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.

    Science.gov (United States)

    Mantle, Jennifer L; Min, Lie; Lee, Kelvin H

    2016-12-05

    A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm 2 . By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.

  7. Temozolomide in patients with advanced non-small cell lung cancer with and without brain metastases. a phase II study of the EORTC Lung Cancer Group (08965).

    NARCIS (Netherlands)

    Dziadziuszko, R; Ardizzoni, A.; Postmus, P.E.; Smit, E.F.; Price, A; Debruyne, C.; Legrand, C; Giaccone, G.

    2003-01-01

    This study was performed to evaluate the activity of single-agent temozolomide in two groups of chemotherapy-naive non-small cell lung cancer (NSCLC) patients, with (12 patients) and without (13 patients) brain metastases (BM). Patients in both groups were treated with temozolomide 200 mg/m(2)/day,

  8. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.

    NARCIS (Netherlands)

    Lansink, C.S.; Bakker, M.; Buster, W.; Lankelma, J.; van der Blom, R.; Westdorp, R.; Joosten, R.N.J.M.A.; Mc.Naughton, B.L.; Pennartz, C.M.A.

    2007-01-01

    Complex cognitive operations such as memory formation and decision-making are thought to be mediated not by single, isolated brain structures but by multiple, connected brain areas. To facilitate studies on the neural communication between connected brain structures, we developed a multi-electrode

  9. Changes of Brain Glucose Metabolism in the Pretreatment Patients with Non-Small Cell Lung Cancer: A Retrospective PET/CT Study.

    Science.gov (United States)

    Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian

    2016-01-01

    The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (Pbrain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function.

  10. Association of Ki-67, p53, and bcl-2 expression of the primary non-small-cell lung cancer lesion with brain metastatic lesion

    International Nuclear Information System (INIS)

    Bubb, Robbin S.; Komaki, Ritsuko; Hachiya, Tsutomu; Milas, Ivan; Ro, Jae Y.; Langford, Lauren; Sawaya, Raymond; Putnam, Joe B.; Allen, Pamela; Cox, James D.; McDonnell, Timothy J.; Brock, William; Hong, Waun K.; Roth, Jack A.; Milas, Luka

    2002-01-01

    Purpose: The study was conducted to determine whether immunohistochemical analysis of Ki-67, p53, and bcl-2 in patients with non-small-cell lung cancer is associated with a higher rate of brain metastases and whether the intrapatient expression of these biomarkers (in the primary tumors vs. brain lesions) is similar. Methods and Materials: At the M. D. Anderson Cancer Center, tumors from 29 case patients with primary lung tumor and brain metastasis and 29 control patients with primary lung tumor but no brain metastasis were resected and examined for immunohistochemical expression. Ki-67, p53, and bcl-2 were analyzed in resected primary lung, lymph node, and metastatic brain tumors. Each control patient was matched by age, gender, and histology to a patient with brain metastasis. Results: No significant differences in patient survival characteristics were detected between the case group and control group. Also, difference in patient outcome between the two groups was not generally predicted by biomarker analysis. However, when the groups were combined, the biomarker analysis was predictive for certain patient outcome end points. Using median values as cutoff points between low and high expression of biomarkers, it was observed that high expression of Ki-67 (>40%) in lung primaries was associated with poorer disease-free survival (p=0.04), whereas low expression of p53 in lung primaries was associated with poorer overall survival (p=0.04), and these patients had a higher rate of nonbrain distant metastases (p=0.02). The patients with brain metastases were particularly prone to developing nonbrain distant metastases if the percentage of p53-positive cells in brain metastases was low (p=0.01). There was a positive correlation in the expression of Ki-67 (p=0.02) (r 2 =0.1608), as well as p53 (p 2 =0.7380), between lung primaries and brain metastases. Compared to Ki-67 and p53, bcl-2 was the least predictive. Conclusion: Differences in biomarker expression between the

  11. The world of physics a small library of the literature of physics from antiquity to the present

    CERN Document Server

    Weaver, Jefferson H

    1987-01-01

    Thirty-one years ago Simon & Schuster published James R. Newman's excellent The World of Mathematics. The present anthology on physics is much along the same lines. Most of the pages are devoted to excerpts from over 100 of the most important writers on physics topics. Each item is preceded by editorial commentary. The selections avoid extensive use of mathematics; they are accessible to nonspecialists but are by no means "easy reading." The editorial comments are generally helpful, although errors and omissions are occasionally conspicuous. The first half of volume 1 is perhaps overweighted with the ideas of ancient and medieval thinkers, not all of whom were closely tied to the development of physical science. Nevertheless, the set as a whole provides an enjoyable and comprehensive look at physics.

  12. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  13. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, L.; Veer, I.M.; Baerends, E.; van Tol, M.J.; Renken, R.J.; van der Wee, N.J.A.; Veltman, D.J.; Aleman, A.; Zitman, F.G.; Penninx, B.W.J.H.; van Buchem, M.A.; Reiber, J.H.C.; Rombouts, S.A.R.B.; Milles, J.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  14. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography

    International Nuclear Information System (INIS)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji; Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro; Wakizaka, Hidekatsu; Yanamoto, Kazuhiko; Fukumura, Toshimitsu; Zhang Mingrong

    2011-01-01

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [ 11 C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [ 11 C]TPT using small-animal PET. Methods: [ 11 C]TPT was synthesized by the reaction of a desmethyl precursor with [ 11 C]CH 3 I. In vitro study using [ 11 C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [ 11 C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [ 11 C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b -/- Bcrp1 -/- mice, PET results indicated that the brain uptake of [ 11 C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [ 11 C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [ 11 C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [ 11 C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  15. A Small Part of Which Empire?: Swaziland’s Combatants in the First World War, 1914- 1918

    Directory of Open Access Journals (Sweden)

    Estella Musiiwa

    2017-06-01

    Full Text Available Based on archival material, this study explores the participation of Swaziland’s combatants in the First World War between 1914 and 1918. At the outbreak of the war it was imperative that Swaziland, as part of the British Empire, supports the British War effort. Caught up in South Africa’s long standing imperial motives, most of the combatants from Swaziland served in the war through the South African Overseas Expeditionary Force. Except for a few individuals who joined the war front in Europe on their own, the rest of the participants had to prove that they had participated in German South West Africa in order to qualify to serve on the war front in Europe. Most of them therefore served in German West Africa and Europe, or in German East Africa and Europe because South Africa had imperial interests in German West Africa and German East Africa. In serving the British Empire, Swaziland’s white combatants implicitly served South Africa’s conceptual or anticipated empire.

  16. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  17. Short-Term Blood Pressure Variability Relates to the Presence of Subclinical Brain Small Vessel Disease in Primary Hypertension.

    Science.gov (United States)

    Filomena, Josefina; Riba-Llena, Iolanda; Vinyoles, Ernest; Tovar, José L; Mundet, Xavier; Castañé, Xavier; Vilar, Andrea; López-Rueda, Antonio; Jiménez-Baladó, Joan; Cartanyà, Anna; Montaner, Joan; Delgado, Pilar

    2015-09-01

    Blood pressure (BP) variability is associated with stroke risk, but less is known about subclinical cerebral small vessel disease (CSVD). We aimed to determine whether CSVD relates to short-term BP variability independently of BP levels and also, whether they improve CSVD discrimination beyond clinical variables and office BP levels. This was a cohort study on asymptomatic hypertensives who underwent brain magnetic resonance imaging and 24-hour ambulatory BP monitoring. Office and average 24-hour, daytime and nighttime BP levels, and several metrics of BP variability (SD, weighted SD, coefficient of variation, and average real variability [ARV]) were calculated. Definition of CSVD was based on the presence of lacunar infarcts and white matter hyperintensity grades. Multivariate analysis and integrated discrimination improvement were performed to assess whether BP variability and levels were independently associated with CSVD and improved its discrimination. Four hundred eighty-seven individuals participated (median age, 64; 47% women). CSVD was identified in 18.9%, related to age, male sex, diabetes mellitus, use of treatment, ambulatory BP monitoring-defined BP levels, and ARV of systolic BP at any period. The highest prevalence (33.7%) was found in subjects with both 24-hour BP levels and ARV elevated. BP levels at any period and ARV (24 hours and nocturnal) emerged as independent predictors of CSVD, and discrimination was incrementally improved although not to a clinically significant extent (integrated discrimination improvement, 5.31%, 5.17% to 5.4%). Ambulatory BP monitoring-defined BP levels and ARV of systolic BP relate to subclinical CSVD in hypertensive individuals. © 2015 American Heart Association, Inc.

  18. Use of pragmatism to explore women's experiences of traumatic brain injury: a kaleidoscopic view of the world.

    Science.gov (United States)

    O'Reilly, Kate; Peters, Kath; Wilson, Nathan; Kwok, Cannas

    2018-03-16

    Although more men than women sustain a traumatic brain injury (TBI), approximately one quarter of people with TBIs are women. The experiences of TBI reported in the literature are informed from the masculine perspective and do not adequately represent women's experiences. Pragmatism provides an overarching methodological framework to explore and critique a broader perspective of health, including psychosocial, cultural, spiritual, political and environmental factors, while attempting to address gender inequity. To describe the philosophical background validating the use of pragmatism to research women's experiences of TBI. Given the limited understanding of the interplay of socially constructed barriers with the complex impairments women have following TBI, a novel approach to research is required. Pragmatism offers a way to incorporate critical thinking and advocacy into research designs. The critical feminist transformative framework presented in this paper demonstrates the strengths of using pragmatism as a framework to explore complex phenomena. This paper illustrates how methodology, which is influenced by various philosophical perspectives, can be woven throughout the design of a research project. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  19. Real-World Data on Prognostic Factors for Overall Survival in EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Gefitinib.

    Science.gov (United States)

    Yao, Zong-Han; Liao, Wei-Yu; Ho, Chao-Chi; Chen, Kuan-Yu; Shih, Jin-Yuan; Chen, Jin-Shing; Lin, Zhong-Zhe; Lin, Chia-Chi; Chih-Hsin Yang, James; Yu, Chong-Jen

    2017-09-01

    This study aimed to identify independent prognostic factors for overall survival (OS) of patients with advanced non-small cell lung cancer (NSCLC) harboring an activating epidermal growth factor receptor (EGFR) mutation and receiving gefitinib as first-line treatment in real-world practice. We enrolled 226 patients from June 2011 to May 2013. During this period, gefitinib was the only EGFR-tyrosine kinase inhibitor reimbursed by the Bureau of National Health Insurance of Taiwan. The median progression-free survival and median OS were 11.9 months (95% confidence interval [CI]: 9.7-14.2) and 26.9 months (21.2-32.5), respectively. The Cox proportional hazards regression model revealed that postoperative recurrence, performance status (Eastern Cooperative Oncology Grade [ECOG] ≥2), smoking index (≥20 pack-years), liver metastasis at initial diagnosis, and chronic hepatitis C virus (HCV) infection were independent prognostic factors for OS (hazard ratio [95% CI] 0.3 [0.11-0.83], p  = .02; 2.69 [1.60-4.51], p  lung cancer (NSCLC) patients treated with first-line gefitinib may raise awareness of benefit from anti-HCV treatment in this patient population. Brain metastasis in the initial diagnosis or intracranial progression during gefitinib treatment is not a prognostic factor for OS. This study, which enrolled a real-world population of NSCLC patients, including sicker patients who were not eligible for a clinical trial, may have impact on guiding usual clinical practice. © AlphaMed Press 2017.

  20. Motexafin Gadolinium Combined With Prompt Whole Brain Radiotherapy Prolongs Time to Neurologic Progression in Non-Small-Cell Lung Cancer Patients With Brain Metastases: Results of a Phase III Trial

    International Nuclear Information System (INIS)

    Mehta, Minesh P.; Shapiro, William R.; Phan, See C.; Gervais, Radj; Carrie, Christian; Chabot, Pierre; Patchell, Roy A.; Glantz, Michael J.; Recht, Lawrence; Langer, Corey; Sur, Ranjan K.; Roa, Wilson H.; Mahe, Marc A.; Fortin, Andre; Nieder, Carsten; Meyers, Christina A.; Smith, Jennifer A.; Miller, Richard A.; Renschler, Markus F.

    2009-01-01

    Purpose: To determine the efficacy of motexafin gadolinium (MGd) in combination with whole brain radiotherapy (WBRT) for the treatment of brain metastases from non-small-cell lung cancer. Methods and Materials: In an international, randomized, Phase III study, patients with brain metastases from non-small-cell lung cancer were randomized to WBRT with or without MGd. The primary endpoint was the interval to neurologic progression, determined by a centralized Events Review Committee who was unaware of the treatment the patients had received. Results: Of 554 patients, 275 were randomized to WBRT and 279 to WBRT+MGd. Treatment with MGd was well tolerated, and 92% of the intended doses were administered. The most common MGd-related Grade 3+ adverse events included liver function abnormalities (5.5%), asthenia (4.0%), and hypertension (4%). MGd improved the interval to neurologic progression compared with WBRT alone (15 vs. 10 months; p = 0.12, hazard ratio [HR] = 0.78) and the interval to neurocognitive progression (p = 0.057, HR = 0.78). The WBRT patients required more salvage brain surgery or radiosurgery than did the WBRT+MGd patients (54 vs. 25 salvage procedures, p < 0.001). A statistically significant interaction between the geographic region and MGd treatment effect (which was in the prespecified analysis plan) and between treatment delay and MGd treatment effect was found. In North American patients, where treatment was more prompt, a statistically significant prolongation of the interval to neurologic progression, from 8.8 months for WBRT to 24.2 months for WBRT+MGd (p = 0.004, HR = 0.53), and the interval to neurocognitive progression (p = 0.06, HR = 0.73) were observed. Conclusion: In the intent-to-treat analysis, MGd exhibited a favorable trend in neurologic outcomes. MGd significantly prolonged the interval to neurologic progression in non-small-cell lung cancer patients with brain metastases receiving prompt WBRT. The toxicity was acceptable

  1. Brain penetrant small molecule 18F-GnRH receptor (GnRH-R) antagonists: Synthesis and preliminary positron emission tomography imaging in rats

    International Nuclear Information System (INIS)

    Olberg, Dag E.; Bauer, Nadine; Andressen, Kjetil W.; Hjørnevik, Trine; Cumming, Paul; Levy, Finn O.; Klaveness, Jo; Haraldsen, Ira; Sutcliffe, Julie L.

