WorldWideScience

Sample records for brain-machine interface instructed

  1. A brain-machine interface instructed by direct intracortical microstimulation

    Directory of Open Access Journals (Sweden)

    Joseph E O'Doherty

    2009-09-01

    Full Text Available Brain-machine interfaces (BMIs establish direct communications between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a vibrotactile stimulation of the monkey’s hands or (b multi-channel intracortical microstimulation (ICMS delivered to the primary somatosensory cortex (S1 in one monkey and posterior parietal cortex (PP in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine-brain recursive input. After two weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices.

  2. A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation

    OpenAIRE

    O'Doherty, Joseph E; Lebedev, Mikhail A.; Hanson, Timothy L; Fitzsimmons, Nathan A.; Nicolelis, Miguel A.L.

    2009-01-01

    Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracort...

  3. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  4. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  5. BRAIN MACHINE INTERFACING WITH IoT FUNTIONALITY

    OpenAIRE

    Himanshu Lunia, Meera Bagdai

    2016-01-01

    Brain dead people and people having any disability related to brain cannot normally communicate with others and for their betterment some electronic need to be developed and Brain Machine Interfacing (BMI) is one such solution. BMI includes extracting brain signals directly from the skull of the subject and interfacing it with a machine to determine the state of thinking and act accordingly. The brainwaves are collected by non-invasive electrodes and the output is fed to an amplifier and filt...

  6. Brain-Machine Interfaces: The Perception-Action Closed Loop

    OpenAIRE

    Millán, José del R.

    2015-01-01

    A brain-machine interface (BMI) is about transforming neural activity into action and sensation into perception (Figure 1). In a BMI system, neural signals recorded from the brain are fed into a decoding algorithm that translates these signals into motor outputs to control a variety of practical devices for motor-disabled people [1]-[5]. Feedback from the prosthetic device, conveyed to the user either via normal sensory pathways or directly through brain stimulation, establishes a closed cont...

  7. Brain-Machine Interfaces for Real-time Speech Synthesis

    OpenAIRE

    Guenther, Frank H.; Jonathan S Brumberg

    2011-01-01

    This paper reports on studies involving brain-machine interfaces (BMIs) that provide near-instantaneous audio feedback from a speech synthesizer to the BMI user. In one study, neural signals recorded by an intracranial electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome were transmitted wirelessly across the scalp and used to drive a formant synthesizer, allowing the user to produce vowels. In a second, pilot study...

  8. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    Science.gov (United States)

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  9. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    Science.gov (United States)

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.

  10. Brain-machine interfaces for rehabilitation of poststroke hemiplegia.

    Science.gov (United States)

    Ushiba, J; Soekadar, S R

    2016-01-01

    Noninvasive brain-machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed. PMID:27590969

  11. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.

    Science.gov (United States)

    Schroeder, Karen E; Chestek, Cynthia A

    2016-01-01

    Brain-machine interfaces (BMIs) decode brain activity to control external devices. Over the past two decades, the BMI community has grown tremendously and reached some impressive milestones, including the first human clinical trials using chronically implanted intracortical electrodes. It has also contributed experimental paradigms and important findings to basic neuroscience. In this review, we discuss neuroscience achievements stemming from BMI research, specifically that based upon upper limb prosthetic control with intracortical microelectrodes. We will focus on three main areas: first, we discuss progress in neural coding of reaches in motor cortex, describing recent results linking high dimensional representations of cortical activity to muscle activation. Next, we describe recent findings on learning and plasticity in motor cortex on various time scales. Finally, we discuss how bidirectional BMIs have led to better understanding of somatosensation in and related to motor cortex. PMID:27445663

  12. What Turns Assistive into Restorative Brain-Machine Interfaces?

    Science.gov (United States)

    Gharabaghi, Alireza

    2016-01-01

    Brain-machine interfaces (BMI) may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI). Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI). Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence: In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i) operant learning and progressive evolution of specific brain states/dynamics, (ii) correlated modulations of functional networks related to the therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke. PMID:27790085

  13. A chronic generalized bi-directional brain-machine interface

    Science.gov (United States)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  14. What limits the performance of current invasive Brain Machine Interfaces?

    Directory of Open Access Journals (Sweden)

    Gytis eBaranauskas

    2014-04-01

    Full Text Available The concept of a brain-machine interface (BMI or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next

  15. What limits the performance of current invasive brain machine interfaces?

    Science.gov (United States)

    Baranauskas, Gytis

    2014-01-01

    The concept of a brain-machine interface (BMI) or a computer-brain interface is simple: BMI creates a communication pathway for a direct control by brain of an external device. In reality BMIs are very complex devices and only recently the increase in computing power of microprocessors enabled a boom in BMI research that continues almost unabated to this date, the high point being the insertion of electrode arrays into the brains of 5 human patients in a clinical trial run by Cyberkinetics with few other clinical tests still in progress. Meanwhile several EEG-based BMI devices (non-invasive BMIs) were launched commercially. Modern electronics and dry electrode technology made possible to drive the cost of some of these devices below few hundred dollars. However, the initial excitement of the direct control by brain waves of a computer or other equipment is dampened by large efforts required for learning, high error rates and slow response speed. All these problems are directly related to low information transfer rates typical for such EEG-based BMIs. In invasive BMIs employing multiple electrodes inserted into the brain one may expect much higher information transfer rates than in EEG-based BMIs because, in theory, each electrode provides an independent information channel. However, although invasive BMIs require more expensive equipment and have ethical problems related to the need to insert electrodes in the live brain, such financial and ethical costs are often not offset by a dramatic improvement in the information transfer rate. Thus the main topic of this review is why in invasive BMIs an apparently much larger information content obtained with multiple extracellular electrodes does not translate into much higher rates of information transfer? This paper explores possible answers to this question by concluding that more research on what movement parameters are encoded by neurons in motor cortex is needed before we can enjoy the next generation BMIs.

  16. A glucose fuel cell for implantable brain-machine interfaces.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2 steady-state power and up to 180 μW cm(-2 peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units

  17. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  18. Wireless communication links for brain-machine interface applications

    Science.gov (United States)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  19. Representation and control in closed-loop brain-machine interface systems

    OpenAIRE

    Moorman, Helene

    2015-01-01

    Brain-machine interface (BMI) systems attempt to restore motor function lost due to injury or neurodegenerative disease by bypassing natural motor pathways and allowing direct neural control of a movement actuator. Such systems also hold promise for investigating questions about learning and motor control in a highly controlled and observable system. Here we utilize a BMI paradigm in which single unit neural spiking activity recorded from motor cortical areas in non-human primates is used to ...

  20. Boosted and Linked Mixtures of HMMs for Brain-Machine Interfaces

    Science.gov (United States)

    Darmanjian, Shalom; Principe, Jose C.

    2008-12-01

    We propose two algorithms that decompose the joint likelihood of observing multidimensional neural input data into marginal likelihoods. The first algorithm, boosted mixtures of hidden Markov chains (BMs-HMM), applies techniques from boosting to create implicit hierarchic dependencies between these marginal subspaces. The second algorithm, linked mixtures of hidden Markov chains (LMs-HMM), uses a graphical modeling framework to explicitly create the hierarchic dependencies between these marginal subspaces. Our results show that these algorithms are very simple to train and computationally efficient, while also reducing the input dimensionality for brain-machine interfaces (BMIs).

  1. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.

    Science.gov (United States)

    Chen, Yi; Yao, Enyi; Basu, Arindam

    2016-06-01

    Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning coprocessor in 0.35- μm CMOS for the motor intention decoding in the brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 3.45 pJ/MAC at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same coprocessor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ≈ 2X. PMID:26672048

  2. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. PMID:25972167

  3. A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces.

    Science.gov (United States)

    Chen, Yi; Yao, Enyi; Basu, Arindam

    2016-06-01

    Currently, state-of-the-art motor intention decoding algorithms in brain-machine interfaces are mostly implemented on a PC and consume significant amount of power. A machine learning coprocessor in 0.35- μm CMOS for the motor intention decoding in the brain-machine interfaces is presented in this paper. Using Extreme Learning Machine algorithm and low-power analog processing, it achieves an energy efficiency of 3.45 pJ/MAC at a classification rate of 50 Hz. The learning in second stage and corresponding digitally stored coefficients are used to increase robustness of the core analog processor. The chip is verified with neural data recorded in monkey finger movements experiment, achieving a decoding accuracy of 99.3% for movement type. The same coprocessor is also used to decode time of movement from asynchronous neural spikes. With time-delayed feature dimension enhancement, the classification accuracy can be increased by 5% with limited number of input channels. Further, a sparsity promoting training scheme enables reduction of number of programmable weights by ≈ 2X.

  4. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible.

  5. Brain-Machine Interfacing Control of Whole-Body Humanoid Motion

    Directory of Open Access Journals (Sweden)

    Karim eBouyarmane

    2014-08-01

    Full Text Available We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI, motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  6. Neural Operant Conditioning as a Core Mechanism of Brain-Machine Interface Control

    Directory of Open Access Journals (Sweden)

    Yoshio Sakurai

    2016-08-01

    Full Text Available The process of changing the neuronal activity of the brain to acquire rewards in a broad sense is essential for utilizing brain-machine interfaces (BMIs, which is essentially operant conditioning of neuronal activity. Currently, this is also known as neural biofeedback, and it is often referred to as neurofeedback when human brain activity is targeted. In this review, we first illustrate biofeedback and operant conditioning, which are methodological background elements in neural operant conditioning. Then, we introduce research models of neural operant conditioning in animal experiments and demonstrate that it is possible to change the firing frequency and synchronous firing of local neuronal populations in a short time period. We also debate the possibility of the application of neural operant conditioning and its contribution to BMIs.

  7. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    Science.gov (United States)

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  8. Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Hiroshi Higashi

    2013-01-01

    Full Text Available For efficient decoding of brain activities in analyzing brain function with an application to brain machine interfacing (BMI, we address a problem of how to determine spatial weights (spatial patterns, bandpass filters (frequency patterns, and time windows (time patterns by utilizing electroencephalogram (EEG recordings. To find these parameters, we develop a data-driven criterion that is a natural extension of the so-called common spatial patterns (CSP that are known to be effective features in BMI. We show that the proposed criterion can be optimized by an alternating procedure to achieve fast convergence. Experiments demonstrate that the proposed method can effectively extract discriminative features for a motor imagery-based BMI.

  9. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  10. Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications.

    Science.gov (United States)

    Cheron, G; Cebolla, A M; Petieau, M; Bengoetxea, A; Palmero-Soler, E; Leroy, A; Dan, B

    2009-01-01

    The dramatic development of brain machine interfaces has enhanced the use of human brain signals conveying mental action for controlling external actuators. This chapter will outline current evidences that the rhythmic electroencephalographic activity of the brain is sensitive to microgravity environment. Experiments performed in the International Space Station have shown significant changes in the power of the astronauts' alpha and mu oscillations in resting condition, and other adaptive modifications in the beta and gamma frequency range during the immersion in virtual navigation. In this context, the dynamic aspects of the resting or default condition of the awaken brain, the influence of the "top-down" dynamics, and the possibility to use a more constrained configuration by a new somatosensory-evoked potential (gating approach) are discussed in the sense of future uses of brain computing interface in space mission. Although, the state of the art of the noninvasive BCI approach clearly demonstrates their ability and the great expectance in the field of rehabilitation for the restoration of defective communication between the brain and external world, their future application in space mission urgently needs a better understanding of brain neurophysiology, in particular in aspects related to neural network rhythmicity in microgravity. PMID:19607999

  11. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    Science.gov (United States)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  12. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  13. A Review of fMRI as a Tool for Enhancing Eeg-Based Brain-Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Luis J. Barrios

    2012-01-01

    Full Text Available Human-robot interaction has been going stronger and stronger, up to find a notorious level on brain-machines interfaces. This assistive technology offers a great hope for patients suffering severe neuromuscular disorders. Starting from the current limitations hindering its extensive application outside the research laboratories, this paper reviews findings and prospects on functional magnetic resonance imaging showing how fMRI can help to overcome those limitations, while playing a key role on improving the development of brain-machine interfaces based on electroencephalography. The different types of derived benefits for this interfaces, as well as the different kinds of impact on their components, are presented under a field classification that reveals the distinctive roles that fMRI can play on the present context. The review concludes that fMRI provides complementary knowledge of immediate application, and that a greater profit could be obtained from the own EEG signal by integrating both neuroimaging modalities.

  14. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    Directory of Open Access Journals (Sweden)

    Alan D. Degenhart

    2011-01-01

    Full Text Available This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.

  15. An online brain-machine interface using decoding of movement direction from the human electrocorticogram

    Science.gov (United States)

    Milekovic, Tomislav; Fischer, Jörg; Pistohl, Tobias; Ruescher, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Rickert, Jörn; Ball, Tonio; Mehring, Carsten

    2012-08-01

    A brain-machine interface (BMI) can be used to control movements of an artificial effector, e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent movements of the corresponding body part, e.g. arm movements. This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single neurons. We show that the same approach can be realized using brain activity measured directly from the surface of the human cortex using electrocorticography (ECoG). Five subjects, implanted with ECoG implants for the purpose of epilepsy assessment, took part in our study. Subjects used directionally dependent ECoG signals, recorded during active movements of a single arm, to control a computer cursor in one out of two directions. Significant BMI control was achieved in four out of five subjects with correct directional decoding in 69%-86% of the trials (75% on average). Our results demonstrate the feasibility of an online BMI using decoding of movement direction from human ECoG signals. Thus, to achieve such BMIs, ECoG signals might be used in conjunction with or as an alternative to intracortical neural signals.

  16. Training of a leaning agent for navigation--inspired by brain-machine interface.

    Science.gov (United States)

    Kitamura, Tadashi; Nishino, Daisuke

    2006-04-01

    The design clue for the remote control of a mobile robot is inspired by the Talwar's brain-machine interface technology for remotely training and controlling rats. Our biologically inspired autonomous robot control consciousness-based architecture (CBA) is used for the remote control of a robot as a substitute for a rat. CBA is a developmental hierarchy model of the relationship between consciousness and behavior, including a training algorithm. This training algorithm computes a shortcut path to a goal using a cognitive map created based on behavior obstructions during a single successful trial. However, failures in reaching the goal due to errors of the vision and dead reckoning sensors require human intervention to improve autonomous navigation. A human operator remotely intervenes in autonomous behaviors in two ways: low-level intervention in reflexive actions and high-level ones in the cognitive map. Experiments are conducted to test CBA functions for intervention with a joystick for a Khepera robot navigating from the center of a square obstacle with an open side toward a goal. Their statistical results show that both human interventions, especially high-level ones, are effective in drastically improving the success rate of autonomous detours. PMID:16602595

  17. Errare machinale est: The use of error-related potentials in brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Ricardo eChavarriaga

    2014-07-01

    Full Text Available The ability to recognize errors is crucial for efficient behavior. Numerous studies have identified electrophysiological correlates of error recognition in the human brain (error-related potentials, ErrPs. Consequently, it has been proposed to use these signals to improve human-computer interaction (HCI or brain-machine interfacing (BMI. Here, we present a review of over a decade of developments towards this goal. This body of work provides consistent evidence that ErrPs can be successfully detected on a single-trial basis, and that they can be effectively used in both HCI and BMI applications.We first describe the ErrP phenomenon and follow up with an analysis of different strategies to increase the robustness of a system by incorporating single-trial ErrP recognition, either by correcting the machine's actions or by providing means for its error-based adaptation. These approaches can be applied both when the user employs traditional HCI input devices or in combination with another BMI channel.Finally, we discuss the current challenges that have to be overcome in order to fully integrate ErrPs into practical applications. This includes, in particular, the characterization of such signals during real(istic applications, as well as the possibility of extracting richer information from them, going beyond the time-locked decoding that dominates current approaches.

  18. A recurrent neural network for closed-loop intracortical brain-machine interface decoders

    Science.gov (United States)

    Sussillo, David; Nuyujukian, Paul; Fan, Joline M.; Kao, Jonathan C.; Stavisky, Sergey D.; Ryu, Stephen; Shenoy, Krishna

    2012-04-01

    Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during a standard center-out reach task using a cortical brain-machine interface (BMI) in a closed loop. We demonstrate that the RNN, an ESN implementation termed a FORCE decoder (from first order reduced and controlled error learning), learns the task quickly and significantly outperforms the current state-of-the-art method, the velocity Kalman filter (VKF), using the measure of target acquire time. We also demonstrate that the FORCE decoder generalizes to a more difficult task by successfully operating the BMI in a randomized point-to-point task. The FORCE decoder is also robust as measured by the success rate over extended sessions. Finally, we show that decoded cursor dynamics are more like naturalistic hand movements than those of the VKF. Taken together, these results suggest that RNNs in general, and the FORCE decoder in particular, are powerful tools for BMI decoder applications.

  19. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.

    Science.gov (United States)

    Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C

    2009-01-01

    The Perception-Action Cycle (PAC) is a central component of goal-directed behavior because it links internal percepts with external outcomes in the environment. Using inspiration from the PAC, we are developing a Brain-Machine Interface control architecture that utilizes both motor commands and goal information directly from the brain to navigate to novel targets in an environment. An Actor-Critic algorithm was selected for decoding the neural motor commands because it is a PAC-based computational framework where the perception component is implemented in the critic structure and the actor is responsible for taking actions. We develop in this work a biologically realistic simulator to analyze the performance of the decoder in terms of convergence and target acquisition. Experience from the simulator will guide parameter selection and assist in understanding the architecture before animal experiments. By varying the signal to noise ratio of the neural input and error signal, we were able to demonstrate how the learning rate and initial conditions affect a motor control target selection task. In this framework, the naïve decoder was able to reach targets in the presence of noise in the error signal and neural motor command with 98% accuracy. PMID:19963795

  20. Advancing brain-machine interfaces: Moving beyond linear state space models

    Directory of Open Access Journals (Sweden)

    Adam G Rouse

    2015-07-01

    Full Text Available Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs. Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider i the dynamic range and precision of natural movements, ii differences between cortical activity and actual body movement, iii kinematic and muscular synergies, and iv the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance.

  1. Learning to control a brain-machine interface for reaching and grasping by primates.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2003-11-01

    Full Text Available Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

  2. Uniform and Non-uniform Perturbations in Brain-Machine Interface Task Elicit Similar Neural Strategies.

    Science.gov (United States)

    Armenta Salas, Michelle; Helms Tillery, Stephen I

    2016-01-01

    The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981

  3. Quantifying the role of motor imagery in brain-machine interfaces

    Science.gov (United States)

    Marchesotti, Silvia; Bassolino, Michela; Serino, Andrea; Bleuler, Hannes; Blanke, Olaf

    2016-04-01

    Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability to control a BMI remains limited to a subset of users. We investigate whether individual differences in BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied mental chronometry, a measure quantifying the degree to which imagined and executed movements share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific questionnaires and mental chronometry can be used as predictors of BMI performance (without the need to record EEG activity).