    2016-01-01

    Introduction: The gonadotropin releasing hormone receptor (GnRH-R) has a well-described neuroendocrine function in the anterior pituitary. However, little is known about its function in the central nervous system (CNS), where it is most abundantly expressed in hippocampus and amygdala. Since peptide ligands based upon the endogenous decapetide GnRH do not pass the blood–brain-barrier, we are seeking a high-affinity small molecule GnRH-R ligand suitable for brain imaging by positron emission tomography. We have previously reported the radiosynthesis and in vitro evaluation of two novel [ 18 F]fluorinated GnRH-R ligands belonging to the furamide class of antagonists, with molecular weight less than 500 Da. We now extend this work using palladium coupling for the synthesis of four novel radioligands, with putatively reduced polar surface area and hydrophilicity relative to the two previously described compounds, and report the uptake of these 18 F-labeled compounds in brain of living rats. Methods: We synthesized reference standards of the small molecule GnRH-R antagonists as well as mesylate precursors for 18 F-labeling. The antagonists were tested for binding affinity for both human and rat GnRH-R. Serum and blood stability in vitro and in vivo were studied. Biodistribution and PET imaging studies were performed in male rats in order to assess brain penetration in vivo. Results: A palladium coupling methodology served for the synthesis of four novel fluorinated furamide GnRH receptor antagonists with reduced heteroatomic count. Radioligand binding assays in vitro revealed subnanomolar affinity of the new fluorinated compounds for both human and rat GnRH-R. The 18 F-GnRH antagonists were synthesized from the corresponding mesylate precursors in 5–15% overall radiochemical yield. The radiolabeled compounds demonstrated good in vivo stability. PET imaging with the 18 F-radiotracers in naive rats showed good permeability into brain and rapid washout, but absence of

  2. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial.

    Science.gov (United States)

    Yang, Jin-Ji; Zhou, Caicun; Huang, Yisheng; Feng, Jifeng; Lu, Sun; Song, Yong; Huang, Cheng; Wu, Gang; Zhang, Li; Cheng, Ying; Hu, Chengping; Chen, Gongyan; Zhang, Li; Liu, Xiaoqing; Yan, Hong Hong; Tan, Fen Lai; Zhong, Wenzhao; Wu, Yi-Long

    2017-09-01

    For patients with non-small-cell lung cancer (NSCLC) and multiple brain metastases, whole-brain irradiation (WBI) is a standard-of-care treatment, but its effects on neurocognition are complex and concerning. We compared the efficacy of an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), icotinib, versus WBI with or without chemotherapy in a phase 3 trial of patients with EGFR-mutant NSCLC and multiple brain metastases. We did a multicentre, open-label, parallel randomised controlled trial (BRAIN) at 17 hospitals in China. Eligible participants were patients with NSCLC with EGFR mutations, who were naive to treatment with EGFR-TKIs or radiotherapy, and had at least three metastatic brain lesions. We randomly assigned participants (1:1) to either icotinib 125 mg orally (three times per day) or WBI (30 Gy in ten fractions of 3 Gy) plus concurrent or sequential chemotherapy for 4-6 cycles, until unacceptable adverse events or intracranial disease progression occurred. The randomisation was done by the Chinese Thoracic Oncology Group with a web-based allocation system applying the Pocock and Simon minimisation method; groups were stratified by EGFR gene mutation status, treatment line (first line or second line), brain metastases only versus both intracranial and extracranial metastases, and presence or absence of symptoms of intracranial hypertension. Clinicians and patients were not masked to treatment assignment, but individuals involved in the data analysis did not participate in the treatments and were thus masked to allocation. Patients receiving icotinib who had intracranial progression only were switched to WBI plus either icotinib or chemotherapy until further progression; those receiving icotinib who had extracranial progression only were switched to icotinib plus chemotherapy. Patients receiving WBI who progressed were switched to icotinib until further progression. Icotinib could be continued beyond progression if a clinical benefit

  3. Gamma Knife Stereotactic Radiosurgery as Salvage Therapy After Failure of Whole-Brain Radiotherapy in Patients With Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Harris, Sunit; Chan, Michael D.; Lovato, James F.; Ellis, Thomas L.; Tatter, Stephen B.; Bourland, J. Daniel; Munley, Michael T.; Guzman, Allan F. de; Shaw, Edward G.; Urbanic, James J.; McMullen, Kevin P.

    2012-01-01

    Purpose: Radiosurgery has been successfully used in selected cases to avoid repeat whole-brain irradiation (WBI) in patients with multiple brain metastases of most solid tumor histological findings. Few data are available for the use of radiosurgery for small-cell lung cancer (SCLC). Methods and Materials: Between November 1999 and June 2009, 51 patients with SCLC and previous WBI and new brain metastases were treated with GammaKnife stereotactic radiosurgery (GKSRS). A median dose of 18 Gy (range, 10–24 Gy) was prescribed to the margin of each metastasis. Patients were followed with serial imaging. Patient electronic records were reviewed to determine disease-related factors and clinical outcomes after GKSRS. Local and distant brain failure rates, overall survival, and likelihood of neurologic death were determined based on imaging results. The Kaplan-Meier method was used to determine survival and local and distant brain control. Cox proportional hazard regression was performed to determine strength of association between disease-related factors and survival. Results: Median survival time for the entire cohort was 5.9 months. Local control rates at 1 and 2 years were 57% and 34%, respectively. Distant brain failure rates at 1 and 2 years were 58% and 75%, respectively. Fifty-three percent of patients ultimately died of neurologic death. On multivariate analysis, patients with stable (hazard ratio [HR] = 2.89) or progressive (HR = 6.98) extracranial disease (ECD) had worse overall survival than patients without evidence of ECD (p = 0.00002). Concurrent chemotherapy improved local control (HR = 89; p = 0.006). Conclusions: GKSRS represents a feasible salvage option in patients with SCLC and brain metastases for whom previous WBI has failed. The status of patients’ ECD is a dominant factor predictive of overall survival. Local control may be inferior to that seen with other cancer histological results, although the use of concurrent chemotherapy may help to

  4. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Reddy, Chandana A.; Chao, Samuel T.; Rice, Thomas W.; Adelstein, David J.; Barnett, Gene H.; Mekhail, Tarek M.; Vogelbaum, Michael A.; Suh, John H.

    2009-01-01

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  5. Gamma Knife Stereotactic Radiosurgery as Salvage Therapy After Failure of Whole-Brain Radiotherapy in Patients With Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Sunit [Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina (United States); Chan, Michael D., E-mail: mchan@wfubmc.edu [Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina (United States); Lovato, James F. [Division of Public Health Sciences, Wake Forest University, Winston-Salem, North Carolina (United States); Ellis, Thomas L.; Tatter, Stephen B. [Department of Neurosurgery, Wake Forest University, Winston-Salem, North Carolina (United States); Bourland, J. Daniel; Munley, Michael T.; Guzman, Allan F. de; Shaw, Edward G.; Urbanic, James J.; McMullen, Kevin P. [Department of Radiation Oncology, Wake Forest University, Winston-Salem, North Carolina (United States)

    2012-05-01

    Purpose: Radiosurgery has been successfully used in selected cases to avoid repeat whole-brain irradiation (WBI) in patients with multiple brain metastases of most solid tumor histological findings. Few data are available for the use of radiosurgery for small-cell lung cancer (SCLC). Methods and Materials: Between November 1999 and June 2009, 51 patients with SCLC and previous WBI and new brain metastases were treated with GammaKnife stereotactic radiosurgery (GKSRS). A median dose of 18 Gy (range, 10-24 Gy) was prescribed to the margin of each metastasis. Patients were followed with serial imaging. Patient electronic records were reviewed to determine disease-related factors and clinical outcomes after GKSRS. Local and distant brain failure rates, overall survival, and likelihood of neurologic death were determined based on imaging results. The Kaplan-Meier method was used to determine survival and local and distant brain control. Cox proportional hazard regression was performed to determine strength of association between disease-related factors and survival. Results: Median survival time for the entire cohort was 5.9 months. Local control rates at 1 and 2 years were 57% and 34%, respectively. Distant brain failure rates at 1 and 2 years were 58% and 75%, respectively. Fifty-three percent of patients ultimately died of neurologic death. On multivariate analysis, patients with stable (hazard ratio [HR] = 2.89) or progressive (HR = 6.98) extracranial disease (ECD) had worse overall survival than patients without evidence of ECD (p = 0.00002). Concurrent chemotherapy improved local control (HR = 89; p = 0.006). Conclusions: GKSRS represents a feasible salvage option in patients with SCLC and brain metastases for whom previous WBI has failed. The status of patients' ECD is a dominant factor predictive of overall survival. Local control may be inferior to that seen with other cancer histological results, although the use of concurrent chemotherapy may help to

  6. Evaluation of Biomarkers Predictive of Benefit from the PD-1 Inhibitor MK-3475 in Patients with Non-Small Cell Lung Cancer and Brain Metastases

    Science.gov (United States)

    2017-07-01

    Small Cell Lung Cancer and Brain Metastases PRINCIPAL INVESTIGATOR: Sarah B. Goldberg, MD CONTRACTING ORGANIZATION: Yale University New Haven, CT...benefit in patients with non- small cell lung cancer (NSCLC). However, the overall response rate is only 20-30% and there is no clearly-defined...9. Appendices……………………………………………………………14 4 1. INTRODUCTION: Lung cancer is the leading cause of cancer death in the United States, resulting in more

  7. How do trees and the small life forms under the ground talk to each other and other outside things: Can they make our world hot (or cool) again?

    Science.gov (United States)

    Sihi, D.

    2017-12-01

    Trees use water and a bad stuff in air as food with the help of sun light and store the bad stuff in it's body parts (both the parts above the ground and under the ground). However, trees (both above and under ground parts) also return part of the same bad stuff stored in their food to air as it grows. After death, these trees become part of the dead things under the ground and a large part of the bad stuff can be locked under the ground for quite a long time. But, small life forms living under the ground, eat these dead things and return part of the bad stuff locked in these dead things under the ground to the air. The small life forms living under the ground can also make two other stuff (which are even more bad) while eating these dead things under the ground and return them to the air. All of these bad stuffs returned to the air make the air hot. Different things (like sun light, rain, water in the air and under the ground) could make it easier or harder in either storing or returning each of these bad stuffs by the trees or life forms living under the ground in different ways. We study how trees and the small life forms living under the ground talk to each other and to other things mentioned above, and decide how much of those bad stuffs to store and return. But, we do not know well how each of these things can change one another and how trees and small life forms living under the ground will respond to these changes. So, we are yet to understand how much the air will be hotter (if more bad stuff are returned to the air than stored in trees and under the ground) or cooler (if less bad stuffs are returned to the air than stored in trees and under the ground) in tomorrow's world.

  8. MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP.

    Directory of Open Access Journals (Sweden)

    Shandra Gutierrez

    Full Text Available Computed tomography (CT is the standard imaging modality in radiation therapy treatment planning (RTP. However, magnetic resonance (MR imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE, and two ultra-short echo time sequences with 20 μs (UTE1 and 2 ms (UTE2 echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%. When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute

  9. MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP).

    Science.gov (United States)

    Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian

    2015-01-01

    Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total

  10. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  11. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    International Nuclear Information System (INIS)

    Pozsgai, Eva; Gomori, Eva; Szigeti, Andras; Boronkai, Arpad; Gallyas, Ferenc Jr; Sumegi, Balazs; Bellyei, Szabolcs

    2007-01-01

    Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker

  12. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2 and malignancy in brain tumors

    Directory of Open Access Journals (Sweden)

    Gallyas Ferenc

    2007-12-01

    Full Text Available Abstract Background Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Methods Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+, moderate (++, high (+++ or none (- scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Results Low grade (grades 1–2 brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4 tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Conclusion Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.

  13. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies.

    Science.gov (United States)

    Zimmermann, Kathrin; Eschen, Anne

    2017-04-01

    Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.

  14. Non-small cell lung cancer brain metastasis screening in the era of positron emission tomography-CT staging: Current practice and outcomes.