  4. Cortical modulations increase in early sessions with brain-machine interface.

    Directory of Open Access Journals (Sweden)

    Miriam Zacksenhouse

    Full Text Available BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

  5. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  6. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals. PMID:23366831

  7. Improving brain-machine interface performance by decoding intended future movements

    Science.gov (United States)

    Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.

    2013-04-01

    Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.

  8. Training of a leaning agent for navigation--inspired by brain-machine interface.

    Science.gov (United States)

    Kitamura, Tadashi; Nishino, Daisuke

    2006-04-01

    The design clue for the remote control of a mobile robot is inspired by the Talwar's brain-machine interface technology for remotely training and controlling rats. Our biologically inspired autonomous robot control consciousness-based architecture (CBA) is used for the remote control of a robot as a substitute for a rat. CBA is a developmental hierarchy model of the relationship between consciousness and behavior, including a training algorithm. This training algorithm computes a shortcut path to a goal using a cognitive map created based on behavior obstructions during a single successful trial. However, failures in reaching the goal due to errors of the vision and dead reckoning sensors require human intervention to improve autonomous navigation. A human operator remotely intervenes in autonomous behaviors in two ways: low-level intervention in reflexive actions and high-level ones in the cognitive map. Experiments are conducted to test CBA functions for intervention with a joystick for a Khepera robot navigating from the center of a square obstacle with an open side toward a goal. Their statistical results show that both human interventions, especially high-level ones, are effective in drastically improving the success rate of autonomous detours.

  9. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  10. Assessment of brain-machine interfaces from the perspective of people with paralysis

    Science.gov (United States)

    Blabe, Christine H.; Gilja, Vikash; Chestek, Cindy A.; Shenoy, Krishna V.; Anderson, Kim D.; Henderson, Jaimie M.

    2015-08-01

    Objective. One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. Approach. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Main Results. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as ‘likely’ to be adopted as their wired equivalents. Significance. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both

  11. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Miriam eZacksenhouse

    2015-05-01

    Full Text Available Recent experiments with brain-machine-interfaces (BMIs indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  12. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    Science.gov (United States)

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  13. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping

    OpenAIRE

    Downey, John E; Weiss, Jeffrey M.; Muelling, Katharina; Venkatraman, Arun; Valois, Jean-Sebastien; Hebert, Martial; Bagnell, J. Andrew; Schwartz, Andrew B.; Collinger, Jennifer L.

    2016-01-01

    Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning ...

  14. Kinematic and Neurophysiological Consequences of an Assisted-Force-Feedback Brain-Machine Interface Training: A Case Study

    OpenAIRE

    Stefano eSilvoni; Marianna eCavinato; Chiara eVolpato; Giulia eCisotto; Clara eGenna; Michela eAgostini; Andrea eTurolla; Ander eRamos-Murguialday; Francesco ePiccione

    2013-01-01

    In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experime...

  15. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    OpenAIRE

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stim...

  16. Selective visual attention to drive cognitive brain machine interfaces: from concepts to neurofeedback and rehabilitation applications

    Directory of Open Access Journals (Sweden)

    Elaine eAstrand

    2014-08-01

    Full Text Available Brain Machine Interfaces (BMI using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from noninvasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive BCIs, including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other

  17. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance

    Science.gov (United States)

    Christie, Breanne P.; Tat, Derek M.; Irwin, Zachary T.; Gilja, Vikash; Nuyujukian, Paul; Foster, Justin D.; Ryu, Stephen I.; Shenoy, Krishna V.; Thompson, David E.; Chestek, Cynthia A.

    2015-02-01

    Objective. For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials (‘spikes’) requires high sampling rates and is computationally expensive. To explicitly define the difference between spike sorting and alternative methods, we quantified BMI decoder performance when using threshold-crossing events versus sorted action potentials. Approach. We used data sets from 58 experimental sessions from two rhesus macaques implanted with Utah arrays. Data were recorded while the animals performed a center-out reaching task with seven different angles. For spike sorting, neural signals were sorted into individual units by using a mixture of Gaussians to cluster the first four principal components of the waveforms. For thresholding events, spikes that simply crossed a set threshold were retained. We decoded the data offline using both a Naïve Bayes classifier for reaching direction and a linear regression to evaluate hand position. Main results. We found the highest performance for thresholding when placing a threshold between -3 and -4.5 × Vrms. Spike sorted data outperformed thresholded data for one animal but not the other. The mean Naïve Bayes classification accuracy for sorted data was 88.5% and changed by 5% on average when data were thresholded. The mean correlation coefficient for sorted data was 0.92, and changed by 0.015 on average when thresholded. Significance. For prosthetics applications, these results imply that when thresholding is used instead of spike sorting, only a small amount of performance may be lost. The utilization of threshold-crossing events may significantly extend the lifetime of a device because these events are often still detectable once single neurons are no longer isolated.

  18. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  19. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  20. A wireless brain-machine interface for real-time speech synthesis.

    Directory of Open Access Journals (Sweden)

    Frank H Guenther

    Full Text Available BACKGROUND: Brain-machine interfaces (BMIs involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech. METHODOLOGY/PRINCIPAL FINDINGS: Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70% and 46% decrease in average endpoint error from the first to the last block of a three-vowel task. CONCLUSIONS/SIGNIFICANCE: Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas.

  1. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W; Sanchez, Justin C

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055

  2. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Brain-machine interface (BMI systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings. These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.

  3. A symbiotic brain-machine interface through value-based decision making.

    Directory of Open Access Journals (Sweden)

    Babak Mahmoudi

    Full Text Available BACKGROUND: In the development of Brain Machine Interfaces (BMIs, there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC. METHODOLOGY: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1 and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. CONCLUSIONS: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and

  4. Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces

    Science.gov (United States)

    Perruchoud, David; Pisotta, Iolanda; Carda, Stefano; Murray, Micah M.; Ionta, Silvio

    2016-08-01

    Objective. Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. Approach. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI’s actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Main results. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users’ needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. Significance. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use.

  5. Long term, stable brain machine interface performance using local field potentials and multiunit spikes

    Science.gov (United States)

    Flint, Robert D.; Wright, Zachary A.; Scheid, Michael R.; Slutzky, Marc W.

    2013-10-01

    Objective. Brain machine interfaces (BMIs) have the potential to restore movement to people with paralysis. However, a clinically-viable BMI must enable consistently accurate control over time spans ranging from years to decades, which has not yet been demonstrated. Most BMIs that use single-unit spikes as inputs will experience degraded performance over time without frequent decoder re-training. Two other signals, local field potentials (LFPs) and multi-unit spikes (MSPs), may offer greater reliability over long periods and better performance stability than single-unit spikes. Here, we demonstrate that LFPs can be used in a biomimetic BMI to control a computer cursor. Approach. We implanted two rhesus macaques with intracortical microelectrodes in primary motor cortex. We recorded LFP and MSP signals from the monkeys while they performed a continuous reaching task, moving a cursor to randomly-placed targets on a computer screen. We then used the LFP and MSP signals to construct biomimetic decoders for control of the cursor. Main results. Both monkeys achieved high-performance, continuous control that remained stable or improved over nearly 12 months using an LFP decoder that was not retrained or adapted. In parallel, the monkeys used MSPs to control a BMI without retraining or adaptation and had similar or better performance, and that predominantly remained stable over more than six months. In contrast to their stable online control, both LFP and MSP signals showed substantial variability when used offline to predict hand movements. Significance. Our results suggest that the monkeys were able to stabilize the relationship between neural activity and cursor movement during online BMI control, despite variability in the relationship between neural activity and hand movements.

  6. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements

    Directory of Open Access Journals (Sweden)

    Hisato eSugata

    2014-08-01

    Full Text Available Brain signals recorded from the primary motor cortex (M1 are known to serve a significant role in coding the information brain-machine interfaces (BMIs need to perform real and imagined movements, and also to form several functional networks with motor association areas. However, whether functional networks between M1 and other brain regions, such as these motor association areas, are related to performance of BMIs is unclear. To examine the relationship between functional connectivity and performance of BMIs, we analyzed the correlation coefficient between performance of neural decoding and functional connectivity over the whole brain using magnetoencephalography. Ten healthy participants were instructed to execute or imagine three simple right upper limb movements. To decode the movement type, we extracted 40 virtual channels in the left M1 via the beamforming approach, and used them as a decoding feature. In addition, seed-based functional connectivities of activities in the alpha band during real and imagined movements were calculated using imaginary coherence. Seed voxels were set as the same virtual channels in M1. After calculating the imaginary coherence in individuals, the correlation coefficient between decoding accuracy and strength of imaginary coherence was calculated over the whole brain. The significant correlations were distributed mainly to motor association areas for both real and imagined movements. These regions largely overlapped with brain regions that had significant connectivity to M1. Our results suggest that use of the strength of functional connectivity between M1 and motor association areas has the potential to improve the performance of BMIs to perform real and imagined movements.

  7. Minimizing data transfer with sustained performance in wireless brain-machine interfaces.

    Science.gov (United States)

    Thorbergsson, Palmi Thor; Garwicz, Martin; Schouenborg, Jens; Johansson, Anders J

    2012-06-01

    Brain-machine interfaces (BMIs) may be used to investigate neural mechanisms or to treat the symptoms of neurological disease and are hence powerful tools in research and clinical practice. Wireless BMIs add flexibility to both types of applications by reducing movement restrictions and risks associated with transcutaneous leads. However, since wireless implementations are typically limited in terms of transmission capacity and energy resources, the major challenge faced by their designers is to combine high performance with adaptations to limited resources. Here, we have identified three key steps in dealing with this challenge: (1) the purpose of the BMI should be clearly specified with regard to the type of information to be processed; (2) the amount of raw input data needed to fulfill the purpose should be determined, in order to avoid over- or under-dimensioning of the design; and (3) processing tasks should be allocated among the system parts such that all of them are utilized optimally with respect to computational power, wireless link capacity and raw input data requirements. We have focused on step (2) under the assumption that the purpose of the BMI (step 1) is to assess single- or multi-unit neuronal activity in the central nervous system with single-channel extracellular recordings. The reliability of this assessment depends on performance in detection and sorting of spikes. We have therefore performed absolute threshold spike detection and spike sorting with the principal component analysis and fuzzy c-means on a set of synthetic extracellular recordings, while varying the sampling rate and resolution, noise level and number of target units, and used the known ground truth to quantitatively estimate the performance. From the calculated performance curves, we have identified the sampling rate and resolution breakpoints, beyond which performance is not expected to increase by more than 1-5%. We have then estimated the performance of alternative

  8. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Science.gov (United States)

    Finke, Andrea; Essig, Kai; Marchioro, Giuseppe; Ritter, Helge

    2016-01-01

    The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  9. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  10. Brain Machine Interface: Analysis of segmented EEG Signal Classification Using Short-Time PCA and Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    C. R. Hema

    2008-01-01

    Full Text Available Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI for communication; the BMI uses the electrical activity of the brain detected by scalp EEG electrodes. Classification of EEG signals extracted during mental tasks is a technique for designing a BMI. In this paper a BMI design using five mental tasks from two subjects were studied, a combination of two tasks is studied per subject. An Elman recurrent neural network is proposed for classification of EEG signals. Two feature extraction algorithms using overlapped and non overlapped signal segments are analyzed. Principal component analysis is used for extracting features from the EEG signal segments. Classification performance of overlapping EEG signal segments is observed to be better in terms of average classification with a range of 78.5% to 100%, while the non overlapping EEG signal segments show better classification in terms of maximum classifications.

  11. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.

    Science.gov (United States)

    Alam, Monzurul; Rodrigues, Willyam; Pham, Bau Ngoc; Thakor, Nitish V

    2016-09-01

    Restoration of motor function is one of the highest priorities in individuals afflicted with spinal cord injury (SCI). The application of brain-machine interfaces (BMIs) to neuroprostheses provides an innovative approach to treat patients with sensorimotor impairments. A BMI decodes motor intent from cortical signals to control external devices such as a computer cursor or a robotic arm. Recent BMI systems can now use these motor intent signals to directly activate paretic muscles or to modulate the spinal cord in a way that reengage dormant neuromuscular systems below the level of injury. In this perspective, we review the progress made in the development of brain-machine-spinal-cord interfaces (BMSCIs) and highlight their potential for neurorehabilitation after SCI. The advancement and application of these neuroprostheses goes beyond improved motor control. The use of BMSCI may combine repetitive physical training along with intent-driven neuromodulation to promote neurorehabilitation by facilitating activity-dependent plasticity. Strong evidence suggests that proper timing of volitional neuromodulation facilitates long-term potentiation in the neuronal circuits that can promote permanent functional recovery in SCI subjects. However, the effectiveness of these implantable neuroprostheses must take into account the fact that there will be continuous changes in the interface between the signals of intent and the actual trigger to initiate the motor action. PMID:27216571

  12. 脑机接口技术在航天领域的潜在应用%Brain-Machine Interface Technology for Potential Space Application

    Institute of Scientific and Technical Information of China (English)

    杨鑫; 吴边; 陈卫东; 张韶岷; 代建华; 郑筱祥

    2012-01-01

    The space application of brain-machine interface technology may improve the safety and effect of space operations. The current development of non-invasive brain-machine interface technology is addressed, and potential space applications of brain-machine interface are investigated by introducing the most advanced brain signal monitor technology and decoding model. While the brain-machine interface based on Electro-encephalography are always limited to rate, capacity and transmission accuracy, the limitations will be removed gradually with the development of brain-machine interface technology.%脑机接口技术应用于航天领域可提升空间操作的安全性和效率。介绍非植入式脑机接口技术的发展现状,通过引入最新的脑信号监测技术和解码模型,探讨脑机接口技术在航天领域的潜在应用。目前基于头皮脑电的脑机接口方法受限于速度、容量和传输精度,但这些局限会随着该技术的发展而逐渐减小。

  13. NeuroRex: A Clinical Neural Interface Roadmap for EEG-based Brain Machine Interfaces to a Lower Body Robotic Exoskeleton*

    OpenAIRE

    Jose L. Contreras-Vidal; Grossman, Robert G.

    2013-01-01

    In this communication, a translational clinical brain-machine interface (BMI) roadmap for an EEG-based BMI to a robotic exoskeleton (NeuroRex) is presented. This multi-faceted project addresses important engineering and clinical challenges: It addresses the validation of an intelligent, self-balancing, robotic lower-body and trunk exoskeleton (Rex) augmented with EEG-based BMI capabilities to interpret user intent to assist a mobility-impaired person to walk independently. The goal is to impr...

  14. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.

    Science.gov (United States)

    Abbott, W W; Faisal, A A

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.

  15. Controlling a Rehabilitation Robot with Brain-Machine Interface: An approach based on Independent Component Analysis and Multiple Kernel Learning

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2013-03-01

    Full Text Available Patients suffering from severe motor disabilities usually require assistance from other people when doing rehabilitation exercises, which causes the rehabilitation process to be time-consuming and inconvenient. Therefore, we propose an automatic feature extraction method for a brain-machine interface that allows patients to control a robot using their own brain waves. A brain–machine interface (BMI based on the P300 event-related potential (ERP, called Brain Controlled Rehabilitation System (BCRS, was developed to detect the intentions of patients. Using the BCRS, patients can communicate with the robot through their brain waves. However, deciding how to obtain an automatically extracted, useful EEG signal is a difficult and important problem for BMI research. In this paper, Independent Component Analysis – Multiple Kernel Learning (ICA-MKL is used to directly extract a useful signal and build the classification mode for BCRS. The results reveal that this method is useful for automatically extracting the P300 signal and the accuracy is better than MKL. In additional, the same method can be extended into any motor imaginary area and the accuracy of ICA-MKL for brain imaginary data is also good to removing eye-blink artifacts and the accuracy performance is also good.

  16. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    Science.gov (United States)

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance. PMID:24110075

  17. Brain-machine interfaces for assistive smart homes: A feasibility study with wearable near-infrared spectroscopy.

    Science.gov (United States)

    Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin

    2015-08-01

    Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.

  18. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain

    Science.gov (United States)

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is “how is information encoded in the brain?” This is the fundamental question for understanding what our minds are and is related to the verification of Hebb’s cell assembly theory. The second is “how is information distributed in the brain?” This is also a reconsideration of the functional localization of the brain. The third is “what is the function of the ongoing activity of the brain?” This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is “how does the bodily behavior affect the brain function?” This is the problem of brain-body interaction, and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain. The last is “to what extent can the brain induce plasticity?” Most BMIs require changes in the brain’s neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity. PMID:24904323

  19. Use of a Bayesian maximum-likelihood classifier to generate training data for brain-machine interfaces

    Science.gov (United States)

    Ludwig, Kip A.; Miriani, Rachel M.; Langhals, Nicholas B.; Marzullo, Timothy C.; Kipke, Daryl R.

    2011-08-01

    Brain-machine interface decoding algorithms need to be predicated on assumptions that are easily met outside of an experimental setting to enable a practical clinical device. Given present technological limitations, there is a need for decoding algorithms which (a) are not dependent upon a large number of neurons for control, (b) are adaptable to alternative sources of neuronal input such as local field potentials (LFPs), and (c) require only marginal training data for daily calibrations. Moreover, practical algorithms must recognize when the user is not intending to generate a control output and eliminate poor training data. In this paper, we introduce and evaluate a Bayesian maximum-likelihood estimation strategy to address the issues of isolating quality training data and self-paced control. Six animal subjects demonstrate that a multiple state classification task, loosely based on the standard center-out task, can be accomplished with fewer than five engaged neurons while requiring less than ten trials for algorithm training. In addition, untrained animals quickly obtained accurate device control, utilizing LFPs as well as neurons in cingulate cortex, two non-traditional neural inputs.

  20. Brain-Machine Interface to Control a Prosthetic Arm with Monkey ECoGs during Periodic Movements

    Directory of Open Access Journals (Sweden)

    Soichiro eMorishita

    2014-12-01

    Full Text Available Brain Machine Interfaces (BMIs are promising technologies to rehabilitate the function of upper limbs in severely paralyzed patients. We succeeded in developing a BMI prosthetic arm for a monkey implanted with electrocorticogram (ECoG electrodes and trained in a reaching task. It had stability in preventing the misclassification of ECoG patterns. However, the latency was about 200 ms as a trade-off for the stability. To improve the response of this BMI prosthetic arm, the generation of a trigger event by decoding muscle activity was adopted. It was performed to predict integrated electromyograms (iEMGs from the ECoGs. Experiments were conducted to verify the availability of this method, and the results confirmed that the proposed method was superior to the conventional one. In addition, a performance test of the proposed method with actually achieved iEMGs instead of predicted iEMGs was performed, and we found that the motor intention is finely expressed through estimated muscle activity from brain activity rather than actual muscle activity.