    Science.gov (United States)

    Diaz, Mauricio E; Debowski, Maciej; Hukins, Craig; Fielding, David; Fong, Kwun M; Bettington, Catherine S

    2018-05-10

    Several clinical guidelines indicate that brain metastasis screening (BMS) should be guided by disease stage in non-small cell lung cancer (NSCLC). We estimate that screening is performed more broadly in practice, and patients undergo brain imaging at considerable cost with questionable benefit. Our aim was to quantify the use and detection rate of BMS in a contemporary cohort staged with 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT). We conducted a retrospective review of prospectively collected data from three major lung cancer referral centres in Brisbane between January 2011 and December 2015. Patients included had a new diagnosis of NSCLC and had undergone a PET-CT to stage extra-cranial disease. BMS was defined as dedicated brain imaging with contrast-enhanced computed tomography (CE-CT) or magnetic resonance (MR), in the absence of clinically apparent neurological deficits. A total of 1751 eligible cases were identified and of these 718 (41%) underwent BMS. The majority had CE-CT imaging (n = 703). Asymptomatic brain metastases (BM) were detected in 18 patients (2.5%). Of these patients, 12 had concurrent non-brain metastases. Only six patients (0.8%) had BM alone. The rate of detection increased with N-stage (P = 0.02) and overall stage (P < 0.001). It was 0.5%, 1%, 1.6% and 7.3% for stage I, II, III and IV respectively. The overall screening rate increased with T-stage (P = 0.001), N-Stage (P < 0.001) and overall stage (P < 0.001). Non-small cell lung cancer BMS practices remain at odds with published guidelines. The low number of occult BMs detected supports the existing international recommendations. Rationalising BMS would minimise the burden on patients and the health care system. © 2018 The Royal Australian and New Zealand College of Radiologists.

  15. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine

    DEFF Research Database (Denmark)

    Artmann, Andreas; Petersen, Gitte; Hellgren, Lars

    2008-01-01

    and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high...... (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic...... acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum...

  16. In vitro delineation of human brain-stem anatomy using a small resonator: correlation with macroscopic and histological findings

    International Nuclear Information System (INIS)

    Maeurer, J.; Mitrovic, T.; Knollmann, F.D.; Luedtke, E.; Requardt

    1996-01-01

    Our purpose was to investigate the potential of an experimental animal coil using a commercial MRI unit to delineate the anatomical structure of the human brain stem. Three formaldehyde-fixed brain-stem specimens were examined by MRI and sectioned perpendicular to their longitudinal axis. The images were compared with gross anatomy and myelin-stained histological sections. Fibre tracts and nuclei which were not evident on examination of the unstained specimen were readily identified by MRI. Due to its inherent grey/white matter contrast, MRI with a high-resolution coil delineates anatomical structures in a way comparable to the myelin-stained histological sections. However, pigmented structures, readily visible on examination of the unstained specimen were discernible on neither MRI nor on myelin-stained sections. The excellent anatomical detail and grey/white matter contrast provided by these images could make MRI a useful adjunct to the pathologist investigating brain disease. (orig.)

  17. Real-world usage and clinical outcomes of alectinib among post-crizotinib progression anaplastic lymphoma kinase positive non-small-cell lung cancer patients in the USA

    Science.gov (United States)

    DiBonaventura, Marco D; Wong, William; Shah-Manek, Bijal; Schulz, Mathias

    2018-01-01

    Background Alectinib is an approved treatment for anaplastic lymphoma kinase (ALK)-positive patients with advanced non-small-cell lung cancer. Despite positive supporting clinical data, there is a lack of real-world information on the usage and patient outcomes of those treated with alectinib post-crizotinib progression. Methods Participating oncologists (N=95) in the USA were recruited from an online physician panel to participate in a retrospective patient chart review. Physicians randomly selected eligible patients (ie, patients who progressed on crizotinib as their first ALK inhibitor and were treated with alectinib as their second ALK inhibitor), collected demographics and clinical history from their medical charts, and entered the data into an online data collection form. Results A total of N=207 patient charts were included (age: 60.1±10.4 years; 53.6% male). The patients in our sample were older (median age of 60 vs 53 years), were more likely to be current smokers (12% vs 1%), had better performance status (45% vs 33% had an Eastern Cooperative Oncology Group [ECOG] of 0), and were less likely to have an adenocarcinoma histology (83% vs 96%) relative to published clinical trials. The objective response rate was higher than in clinical trials (67.1% vs 51.3%, respectively) as was the disease control rate (89.9% vs 78.8%, respectively), though it varied by race/ethnicity, ECOG, and prior treatment history. Discontinuation (0.0%) and dose reductions (3.4%) due to adverse events were uncommon in alectinib. Conclusion Patients using alectinib post-crizotinib in clinical practice are older, more racially/ethnically and histologically diverse than patients in published trials. Real-world response rates were high and similar to those reported in clinical studies, though there is some variation by patient characteristics. Alectinib was well tolerated in clinical practice as reflected by the rates of discontinuation, dose reductions, and dose interruptions. PMID

  18. Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world

    Directory of Open Access Journals (Sweden)

    Binder Claudia R

    2009-03-01

    Full Text Available Abstract Background Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA are needed. We present a conceptual framework to develop a spatial individual-based model (IBM prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Results Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. Conclusion This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently

  19. Real-world usage and clinical outcomes of alectinib among post-crizotinib progression anaplastic lymphoma kinase positive non-small-cell lung cancer patients in the USA

    Directory of Open Access Journals (Sweden)

    DiBonaventura MD

    2017-12-01

    Full Text Available Marco D DiBonaventura,1 William Wong,2 Bijal Shah-Manek,3,4 Mathias Schulz2 1Ipsos Healthcare, Global Evidence, Value & Access, New York, NY, 2Genentech, US Medical Affairs, San Francisco, CA, 3Ipsos Healthcare, Global Evidence, Value & Access, San Francisco, CA, 4College of Pharmacy, Touro University California, CA, USA Background: Alectinib is an approved treatment for anaplastic lymphoma kinase (ALK-positive patients with advanced non-small-cell lung cancer. Despite positive supporting clinical data, there is a lack of real-world information on the usage and patient outcomes of those treated with alectinib post-crizotinib progression. Methods: Participating oncologists (N=95 in the USA were recruited from an online physician panel to participate in a retrospective patient chart review. Physicians randomly selected eligible patients (ie, patients who progressed on crizotinib as their first ALK inhibitor and were treated with alectinib as their second ALK inhibitor, collected demographics and clinical history from their medical charts, and entered the data into an online data collection form. Results: A total of N=207 patient charts were included (age: 60.1±10.4 years; 53.6% male. The patients in our sample were older (median age of 60 vs 53 years, were more likely to be current smokers (12% vs 1%, had better performance status (45% vs 33% had an Eastern Cooperative Oncology Group [ECOG] of 0, and were less likely to have an adenocarcinoma histology (83% vs 96% relative to published clinical trials. The objective response rate was higher than in clinical trials (67.1% vs 51.3%, respectively as was the disease control rate (89.9% vs 78.8%, respectively, though it varied by race/ethnicity, ECOG, and prior treatment history. Discontinuation (0.0% and dose reductions (3.4% due to adverse events were uncommon in alectinib.Conclusion: Patients using alectinib post-crizotinib in clinical practice are older, more racially/ethnically and histologically

  20. Energy compensation in the real world: good compensation for small portions of chocolate and biscuits over short time periods in complicit consumers using commercially available foods.

    Science.gov (United States)

    Appleton, Katherine M; McKeown, Pascal P; Woodside, Jayne V

    2015-02-01

    While investigations using covert food manipulations tend to suggest that individuals are poor at adjusting for previous energy intake, in the real world adults rarely consume foods of which they are ill-informed. This study investigated the impact in fully complicit consumers of consuming commercially available dark chocolate, milk chocolate, sweet biscuits and fruit bars on subsequent appetite. Using a repeated measures design, participants received four small portions (4 × 10-11 g) of either dark chocolate, milk chocolate, sweet biscuits, fruit bars or no food throughout five separate study days (counterbalanced in order), and test meal intake, hunger, liking and acceptability were measured. Participants consumed significantly less at lunch following dark chocolate, milk chocolate and sweet biscuits compared to no food (smallest t(19) = 2.47, p = 0.02), demonstrating very good energy compensation (269-334%). No effects were found for fruit bars (t(19) = 1.76, p = 0.09), in evening meal intakes (F(4,72) = 0.62, p = 0.65) or in total intake (lunch + evening meal + food portions) (F(4,72) = 0.40, p = 0.69). No differences between conditions were found in measures of hunger (largest F(4,76) = 1.26, p = 0.29), but fruit bars were significantly less familiar than all other foods (smallest t(19) = 3.14, p = 0.01). These findings demonstrate good compensation over the short term for small portions of familiar foods in complicit consumers. Findings are most plausibly explained as a result of participant awareness and cognitions, although the nature of these cognitions cannot be discerned from this study. These findings however, also suggest that covert manipulations may have limited transfer to real world scenarios. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Prophylactic cranial irradiation for preventing brain metastases in patients undergoing radical treatment for non-small-cell lung cancer: A Cochrane Review

    International Nuclear Information System (INIS)

    Lester, Jason Francis; MacBeth, Fergus R.; Coles, Bernadette

    2005-01-01

    Purpose: To investigate whether prophylactic cranial irradiation (PCI) has a role in the management of patients with non-small-cell lung cancer (NSCLC) treated with curative intent. Methods and Materials: A search strategy was designed to identify randomized controlled trials (RCTs) comparing PCI with no PCI in NSCLC patients treated with curative intent. The electronic databases MEDLINE, EMBASE, LILACS, and Cancerlit were searched, along with relevant journals, books, and review articles to identify potentially eligible trials. Four RCTs were identified and reviewed. A total of 951 patients were randomized in these RCTs, of whom 833 were evaluable and reported. Forty-two patients with small-cell lung cancer were excluded, leaving 791 patients in total. Because of the small patient numbers and trial heterogeneity, no meta-analysis was attempted. Results: Prophylactic cranial irradiation did significantly reduce the incidence of brain metastases in three trials. No trial reported a survival advantage with PCI over observation. Toxicity data were poorly collected and no quality of life assessments were carried out in any trial. Conclusion: Prophylactic cranial irradiation may reduce the incidence of brain metastases, but there is no evidence of a survival benefit. It was not possible to evaluate whether any radiotherapy regimen is superior, and the effect of PCI on quality of life is not known. There is insufficient evidence to support the use of PCI in clinical practice. Where possible, patients should be offered entry into a clinical trial

  2. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from non-small cell lung cancer.

    Science.gov (United States)

    Fan, Yun; Huang, Zhiyu; Fang, Luo; Miao, Lulu; Gong, Lei; Yu, Haifeng; Yang, Haiyan; Lei, Tao; Mao, Weimin

    2015-09-01

    Icotinib is a new first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. A phase II study was conducted to evaluate the efficacy and safety of icotinib in combination with whole-brain radiotherapy (WBRT) in Chinese NSCLC patients with brain metastases (BMs); the cerebrospinal fluid (CSF)/plasma concentrations of icotinib were also investigated. Eligible patients had BMs from NSCLC, regardless of the EGFR status. Icotinib was administered at 125 mg orally 3 times/day until tumor progression or unacceptable toxicity, concurrently with WBRT (3.0 Gy per day, 5 days per week, to 30 Gy). CSF and plasma samples were collected simultaneously from 10 patients. Icotinib concentrations in the CSF and plasma were measured by high-performance liquid chromatography coupled with tandem mass spectrometry. Twenty patients were enrolled. The median follow-up time was 20.0 months. The overall response rate was 80.0%. The median progression-free survival time was 7.0 months (95% CI 1.2-13.2 months), and the median survival time (MST) was 14.6 months (95% CI 12.5-16.7 months). Of the 18 patients with known EGFR status, the MST was 22.0 months for those with an EGFR mutation and was 7.5 months for those with wild-type EGFR (P = 0.0001). The CSF concentration and penetration rate of icotinib were 11.6 ± 9.1 ng/mL and 1.4 ± 1.1%, respectively. No patient experienced ≥grade 4 toxicity. Icotinib was well tolerated in combination with WBRT and showed efficacy in patients with BMs from NSCLC. This clinical benefit was related to the presence of activating EGFR mutations.

  3. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  4. The relations between network-operation and topological-property in a scale-free and small-world network with community structure

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2017-10-01

    It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.

  5. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    Science.gov (United States)

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A class of vertex-edge-growth small-world network models having scale-free, self-similar and hierarchical characters

    Science.gov (United States)

    Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui

    2018-02-01

    The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.

  7. Dynamical mean-field approximation to small-world networks of spiking neurons: From local to global and/or from regular to random couplings

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2004-01-01

    By extending a dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 67, 041903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy N-unit FitzHugh-Nagumo neurons with couplings whose average coordination number Z may change from local (Z<< N) to global couplings (Z=N-1) and/or whose concentration of random couplings p is allowed to vary from regular (p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional stochastic differential equations are transformed to 13-dimensional deterministic differential equations expressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of Z and p. Our calculations have shown that with increasing p, the synchronization is worse because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by our theory are in good agreement with those by direct simulations

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Dynamic Evolution with Limited Learning Information on a Small-World Network

    Science.gov (United States)

    Dong, Lin-Rong

    2010-09-01

    This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition.

  9. Greater efficacy of chemotherapy plus bevacizumab compared to chemo- and targeted therapy alone on non-small cell lung cancer patients with brain metastasis.