  1. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    Science.gov (United States)

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  2. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; She, Xiwei; Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang; Principe, Jose

    2016-08-01

    Classic brain-machine interface (BMI) approaches decode neural signals from the brain responsible for achieving specific motor movements, which subsequently command prosthetic devices. Brain activities adaptively change during the control of the neuroprosthesis in BMIs, where the alteration of the preferred direction and the modulation of the gain depth are observed. The static neural tuning models have been limited by fixed codes, resulting in a decay of decoding performance over the course of the movement and subsequent instability in motor performance. To achieve stable performance, we propose a dual sequential Monte Carlo adaptive point process method, which models and decodes the gradually changing modulation depth of individual neuron over the course of a movement. We use multichannel neural spike trains from the primary motor cortex of a monkey trained to perform a target pursuit task using a joystick. Our results show that our computational approach successfully tracks the neural modulation depth over time with better goodness-of-fit than classic static neural tuning models, resulting in smaller errors between the true kinematics and the estimations in both simulated and real data. Our novel decoding approach suggests that the brain may employ such strategies to achieve stable motor output, i.e., plastic neural tuning is a feature of neural systems. BMI users may benefit from this adaptive algorithm to achieve more complex and controlled movement outcomes. PMID:26584486

  3. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately. PMID:27147955

  4. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  5. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  6. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2013-06-01

    Full Text Available Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned behaviour, social cognitive theory, self-determination theory, technology of acceptance model, Unified Theory of Acceptance and Use of Technology UTAUT and UTAUT2 are employed in the social robotics, brain machine interfaces and neuro and cognitive enhancement product literature and which of the core measures used in the technology acceptance models are implicit or explicit engaged with in the literature.

  7. Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic

    OpenAIRE

    McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.

    2013-01-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the o...

  8. Social Robots, Brain Machine Interfaces and Neuro/Cognitive Enhancers: Three Emerging Science and Technology Products through the Lens of Technology Acceptance Theories, Models and Frameworks

    OpenAIRE

    Wolbring, Gregor; Diep, Lucy; Yumakulov, Sophya; Ball, Natalie; Yergens, Dean

    2013-01-01

    Social robotics, brain machine interfaces and neuro and cognitive enhancement products are three emerging science and technology products with wide-reaching impact for disabled and non-disabled people. Acceptance of ideas and products depend on multiple parameters and many models have been developed to predict product acceptance. We investigated which frequently employed technology acceptance models (consumer theory, innovation diffusion model, theory of reasoned action, theory of planned beh...

  9. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations

    Science.gov (United States)

    Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.

    2015-02-01

    Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.

  10. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study

    Directory of Open Access Journals (Sweden)

    Stefano eSilvoni

    2013-11-01

    Full Text Available In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI paradigm for upper limb motor training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning.Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for two weeks coupling somatosensory brain oscillations with force field control during a robot mediated centre-out motor task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic and motor-behavioural measures were recorded in pre- and post-assessments without force assistance. Patient’s healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor training coupling brain oscillations and force feedback during an actual movement.

  11. Towards a naturalistic brain-machine interface: hybrid torque and position control allows generalization to novel dynamics.

    Directory of Open Access Journals (Sweden)

    Pratik Y Chhatbar

    Full Text Available Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata. We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone, and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force related variables, should allow for more natural

  12. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.

    Science.gov (United States)

    Prins, Noeline W; Sanchez, Justin C; Prasad, Abhishek

    2014-01-01

    Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL). For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL) based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system onthree different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration. PMID:24904257

  13. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Noeline Wilhelmina Prins

    2014-05-01

    Full Text Available Brain-Machine Interfaces (BMIs can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL. For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system on three different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration.

  14. Invasive brain-machine interfaces: a survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval

    Science.gov (United States)

    Lahr, Jacob; Schwartz, Christina; Heimbach, Bernhard; Aertsen, Ad; Rickert, Jörn; Ball, Tonio

    2015-08-01

    Objective. Brain-machine interfaces (BMI) are an emerging therapeutic option that can allow paralyzed patients to gain control over assistive technology devices (ATDs). BMI approaches can be broadly classified into invasive (based on intracranially implanted electrodes) and noninvasive (based on skin electrodes or extracorporeal sensors). Invasive BMIs have a favorable signal-to-noise ratio, and thus allow for the extraction of more information than noninvasive BMIs, but they are also associated with the risks related to neurosurgical device implantation. Current noninvasive BMI approaches are typically concerned, among other issues, with long setup times and/or intensive training. Recent studies have investigated the attitudes of paralyzed patients eligible for BMIs, particularly patients affected by amyotrophic lateral sclerosis (ALS). These studies indicate that paralyzed patients are indeed interested in BMIs. Little is known, however, about the degree of knowledge among paralyzed patients concerning BMI approaches or about how patients retrieve information on ATDs. Furthermore, it is not yet clear if paralyzed patients would accept intracranial implantation of BMI electrodes with the premise of decoding improvements, and what the attitudes of a broader range of patients with diseases such as stroke or spinal cord injury are towards this new kind of treatment. Approach. Using a questionnaire, we surveyed 131 paralyzed patients for their opinions on invasive BMIs and their attitude toward invasive BMI treatment options. Main results. The majority of the patients knew about and had a positive attitude toward invasive BMI approaches. The group of ALS patients was especially open to the concept of BMIs. The acceptance of invasive BMI technology depended on the improvements expected from the technology. Furthermore, the survey revealed that for paralyzed patients, the Internet is an important source of information on ATDs. Significance. Websites tailored to

  15. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

    Science.gov (United States)

    Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

    2015-12-01

    Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

  16. Characterization of Artifacts produced by gel displacement on non-invasive Brain-Machine Interfaces during ambulation

    Directory of Open Access Journals (Sweden)

    Alvaro eCosta

    2016-02-01

    Full Text Available So far, Brain-Machine Interfaces (BMIs have been mainly used to study brain potentials during movement-free conditions. Recently, due to the emerging concern of improving rehabilitation therapies, these systems are also being used during gait experiments. Under this new condition, the evaluation of motion artifacts has become a critical point to assure the validity of the results obtained. Due to the high signal to noise ratio provided, the use of wet electrodes is a widely accepted technic to acquire electroencephalographic (EEG signals. To perform these recordings it is necessary to apply a conductive gel between the scalp and the electrodes. This work is focused on the study of gel displacements produced during ambulation and how they affect the amplitude of EEG signals. Data recorded during three ambulation conditions (gait training and one movement-free condition (BMI motor imagery task are compared to perform this study.Two phenomenons, manifested as unusual increases of the signals' amplitude, have been identified and characterized during this work. Results suggest that they are caused by abrupt changes on the conductivity between the electrode and the scalp due to gel displacement produced during ambulation and head movements. These artifacts significantly increase the Power Spectral Density (PSD of EEG recordings at all frequencies from 5 to 90 Hz, corresponding to the main bandwidth of electrocortical potentials. They should be taken into consideration before performing EEG recordings in order to asses the correct gel allocation and to avoid the use of electrodes on certain scalp areas depending on the experimental conditions.

  17. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.

    Science.gov (United States)

    López-Larraz, Eduardo; Trincado-Alonso, Fernando; Rajasekaran, Vijaykumar; Pérez-Nombela, Soraya; Del-Ama, Antonio J; Aranda, Joan; Minguez, Javier; Gil-Agudo, Angel; Montesano, Luis

    2016-01-01

    The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and

  18. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.

    Science.gov (United States)

    Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D

    2015-09-01

    -brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest. PMID:26477360

  19. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.

    Science.gov (United States)

    Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D

    2015-09-01

    -brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.

  20. Review of Brain-Machine Interfaces Used in Neural Prosthetics with New Perspective on Somatosensory Feedback through Method of Signal Breakdown.

    Science.gov (United States)

    Vidal, Gabriel W Vattendahl; Rynes, Mathew L; Kelliher, Zachary; Goodwin, Shikha Jain

    2016-01-01

    The brain-machine interface (BMI) used in neural prosthetics involves recording signals from neuron populations, decoding those signals using mathematical modeling algorithms, and translating the intended action into physical limb movement. Recently, somatosensory feedback has become the focus of many research groups given its ability in increased neural control by the patient and to provide a more natural sensation for the prosthetics. This process involves recording data from force sensitive locations on the prosthetics and encoding these signals to be sent to the brain in the form of electrical stimulation. Tactile sensation has been achieved through peripheral nerve stimulation and direct stimulation of the somatosensory cortex using intracortical microstimulation (ICMS). The initial focus of this paper is to review these principles and link them to modern day applications such as restoring limb use to those who lack such control. With regard to how far the research has come, a new perspective for the signal breakdown concludes the paper, offering ideas for more real somatosensory feedback using ICMS to stimulate particular sensations by differentiating touch sensors and filtering data based on unique frequencies. PMID:27313959

  1. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.

    Science.gov (United States)

    Donati, Ana R C; Shokur, Solaiman; Morya, Edgard; Campos, Debora S F; Moioli, Renan C; Gitti, Claudia M; Augusto, Patricia B; Tripodi, Sandra; Pires, Cristhiane G; Pereira, Gislaine A; Brasil, Fabricio L; Gallo, Simone; Lin, Anthony A; Takigami, Angelo K; Aratanha, Maria A; Joshi, Sanjay; Bleuler, Hannes; Cheng, Gordon; Rudolph, Alan; Nicolelis, Miguel A L

    2016-01-01

    Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3-13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage. PMID:27513629

  2. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914

  3. The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.

    Science.gov (United States)

    Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

    2014-01-01

    Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries.

  4. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  5. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface

    Directory of Open Access Journals (Sweden)

    Yoshio eSakurai

    2014-02-01

    Full Text Available In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain–machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain–machine interface (BMI. We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  6. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    Science.gov (United States)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the

  7. Design and optimization of an EEG-based brain machine interface (BMI to an upper-limb exoskeleton for stroke survivors

    Directory of Open Access Journals (Sweden)

    Nikunj Arunkumar Bhagat

    2016-03-01

    Full Text Available This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG-based brain machine interface (BMI. Intent was inferred from movement related cortical potentials (MRCPs measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II, to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: 1 an adaptive time window was used for extracting features during BMI calibration; 2 training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and 3 BMI predictions were gated by residual electromyography (EMG activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR = 62.7 +/- 21.4 % on day 4 and 67.1 +/- 14.6 % on day 5. The overall false positive rate (FPR across subjects was 27.74 +/- 37.46 % on day 4 and 27.5 +/- 35.64 % on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10 %. On average, motor intent was detected -367 +/- 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.

  8. Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors.

    Science.gov (United States)

    Bhagat, Nikunj A; Venkatakrishnan, Anusha; Abibullaev, Berdakh; Artz, Edward J; Yozbatiran, Nuray; Blank, Amy A; French, James; Karmonik, Christof; Grossman, Robert G; O'Malley, Marcia K; Francisco, Gerard E; Contreras-Vidal, Jose L

    2016-01-01

    This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected -367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration. PMID:27065787

  9. Interfaces for instructional use of simulations

    NARCIS (Netherlands)

    Hoog, de Robert; Jong, de Ton; Vries, de Frits

    1991-01-01

    The learner interface is the component of an instructional system that mediates between a learner and the system. Two fundamentally different approaches for interfaces can be distinguished: conversational methapor and direct manipulation metaphor. Interfaces in both metaphors can be scaled on a dime

  10. 基于Pubmed数据库文献挖掘的近5年脑机交互研究热点的聚类分析%Bibliometric and hotspot analysis of brain-machine interfaces based on pubmed database with literature mining in past five years

    Institute of Scientific and Technical Information of China (English)

    金磊; 胡柯嘉

    2015-01-01

    目的:调查有关脑机交互(brain-machine Interfaces,BCI)研究的医学文献,得出近期脑机交互研究热点。方法:应用美国国立医学图书馆开发的Pubmed数据库进行近5年有关脑机交互的文献检索,应用书目共现分析系统(bibliographic Item CO-Occurrence Matrix Builder,BICOMB)进行文献计量分析,SPSS 19.0软件进行聚类分析。结果:通过对脑机交互高频关键词聚类分析绘制树状图,总结得出了3大类研究热点:1)非侵入式的脑机交互信号获取和解码;2)侵入式获取信号的脑机交互研究;3)脑机交互在脑卒中康复中的研究。结论:脑机交互技术目前正在快速发展,但仍需更方便、有效、安全的信号提取及转化技术,以求积极应用于临床治疗。%Objective:To analyze the published articles of brain-machine interfaces and get the recent research hotspot. Methods:Searching brain-machine interfaces literatures through PubMed database of US Congress Library of Medicine in past ifve years, using BICOMB to bibliometric analysis and SPSS 19.0 to cluster analysis. Results:hTree research hotspots were concluded by analyzing the key words:1) non-invasive brain signal acquisition and decoding of brain-machine Interfaces;2) invasive brain signal acquisition of brain-machine Interfaces;3) brain-computer interaction research in stroke rehabilitation. Conclusion:Researches on BCI developed rapidly, but signal acquisition and decoding need more convenient, effective and safer in the future studies and useful clinical practice for BCI is the ifrst priority.

  11. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  12. Biomimetic Olfactory Sensing System Based on Brain-Machine Interface and Olfactory Decoding%基于脑-机接口和嗅觉解码的仿生气味识别系统

    Institute of Scientific and Technical Information of China (English)

    董琪; 秦臻; 胡靓; 庄柳静; 张斌; 王平

    2015-01-01

    Mammalian olfactory systems have merits of higher sensitivity, selectivity and faster response than current electronic nose systems based on chemical sensor array in odor recognition. The purpose of this study is to develop a biomimetic olfactory sensing system based on brain-machine interface technology for odor detection in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted cells in olfactory bulb were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns in both temporal features and rate features when stimulated by different small molecular odorants. Odors were classified by an algorithm based on population vector similarity and support vector machine. The results suggest that the novel bioelectonic nose is sensitive to odorant stimuli. With the development of BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.%为了探讨利用生物嗅觉传感系统进行气味识别的可行性,提出了一种基于脑-机接口的仿生气味识别系统。该系统利用大鼠嗅觉感受细胞作为气味敏感传感单元,使用16通道植入式微丝电极记录和分析具有气味刺激特征的嗅球僧帽细胞电位响应信号。实验结果显示,该系统对气味具有高度敏感性,通过一定模式识别处理算法,不同的气味刺激具有较好的区分性,证明了该系统有望应用于气味的检测和识别。

  13. 基于干电极的头带式射频无线脑-机接口系统%A Dry electrode based headband radio frequency wireless brain-machine interface system

    Institute of Scientific and Technical Information of China (English)

    郭凯; 裴为华; 王宇; 许冰; 归强; 李晓倩; 杨宇; 刘剑; 陈弘达

    2012-01-01

    研发了一种采用干电极的脑-机接口系统,此系统克服了现有脑机接口用脑电信号采集及信号处理系统笨重而不便于携带的缺点.此系统采用半导体微加工工艺制作的“干”电极作为采集脑电信号的电极,佩戴方便且能长时间使用.整个便携式脑机接口系统在脑电信号采集、处理和传输三个方面都采用了利于便携的设计,信号处理采用专用的集成电路,信号的采集和处理端与信号接收端采用射频芯片收发数据.整个系统的重量只有39g.该脑-机接口系统以人体的专注程度作为控制外部设备的控制信号,经过训练的受试者可以通过脑电信号实现对机器的控制.%A new portable wireless brain-machine interface (BMI) system was designed and fabricated using the techin-que of dry electrode. The dry electrode was used in this system to record Electroencephalography (EEG) , and it was fabricated using the standard micromachining techniques so it is easy to wear. The system was composed of the three parts of signal recording, processing and transmission. Electroencephalography was recorded by the dry electrode , and was amplified, processed by using the application specific integrate circuit ( ASIC) , and the processed signal waw transmitted to the receiver by the wireless module. The EEG recording and processing module weighs 39g only. The system can be used to obtain the attention amplitude of the testees, and those trained testees could have the ability to control the machine through the EEG signal.

  14. High-accuracy brain-machine interfaces using feedback information.

    Directory of Open Access Journals (Sweden)

    Hong Gi Yeom

    Full Text Available Sensory feedback is very important for movement control. However, feedback information has not been directly used to update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual feedback to users. Here, we propose a BMI framework combining image processing as the feedback information with a novel prediction method. The feedback-prediction algorithm (FPA generates feedback information from the positions of objects and modifies movement prediction according to the information. The FPA predicts a target among objects based on the movement direction predicted from the neural activity. After the target selection, the FPA modifies the predicted direction toward the target and modulates the magnitude of the predicted vector to easily reach the target. The FPA repeats the modification in every prediction time points. To evaluate the improvements of prediction accuracy provided by the feedback, we compared the prediction performances with feedback (FPA and without feedback. We demonstrated that accuracy of movement prediction can be considerably improved by the FPA combining feedback information. The accuracy of the movement prediction was significantly improved for all subjects (P<0.001 and 32.1% of the mean error was reduced. The BMI performance will be improved by combining feedback information and it will promote the development of a practical BMI system.

  15. The balancing effect in brain-machine interaction

    OpenAIRE

    Pallikari, Fotini

    2016-01-01

    The meta analysis of Intangible Brain Machine Interaction (IMMI) data with random number generators is re-evaluated through the application of rigorous and recognized mathematical tools. The current analysis shows that the statistical average of the true RNG-IMMI data is not shifted from chance by direct mental intervention, thus refuting the IMMI hypothesis. A facet of this general statistical behavior of true RNG-IMMI data is the statistical balancing of scores observed in IMMI tests where ...

  16. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    Science.gov (United States)

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and

  17. Brain-machine interfaces in space: Using spontaneous rather than intentionally generated brain signals

    NARCIS (Netherlands)

    Coffey, E.B.J.; Brouwer, A.M.; Wilschut, E.S.; Erp, J.B.F. van

    2010-01-01

    De auteurs bespreken de beperkingen en mogelijkheden van gesuggereerde BMI toepassingen in een ruimtevaart en breken een lans voor BMIs die zijn gebaseerd op spontane in plaats van op doelbewuste hersensignalen

  18. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain-machine interface applications.

    Science.gov (United States)

    Mandal, Himadri S; Knaack, Gretchen L; Charkhkar, Hamid; McHail, Daniel G; Kastee, Jemika S; Dumas, Theodore C; Peixoto, Nathalia; Rubinson, Judith F; Pancrazio, Joseph J

    2014-06-01

    Conducting polymers, especially poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, are important for developing highly sensitive and microscale neural probes. In the present work, we show that the conductivity and stability of PEDOT can be significantly increased by switching the widely used counter anion poly(styrenesulfonate) (PSS) to the smaller tetrafluoroborate (TFB) anion during the electrodeposition of the polymer. Time-dependent impedance measurements of polymer modified implantable microwires were conducted in physiological buffer solutions under accelerated aging conditions and the relative stability of PEDOT:PSS and PEDOT:TFB modified microwires was compared over time. This study was also extended to carbon nanotube (CNT) incorporated PEDOT:PSS which, according to some reports, is claimed to enhance the stability and electrical performance of the polymer. However, no noticeable difference was observed between PEDOT:PSS and CNT:PEDOT:PSS in our measurements. At the biologically relevant frequency of 1kHz, PEDOT:TFB modified microwires exhibit approximately one order of magnitude higher conductivity and demonstrate enhanced stability over both PEDOT:PSS and CNT:PEDOT:PSS modified microwires. In addition, PEDOT:TFB is not neurotoxic and we show the proof-of-concept for both in vitro and in vivo neuronal recordings using PEDOT:TFB modified microelectrode arrays and chronic electrodes, respectively. Our findings suggest that PEDOT:TFB is a promising conductive polymer coating for the recording of neural activities. PMID:24576579

  19. The World Wide Web and Libraries: From Search Interface to Bibliographic Instruction

    OpenAIRE

    Kreyche, Michael

    1998-01-01

    The World Wide Web is rapidly being adopted by libraries and database vendors as a front end for bibliographic databases, reflecting the fact that the Web browser is becoming a universal tool. When the Web is also used for bibliographic instruction about these Web-based resources, it is possible to build tutorials incorporating actual screens from a database. The result is a realistic, highly interactive simulation of database search­ing that can provide a very detailed level of instruction.

  20. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design

    Directory of Open Access Journals (Sweden)

    Fabien eLotte

    2013-09-01

    Full Text Available While recent research on Brain-Computer Interfaces (BCI has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable EEG patterns (spontaneous BCI control being widely acknowledged as a skill while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years.In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently.

  1. An empirical appraisal of the effectiveness of adaptive interfaces for instructional systems

    Directory of Open Access Journals (Sweden)

    Ken Sinclair

    2000-01-01

    Full Text Available Navigating an information space, particularly in educational hypermedia, has its difficulties. Users may become spatially disoriented, they may be distracted, lose sight of educational objectives, or fail to relate important items of content. The predominant approaches to aid navigation in this in a well-defined information space such as educational software, involves the provision of a range of advanced navigation tools, to employ a strong metaphor and maintain interest through multimedia sequences, or to semantically structure the knowledge in the space according to some cognitively-based theory. However, none of these techniques can account for an individual learner's needs, knowledge, preferences or cognitive abilities. Adaptivity is a particular functionality that may be implemented in educational hypermedia systems in a variety of ways to recognise the importance of an individual discourse with an information space, and to alleviate navigational difficulties on that basis. This paper seeks to provide a broad understanding of some of the instructional and design principles implicit in adaptive educational hypermedia systems, those that use adaptive navigation support techniques and in particular adaptive link annotation. The claim that adaptive techniques can help solve navigation problems is examined through a review of two recent empirical studies that were undertaken to determine the effect of adaptive navigation support on user paths and learning, and a third study, the results of which is being introduced to the literature in this paper. These studies taken together have not shown a clear link between adaptivity and an improvement in learning, but offer some guidance for ongoing productive research in this field.

  2. interfaces

    Directory of Open Access Journals (Sweden)

    Dipayan Sanyal

    2005-01-01

    macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.

  3. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    OpenAIRE

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Lee E Miller

    2014-01-01

    International audience; The Fifth International Brain-Computer Interface (BCI) Meeting met on 3-7 June 2013 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in...

  4. Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach.

    Science.gov (United States)

    Gerjets, Peter; Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Zander, Thorsten O

    2014-01-01

    According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work.

  5. Cognitive State Monitoring and the Design of Adaptive Instruction in Digital Environments: Lessons Learned from Cognitive Workload Assessment using a Passive Brain-Computer Interface Approach

    OpenAIRE

    Peter eGerjets; Carina eWalter; Wolfgang eRosenstiel; Martin eBogdan; Zander, Thorsten O.

    2014-01-01

    According to Cognitive Load Theory, one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners’ current working-memory capacity might be a good metho...

  6. Miniaturized neural interfaces and implants

    Science.gov (United States)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  7. Interfacing with the brain using organic electronics (Presentation Recording)

    Science.gov (United States)

    Malliaras, George G.

    2015-10-01

    Implantable electrodes are being used for diagnostic purposes, for brain-machine interfaces, and for delivering electrical stimulation to alleviate the symptoms of diseases such as Parkinson's. The field of organic electronics made available devices with a unique combination of attractive properties, including mixed ionic/electronic conduction, mechanical flexibility, enhanced biocompatibility, and capability for drug delivery. I will present examples of organic electrodes, transistors and other devices for recording and stimulation of brain activity and discuss how they can improve our understanding of brain physiology and pathology, and how they can be used to deliver new therapies.

  8. Electronic dura mater for long-term multimodal neural interfaces

    Science.gov (United States)

    Minev, Ivan R.; Musienko, Pavel; Hirsch, Arthur; Barraud, Quentin; Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jérôme; Capogrosso, Marco; Milekovic, Tomislav; Asboth, Léonie; Torres, Rafael Fajardo; Vachicouras, Nicolas; Liu, Qihan; Pavlova, Natalia; Duis, Simone; Larmagnac, Alexandre; Vörös, Janos; Micera, Silvestro; Suo, Zhigang; Courtine, Grégoire; Lacour, Stéphanie P.

    2015-01-01

    The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. The soft implants extracted cortical states in freely behaving animals for brain-machine interface and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury.

  9. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions

    OpenAIRE

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial...

  10. A hybrid brain interface for a humanoid robot assistant.

    Science.gov (United States)

    Finke, Andrea; Knoblauch, Andreas; Koesling, Hendrik; Ritter, Helge

    2011-01-01

    We present an advanced approach towards a semi-autonomous, robotic personal assistant for handicapped people. We developed a multi-functional hybrid brain-robot interface that provides a communication channel between humans and a state-of-the-art humanoid robot, Honda's Humanoid Research Robot. Using cortical signals, recorded, processed and translated by an EEG-based brain-machine interface (BMI), human-robot interaction functions independently of users' motor control deficits. By exploiting two distinct cortical activity patterns, P300 and event-related desynchronization (ERD), the interface provides different dimensions for robot control. An empirical study demonstrated the functionality of the BMI guided humanoid robot. All participants could successfully control the robot that accomplished a shopping task.

  11. Interface entre neurones et puces structurées électroniques pour la détection de potentiels d'action

    OpenAIRE

    Larramendy, Florian

    2013-01-01

    The interface man / machine had followed of many researches in biotechnology. A part of these researches concern the interconnections brain / machine. Indeed, the brain arranges numerous intellectual connections thanks to neurons. These neurons communicate between them and propagate information thanks to a "bio-electric" signal called action potential. The objective of my doctoral thesis is to measure this signal thanks to ion sensitive field effect transistor (ISFET). The ISFET process was m...

  12. Perspectives and Potential of the Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    MUSSATTO, G. G.

    2014-06-01

    Full Text Available A Brain-Computer Interface (BCI, also known as Brain-Machine Interface, is a system that allows for the interaction between the user and its surroundings using control signals generated by his brain activity. The improvement of the research on BCI correlates mainly with the advances of Neurophisiology and Computer Science. Initial research was dedicated to the development of devices for the communication of individuals who lost voluntary muscle control but had no cognitive impairment. Nowadays, we find applications in the fields of mobility, communication and the treatment of diseases of user who may or may not have movement impairment. Considering the expansion scenario of the BCI applications, this paper presents a pedagogical description of the recent publication on this field of study. Hence, we descrive the basic concepts related to this research area, as well as some of its applications and limitations.

  13. Feasibility study for future implantable neural-silicon interface devices.

    Science.gov (United States)

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures. PMID:22254974

  14. Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm

    Directory of Open Access Journals (Sweden)

    Hovagim Bakardjian

    2007-07-01

    Full Text Available We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI. The developed system allows a BCI user to navigate a small car (or any other object on the computer screen in real time, in any of the four directions, and to stop it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which allow an extension to a substantially higher number of commands in the near future.

  15. Dissecting Local Design: Instructional Leadership, Curriculum and Science Education

    Science.gov (United States)

    Clifford, Matthew Aaron

    2009-01-01

    Local instructional design describes the process of customization that naturally occurs when curriculum innovations interface with local classrooms and schools. Describing the practice of local instructional design can help to explain how curriculum is adapted to local conditions and provides insight on how instructional leaders mediate…

  16. Editorial - Instructions

    DEFF Research Database (Denmark)

    Kastberg, Peter; Grinsted, Annelise

    2007-01-01

    Why you may wonder - have we chosen a topic which at first glance may seem trivial, and even a bit dull? Well, looks can be deceiving, and in this case they are! There are many good reasons for taking a closer look at instructions.......Why you may wonder - have we chosen a topic which at first glance may seem trivial, and even a bit dull? Well, looks can be deceiving, and in this case they are! There are many good reasons for taking a closer look at instructions....

  17. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    Science.gov (United States)

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  18. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  19. Safety Instructions

    CERN Multimedia

    2003-01-01

    Please note that the Safety Instructions N0 37 rev. 3 (IS 37 rev. 3) entitled ""LEVEL-3" SAFETY ALARMS AND ALARM SYSTEMS" Is available on the web at the following URL: http://edms.cern.ch/document/335802 Paper copies can also be obtained from the TIS divisional secretariat, e-mail: tis.secretariat@cern.ch TIS Secretariat

  20. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  1. Artificial Intelligence Tools for Grammar and Spelling Instruction.

    Science.gov (United States)

    Pijls, Fieny; And Others

    1987-01-01

    Discusses grammar and spelling instruction in The Netherlands for students aged 10-15 and describes an intelligent computer-assisted instructional environment consisting of a linguistic expert system, a didactic module, and a student interface. Three prototypes are described: BOUWSTEEN and COGO for analyzing sentences, and TDTDT for conjugating…

  2. Testing Interfaces

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;

    1999-01-01

    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns.The major problem is expected to lie in the interface between...... two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time, destroy...

  3. Testing Interfaces

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;

    1999-01-01

    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns. The major problem is expected to lie in the interface...... between two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time...

  4. Microprocessor interfacing

    CERN Document Server

    Vears, R E

    2014-01-01

    Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl

  5. The Effects of Multimedia Interface Design on Original Learning and Retention

    OpenAIRE

    Ramsey, Theresa D.

    1996-01-01

    The goal of this research was to compare the learning outcomes of three methods of instruction: a text-based instructional system and two multimedia systems. The two multimedia systems used different interface designs. The first multimedia system used a topic-oriented interface which is somewhat standard in multimedia design. The second multimedia system presented a problem solving context and s...

  6. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  7. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  8. iPhone User Interface Cookbook

    CERN Document Server

    Banga, Cameron

    2011-01-01

    Written in a cookbook style, this book offers solutions using a recipe based approach. Each recipe contains step-by-step instructions followed by an analysis of what was done in each task and other useful information. The cookbook approach means you can dive into whatever recipes you want in no particular order. The iPhone Interface Cookbook is written from the ground up for people who are new to iOS or application interface design in general. Each chapter discusses the reasoning and design strategy behind critical interface components, as well as how to best integrate each into any iPhone or

  9. Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex.

    Science.gov (United States)

    Stieglitz, Thomas; Rubehn, Birthe; Henle, Christian; Kisban, Sebastian; Herwik, Stanislav; Ruther, Patrick; Schuettler, Martin

    2009-01-01

    Brain-computer interfaces (BCIs) record neural signals from cortical origin with the objective to control a user interface for communication purposes, a robotic artifact or artificial limb as actuator. One of the key components of such a neuroprosthetic system is the neuro-technical interface itself, the electrode array. In this chapter, different designs and manufacturing techniques will be compared and assessed with respect to scaling and assembling limitations. The overview includes electroencephalogram (EEG) electrodes and epicortical brain-machine interfaces to record local field potentials (LFPs) from the surface of the cortex as well as intracortical needle electrodes that are intended to record single-unit activity. Two exemplary complementary technologies for micromachining of polyimide-based arrays and laser manufacturing of silicone rubber are presented and discussed with respect to spatial resolution, scaling limitations, and system properties. Advanced silicon micromachining technologies have led to highly sophisticated intracortical electrode arrays for fundamental neuroscientific applications. In this chapter, major approaches from the USA and Europe will be introduced and compared concerning complexity, modularity, and reliability. An assessment of the different technological solutions comparable to a strength weaknesses opportunities, and threats (SWOT) analysis might serve as guidance to select the adequate electrode array configuration for each control paradigm and strategy to realize robust, fast, and reliable BCIs. PMID:19660664

  10. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-08-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing. PMID:26737158

  11. Soft Interfaces

    Science.gov (United States)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  12. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    "Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...

  13. Museets interface

    DEFF Research Database (Denmark)

    Pold, Søren

    2007-01-01

    Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes...

  14. Designing Instructional Systems

    Science.gov (United States)

    Furtado, Lorraine T.

    1974-01-01

    The author presents an instructional design model for teachers that evolves around a teacher-manager concept which recognizes management functions of: planning, organizing, leading, and controlling. (EA)

  15. Instruction Sequences with Indirect Jumps

    Directory of Open Access Journals (Sweden)

    C.A. Middelburg

    2007-01-01

    Full Text Available We study sequential programs that are instruction sequences with direct and indirect jump instructions. The intuition is that indirect jump instructions are jump instructions where the position of the instruction to jump to is the content of some memory cell.We consider several kinds of indirect jump instructions. For each kind, we define the meaning of programs with indirect jump instructions of that kind by means of a translation into programs without indirect jump instructions. For each kind, the intended behaviour of a program with indirect jump instructions of that kind under execution is the behaviour of the translated program under execution on interaction with some memory device.

  16. Soft Interfaces

    International Nuclear Information System (INIS)

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  17. Interface Screenings

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2015-01-01

    In Wim Wenders' film Until the End of the World (1991), three different diagrams for the visual integration of bodies are presented: 1) GPS tracking and mapping in a landscape, 2) video recordings layered with the memory perception of these recordings, and 3) data-created images from dreams...... and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...

  18. 直接脑控机器人接口技术%Direct Brain-controlled Robot Interface Technology

    Institute of Scientific and Technical Information of China (English)

    伏云发; 王越超; 李洪谊; 徐保磊; 李永程

    2012-01-01

    直接脑控机器人接口(Brain-controlled robot interface,BCRI)是一种新型的人-机器人接口技术,是脑-机器接口/脑-计算机接口 (Brain-machine interface,BMI/Brain-computer interface,BCI)在机器人控制领域的重要应用和研究方向.研究者相继在Nature、Science和其他重要国际期刊上报道了相关的实验研究和开发,目前已成为国际前沿研究热点.本文主要围绕BCRI中的控制策略、BMI/BCI模块与机器人多层控制模块的适应和融合、BCRI中的脑信号自适应分类算法以及人、BMI/BCI模块和机器人控制系统的三边自适应展开论述,分析了目前的研究情况、存在的局限和面临的若干重要问题,指出进一步的研究思路和方向.%Direct brain-controlled robot interface (BCRI) is a new type human-robot interface which is an important research and development direction for brain-machine interface (BMI) / brain-computer interface (BCI) in the robot control field. Many experimental researches and developments for BCRI were reported by Nature, Science and other important international journals and it has become an international frontier research hotspot. The paper mainly discussed the control strategies for BCRI, the adaptation and fusion between BMI/BCI module and robot multilayer control architecture module, the adaptive classification algorithms for brain signal used in BCRI and the trilateral adaptation among human, BMI/BCI module and robot control system. The current situation and limitation for BCRI and some important problems faced by BCRI were analyzed and the further research ideas and directions were also pointed out.

  19. Programmatic Instructional Development.

    Science.gov (United States)

    Schutz, Richard E.

    Programmatic instructional development refers to sequenced and coordinated efforts to produce effective instructional programs which cumulate over time and which attain outcomes that would be impossible under non-programmatic projects. As practiced at the Southwest Regional Laboratory (SWRL), it involves the combined efforts of specialists from…

  20. Instruction sequence processing operators

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    This paper concerns instruction sequences whose execution involves the processing of instructions by an execution environment that offers a family of services and may yield a Boolean value at termination. We introduce a composition operator for families of services and three operators that have a di

  1. The Strategies Instructional Approach.

    Science.gov (United States)

    Deshler, Donald D.; Lenz, B. Keith

    1989-01-01

    The strategies instructional approach developed at the University of Kansas Institute for Research in Learning Disabilities is described. The approach teaches students strategies in the academic, social, motivational, and executive functioning areas that will enable students to meet content learning demands and modifies instructional environments…

  2. Supplemental instruction in chemistry

    Science.gov (United States)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  3. Instructional Design and the Importance of Instructional Alignment

    Science.gov (United States)

    Martin, Florence

    2011-01-01

    This paper highlights the instructional design process followed by the Maricopa Community College faculty in the creation of instructional modules in Digital Visual Literacy. The paper categorizes 10 tasks that an instructional designer, a teacher, or a trainer performs during the design phase of the instructional design process. The importance of…

  4. Instructing for Results

    Science.gov (United States)

    Peterson, Bob

    1978-01-01

    To illustrate the importance of clarity and precision in stating objectives for learning a particular job task, a training consultant provides answers to the previous issue's questionnaire on writing instructional objectives. (MF)

  5. Bibliographic Instruction : A Webliography

    Directory of Open Access Journals (Sweden)

    2004-09-01

    Full Text Available A Webliography about the Bibliographic Instruction, it collects a variety of internet resources divided to main categories; directories, articles, bibliographies, organization, mailing lists, and interest groups.

  6. Diversifying Instruction and Assessment.

    Science.gov (United States)

    Sternberg, Robert J.

    1994-01-01

    The triarchic theory posits that intelligence has analytical, creative, and practical aspects. Instructional and assessment methods should encourage and evaluate all three kinds of abilities, a balanced approach that can reach all students. (SK)

  7. Instructions for Authors

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ GENERAL SUBMISSION INSTRUCTIONS These guidelines have been prepared in accordance with the Uniform Requirements for Manuscripts Submitted to Biomedical Journals.1 Authors should familiarize themselves with these requirements before submission.

  8. An experiment on experimental instructions

    OpenAIRE

    Bigoni, Maria; Dragone, Davide

    2011-01-01

    In this paper we treat instructions as an experimental variable. Using a public good game, we study how the instructions' format affects the participants' understanding of the experiment, their speed of play and their experimental behavior. We show that longer instructions do not significantly improve the subjects' understanding of the experiment; on-screen instructions shorten average decision times with respect to on-paper instructions, and requiring forced inputs reduces waiting times, in ...

  9. Applying learning theories and instructional design models for effective instruction.

    Science.gov (United States)

    Khalil, Mohammed K; Elkhider, Ihsan A

    2016-06-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning outcomes, the science of instruction and instructional design models are used to guide the development of instructional design strategies that elicit appropriate cognitive processes. Here, the major learning theories are discussed and selected examples of instructional design models are explained. The main objective of this article is to present the science of learning and instruction as theoretical evidence for the design and delivery of instructional materials. In addition, this article provides a practical framework for implementing those theories in the classroom and laboratory.