    Science.gov (United States)

    Tang, Ning; Guo, Jun; Zhang, Qianqian; Wang, Yali; Wang, Zhehai

    2016-01-19

    Control of non-small-cell lung cancer (NSCLC) with brain metastasis is clinically challenging. This study retrospectively evaluated the efficacy of different adjuvant therapies for 776 cases of advanced NSCLCs with brain metastasis who treated with chemotherapy, chemotherapy plus bevacizumab, tyrosine kinase inhibitor (TKI) alone, or supportive care. The median progression-free survival (mPFS) and median overall survival (mOS) of patients treated with chemotherapy plus bevacizumab were 8.5 and 10.5 months, respectively, which were better than those of patients treated with other three therapies(P chemotherapy plus bevacizumab but was significantly better than that of other therapies. Moreover, for patients with EGFR wild-type NSCLC, the mPFS and mOS after chemotherapy plus bevacizumab were greater than those with other two therapies (P Chemotherapy plus bevacizumab was more effective for NSCLC patients with brain metastasis. Further studies will investigate the benefit of TKI alone for patients with EGFR-mutated. For patients with EGFR wild-type, chemotherapy plus bevacizumab did improve PFS and OS. Furthermore, regimens including pemetrexed led to a greater RR.

  10. Relationship between extent of brain hypoperfused area and functional outcome in patients with a small subcortical infarction

    International Nuclear Information System (INIS)

    Isaka, Yoshinari; Imaizumi, Masatoshi; Ashida, Keiichi; Nakayama, Hirofumi; Iiji, Osamu; Itoi, Yoshihito; Furukawa, Toshiyuki

    1992-01-01

    We performed 123 I-IMP single photon emission computed tomography (SPECT) in 43 patients who had a small infarction ( 2 =29.3; p 123 I-IMP SPECT in patients with a small infarction may discriminate lacunar infarction from embolic or hemodynamic infarction, which was caused by vascular lesions of major cerebral arteries, in subcortical area. Our study suggests that functional outcome is better in lacunar infarction than embolic or hemodynamic infarction in subcortical area. (author)

  11. Where inside the world is the stuff that makes the wood things we write with and the small pretty rocks that women wear on their fingers? And where does that stuff go over time?

    Science.gov (United States)

    Kellogg, L. H.

    2017-12-01

    The middle of the world we live on, between the top and the heart, is made of green rock. When it gets hot, the rock runs slowly like thick water, but it is still rock. The hot rock moves up, and the cold rock moves down. This makes the harder rock on top of our world move around, and it cools the inside of our world. We can not see the green rock place with our own eyes, so we make pretend worlds on a computer. We also use a lot of little tiny bits that are hard to find, to smell where the rock comes from, and where it has been, and how long it takes to move around. One tiny bit that we use is the kind of stuff that makes living things and also makes the wood things we write with and the small pretty rocks that women wear on their fingers. When it is in our air, these little pieces make the air and water warmer. So, how many of the tiny bits that are in wood things we write with and the small pretty rocks are in the green rock place? A lot: much, much more than is now in the air or the water. On another world, the one closer to the sun that is named for a beautiful woman, the air has a lot of the tiny bits that makes the wood things we write with and the small pretty rocks. The air is very heavy and it is very very hot there; no one could live on the beautiful woman world. But we think that maybe our world was like this when our world was very new. On our world, the water, the air, and the rock worked together, using the tiny bits that make wood things we write with and small pretty rocks to make a different kind of rock. Then that kind of rock went down into the green rock place. This made our air very light, and made our world a place where people and other living things can live. Since that early time, when the green rock comes up, it can send some of the tiny bits that make the wood things we write with and small pretty rocks back into the air. What goes down must come up, and what comes up, must go back down.

  12. Our World Their World

    Science.gov (United States)

    Brisco, Nicole

    2011-01-01

    Build, create, make, blog, develop, organize, structure, perform. These are just a few verbs that illustrate the visual world. These words create images that allow students to respond to their environment. Visual culture studies recognize the predominance of visual forms of media, communication, and information in the postmodern world. This…

  13. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  14. A recursive method for calculating the total number of spanning trees and its applications in self-similar small-world scale-free network models

    Science.gov (United States)

    Ma, Fei; Su, Jing; Yao, Bing

    2018-05-01

    The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.

  15. Risk factors for brain metastases after definitive chemoradiation for locally advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Petrović Marina

    2009-01-01

    Full Text Available Background/Aim. As therapy for locally advanced nonsmall cell lung carcinoma (NSCLC improves, brain metastases (BM still remain a great problem. The aim of the study was to analyze risk factors for BM in patients with locally advanced NSCLC after chemoradiation therapy. Methods. Records for 150 patients with non-resectable stage IIIA/IIIB NSCLC treated with combined chemoradiation therapy were analyzed. All of them had negative brain metastases imaging result before the treatment. Incidence of BM was examined in relation to age, sex, histological type, stage, performance status scale of wellbeing of cancer patients, weight loss, chemotherapy regimen and chemotherapy timing. Results. One- and 2-year incidence rates of BM were 19 and 31%, respectively. Among pretreatment parameters, stage IIIB was associated with a higher risk of BM (p < 0.004 vs stage IIIA. Histologically, the patients with nonsquamous tumors had an exceptionally high 2-year BM risk rate of 32% (p < 0.02. Examining treatment-related parameters, 1-year and 2-year actuarial risk of BM were 27 and 39%, respectively, in the patients receiving chemotherapy before radiotherapy and 15 and 20%, respectively, when radiotherapy was not delayed (p < 0.03. On multivariate analysis, timing of chemotherapy (p < 0.05 and stage IIIA vs IIIB (p < 0.01 remained statistically significant. Conclusion. Patients with IIIB stage, nonsquamous NSCLC, particularly those receiving sequential chemotherapy, had significantly high BM rates.

  16. Application of diffusion-weighted echo planar imaging for diagnosis of small acute and subacute brain ischemic lesions

    International Nuclear Information System (INIS)

    Enomoto, Kyoko; Watanabe, Tsuneya; Amanuma, Makoto; Heshiki, Atsuko

    1997-01-01

    The aim of this study was to determine the utility of diffusion-weighted echo planar imaging (DW-EPI) for detecting acute and subacute brain ischemic foci less than 2 cm in size. Thirty patients underwent DW-EPI on a 1.5 T super-conducting unit using a SE-EPI sequence with an arbitrary pair of Stejskal-Tanner gradients applied along the imaging axes. DW-EPI demonstrated all the mast recent ischemic lesions as areas of decreased diffusion, providing greater conspicuity and larger size than conventional spin-echo imaging. DW-EPI is a promising method to detect within a subsecond early ischemia and reversible ischemic changes that are not demonstrate on routine spin-echo images. (author)

  17. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries

    International Nuclear Information System (INIS)

    Murphy, V.A.; Johanson, C.E.

    1985-01-01

    Acute hypertension induced by adrenergic agents opens up the blood-CSF barrier (choroid plexus) to nonelectrolyte and protein tracers. Sprague-Dawley adult rats anesthetized with ketamine were given an intravenous bolus of either epinephrine (10 micrograms/kg), phenylephrine (100 micrograms/kg), isoproterenol (10 micrograms/kg), or D,L-amphetamine (2 mg/kg). Tracers were injected simultaneously with test agents, and the animals killed 10 min later. Epinephrine raised MABP by 57 mm Hg, to a peak pressure of 160 mm Hg; and it increased the volume of distribution (Vd) of urea, mannitol, and 125 I-bovine serum albumin in CSF by 1.5-, 2.7-, and 30-fold, respectively. There was enhanced uptake by lateral and fourth ventricle choroid plexuses, cerebral cortex, cerebellum, medulla, and thalamus. Phenylephrine also elevated MABP to 160 mm Hg, but it increased permeation of tracers into CSF (and several brain regions) to a lesser extent than epinephrine, attributable to protective vasoconstriction associated with alpha-agonist activity. Ratio analysis of Vd data provides evidence that augmented permeation of nonelectrolyte tracers in acute hypertension occurs predominantly by diffusion rather than vesicular transport. It is postulated that elevated MABP distends the central cores of choroid plexus villi and cerebral capillaries, with resultant stretching and opening of tight junctions in both barrier systems; with less hindrance to diffusion, urea and mannitol are cleared at rates closer to free diffusion. Neither isoproterenol (decreased MABP by 40 mm Hg) nor amphetamine (did not alter MABP) significantly opened the choroid plexus or blood-brain barrier to tracers

  18. EGFR-TKI therapy for patients with brain metastases from non-small-cell lung cancer: a pooled analysis of published data

    Directory of Open Access Journals (Sweden)

    Fan Y

    2014-11-01

    Full Text Available Yun Fan,1,2 Xiaoling Xu,3 Conghua Xie4 1Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People's Republic of China; 2Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 3Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 4Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People’s Republic of China Introduction: Brain metastases are one of the leading causes of death from non-small-cell lung cancer (NSCLC. The use of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs to treat brain metastases remains controversial. Thus, we performed a pooled analysis of published data to evaluate the efficacy of EGFR-TKIs in NSCLC patients with brain metastases, particularly for tumors with activating EGFR mutations. Methods: Several data sources were searched, including PubMed, Web of Science, and ASCO Annual Meetings databases. The end points were intracranial overall response rate (ORR, disease control rate (DCR, progression-free survival (PFS, overall survival (OS, and adverse events. The pooled ORR, DCR, PFS, and OS with 95% confidence intervals (CIs were calculated employing fixed- or random-effect models, depending on the heterogeneity of the included studies. Results: Sixteen published studies were included in this analysis, with a total of 464 enrolled patients. The EGFR mutational status was unknown for 362 (unselected group, and 102 had activating EGFR mutations. The pooled intracranial ORR and DCR were 51.8% (95% CI: 45.8%–57.8% and 75.7% (95% CI: 70.3%–80.5%, respectively. A higher ORR was observed in the EGFR mutation group than in the unselected group (85.0% vs 45.1%; a similar trend was observed for the DCR (94.6% vs 71.3%. The pooled median PFS and OS were 7.4 months (95% CI, 4.9–9.9 and 11.9 months (95% CI, 7.7–16.2, respectively, with longer PFS (12.3 months vs 5.9 months and OS (16.2 months vs

  19. World Literature - World Culture

    DEFF Research Database (Denmark)

    Offering their own twenty-first-century perspectives - across generations, nationalities and disciplines -, the contributors to this anthology explore the idea of world literature for what it may add of new connections and itineraries to the study of literature and culture today. Covering a vast...... historical material these essays, by a diverse group of scholars, examine the pioneers of world literature and the roles played by translation, migration and literary institutions in the circulation and reception of both national and cosmopolitan literatures....

  20. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  1. Stereotactic Radiosurgery in the Management of Patients With Brain Metastases of Non-Small Cell Lung Cancer: Indications, Decision Tools and Future Directions

    Directory of Open Access Journals (Sweden)

    Dianne Hartgerink

    2018-05-01

    Full Text Available Brain metastases (BM frequently occur in non-small cell lung cancer (NSCLC patients. Most patients with BM have a limited life expectancy, measured in months. Selected patients may experience a very long progression-free survival, for example, patients with a targetable driver mutation. Traditionally, whole-brain radiotherapy (WBRT has been the cornerstone of the treatment, but its indication is a matter of debate. A randomized trial has shown that for patients with a poor prognosis, WBRT does not add quality of life (QoL nor survival over the best supportive care. In recent decades, stereotactic radiosurgery (SRS has become an attractive non-invasive treatment for patients with BM. Only the BM is irradiated to an ablative dose, sparing healthy brain tissue. Intracranial recurrence rates decrease when WBRT is administered following SRS or resection but does not improve overall survival and comes at the expense of neurocognitive function and QoL. The downside of SRS compared with WBRT is a risk of radionecrosis (RN and a higher risk of developing new BM during follow-up. Currently, SRS is an established treatment for patients with a maximum of four BM. Several promising strategies are currently being investigated to further improve the indication and outcome of SRS for patients with BM: the effectivity and safety of SRS in patients with more than four BM, combining SRS with systemic therapy such as targeted agents or immunotherapy, shared decision-making with SRS as a treatment option, and individualized isotoxic dose prescription to mitigate the risk of RN and further enhance local control probability of SRS. This review discusses the current indications of SRS and future directions of treatment for patients with BM of NSCLC with focus on the value of SRS.

  2. Long-Term Survival in Patients With Synchronous, Solitary Brain Metastasis From Non-Small-Cell Lung Cancer Treated With Radiosurgery

    International Nuclear Information System (INIS)

    Flannery, Todd W.; Suntharalingam, Mohan; Regine, William F.; Chin, Lawrence S.; Krasna, Mark J.; Shehata, Michael K.; Edelman, Martin J.; Kremer, Marnie; Patchell, Roy A.; Kwok, Young

    2008-01-01

    Purpose: To report the outcome of patients with synchronous, solitary brain metastasis from non-small-cell lung cancer (NSCLC) treated with gamma knife stereotactic radiosurgery (GKSRS). Patients and Methods: Forty-two patients diagnosed with synchronous, solitary brain metastasis from NSCLC were treated with GKSRS between 1993 and 2006. The median Karnofsky performance status (KPS) was 90. Patients had thoracic Stage I-III disease (American Joint Committee on Cancer 2002 guidelines). Definitive thoracic therapy was delivered to 26/42 (62%) patients; 9 patients underwent chemotherapy and radiation, 12 patients had surgical resection, and 5 patients underwent preoperative chemoradiation and surgical resection. Results: The median overall survival (OS) was 18 months. The 1-, 2-, and 5-year actuarial OS rates were 71.3%, 34.1%, and 21%, respectively. For patients who underwent definitive thoracic therapy, the median OS was 26.4 months compared with 13.1 months for those who had nondefinitive therapy, and the 5-year actuarial OS was 34.6% vs. 0% (p < 0.0001). Median OS was significantly longer for patients with a KPS ≥90 vs. KPS < 90 (27.8 months vs. 13.1 months, p < 0.0001). The prognostic factors significant on multivariate analysis were definitive thoracic therapy (p = 0.020) and KPS (p = 0.001). Conclusions: This is one of the largest series of patients diagnosed with synchronous, solitary brain metastasis from NSCLC treated with GKSRS. Definitive thoracic therapy and KPS significantly impacted OS. The 5-year OS of 21% demonstrates the potential for long-term survival in patients treated with GKSRS; therefore, patients with good KPS should be considered for definitive thoracic therapy

  3. A Neuro-oncologist's Perspective on Management of Brain Metastases in Patients with EGFR Mutant Non-small Cell Lung Cancer.