  10. Cross Cultural Instruction: An Instructional Design Case

    Directory of Open Access Journals (Sweden)

    Monica W. Tracey

    2010-01-01

    Full Text Available In an authentic example of linking design and development with learning and performance, an international real estate development firm defined a problem; implementing a cleaning system in the largest mall in the world with a cross-cultural unskilled work force in Dubai, UAE. Partnering with a university instructional design team employing a rapid prototyping methodology and the constructivist ID approach, Layers of Negotiation Model, a comprehensive curriculum was designed. This article describes the project background, initial design, the ID team's work in Dubai, illustrates the product, and summarizes the design experience.

  11. Peer Instruction for Astronomy

    Science.gov (United States)

    Green, Paul

    Peer Instruction for Astronomy is an instructor's guide to an exciting and easily-implemented enhancement for lecture classes in introductory astronomy. Application of this powerful and efficient teaching technique requires that the instructor have on hand a large number of thought-provoking, conceptual short answer questions aimed at a variety of levels. While significant numbers of such questions have been published for use in Physics, Peer Instruction for Astronomy provides the first such compilation for Astronomy, and includes hints on use of the technique and applications of the method. KEY TOPICS: Covers peer instruction, incentives, a large database of conceptual questions for use in class, and a list of readings and resources. MARKET: Ideal for introductory astronomy instructors at the undergraduate or advanced high school level.

  12. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  13. Shipibo-Spanish: Differences in Residual Transfer at the Syntax-Morphology and the Syntax-Pragmatics Interfaces

    Science.gov (United States)

    Sanchez, Liliana; Camacho, Jose; Ulloa, Jose Elias

    2010-01-01

    In this article, we present a study that tests the Interface Hypothesis (Sorace and Filiaci, 2006) at the syntax-pragmatics interface and its possible extension to the syntax-morphology interface in two groups of first language (L1) speakers of Shipibo with different levels of formal instruction in Spanish as a second language (L2). Shipibo is a…

  14. Applying Learning Theories and Instructional Design Models for Effective Instruction

    Science.gov (United States)

    Khalil, Mohammed K.; Elkhider, Ihsan A.

    2016-01-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning…

  15. Enhancing Instructional Design Efficiency: Methodologies Employed by Instructional Designers

    Science.gov (United States)

    Roytek, Margaret A.

    2010-01-01

    Instructional systems design (ISD) has been frequently criticised as taking too long to implement, calling for a reduction in cycle time--the time that elapses between project initiation and delivery. While instructional design research has historically focused on increasing "learner" efficiencies, the study of what instructional designers do to…

  16. Instructional Guide for Cosmetology.

    Science.gov (United States)

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Dept. of Education.

    Intended as a tool for cosmetology teachers in Virginia public and private schools, the document is an instructional guide which offers 12 units of study, arranged in a three year course. Materials covered help prepare students for licensure in the State of Virginia and the guide is designed to cover the 1,500 hours required to be spent in the…

  17. Wind Power. Instructional Materials.

    Science.gov (United States)

    Jordan, Kenneth; Thessing, Dan

    This document is one of five learning packets on alternative energy developed as part of a descriptive curriculum research project in Arkansas (see note). The overall objectives of the learning packets are to improve the level of instruction in the alternative energies by vocational exploration teachers, and to facilitate the integration of new…

  18. Revisiting "Beyond Instructional Design"

    Science.gov (United States)

    Sims, Rod

    2015-01-01

    Since the article "Beyond Instructional Design: Making Learning Design a Reality" (Sims, 2006) was published, much has changed in the opportunities we have for learning, and Professor Rod Sims's thinking has evolved. In this article, Professor Rod Sims reflects upon his original article, and he offers an evolved model of learning design,…

  19. Individualistic Instructional Design

    Science.gov (United States)

    Sahin, Mehmet Can

    2007-01-01

    This study proposes a new approach to the Instructional Design field. By the constructivism, education systems are moving from a massive structure to the more learner centered and more individualist structure. So far, ID field has adopted and digested the individualism notion partly. This paper proposes an individualistic approach to the…

  20. Secondary Dance Instructional Guide.

    Science.gov (United States)

    Montgomery County Public Schools, Rockville, MD. Dept. of Instructional Planning and Development.

    This manual provides guidelines for dance teachers in secondary schools. A brief statement is made on the purpose and philosophy of dance education, and activities and instructional suggestions are presented for various dance forms: (1) group dance--folk/ethnic, square dance, and social dance; (2) aerobic dance; (3) jazz dance; (4) modern dance;…

  1. Instructions to authors

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A more detailed set of instructions can be found in the journal's home page at:Aims and scope Journal of Rock Mechanics and Geotechnical Engineering (JRMGE) is a quarterly journal focused on the latest research achievements in rock mechanics and geotechnical engineering,and provides an opportunity for colleagues from all over the world

  2. Paratransit: An Instructional Module.

    Science.gov (United States)

    Scalici, Anthony

    A concept-based introduction to paratransit is provided in this instructional module for undergraduate and graduate transportation-related courses for disciplines such as engineering, business, marketing, and technology. The concept of paratransit generally refers to modes of transportation other than mass transit and solo-driven automobiles. The…

  3. Safety instruction no 50

    CERN Multimedia

    Secrétariat SC

    2004-01-01

    Please note that the safety instruction no 50 (IS 50) entitled 'Safety Coordination on CERN Worksites' is available on the web at the following url: https://edms.cern.ch/document/479454/LAST_RELEASED Paper copies can also be obtained from the SC unit Secretariat, email: sc.secretariat@cern.ch SC Secretariat

  4. Safety Instruction No 43

    CERN Multimedia

    2004-01-01

    Please note that the Safety Instruction No 43 (IS 43) entitled "ASBESTOS - DANGERS AND PRECAUTIONS" is available on the web at the following URL: https://edms.cern.ch/document/335809/LAST_RELEASED/ Paper copies can also be obtained from the SC secretariat, e-mail: tis.secretariat@cern.ch. SC Secretariat

  5. Sourcebook for Bibliographic Instruction.

    Science.gov (United States)

    Dusenbury, Carolyn, Ed.; And Others

    Direction and guidance are provided for establishing and maintaining bibliographic instruction (BI) programs. This document provides an overview of BI and BI programs and points readers to other sources of information. Five key topics were identified and the following papers are presented: (1) "An Introduction to Learning Theory" (Lori Arp); (2)…

  6. Using Realia in Instruction.

    Science.gov (United States)

    Blanton, Lloyd H.; And Others

    1980-01-01

    Seven articles in this issue focus on the use of realia in instruction. Authors discuss reasons why realia effectively motivate students and enhance learning; the place of realia in supervised occupational experience programs; the importance of real-life experiences to vocational agriculture; and student teaching as a reality experience. (SK)

  7. Instructional Technology and Objectification

    Science.gov (United States)

    Gur, Bekir S.; Wiley, David A.

    2007-01-01

    Objectification refers to the way in which everything (including human beings) is treated as an object, raw material, or resource to be manipulated and used. In this article, objectification refers to the way that education is often reduced to the packaging and delivery of information. A critique of objectification in instructional technology is…

  8. Simplifying Tennis Instruction

    Science.gov (United States)

    Vasil, Jay

    2005-01-01

    How many physical education programs incorporate tennis into the curriculum? How many physical educators feel proficient enough to teach tennis? Equally important, do students truly make progress when tennis is taught? Tennis instruction in secondary physical education settings is often frustrating for students and teachers alike. Many physical…

  9. Facility transition instruction

    International Nuclear Information System (INIS)

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  10. Gaze Interactive Building Instructions

    DEFF Research Database (Denmark)

    Hansen, John Paulin; Ahmed, Zaheer; Mardanbeigi, Diako

    We combine eye tracking technology and mobile tablets to support hands-free interaction with digital building instructions. As a proof-of-concept we have developed a small interactive 3D environment where one can interact with digital blocks by gaze, keystroke and head gestures. Blocks may be moved...

  11. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  12. Computer-assisted instruction

    NARCIS (Netherlands)

    J. Voogt; P. Fisser

    2015-01-01

    Since the early days of computer technology in education in the 1960s, it was claimed that computers can assist instructional practice and hence improve student learning. Since then computer technology has developed, and its potential for education has increased. In this article, we first discuss th

  13. Job Instruction Training.

    Science.gov (United States)

    Pfau, Richard H.

    Job Instruction Training (JIT) is a step-by-step, relatively simple technique used to train employees on the job. It is especially suitable for teaching manual skills or procedures; the trainer is usually an employee's supervisor but can be a co-worker. The JIT technique consists of a series of steps that a supervisor or other instructor follows…

  14. Apparel. Teacher's Instructional Guide.

    Science.gov (United States)

    Rambo, Patti

    This instructional guide for a one-half credit technological laboratory course for grades 10-12 focuses on apparel from the perspectives of personal decision making related to apparel, the apparel industry, and career preparation. Introductory materials are a course description; overview of course design; facilities, equipment, and resources; and…

  15. Grammar Instruction and Technology

    Science.gov (United States)

    Lacina, Jan

    2005-01-01

    Much of the research literature from the past 25 years has supported the importance of teaching grammar in the context of writing instruction (Calkins, 1980; DiStefano & Killion, 1984; Weaver, 1996,1998). Unlike other content areas, practice does not make perfect when learning grammar. While isolated drill and practice of grammatical concepts may…

  16. Nuclear Energy. Instructional Materials.

    Science.gov (United States)

    Jordan, Kenneth; Thessing, Dan

    This document is one of five learning packets on alternative energy (see note) developed as part of a descriptive curriculum research project in Arkansas. The overall objectives of the learning packets are to improve the level of instruction in the alternative energies by vocational exploration teachers, and to facilitate the integration of new…

  17. Principals as Instructional Leaders

    Science.gov (United States)

    Finkel, Ed

    2012-01-01

    At some level, principals always have been instructional leaders--but never before has their role been more prominent. First, the accountability movement--No Child Left Behind (NCLB) in particular--thrust principals into the spotlight on academic achievement. Then budget cuts peeled away capacity at both the district and school levels, thinning…

  18. Expert Systems: Instructional Design Potential.

    Science.gov (United States)

    Pollock, Joellyn; Grabinger, R. Scott

    1989-01-01

    Description of the components of expert systems highlights their potential uses in the field of instructional design. Uses of expert systems are described for determining the cost-effectiveness of instructional media; as instructional management aids; as job aids; in helping to diagnose student problems; and as student feedback/evaluation systems.…

  19. Academic and Military Instructional Technology.

    Science.gov (United States)

    Branson, Robert K.

    This paper examines the practices and accomplishments of the military in the area of instructional technology. An examination of historical background is used to increase the precision of the definition of instructional technology. Specific contributions of the military are described and then uses of instructional technology in the military and…

  20. Investigating Form-Focused Instruction.

    Science.gov (United States)

    Ellis, Rod

    2001-01-01

    Provides an historical sketch of form-focused instruction research, defines what is meant by form-focused instruction, and discusses the main research methods that have been used to investigate form-focused instruction in terms of a broad distinction between confirmatory and interpretive research. (Author/VWL)

  1. Student Models of Instructional Design

    Science.gov (United States)

    Magliaro, Susan G.; Shambaugh, Neal

    2006-01-01

    Mental models are one way that humans represent knowledge (Markman, 1999). Instructional design (ID) is a conceptual model for developing instruction and typically includes analysis, design, development, implementation, and evaluation (i.e., ADDIE model). ID, however, has been viewed differently by practicing teachers and instructional designers…

  2. Draw and Tell: Children as Designers of Web Interfaces.

    Science.gov (United States)

    Bilal, Dania

    2003-01-01

    Using a participatory approach, 11 middle school children created paper prototypes for Web search engines. The prototypes were analyzed in relation to content-related spaces, specific spaces, general spaces, instruction spaces, and other spaces. Children's comments about the purposes of the interfaces were analyzed in terms of functionality and…

  3. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  4. Interactive radio instruction: developing instructional methods.

    Science.gov (United States)

    Friend, J

    1989-01-01

    The USAID has, since 1972, funded the development of a new methodology for educational radio for young children through 3 projects: the Radio Mathematics PRoject of Nicaragua, the Radio Language Arts Project of Kenya, and the Radio Science PRoject of Papua New Guinea. These projects developed math programs for grades 1-4 and English as a second language for grades 1-3; programs to teach science in grades 4-6 are now being developed. Appropriate techniques were developed to engage young children actively in the learning process. Lessons are planned as a "conversation" between the children and the radio; scripts are written as 1/2 of a dialogue, with pauses carefully timed so that written as 12 of a dialogue, with pauses carefully timed so that students can contribute their 1/2. Teaching techniques used in all 3 projects include choral responses, simultaneous individual seatwork, and activities using simple materials such as pebbles and rulers. Certain techniques were specific to the subject being taught, or to the circumstances in which the lessons were to be used. Patterned oral drill was used frequently in the English lessons, including sound-cued drills. "Deferred" oral responses were used often in the math lessons. In this method, the children are instructed to solve a problem silently, not giving the answer aloud until requested, thus allowing time for even the slower children to participate. "One-child" questions were used in both English and science: the radio asks a question to be answered by a single child, who is selected on the spot by the classroom teacher. This allows for open-ended questions, but also requires constant supervision of the classroom teacher. Songs and games were used in all programs, and extensively for didactic purposes in the teaching of English. Instructions for science activities are often more complex than in other courses, particularly when the children are using science apparatus, especially when they work in pairs to share scarce

  5. Instructional immediacy in elearning.

    Science.gov (United States)

    Walkem, Kerrie

    2014-01-01

    Instructor immediacy has been positively associated with many desirable academic outcomes including increased student learning. This study extends existing understanding of instructional immediacy behaviours in elearning by describing postgraduate nursing students' reflections on their own experience. An exploratory, descriptive survey design was used to collect qualitative data. Participants were asked what behaviours or activities help to create rapport or a positive interpersonal connection (immediacy) between students and their online teacher(s). Thematic analysis of the data revealed three main themes: acknowledging and affirming student's personal and professional responsibilities; providing clear and timely information; and utilising rich media. These findings give lecturers insight into instructional strategies they may adopt to increase immediacy in elearning and hence improve student learning outcomes.

  6. Safety instruction No. 36

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that a revised version of Safety Instruction No. 36 (IS 36), entitled "Safety rules for the use of static magnetic fields at CERN" is available on the Web at the following url: https://edms.cern.ch/document/335801/LAST_RELEASED Paper copies can also be obtained from the SC unit secretariat (e-mail : sc.secretariat@cern.ch) SC Secretariat

  7. A Critique of Instructional

    OpenAIRE

    McKernan, James

    2010-01-01

    The ‘objectives model’ of curriculum planning, predicated upon behavioural performances, has become the dominant form of curriculum planning in Europe and elsewhere in the world. This paper argues that the objectives model is satisfactory for training or instruction, but falls down when applied to a true sense of ‘education’. The paper outlines 13 limitations on the use of educational objectives. It is argued that those interested in using objectives are guided by evaluation as assessment rat...

  8. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A

    1990-01-01

    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  9. Water at Interfaces

    DEFF Research Database (Denmark)

    Björneholm, Olle; Hansen, Martin Hangaard; Hodgson, Andrew;

    2016-01-01

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives...

  10. Complex Interfaces Under Change

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    and mechanical processes that develop within this structure. Water-related processes at the interfaces between the compartments are complex, depending both on the interface itself, and on the characteristics of the interfaced compartments. Various aspects of global change directly or indirectly impact...

  11. AXIOLOGICAL MODEL OF INSTRUCTIONAL DESIGN

    Directory of Open Access Journals (Sweden)

    Takushevich I. A.

    2015-10-01

    Full Text Available The article presents instructional design as a new approach to the issue of developing value-oriented worldview. Scientific research and analysis led the author to summarize instructional design theory, broaden the definition of instructional design and apply it to instruction and learning in a new manner. The goal to build a pattern of instruction aimed at developing learners’ value-oriented worldview required the author to study the existing instructional design model, to analyse and generalize a number of monographs and articles devoted to the problem of building value systems and value orientations, and finally to investigate and apply the new knowledge to real life in the form of experiment. The work conducted brought the author to axiological model of instructional design, which consists of three dimensions: a linear sequence of the events from designing the instructional material to independent learning activities, interaction between a teacher and a learner, pace of learning and design. The article touches upon every dimension, level and stage of the model, describes and defines the procedures that take place on each of them, as well as suggests a possible way to visualize the model in a form of a sketch. The author also points out the advantages of using instructional design as an efficient and smart tool to organize learning and justifies the use of the new instructional design model in XXI century

  12. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  13. Water at Interfaces.

    Science.gov (United States)

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding. PMID:27232062

  14. PEDOT:PSS interfaces support the development of neuronal synaptic networks with reduced neuroglia response in vitro

    Directory of Open Access Journals (Sweden)

    Giada eCellot

    2016-01-01

    Full Text Available The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT:PSS doped with different amounts of ethylene glycol (EG with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy combined to single cell electrophysiology to assess the biocompatibility of PEDOT:PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus PEDOT:PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function.

  15. USING GOOGLE+ FOR INSTRUCTION

    Directory of Open Access Journals (Sweden)

    Kevin YEE

    Full Text Available Introduced in July, 2011 in a beta test of invited users only, the new social media service Google+ (or G+ quickly spread by word of mouth, and Google leader Larry Page (2011 blogged that within sixteen days it had 10 million users. By August, it had 25 million users (Cashmore, 2011. Even with slower growth ahead (still with no marketing budget, the service looks likely to crest 100 million users perhaps as early as ten months, a feat that took Facebook three years. Other social networks, most notably Facebook and Twitter, have been used increasingly as instructional tools, since they are platforms with which students are already familiar (Maloney, 2007; McLoughlin & Lee, 2007. Selwyn (2009 found that students often eschew official channels for communication in favor of less formal community-based formats such as Facebook, implying a growing need for instructional communication tools that will be used willingly by students. The question is whether Google+ can be used like Twitter or Facebook to augment instruction, or even, perhaps, to improve upon those predecessors for academic purposes. Google+ is like Twitter in that anyone can follow a given user’s posts. There is no direct “friend” relationship required to read the posts written by others. However, it also approximates some features of Facebook. Rather than friends sorted into “lists” like in Facebook, Google+ allows users to place feeds into one or more “circles,” the better to monitor (or control the flow of information to and from different audiences. Circles are more intuitive, and more central to the experience, than the Facebook lists. They provide an explicit organizational structure, compared to the less-obvious listing functionality, which feels like an afterthought, found in Facebook.

  16. Instructional Use of Weblogs

    Directory of Open Access Journals (Sweden)

    Yavuz AKBULUT

    2007-07-01

    Full Text Available Web 2.0 can provide learners with increased interaction and online collaboration. Among its applications, weblogs have gained an increasing popularity as they allow bloggers to voice their own perspectives which can be delivered to a large audience through the Web. Weblogs can be integrated into teaching-learning process as they encourage learners to collaborate and freely voice their ideas. However, innovative technologies might not always lead to innovative distance education practices if timely adaptation lags behind. This study presents a review on instructional use of weblogs along with implications for open and distance learning.

  17. Microcontroller Programming and Interfacing TI MPS433

    CERN Document Server

    Barrett, Steven

    2011-01-01

    This book provides a thorough introduction to the Texas Instruments MPS430 microcontroller. The MPS430 is a 16-bit reduced instruction set (RISC) processor that features ultra low power consumption and integrated digital and analog hardware. Variants of the MPS430 microcontroller have been in production since 1993. This provides for a host of MPS430 products including evaluation boards, compilers, and documentation. A thorough introduction to the MPS430 line of microcontrollers, programming techniques, and interface concepts are provided along with considerable tutorial information with many i

  18. FPGA Implementation of Deblocking Filter Custom Instruction Hardware on NIOS - II Based SOC

    Directory of Open Access Journals (Sweden)

    Bolla Leela Naresh

    2011-12-01

    Full Text Available This paper presents a frame work for hardware acceleration for post video processing system implemented on FPGA. The deblocking filter algorithms ported on SOC having Alter a NIOS-II soft core processor.SOC designed with the help of SOPC builder .Custom instructions are chosen by identifying the most frequently used tasks in the algorithm and the instruction set of NIOS-II processor has been extended. Deblocking filter new instruction added to the processor that are implemented in hardware and interfaced to the NIOSII processor. New instruction added to the processor to boost the performance of the deblocking filter algorithm. Use of custom instructions the implemented tasks have been accelerated by 5.88%. The benefit of the speed is obtained at the cost of very small hardware resources.

  19. FPGA Implementation of Deblocking Filter Custom Instruction Hardware on NIOS - II Based SOC

    Directory of Open Access Journals (Sweden)

    Addanki Purna Ramesh

    2012-01-01

    Full Text Available This paper presents a frame work for hardware acceleration for post video processing system implemented on FPGA. The deblocking filter algorithms ported on SOC having Altera NIOS-II soft core processor.SOC designed with the help of SOPC builder .Custom instructions are chosen by identifying the most frequently used tasks in the algorithm and the instruction set of NIOS-II processor has been extended. Deblockingfilter new instruction added to the processor that are implemented in hardware and interfaced to the NIOSII processor. New instruction added to the processor to boost the performance of the deblocking filteralgorithm. Use of custom instructions the implemented tasks have been accelerated by 5.88%. The benefit of the speed is obtained at the cost of very small hardware resources.

  20. Thread extraction for polyadic instruction sequences

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    Instruction sequences are often fragmented. An important reason for instruction sequence fragmentation is that the execution architecture at hand to execute instruction sequences sets bounds to the size of instruction sequences. In this paper, we study instruction sequences that have been split into

  1. Allocating instruction time: How language instruction can affect multiple skills

    NARCIS (Netherlands)

    Borghans, L.; Diris, R.E.M.

    2014-01-01

    There exists substantial variation in how schools allocate instruction time to school subjects. The effectiveness of that allocation depends on the immediate effect of instruction in one subject on achievement in the same subject, on how skills further develop over time, and on possible spillover ef

  2. The Instructional Network: Using Facebook to Enhance Undergraduate Mathematics Instruction

    Science.gov (United States)

    Gregory, Peter; Gregory, Karen; Eddy, Erik

    2014-01-01

    Facebook is a website with over one billion users worldwide that is synonymous with social-networking. However, in this study, Facebook is used as an "instructional network". Two sections of an undergraduate calculus course were used to study the effects of participating in a Facebook group devoted solely to instruction. One section was…

  3. Architecture of a Computer Based Instructional System

    Directory of Open Access Journals (Sweden)

    Emilia PECHEANU

    2000-12-01

    Full Text Available The paper describes the architecture of a tutorial system that can be used at various engineering graduate and postgraduate courses. The tutorial is using Internet-style WWW services to provide access to the teaching information and the evaluation exercises maintained with a RDMS. The tutorial will consist of server-side applications that process and present teaching material and assessing exercises to the student using the well-known Web interface. All information in the system will be stored in a relational database. By closely sticking to the ANSI SQL specifications, the system can take advantage of a free database managing system running on Linux, the mini-SQL. The tutorial can be used to on-line deliver any courses, creating new, continuing education opportunities. Taking advantage of the modern deployment techniques, the instructional/assessing tutorial offer high degrees of accessibility.

  4. Universal computer interfaces

    CERN Document Server

    Dheere, RFBM

    1988-01-01

    Presents a survey of the latest developments in the field of the universal computer interface, resulting from a study of the world patent literature. Illustrating the state of the art today, the book ranges from basic interface structure, through parameters and common characteristics, to the most important industrial bus realizations. Recent technical enhancements are also included, with special emphasis devoted to the universal interface adapter circuit. Comprehensively indexed.

  5. Professional Cosmetology Practices. Instructional Units.

    Science.gov (United States)

    Hopcus, Sharron; Armstrong, Ivan J.

    This publication is designed to assist the instructor and students in understanding the latest concepts and techniques of the instructional phase of cosmetology programs. The instructional units are in five areas: (1) orientation, (2) professional practices: hair, (3) professional practices: skin and nails, (4) cosmetology science, and (5)…

  6. Distance Education Instructional Model Applications.

    Science.gov (United States)

    Jackman, Diane H.; Swan, Michael K.

    1995-01-01

    A survey of graduate students involved in distance education on North Dakota State University's Interactive Video Network included 80 on campus and 13 off. The instructional models rated most effective were role playing, simulation, jurisprudential (Socratic method), memorization, synectics, and inquiry. Direct instruction was rated least…

  7. Rotating Solids and Flipping Instruction

    Science.gov (United States)

    Grypp, Lynette; Luebeck, Jennifer

    2015-01-01

    Technology is causing educators to rethink the entire notion of classroom learning, not only with respect to what learning should take place but also where it should take place. One such innovation is flipped instruction, broadly defined by Staker and Horn (2012) as an instructional model in which students learn partly through online delivery and…

  8. Benefits of systematic phonics instruction

    NARCIS (Netherlands)

    Graaff, S.E.H. de; Bosman, A.M.T.; Hasselman, F.; Verhoeven, L.T.W.

    2009-01-01

    Systematic-phonics instruction appears to be more effective than nonsystematic phonics instruction for teaching reading (Ehri, Nunes, Stahl, Willows, 2001). In the present study, a systematic phonics approach was directly compared with a nonsystematic phonics approach for kindergarten children. Both

  9. Instructional Analysis for Health Occupations.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This instructional analysis centers on identifying the skills, related knowledge, teacher activities, and student activities that are central to teaching various topics included in the core curriculum for health occupations courses. Addressed in the volume are the following instructional areas: first aid; medical terminology; medical asepsis;…

  10. Adaptive instruction and pupil achievement

    NARCIS (Netherlands)

    Houtveen, A.A M; Booy, N; de Jong, Robert (Rob); van de Grift, W.J C M

    1999-01-01

    In this article the results are reported of a quasi-experiment on effects of adaptive instruction on reading results of children in the first year of reading instruction in Dutch primary schools. The research involved 456 pupils from 23 schools (12 experimental and 11 control group schools). Teacher

  11. Instructional Technology and Administrative Decisions

    Science.gov (United States)

    Eye, Glen G.; and others

    1969-01-01

    "Concerned with the spiraling problems of technology and its impact on instruction, the American Association of School Administrators (AASA) two years ago created the Committee on Technology and Instruction. Since that time the Committee has been active in investigating a number of areas relevant to the impact of technology on the public schools. …

  12. ROTI-OPERATIONAL INSTRUCTIONAL MODEL

    Directory of Open Access Journals (Sweden)

    H. Barker,

    2012-02-01

    Full Text Available The instructional model presented here is a combination of systems used by the United States Navy and R. F. Mager's Criteria Referenced Instruction Model for Analysis Design and Implementation. The author has taken what he believes is the best components from each system and established a working model.

  13. Student Attitudes toward Bibliographic Instruction.

    Science.gov (United States)

    Damko, Ellen E.

    This study was designed to determine what value, if any, college students place upon library use instruction. A survey conducted on a random sample of college and university students working at Cedar Point Amusement Park in Sandusky, Ohio, during the summer of 1990 was designed to determine the type and amount of library instruction each student…

  14. Agricultural Education--Instructional Materials.

    Science.gov (United States)

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    This compilation presents over 950 resumes of instructional materials in agricultural education, which have appeared quarterly in "Abstracts of Instructional Materials in Vocational and Technical Education" (AIM), Fall 1967 through Fall 1971. Resumes cover a broad range of fields and occupations, such as agribusiness, agronomy, animal and plant…

  15. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves;

    2015-01-01

    these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...

  16. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  17. The Challenge of Individualized Instruction in Corrections.

    Science.gov (United States)

    Clements, Carl B.; McKee, John M.

    2000-01-01

    Discusses 14 challenges to the use of individualized instruction in corrections. Emphasizes a systems approach, motivational tools, programmed instructional materials, and approaches such as Direct Instruction and Precision Teaching. (SK)

  18. The User Interface.

    Science.gov (United States)

    Lindeman, Martha J.; And Others

    1989-01-01

    The first of three articles on the design of user interfaces for information retrieval systems discusses the need to examine types of display, prompting, and input as separate entities. The second examines the use of artificial intelligence in creating natural language interfaces, and the third outlines standards for case studies in human computer…

  19. Interface colloidal robotic manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  20. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  1. Interface or Interlace?

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Wamberg, Jacob

    2005-01-01

    Departing from an analysis of the computer's indeterminate location between medium and machine, this paper problematises the idea of a clear-cut interface in complex computing, especially Augmented Reality. The idea and pratice of the interface is derived from the medium as a representational...... art works, especially Phunsombatlert's Path of Illusion, Dobson's Blendie, the Canadian collective Whisper and Rinaldo's Augmented Fish Reality....

  2. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  3. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm

    Directory of Open Access Journals (Sweden)

    Salvador eDura-Bernal

    2015-11-01

    Full Text Available Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm.This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuro-prosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility

  4. User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms; Myers, Brad A

    2008-01-01

    User Interfaces have been around as long as computers have existed, even well before the field of Human-Computer Interaction was established. Over the years, some papers on the history of Human-Computer Interaction and User Interfaces have appeared, primarily focusing on the graphical interface era...... and early visionaries such as Bush, Engelbart and Kay. With the User Interface being a decisive factor in the proliferation of computers in society and since it has become a cultural phenomenon, it is time to paint a more comprehensive picture of its history. This SIG will investigate the possibilities...... of  launching a concerted effort towards creating a History of User Interfaces. ...

  5. Entanglement and topological interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. [Arnold Sommerfeld Center, Ludwig-Maximilians-Universitaet, Theresienstrasse 37, 80333, Muenchen (Germany)

    2016-06-15

    In this paper we consider entanglement entropies in two-dimensional conformal field theories in the presence of topological interfaces. Tracing over one side of the interface, the leading term of the entropy remains unchanged. The interface however adds a subleading contribution, which can be interpreted as a relative (Kullback-Leibler) entropy with respect to the situation with no defect inserted. Reinterpreting boundaries as topological interfaces of a chiral half of the full theory, we rederive the left/right entanglement entropy in analogy with the interface case. We discuss WZW models and toroidal bosonic theories as examples. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Tiered Instruction: An Effective Strategy to Differentiation of Instruction

    Directory of Open Access Journals (Sweden)

    Yahya BELER

    2011-08-01

    Full Text Available This study aimed to examine the effects of a tiered instructional design on classroom management, attitude and the learning level of students. The instructional program was prepared for an introductory science course for 3rd grade students. The case study research method was used. Observation form, teacher and student interview forms were used to collect data. The teaching program was planned using a tiered instruction method for nine subjects of the “Yesterday, Today, Tomorrow” curriculum theme. The teacher made a short presentation and then students were classified into ability groups. Finally, each group completed learning activity via individual and group tasks based on activities appropriate to their abilities. The results indicate that tiered instruction had positive effects on the learning outcomes of students. All groups completed the classroom activities easily, which increased their motivation. Students participated in activities voluntarily and enthusiastically.

  7. COLLEGE-LEVEL INSTRUCTION: DERIVED RELATIONS AND PROGRAMMED INSTRUCTION

    OpenAIRE

    Fienup, Daniel M; Hamelin, Jeffery; Reyes-Giordano, Kimberly; Falcomata, Terry S

    2011-01-01

    Recent research has demonstrated the effectiveness of programmed instruction that integrates derived relations to teach college-level academic material. This method has been demonstrated to be effective and economical in the teaching of complex mathematics and biology concepts. Although this approach may have potential applications with other domains of college learning, more studies are needed to evaluate important technological variables. Studies that employ programmed instruction are discu...

  8. Motivational Measure of the Instruction Compared: Instruction Based on the ARCS Motivation Theory vs Traditional Instruction in Blended Courses

    Science.gov (United States)

    Colakoglu, Ozgur M.; Akdemir, Omur

    2012-01-01

    The ARCS Motivation Theory was proposed to guide instructional designers and teachers who develop their own instruction to integrate motivational design strategies into the instruction. There is a lack of literature supporting the idea that instruction for blended courses if designed based on the ARCS Motivation Theory provides different…

  9. Prediction of stroke thrombolysis outcome using CT brain machine learning

    Directory of Open Access Journals (Sweden)

    Paul Bentley

    2014-01-01

    Full Text Available A critical decision-step in the emergency treatment of ischemic stroke is whether or not to administer thrombolysis — a treatment that can result in good recovery, or deterioration due to symptomatic intracranial haemorrhage (SICH. Certain imaging features based upon early computerized tomography (CT, in combination with clinical variables, have been found to predict SICH, albeit with modest accuracy. In this proof-of-concept study, we determine whether machine learning of CT images can predict which patients receiving tPA will develop SICH as opposed to showing clinical improvement with no haemorrhage. Clinical records and CT brains of 116 acute ischemic stroke patients treated with intravenous thrombolysis were collected retrospectively (including 16 who developed SICH. The sample was split into training (n = 106 and test sets (n = 10, repeatedly for 1760 different combinations. CT brain images acted as inputs into a support vector machine (SVM, along with clinical severity. Performance of the SVM was compared with established prognostication tools (SEDAN and HAT scores; original, or after adaptation to our cohort. Predictive performance, assessed as area under receiver-operating-characteristic curve (AUC, of the SVM (0.744 compared favourably with that of prognostic scores (original and adapted versions: 0.626–0.720; p < 0.01. The SVM also identified 9 out of 16 SICHs, as opposed to 1–5 using prognostic scores, assuming a 10% SICH frequency (p < 0.001. In summary, machine learning methods applied to acute stroke CT images offer automation, and potentially improved performance, for prediction of SICH following thrombolysis. Larger-scale cohorts, and incorporation of advanced imaging, should be tested with such methods.

  10. Articulation of Medium of Instruction Politics in the Malaysian Chinese Press

    Science.gov (United States)

    Samuel, Moses; Khan, Mahmud Hasan; Ng, Lee Luan; Cheang, Kin Wai

    2014-01-01

    In postcolonial multilingual societies, matters of education are deeply rooted in the discourse of ethnicity. In Malaysia, the interface between ethnicity and education is reflected in recent debates on the choice of medium of instruction (MOI). In 2002, the Malaysian government introduced English as MOI by replacing Malay, the national language,…

  11. The Function of Gesture in Lexically Focused L2 Instructional Conversations

    Science.gov (United States)

    Smotrova, Tetyana; Lantolf, James P.

    2013-01-01

    The purpose of the present study is to investigate the mediational function of the gesture-speech interface in the instructional conversation that emerged as teachers attempted to explain the meaning of English words to their students in two EFL classrooms in the Ukraine. Its analytical framework is provided by Vygotsky's sociocultural…

  12. Determining Value in Higher Education: The Future of Instructional Technology in a Wal-Mart Economy.

    Science.gov (United States)

    Tremblay, Wilfred

    1992-01-01

    Discusses value and the economy and examines the changing definition of educational value regarding higher education. Trends in instructional technology resulting from changes in expected educational value are described, including resource sharing, specialization, market expansion, privatization, easier human-machine interfaces, feedback systems,…

  13. Measurement Control Workshop Instructional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Crawford, Cary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, Brent [Pacific Northwest National Lab. (PNNL), Richland, WA (United States) and Insolves LLC

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  14. Managing Motivation In Personalized Instruction

    Science.gov (United States)

    Wagner, G. R.; And Others

    1974-01-01

    addresses the topic of managing motivation in Keller's Personalized System of Instruction (PSI). Outlines the reinforcing features that are at the foundation of PSI theory, and examines methods used to ensure that these reinforcing properties are fu lly utilized. (JR)

  15. Measurement control workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Crawford, Cary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGinnis, Brent [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Insolves LLC, Piketon, OH (United States)

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  16. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  17. The interface effect

    CERN Document Server

    Galloway, Alexander R

    2013-01-01

    Interfaces are back, or perhaps they never left. The familiar Socratic conceit from the Phaedrus, of communication as the process of writing directly on the soul of the other, has returned to center stage in today's discussions of culture and media. Indeed Western thought has long construed media as a grand choice between two kinds of interfaces. Following the optimistic path, media seamlessly interface self and other in a transparent and immediate connection. But, following the pessimistic path, media are the obstacles to direct communion, disintegrating self and other into misunderstanding

  18. The computer graphics interface

    CERN Document Server

    Steinbrugge Chauveau, Karla; Niles Reed, Theodore; Shepherd, B

    2014-01-01

    The Computer Graphics Interface provides a concise discussion of computer graphics interface (CGI) standards. The title is comprised of seven chapters that cover the concepts of the CGI standard. Figures and examples are also included. The first chapter provides a general overview of CGI; this chapter covers graphics standards, functional specifications, and syntactic interfaces. Next, the book discusses the basic concepts of CGI, such as inquiry, profiles, and registration. The third chapter covers the CGI concepts and functions, while the fourth chapter deals with the concept of graphic obje

  19. Programs, interfaces and components

    NARCIS (Netherlands)

    Bergstra, J.A.; Loots, M.E.

    2008-01-01

    The jump instruction is considered essential for an adequate theoretical understanding of imperative sequential programming. Using atomic actions and tests as a basis we outline an algebra of programs, denoted PGA, which captures the crux of sequential programming. PGA provides an ontology for progr

  20. Optimal Structures for Multimedia Instruction. Final Report.

    Science.gov (United States)

    Goguen, Joseph; And Others

    This 2-year study, which took a multidisciplinary approach to the problem of discovering principles for designing effective multimedia instruction, focused on the effects on instructional effectiveness of the discourse structure of instructional materials and the coordination of multiple instructional media. The task domain was a logic box said to…

  1. Can Multimedia Instruction Meet Our Expectations?

    Science.gov (United States)

    Jones, Loretta L.; Smith, Stanley G.