    Science.gov (United States)

    McGranahan, Tresa; Nagpal, Seema

    2017-04-01

    Management of non-small cell lung cancer (NSCLC) with brain metastasis (BrM) has been revolutionized by identification of molecular subsets that have targetable oncogenes. Historically, survival for NSCLC with symptomatic BrM was weeks to months. Now, many patients are surviving years with limited data to guide treatment decisions. Tumors with activating mutations in epidermal growth factor receptor (EGFRact+) have a higher incidence of BrM, but a longer overall survival. The high response rate of both systemic and BrM EGFRact+ NSCLC to tyrosine kinase inhibitors (TKIs) has led to the rapid incorporation of new therapies but is outpacing evidence-based decisions for BrM in NSCLC. While whole brain radiation therapy (WBRT) was the foundation of management of BrM, extended survival raises concerns for the subacute and late effects radiotherapy. We favor the use of TKIs and delaying the use of WBRT when able. At inevitable disease progression, we consider alternative dosing schedules to increase CNS penetration (such as pulse dosing of erlotinib) or advance to next generation TKI if available. We utilize local control options of surgery or stereotactic radiosurgery (SRS) for symptomatic accessible lesions based on size and edema. At progression despite available TKIs, we use pemetrexed-based platinum doublet chemotherapy or immunotherapy if the tumor has high expression of PDL-1. We reserve the use of WBRT for patients with more than 10 BrM and progression despite TKI and conventional chemotherapy, if performance status is appropriate.

  4. Impact of whole brain radiation therapy on CSF penetration ability of Icotinib in EGFR-mutated non-small cell lung cancer patients with brain metastases: Results of phase I dose-escalation study.

    Science.gov (United States)

    Zhou, Lin; He, Jiazhuo; Xiong, Weijie; Liu, Yongmei; Xiang, Jing; Yu, Qin; Liang, Maozhi; Zhou, Xiaojuan; Ding, Zhenyu; Huang, Meijuan; Ren, Li; Zhu, Jiang; Li, Lu; Hou, Mei; Ding, Lieming; Tan, Fenlai; Lu, You

    2016-06-01

    Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, Picotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial.

    Science.gov (United States)

    Mulvenna, Paula; Nankivell, Matthew; Barton, Rachael; Faivre-Finn, Corinne; Wilson, Paula; McColl, Elaine; Moore, Barbara; Brisbane, Iona; Ardron, David; Holt, Tanya; Morgan, Sally; Lee, Caroline; Waite, Kathryn; Bayman, Neil; Pugh, Cheryl; Sydes, Benjamin; Stephens, Richard; Parmar, Mahesh K; Langley, Ruth E

    2016-10-22

    Whole brain radiotherapy (WBRT) and dexamethasone are widely used to treat brain metastases from non-small cell lung cancer (NSCLC), although there have been no randomised clinical trials showing that WBRT improves either quality of life or overall survival. Even after treatment with WBRT, the prognosis of this patient group is poor. We aimed to establish whether WBRT could be omitted without a significant effect on survival or quality of life. The Quality of Life after Treatment for Brain Metastases (QUARTZ) study is a non-inferiority, phase 3 randomised trial done at 69 UK and three Australian centres. NSCLC patients with brain metastases unsuitable for surgical resection or stereotactic radiotherapy were randomly assigned (1:1) to optimal supportive care (OSC) including dexamethasone plus WBRT (20 Gy in five daily fractions) or OSC alone (including dexamethasone). The dose of dexamethasone was determined by the patients' symptoms and titrated downwards if symptoms improved. Allocation to treatment group was done by a phone call from the hospital to the Medical Research Council Clinical Trials Unit at University College London using a minimisation programme with a random element and stratification by centre, Karnofsky Performance Status (KPS), gender, status of brain metastases, and the status of primary lung cancer. The primary outcome measure was quality-adjusted life-years (QALYs). QALYs were generated from overall survival and patients' weekly completion of the EQ-5D questionnaire. Treatment with OSC alone was considered non-inferior if it was no more than 7 QALY days worse than treatment with WBRT plus OSC, which required 534 patients (80% power, 5% [one-sided] significance level). Analysis was done by intention to treat for all randomly assigned patients. The trial is registered with ISRCTN, number ISRCTN3826061. Between March 2, 2007, and Aug 29, 2014, 538 patients were recruited from 69 UK and three Australian centres, and were randomly assigned to

  6. Selected Arterial Infusion Chemotherapy Combined with Target Drugs 
for Non-small Cell Lung Cancer with Multiple Brain Metastase

    Directory of Open Access Journals (Sweden)

    Jinduo LI

    2012-05-01

    Full Text Available Background and objective The aim of this study is to evaluate the efficacy of selected arterial infusion chemotherapy in treating non-small cell lung cancer (NSCLC with multiple brain metastases and corresponding factors to influencing prognosis. Methods From September 2008 to October 2011, a total of 31 patients of NSCLC with multiple brain metastases (≥3 received selected incranial, bronchial and corresponding target arterial infusion chemotherapy combined with EGFR-TKIs. Interventional treatment was performed every four weeks, two-six cycles with synchronized or sequential targeted drugs (erlotinib, gefitinib or icotinib. Follow-up CT and MRI were regularly finished at interval of four weeks after two cycles of interventional treatment were finished or during taking targeted drugs in order to evaluate efficacy of the therapy. The procedure was stopped for the tumor disease was worse or the patient could not tolerate the toxity of drugs any longer. Results 31 patients was performed two to six cycles of interventional therapy, 3cycles at average. Response assessment showed that 5 (16.1% patients got a complete response (CR, 7 (22.6% had a partial response (PR, 11 (35.5% had a stable disease (SD and 8 (25.8% had a progressive disease (PD. The objective response rate (ORR was 38.7%, and the disease control rate was 74.2%. The median progression free survival (PFS and overall survival (OS were 13.1 months and 15.1 months. The 6-month survival rate, one-year survival rate and two-year survival rate were 79%, 61.1%, and 31.1%, respectively. The patients’ OS and PFS were influenced by smoking state, tumor pathology, extracranial metastases, period of targeted drug taking and performance status, not by sex, age, before therapy and the total of brain metastases. Conclusion Selected arterial infusion chemotherapy with targeted drugs is one of the most effective and safe treatment to NSCLC with multiple brain metastases. Smoking status, tumor

  7. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    Science.gov (United States)

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  8. Brain Migration Revisited

    Science.gov (United States)

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  9. The Situational Small World of a Post-Disaster Community: Insights into Information Behaviors after the Devastation of Hurricane Katrina in Slidell, Louisiana

    Science.gov (United States)

    Slagle, Tisha Anne

    2010-01-01

    Catastrophes like Katrina destroy a community's critical infrastructure--a situation that instigates several dilemmas. Immediately, the community experiences information disruption within the community, as well as between the community and the outside world. The inability to communicate because of physical or virtual barriers to information…

  10. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  11. A Grounded Theory Study of the Process of Accessing Information on the World Wide Web by People with Mild Traumatic Brain Injury

    Science.gov (United States)

    Blodgett, Cynthia S.

    2008-01-01

    The purpose of this grounded theory study was to examine the process by which people with Mild Traumatic Brain Injury (MTBI) access information on the web. Recent estimates include amateur sports and recreation injuries, non-hospital clinics and treatment facilities, private and public emergency department visits and admissions, providing…

  12. World law

    Directory of Open Access Journals (Sweden)

    Harold J. Berman

    1999-03-01

    Full Text Available In the third millennium of the Christian era, which is characterised by the emergence of a world economy and eventually a world society, the concept of world law is needed to embrace not only the traditional disciplines of public international law, and comparative law, but also the common underlying legal principles applicable in world trade, world finance, transnational transfer of technology and other fields of world economic law, as well as in such emerging fields as the protection of the world's environment and the protection of universal human rights. World law combines inter-state law with the common law of humanity and the customary law of various world communities.

  13. Policy options and their potential effects on Moroccan small farmers and the poor facing increased world food prices: A general equilibrium model analysis

    OpenAIRE

    Diao, Xinshen; Doukkali, Rachid; Yu, Bingxin

    2008-01-01

    "This study evaluates the potential impact of the recent rise in world food prices on the Moroccan economy and possible policy options to respond to it. The study focuses mainly on the poverty effects of such an external shock and the possible policy responses to it. A new social accounting matrix (SAM) and a computable general equilibrium (CGE) model have been developed for this study based on micro-level data in combination with sectoral and economywide data. The CGE model simulations show ...

  14. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells.

    Science.gov (United States)

    Schaefer, Susanne; Svenstrup, Tina H; Guerra, Barbara

    2017-01-01

    Many types of cancer express high levels of heat shock proteins (HSPs) that are molecular chaperones regulating protein folding and stability ensuring protection of cells from potentially lethal stress. HSPs in cancer cells promote survival, growth and spreading even in situations of growth factors deprivation by associating with oncogenic proteins responsible for cell transformation. Hence, it is not surprising that the identification of potent inhibitors of HSPs, notably HSP90, has been the primary research focus, in recent years. Exposure of cancer cells to HSP90 inhibitors, including 17-AAG, has been shown to cause resistance to chemotherapeutic treatment mostly attributable to induction of the heat shock response and increased cellular levels of pro-survival chaperones. In this study, we show that treatment of glioblastoma cells with 17-AAG leads to HSP90 inhibition indicated by loss of stability of the EGFR client protein, and significant increase in HSP70 expression. Conversely, co-treatment with the small-molecule kinase inhibitor D11 leads to suppression of the heat shock response and inhibition of HSF1 transcriptional activity. Beside HSP70, Western blot and differential mRNA expression analysis reveal that combination treatment causes strong down-regulation of the small chaperone protein HSP27. Finally, we demonstrate that incubation of cells with both agents leads to enhanced cytotoxicity and significantly high levels of LC3-II suggesting autophagy induction. Taken together, results reported here support the notion that including D11 in future treatment regimens based on HSP90 inhibition can potentially overcome acquired resistance induced by the heat shock response in brain cancer cells.

  15. Complete remission through icotinib treatment in Non-small cell lung cancer epidermal growth factor receptor mutation patient with brain metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2016-01-01

    Full Text Available Brain metastasis (BM has been universally recognized as a poor prognostic factor in non-small cell lung cancer (NSCLC. Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs have shown efficacy in treating BM with an EGFR mutation. This paper reports a case of BM patient with EGFR-mutated NSCLC. According to the findings, a complete remission (CR of the BM was achieved by icotinib treatment without conducting a radiotherapy, which was followed by a resection of the primary lung cancer lesion and lymph nodes. After one-year follow-up, the disease progressed to liver metastasis and liver lesion biopsy showed a T790M mutation. The patient responded well to the combination treatment of AZD9291 and icotinib after the failure of transcatheter arterial chemoembolization (TACE. This case report suggests that icotinib has a sustainable anticancer response to BM and the combination with icotinib and AZD9291 is effective for liver metastasis with T790M.

  16. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles.

    Science.gov (United States)

    Meyer, H W; Bunjes, H; Ulrich, A S

    1999-06-01

    The phase transition of hydrated brain sphingomyelin occurs at around 35 degrees C, which is close to the physiological temperature. Freeze-fracture electron microscopy is used to characterize different gel state morphologies in terms of solid-ordered and liquid-ordered phase states, according to the occurrence of ripples and other higher-dimensional bilayer deformations. Evidently, the natural mixed-chain sphingomyelin does not assume the flat L beta, phase but instead the rippled P beta, phase, with symmetric and asymmetric ripples as well as macroripples and an egg-carton pattern, depending on the incubation conditions. An unexpected difference was observed between samples that are hydrated above and below the phase transition temperature. When the lipid is hydrated at low temperature, a sponge-like network of bilayers is formed in the gel state, next to some normal lamellae. The network loses its ripples during cold-incubation, which indicates the formation of a liquid-ordered (lo) gel phase. Ripples re-appear upon warming and the sponge-like network disintegrates spontaneously and irreversibly into small vesicles above the phase transition.

  17. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of {sup 11}C-labeled topotecan using small-animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); SHI Accelerator Service, Ltd., Tokyo 141-8686 (Japan); Wakizaka, Hidekatsu [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Yanamoto, Kazuhiko [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan); Fukumura, Toshimitsu [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Zhang Mingrong, E-mail: zhang@nirs.go.jp [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2011-07-15

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [{sup 11}C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [{sup 11}C]TPT using small-animal PET. Methods: [{sup 11}C]TPT was synthesized by the reaction of a desmethyl precursor with [{sup 11}C]CH{sub 3}I. In vitro study using [{sup 11}C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [{sup 11}C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [{sup 11}C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b{sup -/-}Bcrp1{sup -/-} mice, PET results indicated that the brain uptake of [{sup 11}C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [{sup 11}C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [{sup 11}C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [{sup 11}C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  18. Topographic distribution of brain iron deposition and small cerebrovascular lesions in amyotrophic lateral sclerosis and in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance imaging study with neuropathological correlates.