    1992-01-01

    Discusses various aspects of multimedia instruction, including differences in goals from those of computer-assisted instruction; guidelines for the successful use of interactive multimedia instruction; the use of multimedia lessons in an introductory chemistry course; applications of multimedia instruction for indexing, hypermedia, simulations,…

  2. Differential reinforcement with and without instructional fading.

    Science.gov (United States)

    Ringdahl, Joel E; Kitsukawa, Kana; Andelman, Marc S; Call, Nathan; Winborn, Lisa; Barretto, Anjali; Reed, Gregory K

    2002-01-01

    We evaluated a differential-reinforcement-based treatment package for the reduction of problem behavior during instructional situations. Differential reinforcement of alternative behavior (DRA; compliance) was implemented across two conditions. During one condition, instructions were presented approximately once every other minute. This condition was considered the terminal goal for treatment. During the second condition, the rate of instructions was gradually increased (beginning at zero and ending when instruction rate was similar to the first condition). Results indicated that DRA with instructional fading resulted in less problem behavior than DRA without instructional fading. These results are similar to previous studies regarding the utility of instructional fading.

  3. Electrons at helium interfaces

    OpenAIRE

    Leiderer, Paul

    1984-01-01

    Two-dimensional layers of charges trapped at the boundaries between the various helium phases strongly interact with these interfaces at high electric fields. The coupling, which leads to an electrohydrodynamic instability, provides new methods for studying helium properties.

  4. Interface Anywhere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To illustrate the viability of this technology, a prototype Natural User Interface (NUI) was developed as a proof-of-concept for system control.  Gesture and...

  5. Silent Speech Interfaces

    OpenAIRE

    Denby, B; Schultz, T.; Honda, K.; Hueber, T.; Gilbert, J.M.; Brumberg, J.S.

    2010-01-01

    Abstract The possibility of speech processing in the absence of an intelligible acoustic signal has given rise to the idea of a `silent speech? interface, to be used as an aid for the speech handicapped, or as part of a communications system operating in silence-required or high-background-noise environments. The article first outlines the emergence of the silent speech interface from the fields of speech production, automatic speech processing, speech pathology research, and telec...

  6. Explicit Instruction Elements in Core Reading Programs

    OpenAIRE

    Child, Angela R.

    2012-01-01

    Classroom teachers are provided instructional recommendations for teaching reading from their adopted core reading programs (CRPs). Explicit instruction elements or what is also called instructional moves, including direct explanation, modeling, guided practice, independent practice, discussion, feedback, and monitoring, were examined within CRP reading lessons. This study sought to answer the question: What elements of explicit instruction or instructional moves are included in the five most...

  7. Interfaces: nanometric dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T J [School of Informatics, University of Wales Bangor, Dean Street, Bangor, Gwynedd, LL70 9PX (United Kingdom)

    2005-01-21

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  8. Interfaces: nanometric dielectrics

    Science.gov (United States)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  9. Papers from the Fifth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including

  10. Computer-assisted instruction and diagnosis of radiographic findings.

    Science.gov (United States)

    Harper, D; Butler, C; Hodder, R; Allman, R; Woods, J; Riordan, D

    1984-04-01

    Recent advances in computer technology, including high bit-density storage, digital imaging, and the ability to interface microprocessors with videodisk, create enormous opportunities in the field of medical education. This program, utilizing a personal computer, videodisk, BASIC language, a linked textfile system, and a triangulation approach to the interpretation of radiographs developed by Dr. W. L. Thompson, can enable the user to engage in a user-friendly, dynamic teaching program in radiology, applicable to various levels of expertise. Advantages include a relatively more compact and inexpensive system with rapid access and ease of revision which requires little instruction to the user. PMID:6376675

  11. Revitalizing chemistry laboratory instruction

    Science.gov (United States)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  12. Design and Evaluation of Cell Phone Pointing Interface for Robot Control

    OpenAIRE

    Saso Koceski; Natasa Koceska; Ivica Kocev

    2012-01-01

    In this work a pointing interface based on human gestures using a mobile phone accelerometer for interaction with robots is proposed. Through this interface the user can sketch stroke gestures on a computer screen using the cell phone accelerometer to make a selection and instruct a robot to perform a task. Selection, cancelation and movement, as well as some additional commands such as stop, pause and resume are supported. All the projected gestures are processed using known image analysis a...

  13. User interface description languages for next generation user interfaces

    OpenAIRE

    Shaer, Orit; Jacob, Robert; Green, Mark; LUYTEN, Kris

    2008-01-01

    In recent years HCI researchers have developed a broad range of new interfaces that diverge from the "window, icon, menu, pointing device" (WIMP) paradigm, employing a variety of novel interaction techniques and devices. Developers of these next generation user interfaces face challenges that are currently not addressed by state of the art user interface software tools. As part of the user interface software community’s effort to address these challenges, the concept of a User Interface Descr...

  14. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  15. High temperature interface superconductivity

    Science.gov (United States)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. Portraying User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2008-01-01

    The user interface is coming of age. Papers adressing UI history have appeared in fair amounts in the last 25 years. Most of them address particular aspects such as an in­novative interface paradigm or the contribution of a visionary or a research lab. Contrasting this, papers addres­sing UI...... history at large have been sparse. However, a small spate of publications appeared recently, so a reasonable number of papers are available. Hence this work-in-progress paints a portrait of the current history of user interfaces at large. The paper first describes a theoretical framework recruited from...... history. Next the paper analyses a selected sample of papers on UI history at large. The analysis shows that the current state-of-art is featured by three aspects: Firstly internalism, in that the papers adress the tech­nologies in their own right with little con­text­ualization, secondly whiggism...

  17. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  18. Urban water interfaces

    Science.gov (United States)

    Gessner, M. O.; Hinkelmann, R.; Nützmann, G.; Jekel, M.; Singer, G.; Lewandowski, J.; Nehls, T.; Barjenbruch, M.

    2014-06-01

    Urban water systems consist of large-scale technical systems and both natural and man-made water bodies. The technical systems are essential components of urban infrastructure for water collection, treatment, storage and distribution, as well as for wastewater and runoff collection and subsequent treatment. Urban aquatic ecosystems are typically subject to strong human influences, which impair the quality of surface and ground waters, often with far-reaching impacts on downstream aquatic ecosystems and water users. The various surface and subsurface water bodies in urban environments can be viewed as interconnected compartments that are also extensively intertwined with a range of technical compartments of the urban water system. As a result, urban water systems are characterized by fluxes of water, solutes, gases and energy between contrasting compartments of a technical, natural or hybrid nature. Referred to as urban water interfaces, boundaries between and within these compartments are often specific to urban water systems. Urban water interfaces are generally characterized by steep physical and biogeochemical gradients, which promote high reaction rates. We hypothesize that they act as key sites of processes and fluxes with notable effects on overall system behaviour. By their very nature, urban water interfaces are heterogeneous and dynamic. Therefore, they increase spatial heterogeneity in urban areas and are also expected to contribute notably to the temporal dynamics of urban water systems, which often involve non-linear interactions and feedback mechanisms. Processes at and fluxes across urban water interfaces are complex and less well understood than within well-defined, homogeneous compartments, requiring both empirical investigations and new modelling approaches at both the process and system level. We advocate an integrative conceptual framework of the urban water system that considers interfaces as a key component to improve our fundamental

  19. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  20. Modal Interfaces in Hawaii

    Science.gov (United States)

    Wright, E. Alvey

    1974-01-01

    Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.

  1. Distributed User Interfaces

    CERN Document Server

    Gallud, Jose A; Penichet, Victor M R

    2011-01-01

    The recent advances in display technologies and mobile devices is having an important effect on the way users interact with all kinds of devices (computers, mobile devices, laptops, tablets, and so on). These are opening up new possibilities for interaction, including the distribution of the UI (User Interface) amongst different devices, and implies that the UI can be split and composed, moved, copied or cloned among devices running the same or different operating systems. These new ways of manipulating the UI are considered under the emerging topic of Distributed User Interfaces (DUIs). DUIs

  2. CAMAC to GPIB interface

    International Nuclear Information System (INIS)

    A CAMAC module developed at the Los Alamos Scientific Laboratory allows any device conforming to the GPIB standard to be connected to a CAMAC system. This module incorporates a microprocessor to control up to 14 GPIB-compatible instruments using a restricted set of CAMAC F-N-A commands. The marriage of a device-independent bus (IEEE Standard 488-1975) to a computer-independent bus (IEEE Standard 583-1975) provides a general method for interfacing a system of programmable instruments to any computer. This module is being used to interface a variety of interactive devices on a control console to a control computer

  3. Urban Sound Interfaces

    DEFF Research Database (Denmark)

    Breinbjerg, Morten

    2012-01-01

    This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live. In this pa......This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live...

  4. Best practices in writing instruction

    CERN Document Server

    Fitzgerald, Jill; MacArthur, Charles A

    2014-01-01

    An indispensable teacher resource and course text, this book presents evidence-based practices for helping all K-12 students develop their skills as writers. Every chapter draws clear connections to the Common Core State Standards (CCSS). Leading authorities describe how to teach the skills and strategies that students need to plan, draft, evaluate, and revise multiple types of texts. Also addressed are ways for teachers to integrate technology into the writing program, use assessment to inform instruction, teach writing in the content areas, and tailor instruction for English language learner

  5. Discussion on Form Focused Instruction

    Institute of Scientific and Technical Information of China (English)

    冯滢

    2007-01-01

    The pedagogy of language teaching has moved from one extreme-Grammar Translation Method to the other-Communicative Language Teaching.Today Form Focused Instruction(FFI) has emerged,intending to bring language forms instruction back to the communicative language classroom.Despite of the approval of this new approach,there is a hot dispute on its two types of application:Focus on Form or Focus on FormS.This article briefly analyzes FFI in recent research studies with focus on the choice between the two types ...

  6. Aligning Business Needs and Instructional Assets (Recycling Instructional Assets)

    Science.gov (United States)

    Gendelman, Joel

    2009-01-01

    High-performing organizations and performance improvement professionals frequently speak about the alignment of their instructional curricula with the needs of the business. However, they often lack a systematic methodology for performing that alignment. This article presents such a method. The process provides the ability to better support…

  7. Extending Library Instruction: Using Blogger to Collaborate, Connect, and Instruct

    Science.gov (United States)

    Goss, Harold, Jr.

    2010-01-01

    The expectations placed on library instruction programs by the Association of College and Research Libraries are high. Many universities also include information literacy competencies as learning objectives to be assessed at the institutional level. With those standards in mind, it is becoming increasingly difficult to adequately educate students…

  8. TRUPACT-II Operating and Maintenance Instructions

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse Electric Corporation, Waste Isolation Division

    1999-12-31

    ) Utilizing these instructions as is, or (2) Attaching a site-specific cover page/letter to this document stating that these are the instructions to be used at their location, or (3) Sites may prepare their own document using the steps in this document word-for-word, in-sequence, including Notes and Cautions. Site specific information may be included as deemed necessary. Submit the document to WID National TRU Programs for approval. Any revision made subsequent to WID TRU Program's approval shall be reviewed and approved by WID TRU Programs. A copy of the approval letter from WID National TRU Programs should be available for audit purposes. Users shall develop site-specific procedures addressing leak testing, preoperational activities, quality assurance, hoisting and rigging, and radiation health physics to be used in conjunction with the instructions contained in this document. Users desiring to recommend changes to this document may submit their recommendations to the WID National TRU Programs for evaluation. If approved, the change(s) will be incorporated into this document for use by all TRUPACT-II users. User sites will be audited to this document to ensure compliance within one year from the effective date of this revision. This document discusses operating instructions, required inspections and maintenance for the following: TRUPACT-II packaging, and Miscellaneous packaging, special tools, and equipment. Packaging and payload handling equipment and transport trailers have been specifically designed for use with the TRUPACT-II Packaging. This document discusses the required instructions for use of the following equipment in conjunction with the TRUPACT-II Packaging: TRUPACT-II Mobile Loading Unit (MLU), Adjustable Center-of-Gravity Lift Fixture (ACGLF), and TRUPACT-II Transport Trailer. Attachment E contains the various TRUPACT-II packaging interface control drawings, leak-test and vent-port tool drawings, ACGLF drawings, and tie-down drawings that identify the

  9. Is the interface OK?

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    When a peripheral device fails, software methods can be initially resorted to before the usual hardware test procedures are used. A test program is presented here that allows various peripherals, inter-faced to a Norsk Data computer, to be tested...

  10. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  11. Designing groundwater visualization interfaces

    OpenAIRE

    Médard De Chardon, Cyrille

    2009-01-01

    Groundwater systems are inherently complex owing to their three-dimensional nature. The impacts of land use activities on groundwater quality and quantity, groundwater pumping, and the interaction of groundwater with surface waters are fundamental hydrogeologic concepts that require effective communication strategies. Using interactive visual interfaces may improve upon current educational techniques and encourage increased public participation in groundwater protection, conservation, and man...

  12. Photochemistry at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  13. Types of verbal interaction with instructable robots

    Science.gov (United States)

    Crangle, C.; Suppes, P.; Michalowski, S.

    1987-01-01

    An instructable robot is one that accepts instruction in some natural language such as English and uses that instruction to extend its basic repertoire of actions. Such robots are quite different in conception from autonomously intelligent robots, which provide the impetus for much of the research on inference and planning in artificial intelligence. Examined here are the significant problem areas in the design of robots that learn from vebal instruction. Examples are drawn primarily from our earlier work on instructable robots and recent work on the Robotic Aid for the physically disabled. Natural-language understanding by machines is discussed as well as in the possibilities and limits of verbal instruction. The core problem of verbal instruction, namely, how to achieve specific concrete action in the robot in response to commands that express general intentions, is considered, as are two major challenges to instructability: achieving appropriate real-time behavior in the robot, and extending the robot's language capabilities.

  14. A Comparison of Parallelism in Interface Designs for Computer-Based Learning Environments

    Science.gov (United States)

    Min, Rik; Yu, Tao; Spenkelink, Gerd; Vos, Hans

    2004-01-01

    In this paper we discuss an experiment that was carried out with a prototype, designed in conformity with the concept of parallelism and the Parallel Instruction theory (the PI theory). We designed this prototype with five different interfaces, and ran an empirical study in which 18 participants completed an abstract task. The five basic designs…

  15. A comparison of parallelism in interface designs for computer-based learning environments

    NARCIS (Netherlands)

    Min, Rik; Yu, Tao; Spenkelink, Gerd; Vos, Hans

    2004-01-01

    In this paper we discuss an experiment that was carried out with a prototype, designed in conformity with the concept of parallelism and the Parallel Instruction theory (the PI theory). We designed this prototype with five different interfaces, and ran an empirical study in which 18 participants com

  16. Instructional Coaching and Emotional Intelligence

    Science.gov (United States)

    Avant, Rue Celia

    2012-01-01

    School site-based instructional coaching is a form of job-embedded professional development for teachers and an element of school reform. Coaches are hired based upon their pedagogical knowledge, content expertise, prior teaching experience, and "people skills." They are adept at handling a variety of social interactions at school sites,…

  17. Classic writings on instructional technology

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, Tjeerd

    1996-01-01

    This paper describes the selection process of 17 articles for inclusion in the book, "Classic Writings on Instructional Technology." The book brings together original "classic" educational technology articles into one volume to document the history of the field through its literature. It is also an

  18. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  19. Succession Planning for Library Instruction

    Science.gov (United States)

    Sobel, Karen; Drewry, Josiah

    2015-01-01

    Detailed succession planning helps libraries pass information from one employee to the next. This is crucial in preparing for hiring, turnover, retirements, training of graduate teaching assistants in academic libraries, and other common situations. The authors of this article discuss succession planning for instruction programs in academic…

  20. International Instructional Systems: Social Studies

    Science.gov (United States)

    Brant, Jacek; Chapman, Arthur; Isaacs, Tina

    2016-01-01

    This paper reports on research conducted as part of the International Instructional System Study that explored five subject areas across nine jurisdictions in six high-performing countries. The Study's overall aim was to understand what, if anything, there is in common in the curricula and assessment arrangements among the high-performing…

  1. Successful Internet Based Online Instruction

    Science.gov (United States)

    Challoo, L.; Saldana, J.; Davis, R.; Kupczynski, Lori

    2010-01-01

    This study identifies factors in distance learning that affect the educational excellence of institutions of higher learning. The main elements of this study are: the examination of benefits and disadvantages of implementing online instruction in institutions of higher learning; investigating the factors that contribute to successful web-based…

  2. Attrition Cost Model Instruction Manual

    Science.gov (United States)

    Yanagiura, Takeshi

    2012-01-01

    This instruction manual explains in detail how to use the Attrition Cost Model program, which estimates the cost of student attrition for a state's higher education system. Programmed with SAS, this model allows users to instantly calculate the cost of attrition and the cumulative attrition rate that is based on the most recent retention and…

  3. Safety instruction 51 (IS51)

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that Safety Instruction No. 51 (IS51) entitled 'Operational and Information Procedures in Response to Accidents' is available on the web at the following url: https://edms.cern.ch/document/502036/LAST_RELEASED Paper copies can also be obtained from the SC unit secretariat, e-mail : sc.secretariat@cern.ch SC Secretariat

  4. The Basics of Blended Instruction

    Science.gov (United States)

    Tucker, Catlin R.

    2013-01-01

    Even though many of teachers do not have technology-rich classrooms, the rapidly evolving education landscape increasingly requires them to incorporate technology to customize student learning. Blended learning, with its mix of technology and traditional face-to-face instruction, is a great approach. Blended learning combines classroom learning…

  5. Assistant for instructional development (AID)

    NARCIS (Netherlands)

    Meer, J.P. van; Veldhuis, G.J.; Emmerik, M.L. van; Theunissen, N.C.M.

    2007-01-01

    Introduction: Due to periodical job rotation within the military, instructional developers are not always experts in their field and are consequently unaware of the types of educational concepts that are available to teach with (Jans & Frazer-Jans, 2004). These observations have led to the construct

  6. The Role of Formal Instruction

    Institute of Scientific and Technical Information of China (English)

    Sun Yu

    2011-01-01

    This paper looks at second language acquisition in a classroom setting. It considers whether formal instruction makes a difference to SLA. This is an important issue, because it address the question of the role played by environmental factors in SLA. It is also an important educational issue, as language pedagogy has traditionally operated on the assumption that grammar can be taught.

  7. Aesthetic Principles for Instructional Design

    Science.gov (United States)

    Parrish, Patrick E.

    2009-01-01

    This article offers principles that contribute to developing the aesthetics of instructional design. Rather than describing merely the surface qualities of things and events, the concept of aesthetics as applied here pertains to heightened, integral experience. Aesthetic experiences are those that are immersive, infused with meaning, and felt as…

  8. Developmentally Appropriate Map Skills Instruction.

    Science.gov (United States)

    Maxim, George W.