    Science.gov (United States)

    De Reuck, Jacques; Devos, David; Moreau, Caroline; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Pasquier, Florence; Maurage, Claude-Alain; Cordonnier, Charlotte; Leys, Didier; Bordet, Regis

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal lobar degeneration (FTLD) in 15% of the cases. A neuropathological continuity between ALS and FTLD-TDP is suspected. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) study compares the topographic distribution of iron (Fe) deposition and the incidence of small cerebrovascular lesions in ALS and in FTLD brains. Seventy-eight post-mortem brains underwent 7.0-tesla MRI. The patients consisted of 12 with ALS, 38 with FTLD, and 28 controls. Three ALS brains had minor FTLD features. Three coronal sections of a cerebral hemisphere were submitted to T2 and T2* MRI sequences. The amount of Fe deposition in the deep brain structures and the number of small cerebrovascular lesions was determined in ALS and the subtypes of FTLD compared to control brains, with neuropathological correlates. A significant increase of Fe deposition was observed in the claustrum, caudate nucleus, globus pallidus, thalamus, and subthalamic nucleus of the FTLD-FUS and FTLD-TDP groups, while in the ALS one, the Fe increase was only observed in the caudate and the subthalamic nuclei. White matter changes were only significantly more severe in the FTLD compared to those in ALS and in controls brains. Cortical micro-bleeds were increased in the frontal and temporal lobes of FTLD as well as of ALS brains compared to controls. Cortical micro-infarcts were, on the other hand, more frequent in the control compared to the ALS and FTLD groups. The present study supports the assumption of a neuropathological continuity between ALS and FTLD and illustrates the favourable vascular risk profile in these diseases.

  19. Analysis of world experience in constructing underground small nuclear power plants and assessment of its potential use in the Russian Arctic regions

    Directory of Open Access Journals (Sweden)

    Smirnov Yu. G.

    2016-03-01

    Full Text Available The paper considers the common ideology and main idea of locating underground nuclear plants. Specific examples in domestic and foreign experience have been analyzed. It has been established that underground small nuclear power plants can be used as an alternative source of electric and thermal energy for solving defense-strategic and social-economic tasks particularly when developing mineral raw material resources in the Russian Arctic regions

  20. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  1. Reference Data for Standardized Quality of Life Questionnaires in Indian Patients with Brain Metastases from Non-small Cell Lung Cancer: Results from a Prospective Study.

    Science.gov (United States)

    Aggarwal, Jaiprakash; Chakraborty, Santam; Ghosh Laskar, Sarbani; Patil, Vijay M; Prabhash, Kumar; Bhattacharya, Atanu; Noronha, Vanita; Purandare, Nilendu C; Joshi, Amit; Mummudi, Naveen; Arora, Jitendra; Badhe, Rupali

    2017-04-10

    Reference data for European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaires do not include studies from the Indian subcontinent. The objective of the current study was to establish a reference dataset for Indian patients of non-small cell lung cancer (NSCLC) presenting with brain metastases (BM). One hundred forty patients with NSCLC with BM treated between 2012-2015 were registered in a prospective cohort study (CTRI/2013/01/003299). The baseline quality of life was evaluated using the EORTC general quality of life questionnaire QLQ-C30 and lung cancer specific module LC13. Minimum important difference (MID) scores for individual domains of the EORTC QLQ-C30 and LC13 questionnaires were derived (MID = 0.2 x standard deviation) from the reference data for patients with recurrent/metastatic lung cancers. In addition, a systematic review was conducted to identify studies reporting baseline quality of life scores for recurrent/metastatic NSCLC. Scores of several functional as well as symptom scales in the current NSCLC population differed by more than the MID from the baseline mean scores in the reference EORTC population as well as that reported from other studies. Differences in mean score from the EORTC reference data ranged from 6.2 and 9.4 points for the role functioning and cognitive functioning domains. In the symptom scales, the largest differences were observed for the financial difficulties (23.9) scores for the QLQ-C30 and peripheral neuropathy (21.7) for LC13 questionnaires. The current study demonstrates that baseline reference scores need to be established for patients from the Indian subcontinent. The findings from the current study have important implications for studies employing quality of life (QOL) assessment in the Indian NSCLC patient population.

  2. Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[¹⁸F]-ADAM/small-animal PET study.

    Science.gov (United States)

    Shih, Jui-Hu; Ma, Kuo-Hsing; Chen, Chien-Fu F; Cheng, Cheng-Yi; Pao, Li-Heng; Weng, Shao-Ju; Huang, Yuahn-Sieh; Shiue, Chyng-Yann; Yeh, Ming-Kung; Li, I-Hsun

    2016-01-01

    The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. Systematic Review of Brain Metastases in Patients With Non-Small-Cell Lung Cancer in the United States, European Union, and Japan.

    Science.gov (United States)

    Fenske, D Christian; Price, Gregory L; Hess, Lisa M; John, William J; Kim, Edward S

    2017-11-01

    Brain metastases (BRM) occur frequently in non-small-cell lung cancer (NSCLC) and present a substantial unmet medical need. Previous literature on global BRM prevalence, treatment patterns, costs, and outcomes typically has described a subset of these factors. The primary objective of this systematic literature review was to summarize BRM-related epidemiology, treatment patterns, costs, and survival of patients with NSCLC in the United States, European Union, and Japan. The study was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards. Literature searches were conducted in PubMed, Ovid MedLine, and Embase to identify studies published between 2003 and 2014. Peer-reviewed, English language, and human observational studies of patients with NSCLC and BRM were identified. Demographic characteristics, treatment patterns, histology subtype, costs, and survival data were extracted into Microsoft Excel and descriptively analyzed using SAS version 9.2 (SAS Institute, Inc). Of 8257 studies, 243 were eligible. Data from 46,422 patients with NSCLC and 27,907 patients with BRM were summarized. Radiation therapy was used by 70.7% (n = 19,736) of the total BRM population, followed by systemic therapy (8.9%, n = 2497), and surgery (6.1%, n = 1690). Reported median survival was 9.78 months ranging from 2.5 to 38 months. Radiation therapy had the best outcome at 10.0 months with 41.6% (n = 101) of the studies reporting the use of stereotactic radiosurgery. Highly variable median survival and treatment patterns were reported between countries. Costs and histology subtype data were not reported for most countries, highlighting the need for additional research to describe the economic burden of BRM and improve the diagnosis, prognosis, and prescription of effective therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Wastewater infrastructure for small cities in an urbanizing world: integrating protection of human health and the environment with resource recovery and food security.

    Science.gov (United States)

    Verbyla, Matthew E; Oakley, Stewart M; Mihelcic, James R

    2013-04-16

    The majority of population growth in developing countries will occur in small cities closely linked to agricultural zones, with poor access to water and sanitation. Wastewater management priorities in these regions will be different from those in larger cities and developed countries. Two wastewater treatment systems in Bolivia, one with an upflow anaerobic sludge blanket (UASB) reactor and polishing ponds, the other with three stabilization ponds, are assessed to determine their resource recovery potential. The UASB reactor produces biogas with 500-650 MJ per day. In six months, both systems discharge wastewater with the same mass of nutrients as fertilizers used to produce crops containing 10-75 days' worth of the recommended food energy intake for each person using the system. Both systems also discharge detectable levels of helminth eggs, Giardia cysts, and Cryptosporidium oocysts, but the UASB reactor system discharges higher concentrations, implying limited reuse potential. From a regional management standpoint, small cities should not expend resources to treat wastewater to levels suitable for discharge into surface waters. Rather, they should focus on removing pathogens to reclaim water and nutrients. Biogas recovery may be a priority that should be subservient to water and nutrient recovery in these settings.

  5. Structural connectivity asymmetry in the neonatal brain.

    Science.gov (United States)

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Role of physical and mental training in brain network configuration

    Directory of Open Access Journals (Sweden)

    Philip P. Foster

    2015-06-01

    Full Text Available Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of energy cost-driven small-world network disorder as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement produces a reconfiguration of brain networks into greater small-worldness. Creation of synaptic connections in a macro-network, and, at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF. The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brainbrain in such trainings? What is the respective role of independent mental, physical or combined-mental-physical trainings? Physical practice seems to be playing an instrumental role in the cognitive enhancement (brain ↔ muscle com.. However, mental training, meditation or virtual reality (films, games require only minimal motor activity and cardio-respiratory stimulation. Therefore, other potential paths (brainbrain com. molding brain networks are nonetheless essential. Patients with motor neuron disease/injury (e.g. amyotrophic lateral sclerosis, traumatism also achieve successful cognitive enhancement albeit they may only elicit mental practice

  7. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch to an acute thermal challenge and a simulated capture event.

    Directory of Open Access Journals (Sweden)

    Timothy D Clark

    Full Text Available Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure in maturing male coho salmon (Oncorhynchus kisutch. Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1 was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'. Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1 kg(-1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  8. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Science.gov (United States)

    Choi, Yoon-La; Sun, Jong-Mu; Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (Pwomen, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants the need for generalized testing in Asian NSCLC patients.

  9. EGFR Mutation Testing in Patients with Advanced Non-Small Cell Lung Cancer: A Comprehensive Evaluation of Real-World Practice in an East Asian Tertiary Hospital

    Science.gov (United States)

    Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Introduction Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Methods Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. Results This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. Conclusions In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants

  10. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Directory of Open Access Journals (Sweden)

    Yoon-La Choi

    Full Text Available INTRODUCTION: Guidelines for management of non-small cell lung cancer (NSCLC strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. METHODS: Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. RESULTS: This cohort had a mean age (SD of 59.6 (11.1 years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5% and squamous cell carcinoma (18.0%. Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001. The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%, pulmonologists (31.9%, and thoracic surgeons (6.6%. EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7% were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. CONCLUSIONS: In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive

  11. The application of graph theoretical analysis to complex networks in the brain.

    Science.gov (United States)

    Reijneveld, Jaap C; Ponten, Sophie C; Berendse, Henk W; Stam, Cornelis J

    2007-11-01

    Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.

  12. World lines.

    OpenAIRE

    Waser Jürgen; Fuchs Raphael; Ribicic Hrvoje; Schindler Benjamin; Blöschl Günther; Gröller Eduard

    2010-01-01

    In this paper we present World Lines as a novel interactive visualization that provides complete control over multiple heterogeneous simulation runs. In many application areas decisions can only be made by exploring alternative scenarios. The goal of the suggested approach is to support users in this decision making process. In this setting the data domain is extended to a set of alternative worlds where only one outcome will actually happen. World Lines integrate simulation visualization and...

  13. Command World

    National Research Council Canada - National Science Library

    Wong, Leah Y; Lange, Douglas S; Sebastyn, Jerome T; Roof, William H

    2006-01-01

    .... The Command World scenario was expressly designed as a crisis action planning exercise in order to replicate the communications, collaboration, and information requirements inherent in a military...

  14. Mapping the Alzheimer's brain with connectomics

    Directory of Open Access Journals (Sweden)

    Teng eXie

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia. As an incurable, progressive and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques (e.g., structural MRI, diffusion MRI, functional MRI and EEG/MEG and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring.

  15. Superhabitable worlds.

    Science.gov (United States)

    Heller, René; Armstrong, John

    2014-01-01

    To be habitable, a world (planet or moon) does not need to be located in the stellar habitable zone (HZ), and worlds in the HZ are not necessarily habitable. Here, we illustrate how tidal heating can render terrestrial or icy worlds habitable beyond the stellar HZ. Scientists have developed a language that neglects the possible existence of worlds that offer more benign environments to life than Earth does. We call these objects "superhabitable" and discuss in which contexts this term could be used, that is to say, which worlds tend to be more habitable than Earth. In an appendix, we show why the principle of mediocracy cannot be used to logically explain why Earth should be a particularly habitable planet or why other inhabited worlds should be Earth-like. Superhabitable worlds must be considered for future follow-up observations of signs of extraterrestrial life. Considering a range of physical effects, we conclude that they will tend to be slightly older and more massive than Earth and that their host stars will likely be K dwarfs. This makes Alpha Centauri B, which is a member of the closest stellar system to the Sun and is supposed to host an Earth-mass planet, an ideal target for searches for a superhabitable world.

  16. Impact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases.

    Science.gov (United States)

    Magnuson, William J; Yeung, Jacky T; Guillod, Paul D; Gettinger, Scott N; Yu, James B; Chiang, Veronica L

    2016-06-01

    To perform a retrospective analysis of patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma who developed brain metastases (BM) to evaluate our hypothesis that the use of upfront EGFR-tyrosine kinase inhibitors (TKIs), and deferral of radiation therapy (RT), would result in inferior intracranial progression-free survival but similar overall survival (OS). Of 202 patients diagnosed with EGFR-mutant NSCLC between July 1, 2008, and December 31, 2014, 71 developed BM. Twenty-one patients were excluded owing to prior EGFR-TKI use, EGFR-TKI resistance mutation, failure to receive EGFR-TKI after whole-brain radiation therapy (WBRT)/stereotactic radiosurgery (SRS) or develop brain metastases. A prospective, multi-institutional, randomized trial of upfront EGFR-TKI with RT at intracranial progression versus upfront RT followed by EGFR-TKI is urgently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of icotinib with and without radiation therapy on patients with EGFR mutant non-small cell lung cancer and brain metastases

    OpenAIRE

    Yun Fan; Yanjun Xu; Lei Gong; luo Fang; Hongyang Lu; Jing Qin; Na Han; Fajun Xie; Guoqin Qiu; Zhiyu Huang

    2017-01-01

    EGFR-TKIs and radiation therapy (RT) are the principal treatment for patients with brain metastases (BM) and EGFR mutant NSCLC. However, the optimal use of brain RT for patients with asymptomatic BM remains undefined. A total of 152 patients were identified. 58 patients were excluded. Of the remaining 97 patients, 56 patients received upfront RT followed by icotinib, including WBRT or SRS. 41 patients received icotinib therapy alone. The mOS from diagnosis of BM was 27.0 months for the whole ...

  18. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice

    DEFF Research Database (Denmark)

    Jacobsen, J P R; Redrobe, J P; Hansen, H H

    2009-01-01

    performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor...... the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice...

  19. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  20. World Small Hydropower Development Report 2013 - Lesotho

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available . The designations employed and the presentations of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNIDO and ICSHP concerning the legal status of any country, territory, city or area or of its... of these being in urban areas. 3 The Government has set a goal of increasing electrification rate to 35 per cent of total households by 2015 and 40 per cent by 2020. The Electricity Supply Industry in Lesotho is regulated by the Lesotho Electricity...

  1. World Small Hydropower Development Report 2013 - Swaziland

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available Power in Swaziland is supplied and distributed by the Swaziland Electricity Company (SEC), which was established in 2007 by the Swaziland Electricity Company Act. SEC currently has a monopoly on the import, distribution and supply of electricity via...

  2. World Small Hydropower Development Report 2013 - Mozambique

    CSIR Research Space (South Africa)

    Jonker Klunne, W

    2013-01-01

    Full Text Available as 3 trillion cubic feet. Natural gas is exported to South Africa via a pipeline. The current electricity generation in Mozambique is dominated by hydropower which supplies 95 per cent of the electricity demand followed by 5 per cent supplied via...

  3. Subjective Expected Utility Theory with "Small Worlds"

    DEFF Research Database (Denmark)

    Gyntelberg, Jacob; Hansen, Frank

    which is a more general construction than a state space. We retain preference axioms similar in spirit to the Savage axioms and obtain, without abandoning linearity of expectations, a subjective expected utility theory which allows for an intuitive distinction between risk and uncertainty. We also...

  4. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  5. World science

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The aim of the Third World Network of Scientific Organizations (TWNSO), established last year with its headquarters in Trieste, Italy, is to promote the role of science and technology in developing countries. TWNSO, under the presidency of Abdus Salam, is an offshoot of the Third World Academy of Sciences, which has pushed the cause of international scientific collaboration since its establishment in 1983. (orig./HSI).

  6. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  7. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  8. [¹⁸F]Altanserin and small animal PET: impact of multidrug efflux transporters on ligand brain uptake and subsequent quantification of 5-HT₂A receptor densities in the rat brain.

    Science.gov (United States)

    Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Celik, A Avdo; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas

    2014-01-01

    The selective 5-hydroxytryptamine type 2a receptor (5-HT(2A)R) radiotracer [(18)F]altanserin is a promising ligand for in vivo brain imaging in rodents. However, [(18)F]altanserin is a substrate of P-glycoprotein (P-gp) in rats. Its applicability might therefore be constrained by both a differential expression of P-gp under pathological conditions, e.g. epilepsy, and its relatively low cerebral uptake. The aim of the present study was therefore twofold: (i) to investigate whether inhibition of multidrug transporters (MDT) is suitable to enhance the cerebral uptake of [(18)F]altanserin in vivo and (ii) to test different pharmacokinetic, particularly reference tissue-based models for exact quantification of 5-HT(2A)R densities in the rat brain. Eighteen Sprague-Dawley rats, either treated with the MDT inhibitor cyclosporine A (CsA, 50 mg/kg, n=8) or vehicle (n=10) underwent 180-min PET scans with arterial blood sampling. Kinetic analyses of tissue time-activity curves (TACs) were performed to validate invasive and non-invasive pharmacokinetic models. CsA application lead to a two- to threefold increase of [(18)F]altanserin uptake in different brain regions and showed a trend toward higher binding potentials (BP(ND)) of the radioligand. MDT inhibition led to an increased cerebral uptake of [(18)F]altanserin but did not improve the reliability of BP(ND) as a non-invasive estimate of 5-HT(2A)R. This finding is most probable caused by the heterogeneous distribution of P-gp in the rat brain and its incomplete blockade in the reference region (cerebellum). Differential MDT expressions in experimental animal models or pathological conditions are therefore likely to influence the applicability of imaging protocols and have to be carefully evaluated. © 2013.

  9. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  10. Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Xue-na

    2012-08-01

    Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.

  11. Effects of icotinib with and without radiation therapy on patients with EGFR mutant non-small cell lung cancer and brain metastases.

    Science.gov (United States)

    Fan, Yun; Xu, Yanjun; Gong, Lei; Fang, Luo; Lu, Hongyang; Qin, Jing; Han, Na; Xie, Fajun; Qiu, Guoqin; Huang, Zhiyu

    2017-03-23

    EGFR-TKIs and radiation therapy (RT) are the principal treatment for patients with brain metastases (BM) and EGFR mutant NSCLC. However, the optimal use of brain RT for patients with asymptomatic BM remains undefined. A total of 152 patients were identified. 58 patients were excluded. Of the remaining 97 patients, 56 patients received upfront RT followed by icotinib, including WBRT or SRS. 41 patients received icotinib therapy alone. The mOS from diagnosis of BM was 27.0 months for the whole cohort (95% CI, 23.9-30.1 months). There was no difference in OS between the RT followed by icotinib group and the icotinib alone group (31.9 vs. 27.9 months, P = 0.237), and similar results were found in the SRS subgroup (35.5 vs. 27.9 months, P = 0.12). Patients with the EGFR Del19 mutation had a longer OS than patients with the exon 21 L858R mutation (32.7 vs. 27.4, P = 0.037). Intracranial progression-free survival (PFS) was improved in the patients who received RT followed by icotinib compared to those receiving icotinib alone (22.4 vs. 13.9 months, P = 0.043). Patients with EGFR-mutant adenocarcinoma and BM treated with icotinib exhibited prolonged survival. A longer duration of intracranial control was observed with brain RT.

  12. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  13. Polynitroxylated Pegylated Hemoglobin-A Novel, Small Volume Therapeutic for Traumatic Brain Injury Resuscitation: Comparison to Whole Blood and Dose Response Evaluation.

    Science.gov (United States)

    Brockman, Erik C; Jackson, Travis C; Dixon, C Edward; Bayɪr, Hülya; Clark, Robert S B; Vagni, Vincent; Feldman, Keri; Byrd, Catherine; Ma, Li; Hsia, Carleton; Kochanek, Patrick M

    2017-04-01

    Resuscitation with polynitroxylated pegylated hemoglobin (PNPH), a pegylated bovine hemoglobin decorated with nitroxides, eliminated the need for fluid administration, reduced intracranial pressure (ICP) and brain edema, and produced neuroprotection in vitro and in vivo versus Lactated Ringer's solution (LR) in experimental traumatic brain injury (TBI) plus hemorrhagic shock (HS). We hypothesized that resuscitation with PNPH would improve acute physiology versus whole blood after TBI+HS and would be safe and effective across a wide dosage range. Anesthetized mice underwent controlled cortical impact and severe HS to mean arterial pressure (MAP) of 25-27 mm Hg for 35 min, then were resuscitated with PNPH, autologous whole blood, or LR. Markers of acute physiology, including mean arterial blood pressure (MAP), heart rate (HR), blood gases/chemistries, and brain oxygenation (PbtO 2 ), were monitored for 90 min on room air followed by 15 min on 100% oxygen. In a second experiment, the protocol was repeated, except mice were resuscitated with PNPH with doses between 2 and 100 mL/kg. ICP and 24 h %-brain water were evaluated. PNPH-resuscitated mice had higher MAP and lower HR post-resuscitation versus blood or LR (p < 0.01). PNPH-resuscitated mice, versus those resuscitated with blood or LR, also had higher pH and lower serum potassium (p < 0.05). Blood-resuscitated mice, however, had higher PbtO 2 versus those resuscitated with LR and PNPH, although PNPH had higher PbtO 2 versus LR (p < 0.05). PNPH was well tolerated across the dosing range and dramatically reduced fluid requirements in all doses-even 2 or 5 mL/kg (p < 0.001). ICP was significantly lower in PNPH-treated mice for most doses tested versus in LR-treated mice, although %-brain water did not differ between groups. Resuscitation with PNPH, versus resuscitation with LR or blood, improved MAP, HR, and ICP, reduced acidosis and hyperkalemia, and was well tolerated and effective

  14. Polynitroxylated Pegylated Hemoglobin—A Novel, Small Volume Therapeutic for Traumatic Brain Injury Resuscitation: Comparison to Whole Blood and Dose Response Evaluation

    Science.gov (United States)

    Brockman, Erik C.; Jackson, Travis C.; Dixon, C. Edward; Bayɪr, Hülya; Clark, Robert S. B.; Vagni, Vincent; Feldman, Keri; Byrd, Catherine; Ma, Li; Hsia, Carleton

    2017-01-01

    Abstract Resuscitation with polynitroxylated pegylated hemoglobin (PNPH), a pegylated bovine hemoglobin decorated with nitroxides, eliminated the need for fluid administration, reduced intracranial pressure (ICP) and brain edema, and produced neuroprotection in vitro and in vivo versus Lactated Ringer's solution (LR) in experimental traumatic brain injury (TBI) plus hemorrhagic shock (HS). We hypothesized that resuscitation with PNPH would improve acute physiology versus whole blood after TBI+HS and would be safe and effective across a wide dosage range. Anesthetized mice underwent controlled cortical impact and severe HS to mean arterial pressure (MAP) of 25–27 mm Hg for 35 min, then were resuscitated with PNPH, autologous whole blood, or LR. Markers of acute physiology, including mean arterial blood pressure (MAP), heart rate (HR), blood gases/chemistries, and brain oxygenation (PbtO2), were monitored for 90 min on room air followed by 15 min on 100% oxygen. In a second experiment, the protocol was repeated, except mice were resuscitated with PNPH with doses between 2 and 100 mL/kg. ICP and 24 h %-brain water were evaluated. PNPH-resuscitated mice had higher MAP and lower HR post-resuscitation versus blood or LR (p < 0.01). PNPH-resuscitated mice, versus those resuscitated with blood or LR, also had higher pH and lower serum potassium (p < 0.05). Blood-resuscitated mice, however, had higher PbtO2 versus those resuscitated with LR and PNPH, although PNPH had higher PbtO2 versus LR (p < 0.05). PNPH was well tolerated across the dosing range and dramatically reduced fluid requirements in all doses—even 2 or 5 mL/kg (p < 0.001). ICP was significantly lower in PNPH-treated mice for most doses tested versus in LR-treated mice, although %-brain water did not differ between groups. Resuscitation with PNPH, versus resuscitation with LR or blood, improved MAP, HR, and ICP, reduced acidosis and hyperkalemia, and was well tolerated and

  15. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain; Efeitos da compressao de dados JPEG na avaliacao de lesoes vasculares cerebrais isquemicas de pequenos vasos em ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: paulokuriki@gmail.com

    2006-01-15

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  16. World energy

    International Nuclear Information System (INIS)

    Curtis, D.L.

    1990-01-01

    Three major concerns face mankind's future: the impending energy crisis as caused by the depletion of the world's fossil fuel reserves, world atmospheric pollution as caused by the burning of these fuels, and mankind's destruction if the vast energy contained in nuclear weapons stockpiles is released in a global conflict. This paper describes an ambitious, combined solution to these problems by the use of deep underground detonations of thermonuclear devices/bombs to provide a virtually pollution free, world energy source into the far distant future, while achieving a significant increase in mutual trust between the superpowers and all nations. The key is believed to be thermonuclear geothermal stimulation to produce the electrical power needed for a hydrogen economy

  17. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an

  18. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Cindy Casteels

    Full Text Available UNLABELLED: Automated voxel-based or pre-defined volume-of-interest (VOI analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18F]FDG and dopamine transporter ([(18F]FECT small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM was explored for [(18F]FDG and [(18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA mice. METHODS: Twenty-three adult C57BL6 mice were scanned with [(18F]FDG and [(18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18F]FDG data were quantified using (1 an image-derived-input function obtained from the liver (cMRglc, using (2 standardized uptake values (SUVglc corrected for blood glucose levels and by (3 normalizing counts to the whole-brain uptake. Parametric [(18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. RESULTS: Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71. Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an

  19. Radiographic patterns and survival of patients with early and late brain metastases in EGFR wild type and mutant non small cell lung cancer

    DEFF Research Database (Denmark)

    Yuan, Ren; Yamada, Andrew; Weber, Britta

    2016-01-01

    Brain metastasis (BM) in NSCLC is a negative prognostic indicator. In the era of EGFR mutations we evaluated the difference between early (≤6 months from diagnosis) versus late BM (>6 months), in EGFR wild type (WT) and mutant (MT) NSCLC patients with respect to radiographic patterns and overall...... BM: WT 24.9 months versus MT 25.6 months (p = 0.51). In multivariate analysis chemotherapy, single lesion and late BM were associated with better survival in WT patients whereas age, and systemic treatment but not BM timing or single lesion were predictive of better outcomes in MT patients. In early...

  20. World armament

    International Nuclear Information System (INIS)

    Stolle, H.

    1977-01-01

    Summary of consequences on: Armament expenditure of the world, arms trade, arms race and nuclear weapon arsenals, nuclear weapon proliferation, nuclear safety controls, nuclear carrier systems, international nuclear trade, nuclear weapon accidents, chemical wars, war law, ecological wars, armament limitations. (HP) [de

  1. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  2. Role of physical and mental training in brain network configuration.

    Science.gov (United States)

    Foster, Philip P

    2015-01-01

    It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of "energy cost-driven small-world network disorder" with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brainbrain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be

  3. Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates.

    Science.gov (United States)

    Boutte, Ronald W; Merlin, Sam; Yona, Guy; Griffiths, Brandon; Angelucci, Alessandra; Kahn, Itamar; Shoham, Shy; Blair, Steve

    2017-10-01

    As the optogenetic field expands, the need for precise targeting of neocortical circuits only grows more crucial. This work demonstrates a technique for using Solidworks ® computer-aided design (CAD) and readily available stereotactic brain atlases to create a three-dimensional (3-D) model of the dorsal region of area visual cortex 4 (V4D) of the macaque monkey ( Macaca fascicularis ) visual cortex. The 3-D CAD model of the brain was used to customize an [Formula: see text] Utah optrode array (UOA) after it was determined that a high-density ([Formula: see text]) UOA caused extensive damage to marmoset ( Callithrix jacchus ) primary visual cortex as assessed by electrophysiological recording of spiking activity through a 1.5-mm-diameter through glass via. The [Formula: see text] UOA was customized for optrode length ([Formula: see text]), optrode width ([Formula: see text]), optrode pitch ([Formula: see text]), backplane thickness ([Formula: see text]), and overall form factor ([Formula: see text]). Two [Formula: see text] UOAs were inserted into layer VI of macaque V4D cortices with minimal damage as assessed in fixed tissue cytochrome oxidase staining in nonrecoverable surgeries. Additionally, two [Formula: see text] arrays were implanted in mice ( Mus musculus ) motor cortices, providing early evidence for long-term tolerability (over 6 months), and for the ability to integrate the UOA with a Holobundle light delivery system toward patterned optogenetic stimulation of cortical networks.

  4. Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events

    Directory of Open Access Journals (Sweden)

    Detre A. Godinez

    2016-12-01

    Full Text Available Monozygotic twin pairs provide a valuable opportunity to control for genetic and shared environmental influences while studying the effects of nonshared environmental influences. The question we address with this design is whether monozygotic twins selected for discordance in exposure to severe stressful life events during development (before age 18 demonstrate differences in brain activation during performance of an emotional word-face Stroop task. In this study, functional magnetic resonance imaging was used to assess brain activation in eighteen young adult twins who were discordant in exposure to severe stress such that one twin had two or more severe events compared to their control co-twin who had no severe events. Twins who experienced higher levels of stress during development, compared to their control co-twins with lower stress, exhibited significant clusters of greater activation in the ventrolateral and medial prefrontal cortex, basal ganglia, and limbic regions. The control co-twins showed only the more typical recruitment of frontoparietal regions thought to be important for executive control of attention and maintenance of task goals. Behavioral performance was not significantly different between twins within pairs, suggesting the twins with stress recruited additional neural resources associated with affective processing and updating working memory when performing at the same level. This study provides a powerful glimpse at the potential effects of stress during development while accounting for shared genetic and environmental influences.

  5. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  6. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa

    2013-01-01

    A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...... of the developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results...... demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development....

  7. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth...

  8. Impact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor–Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, William J., E-mail: william.magnuson@yale.edu [Department of Radiation Oncology, Yale School of Medicine, New Haven, Connecticut (United States); Yeung, Jacky T. [Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut (United States); Guillod, Paul D. [Yale School of Medicine, New Haven, Connecticut (United States); Gettinger, Scott N. [Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut (United States); Yu, James B. [Department of Radiation Oncology, Yale School of Medicine, New Haven, Connecticut (United States); Chiang, Veronica L. [Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut (United States)

    2016-06-01

    Purpose: To perform a retrospective analysis of patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma who developed brain metastases (BM) to evaluate our hypothesis that the use of upfront EGFR–tyrosine kinase inhibitors (TKIs), and deferral of radiation therapy (RT), would result in inferior intracranial progression-free survival but similar overall survival (OS). Methods and Materials: Of 202 patients diagnosed with EGFR-mutant NSCLC between July 1, 2008, and December 31, 2014, 71 developed BM. Twenty-one patients were excluded owing to prior EGFR-TKI use, EGFR-TKI resistance mutation, failure to receive EGFR-TKI after whole-brain radiation therapy (WBRT)/stereotactic radiosurgery (SRS) or <6 months' follow-up. Of the remaining 50 patients, 17 received upfront EGFR-TKI followed by SRS or WBRT, 17 WBRT then EGFR-TKI, and 16 SRS followed by EGFR-TKI. Disease-specific-graded prognostic assessment was similar among all 3 groups. Results: The median OS was longer in the upfront RT group compared with the upfront EGFR-TKI group (34.1 vs 19.4 months; P=.01). On subgroup analysis, the SRS group had longer OS than the upfront EGFR-TKI group (58.4 vs 19.4 months; P=.01), but the WBRT group did not (29.9 vs 19.4 months; P=.09). Intracranial progression-free survival was improved in patients receiving upfront RT compared with those receiving upfront EGFR-TKI (37.9 vs 10.6 months; P<.001). Conclusions: The present study suggests that the use of upfront EGFR-TKI, and the deferral of SRS or WBRT, may result in inferior OS in patients with EGFR-mutant NSCLC who develop brain metastases. A prospective, multi-institutional, randomized trial of upfront EGFR-TKI with RT at intracranial progression versus upfront RT followed by EGFR-TKI is urgently needed.

  9. Quantum Worlds

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Barrett

    2016-09-01

    Full Text Available http://dx.doi.org/10.5007/1808-1711.2016v20n1p45 Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure wave mechanics. These reflections will serve to illustrate both the nature and the limits of naturalized metaphysics.

  10. Third World

    Energy Technology Data Exchange (ETDEWEB)

    K, Peng K

    1980-12-01

    The disparity between the consumption patterns of industrialized and Third World countries reflects an increase in the numbers of people living in poverty who have yet to achieve basic needs. Third World planning, encouraged by transnational companies, too often model their development goals on importing artificial life styles. This exploits poor nations by creating unrealistic demands as well as by creating a market for products that are unacceptable elsewhere. The health and environmental effects of these practices prompted the formation of consumers' association of Penang (CAP), which is trying to make people aware of the need to give basic needs the highest priority. The CAP handles complaints, tests products, and studies the socio-economic-environmental implications of development as well as conducting a far-ranging educational program. Its procedures can be adapted by any country to examine consumer awareness and to press for social reform. (DCK)

  11. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  12. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  13. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  14. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Science.gov (United States)

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  15. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  16. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  17. Development of the Young Brain

    Medline Plus

    Full Text Available ... changing world and how do we assess the impact for good or for bad on the developing ... the everyday moments that really have a huge impact on how the brain forms and adapts. Announcer: ...

  18. Development of the Young Brain

    Medline Plus

    Full Text Available ... the world around us. In adolescents, the key changes are in the frontal part of the brain involved in controlling our impulses, long range planning, judgment, decision making. Announcer: Imaging has shown by the time children ...

  19. Scintigraphic evaluation of brain death

    International Nuclear Information System (INIS)

    Park, C. H.; Bai, M. S.; Cho, K. K.; Kim, S. J.; Yoon, S. N.; Cho, C. W.

    1997-01-01

    A law recognizing brain death is a life saving legal measure in patients suffering from badly diseased organs such as kidney, liver, heart, and lung. Such law is being discussed for legalization at the Korean National Assembly. There are various criteria used for brain death in western world and brain scintiscan is one of them. However, the scintiscan is not considered in establishing brain death in the draft of the law. The purpose of this report is to spread this technique in nuclear medicine society as well as in other medical societies. We evaluated 7 patients with clinical suspicion of brain death by various causes. The patient's age ranged from 5 to 39 years. We used 5-20mCi 99m Tc-HMPAO (d.1-hexamethyl propylene amine oxime) or ECD (Ethyl Cysteinate Dimer), lipophilic agents that cross BBB (blood brain barrier). A dynamic study followed by static or SPECT (single photon emission tomography) was performed. Interpretive criteria used for brain death were 1) no intracranial circulation 2) no brain uptake. The second criteria is heavily used. Five of 7 patients were scintigraphically brain dead and the remaining 2 had some brain uptake excluding the diagnosis of scintigraphic brain death. In conclusion, cerebral perfusion study using a lipophilic brain tracer offers a noninvasive, rapid, easy, accurate and reliable mean in the diagnosis of brain death. We believe that this modality should be included in the criteria of brain death in the draft of the proposed Korean law

  20. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  1. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    Science.gov (United States)

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.

  2. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  3. Fragmentation: Loss of global coherence or breakdown of modularity in functional brain architecture?

    Directory of Open Access Journals (Sweden)

    Daan evan den Berg

    2012-03-01

    Full Text Available Psychiatric illnesses characterised by disorganized cognition, such as schizophrenia, have been described in terms of fragmentation and hence understood as reduction in functional brain connectivity, particularly in prefrontal and parietal areas. However, as graph-theory shows, relatively small numbers of nonlocal connections are sufficient to ensure global coherence in the modular small world network structure of the brain. We reconsider fragmentation in this perspective. Computational studies have shown that for a given level of connectivity in a model of coupled nonlinear oscillators, modular small-world networks evolve from an initially random organization. Here we demonstrate that with decreasing connectivity, the probability of evolving into a modular small-world network breaks down at a critical point, which scales to the percolation function of random networks with a universal exponent of α=1.17. Thus, according to the model, local modularity systematically breaks down before there is loss of global coherence in network connectivity. We therefore propose that fragmentation may involve, at least in its initial stages, the inability of a dynamically evolving network to sustain a modular small-world structure. The result is in a shift in the balance in schizophrenia from local to global functional connectivity.

  4. Brain modularity controls the critical behavior of spontaneous activity.

    Science.gov (United States)

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  5. Development of the Young Brain

    Medline Plus

    Full Text Available ... changing so much. We’ve been challenged- how do we keep up with the changing world and how do we assess the impact for good or for ... what was the human brain originally developed to do? Well, Dr. Giedd says our brains are fundamentally ...

  6. Plumbing the brain drain.

    Science.gov (United States)

    Saravia, Nancy Gore; Miranda, Juan Francisco

    2004-08-01

    Opportunity is the driving force of migration. Unsatisfied demands for higher education and skills, which have been created by the knowledge-based global economy, have generated unprecedented opportunities in knowledge-intensive service industries. These multi-trillion dollar industries include information, communication, finance, business, education and health. The leading industrialized nations are also the focal points of knowledge-intensive service industries and as such constitute centres of research and development activity that proactively draw in talented individuals worldwide through selective immigration policies, employment opportunities and targeted recruitment. Higher education is another major conduit of talent from less-developed countries to the centres of the knowledge-based global economy. Together career and educational opportunities drive "brain drain and recirculation". The departure of a large proportion of the most competent and innovative individuals from developing nations slows the achievement of the critical mass needed to generate the enabling context in which knowledge creation occurs. To favourably modify the asymmetric movement and distribution of global talent, developing countries must implement bold and creative strategies that are backed by national policies to: provide world-class educational opportunities, construct knowledge-based research and development industries, and sustainably finance the required investment for these strategies. Brazil, China and India have moved in this direction, offering world-class education in areas crucial to national development, such as biotechnology and information technology, paralleled by investments in research and development. As a result, only a small proportion of the most highly educated individuals migrate from these countries, and research and development opportunities employ national talent and even attract immigrants.

  7. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  8. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  9. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage.

    Science.gov (United States)

    Shin, Samuel S; Verstynen, Timothy; Pathak, Sudhir; Jarbo, Kevin; Hricik, Allison J; Maserati, Megan; Beers, Sue R; Puccio, Ava M; Boada, Fernando E; Okonkwo, David O; Schneider, Walter

    2012-05-01

    For patients with traumatic brain injury (TBI), current clinical imaging methods generally do not provide highly detailed information about the location of axonal injury, severity of injury, or expected recovery. In a case of severe TBI, the authors applied a novel high-definition fiber tracking (HDFT) to directly visualize and quantify the degree of axonal fiber damage and predict functional deficits due to traumatic axonal injury and loss of cortical projections. This 32-year-old man sustained a severe TBI. Computed tomography and MRI revealed an area of hemorrhage in the basal ganglia with mass effect, but no specific information on the location of axonal injury could be obtained from these studies. Examinations of the patient at Week 3 and Week 8 after TBI revealed motor weaknesses of the left extremities. Four months postinjury, 257-direction diffusion spectrum imaging and HDFT analysis was performed to evaluate the degree of axonal damage in the motor pathway and quantify asymmetries in the left and right axonal pathways. High-definition fiber tracking was used to follow corticospinal and corona radiata pathways from the cortical surface to the midbrain and quantify projections from motor areas. Axo