    1997-01-01

    Describes a kindergarten/first-grade and a second-grade program for teaching map reading skills. Suggests that map- reading instruction is required to improve children's geography knowledge. Provides ideas on how to observe the environment, use photos, encourage block play, use books, share maps, construct a model of the classroom, read cardinal…

  9. Women Administrators as Instructional Leaders

    Science.gov (United States)

    Horner, Beth A.

    2013-01-01

    Women are under-represented in educational research and are much less likely to hold administrative positions than are men. This study, using the Liberal Feminist Theory and Structural Barrier Theory, proffers possible explanations for this phenomenon. Four women leaders were interviewed to gain insight into their instructional leadership…

  10. Instruction Sequences for Computer Science

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2012-01-01

    This book demonstrates that the concept of an instruction sequence offers a novel and useful viewpoint on issues relating to diverse subjects in computer science. Selected issues relating to well-known subjects from the theory of computation and the area of computer architecture are rigorously inves

  11. Three Logics of Instructional Leadership

    Science.gov (United States)

    Rigby, Jessica G.

    2014-01-01

    Purpose: This study examines conceptions of instructional leadership in the institutional environment. We know that principals' practices affect student learning and that principals are influenced by ideas in the broader environment. This article examines and defines the multiple conceptions of what it means for principals to be instructional…

  12. Market Segmentation: An Instructional Module.

    Science.gov (United States)

    Wright, Peter H.

    A concept-based introduction to market segmentation is provided in this instructional module for undergraduate and graduate transportation-related courses. The material can be used in many disciplines including engineering, business, marketing, and technology. The concept of market segmentation is primarily a transportation planning technique by…

  13. Interior Design: Teacher's Instructional Guide.

    Science.gov (United States)

    Hays, Tricia

    This teacher's instructional guide, which is part of a family and consumer sciences education series focusing on a broad range of employment opportunities, is intended to assist teachers responsible for teaching one- and two-year interior design programs for Texas high school students. The following are among the items included: (1) introductory…

  14. Health Instruction Packages: Dental Assisting.

    Science.gov (United States)

    McEnery, Paula

    Text, illustrations, and exercises are utilized in this set of four learning modules to instruct dental assisting students in various office skills. The first module, "Dental Office Telephone Techniques," examines the qualities of a good telephone voice and demeanor and provides guidelines for taking a message and handling various telephone…

  15. Instruction of Competent Psychomotor Skill

    Science.gov (United States)

    Olson, Valerie Dong

    2008-01-01

    Instruction of competent psychomotor skill necessitates an eclectic approach. The principles of learning, complemented with learning styles and sensory modalities preferences, provide a background for teaching physical skills. The use of the psychomotor domain of Bloom's Taxonomy as a map and corresponding behavioral objectives foster the mastery…

  16. Transmission protocols for instruction streams

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    Sequential programs under execution produce behaviours to be controlled by some execution environment. Threads as considered in basic thread algebra model such behaviours: upon each action performed by a thread, a reply from an execution environment - which takes the action as an instruction to be p

  17. Driving with navigational instructions: Investigating user behaviour and performance.

    Science.gov (United States)

    Dalton, P; Agarwal, P; Fraenkel, N; Baichoo, J; Masry, A

    2013-01-01

    This paper reports the results of an inter-disciplinary study investigating user preferences and performance in relation to spoken in-car route guidance. In-car navigation systems are becoming increasingly popular. However, despite large amounts of research assessing the presentation of spatial information, and the usability and interaction issues surrounding the interfaces, there has been much less investigation of the impacts of auditory presentation of route information. We addressed this issue using a multi-disciplinary approach to collect both qualitative and quantitative data through questionnaires and user experiments. Our research identified a user preference for auditory presentation of route information, as well as a memory advantage for auditory over visual presentation. We also found that simple auditory route instructions could be followed without significant interference to a simulated driving task, whereas more complex auditory instructions did cause interference. Taken together, this research highlights the importance of the design of spoken route guidance instructions in minimising the cognitive demands that they impose.

  18. The Roles of Teacher Efficacy in Instructional Innovation: Its Predictive Relations to Constructivist and Didactic Instruction

    Science.gov (United States)

    Nie, Youyan; Tan, Gim Hoon; Liau, Albert Kienfie; Lau, Shun; Chua, Bee Leng

    2013-01-01

    Constructivist instruction has been implemented in the current instructional innovation in Singapore. Large scale survey study was conducted to examine the roles of teacher efficacy in implementing the innovative constructivist instruction. The results showed that the positive correlation between teacher efficacy and constructivist instruction was…

  19. Library Instruction--LSC 524. Fall, 1993.

    Science.gov (United States)

    Gilton, Donna L.

    This document presents the syllabus for Library Instruction at the University of Rhode Island. The course is designed to introduce students to the fundamentals of bibliographic instruction and concentrates in the following areas: the history, philosophy, and structure of library education; cognitive aspects of library instruction; forms of library…

  20. The Structure and Management of Individualized Instruction.

    Science.gov (United States)

    Spuck, Dennis W.; Owen, Stephen P.

    Construction of a model of a generalized computer managed instruction (CMI) system is discussed. Structural components essential to programs of individualized instruction are listed and analyzed, and problems with them identified. The Wisconsin System for Instructional Management Model (WIS-SIM) is then described and diagrammed, and its…

  1. Students and Instructors Opinions about Piano Instruction

    Science.gov (United States)

    Kilic, Deniz Beste Çevik

    2016-01-01

    This study examined the opinions of the students and piano instructors in the Turkish Education Faculties' Fine Arts Instruction Departments' music instruction programs about piano instruction. The study data were collected using a questionnaire administered to the piano instructors and the students who took lessons from them. The study results…

  2. Form-Focused Instruction: Isolated or Integrated?

    Science.gov (United States)

    Spada, Nina; Lightbown, Patsy M.

    2008-01-01

    There is increasing consensus that form-focused instruction helps learners in communicative or content-based instruction to learn features of the target language that they may not acquire without guidance. The subject of this article is the role of instruction that is provided in separate (isolated) activities or within the context of…

  3. The Status of Dental Ethics Instruction.

    Science.gov (United States)

    Odom, John G.

    1988-01-01

    A survey of dental schools in 1980 showed that 13 of the 55 responding schools provided no formal instruction in ethics. The status of instruction in dental ethics in 1986 is discussed. Survey data showed that schools providing ethics instruction often confused law, jurisprudence, and avoidance of malpractice with ethics. (MLW)

  4. Distributed Instructional Leadership in High Schools

    Science.gov (United States)

    Halverson, Richard; Clifford, Matthew

    2013-01-01

    This article explores the idea of distributed instructional leadership as a way to understand instructional leadership practice in comprehensive high schools. Our argument is that distributed leadership analyses allow researchers to uncover and explain how instructional improvement in high schools occurs through the efforts of multiple individuals…

  5. Review——Processing Instruction and Discourse

    Institute of Scientific and Technical Information of China (English)

    Liu; Chang

    2014-01-01

    This book,written by the research experts in the field of processing instruction Alessandro G.Benati and James F.Lee,informs readers of the newest development in processing instruction research and suggests the directions for the future research on processing instruction at the discourse level.

  6. Review--Processing Instruction and Discourse

    Institute of Scientific and Technical Information of China (English)

    Liu Chang

    2014-01-01

    This book, written by the research experts in the field of processing instruction Alessandro G.Benati and James F.Lee, informs readers of the newest development in processing instruction research and suggests the directions for the future research on processing instruction at the discourse level.

  7. 16 CFR 1211.14 - Instruction manual.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Instruction manual. 1211.14 Section 1211.14... STANDARD FOR AUTOMATIC RESIDENTIAL GARAGE DOOR OPERATORS The Standard § 1211.14 Instruction manual. (a) General. (1) A residential garage door operator shall be provided with an instruction manual....

  8. 33 CFR 157.49 - Instruction manual.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Instruction manual. 157.49... Vessel Operation § 157.49 Instruction manual. The master of a tank vessel shall ensure that the instruction manual under § 157.23 is available and used when the cargo or ballast systems are operated....

  9. New Electronic Technologies for Facilitating Differentiated Instruction

    Science.gov (United States)

    Scalise, Kathleen

    2009-01-01

    With electronic technologies, differentiated instruction has the same meaning as in traditional instruction, but different tools are available for teachers to help students learn. Electronic technologies for differentiated instruction can add powerful new types of media inclusion, levels of interactivity, and response actions. This rapidly…

  10. Building Conceptual Understanding through Vocabulary Instruction

    Science.gov (United States)

    Rupley, William H.; Nichols, William Dee; Mraz, Maryann; Blair, Timothy R.

    2012-01-01

    Instructional design is an integral part of a balanced approach to teaching vocabulary instruction. This article presents several instructional procedures using research-based vocabulary strategies and explains how to design and adapt those strategies in order to reach desired learning outcomes. Emphasis is placed on research-based principles that…

  11. Audi-Tutorial Instruction in Basic Business

    Science.gov (United States)

    Brown, Richard D.

    1974-01-01

    Results of a study in which audio-tutorial instruction was compared to illustrated lecture instruction are reported. No great differences in achievement levels in the two strategies of instruction were found. The development of such an alternative teaching strategy forces better teacher organization, leading to improvement of the illustrated…

  12. Looking Mother Tongue Instruction through Different Perspectives

    Science.gov (United States)

    Regmi, Kapil Dev

    2008-01-01

    Mother Tongue Instruction has been a debatable issue since long. There may be two options in the medium of instruction: either to teach especially primary and preprimary schoolchildren in their own mother tongue or continue using second or foreign language as the medium of instruction. Both of the approaches bear some pros and cons. This article…

  13. A Reflexive Model for Teaching Instructional Design.

    Science.gov (United States)

    Shambaugh, Neal; Magliaro, Susan

    2001-01-01

    Documents a five-year study of two instructors who collaborated on formally studying their teaching of a master's level instructional design course. Outlines their views on learning, teaching, and instructional design (ID), describes the ID course, and explains the reflexive instructional model used, in which the teachers examined their teaching…

  14. Direct Reading Instruction and the NYS ELA

    Science.gov (United States)

    Jones-Carey, Margaret H.

    2013-01-01

    This study analyzed the impact of classroom based reading instruction ("direct instruction") on the standardized test scores of 6th grade students as measured by the New York State English Language Arts assessment (NYS ELA). It was hypothesized that the implementation of direct instruction in reading in grade 6 would improve NYS ELA…

  15. Course-Related and Personalized Library Instruction.

    Science.gov (United States)

    Biggs, Mary Mancuso; Weber, Mark

    Effective library instruction must be course- and assignment-related, planned cooperatively by the librarian and course instructor, and based upon personal contact between the librarian and students, as illustrated by the instructional program at the University of Evansville library. Before beginning instruction, the librarian must determine the…

  16. Applying Software Design Methodology to Instructional Design

    Science.gov (United States)

    East, J. Philip

    2004-01-01

    The premise of this paper is that computer science has much to offer the endeavor of instructional improvement. Software design processes employed in computer science for developing software can be used for planning instruction and should improve instruction in much the same manner that design processes appear to have improved software. Techniques…

  17. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  18. Easy-to-use interface

    Energy Technology Data Exchange (ETDEWEB)

    Blattner, M M; Blattner, D O; Tong, Y

    1999-04-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future.

  19. Easy-to-use interface

    International Nuclear Information System (INIS)

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future

  20. A digital interface for preset time or voltage measurements using an ionising radiation dosemeter

    International Nuclear Information System (INIS)

    A digital interface circuit has been built to terminate charge collection measurements made with an ionising radiation dosemeter. A compact portable measurement system has been assembled, comprising a digital voltmeter, a period timer and the digital interface module. Digital signals from both the voltmeter and the timer are compared with separate preset limits, and the dosemeter measurement is terminated when one of these limits is reached. The operation of the dosemeter is outlined, and the interface circuit is described in detail. Modifications to the voltmeter and timer are described, and comprehensive users' instructions are given

  1. Direct Vocabulary Instruction in Preschool: A Comparison of Extended Instruction, Embedded Instruction, and Incidental Exposure

    Science.gov (United States)

    Loftus-Rattan, Susan M.; Mitchell, Alison M.; Coyne, Michael D.

    2016-01-01

    Based on its coincidence with a significant period in language development for children, preschool provides a favorable setting to foster vocabulary growth. The purpose of this study was to evaluate the effectiveness of two instructional conditions and an incidental exposure condition for teaching targeted vocabulary words to preschool students…

  2. Individualizing Student Instruction Precisely: Effects of Child by Instruction Interactions on First Graders’ Literacy Development

    OpenAIRE

    Connor, Carol McDonald; Piasta, Shayne B.; Fishman, Barry; Glasney, Stephanie; Schatschneider, Christopher; Crowe, Elizabeth; Underwood, Phyllis; Morrison, Frederick J.

    2009-01-01

    Recent findings demonstrate that the most effective reading instruction may vary with children’s language and literacy skills. These child X instruction interactions imply that individualizing instruction would be a potent strategy for improving students’ literacy. A cluster-randomized control field trial, conducted in 10 high-moderate poverty schools, examined effects of individualizing literacy instruction. The instruction each first grader received (n=461 in 47 classrooms, mean age = 6.7 y...

  3. Evaluation of a Theory of Instructional Sequences for Physics Instruction

    Science.gov (United States)

    Wackermann, Rainer; Trendel, Georg; Fischer, Hans E.

    2010-05-01

    The background of the study is the theory of basis models of teaching and learning, a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear under what circumstances a particular model should be used by teachers. In contrast, the theory under investigation here gives guidelines for choosing a particular model and provides instructional sequences for each model. The aim is to investigate the implementation of the theory applied to physics instruction and to show if possible effects for the students may be attributed to the use of the theory. Therefore, a theory-oriented education programme for 18 physics teachers was developed and implemented in the 2005/06 school year. The main features of the intervention consisted of coaching physics lessons and video analysis according to the theory. The study follows a pre-treatment-post design with non-equivalent control group. Findings of repeated-measures ANOVAs show large effects for teachers' subjective beliefs, large effects for classroom actions, and small to medium effects for student outcomes such as perceived instructional quality and student emotions. The teachers/classes that applied the theory especially well according to video analysis showed the larger effects. The results showed that differentiating between different models of learning processes improves physics instruction. Effects can be followed through to student outcomes. The education programme effect was clearer for classroom actions and students' outcomes than for teachers' beliefs.

  4. Politics at the interface

    DEFF Research Database (Denmark)

    Kannabiran, Gobinaath; Petersen, Marianne Graves

    2010-01-01

    At the birth of participatory design, there was a strong political consciousness surrounding the design of new technology, the design process in particular, establishing a rich set of methods and tools for user-centered design. Today, the term design has extended its scope of concern beyond...... the process of design and into how users interact with the designed product on a day-to-day basis. This paper is an attempt to call to attention the need for a new set of methods, attitudes and approaches, along with the existing, to discuss, analyze and reflect upon the politics at the interface....... By presenting a critical analysis of two design cases, we elicit the importance of such an agenda and the implications for design in doing so. We use the Foucauldian notion of power to analyze the power relationships in these two cases and to articulate the politics at the interface. We conclude by emphasizing...

  5. Space as interface

    DEFF Research Database (Denmark)

    Lykke-Olesen, Andreas

    2006-01-01

    to conceptualize space as more than the physical container for human activity. I do this by investigating space as interface. Based on a theory of space and place set forth by Tuan (Tuan, 1977), and informed by an explorative research approach, I make the distinction between space and place as a Euclidian space...... with actual use (Hallnäs et al. 2006). The challenge thus becomes understanding space as the interface, and further how intentions can be induced into the design of space in ways that point towards the dimensions of place, when interpreted in actual use situations. By designing and exploring a range......This Ph.D. dissertation takes its offset in the migration of technology and computing power into our physical environment. The consequence of this movement, termed ubiquitous computing (Wieser, 1991), is a new relationship between humans, technology and spaces. In this new context, I seek...

  6. Computer Interfaced Gauss Meter

    OpenAIRE

    Lo, Steven; Lai, Alan; Dao, Christine; Hung Vu, Hung

    2013-01-01

    Goal: Gauss Meter Model X01.  Gauss meter model X01 is the hand-held device designed to meet the needs of magnetic industry to measure magnetic fields accurately, provided high-end functionality and performance in an affordable laptop instrument. Magnet testing and sorting have never been easier. Additional features including calculating magnetic field intensity versus time and displaying magnetic field direction on a Graphical User Interface on Computer.  Introduction/Background:  Magnetic f...

  7. User interface design considerations

    DEFF Research Database (Denmark)

    Andersen, Simon Engedal; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    user interface of EESCoolTools these issues led to a series of simulation tools each with a specific purpose and a carefully selected set of input and output variables. To allow a more wide range of questions to be answered by the same model, the user can change between different sets of input and...... have a lot of flexibility in choosing input variables and in assigning values of parameters....

  8. Standard interface file handbook

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C. [Cincinnati Univ., OH (United States)

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  9. SNE Industrial Fieldbus Interface

    Science.gov (United States)

    Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos

    2011-01-01

    Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.

  10. Standard interface file handbook

    International Nuclear Information System (INIS)

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided

  11. Adaptive Brain Interfaces

    OpenAIRE

    Millán, José del R.

    2003-01-01

    Severely disabled people are largely excluded from the benefits information and communication technologies have brought to our industries, economies, appliances, and general quality of life. But what if that technology would allow them to communicate their wishes or control electronic devices directly through their thoughts alone? This is the goal and promise of the Adaptive Brain Interfaces (ABI) project, which aims to augment natural human capabilities by enabling people to interact with co...

  12. An Approach to Interface Synthesis

    DEFF Research Database (Denmark)

    Madsen, Jan; Hald, Bjarne

    1995-01-01

    may contain the re-use of existing modules). The interface synthesis approach describes the basic transformations needed to transform the server interface description into an interface description on the client side of the communication medium. The synthesis approach is illustrated through a point......Presents a novel interface synthesis approach based on a one-sided interface description. Whereas most other approaches consider interface synthesis as optimizing a channel to existing client/server modules, we consider the interface synthesis as part of the client/server module synthesis (which......-to-point communication, but is applicable to synthesis of a multiple client/server environment. The interface description is based on a formalization of communication events....

  13. Interface Microstructures in Concrete

    Directory of Open Access Journals (Sweden)

    Puertas, Francisca

    1991-03-01

    Full Text Available This paper constitutes a compilation as well as an interpretation of the present state of knowledge about the different microstructures developed in the interface areas of concrete, that is, the cement paste-aggregates, the cement paste-reinforcement, the cement paste-fiber, etc. The Chemical reactions taking place in interface areas, the development and morphology of such areas and their strength ^since interfaces are taken as the weakest points of concrete are the aspects dealt with in some detail in this work.

    El presente trabajo constituye un resumen y también una interpretación del estado actual del conocimiento respecto de las diferentes microestructuras que se desarrollan en las zonas interfaciales de los hormigones, es decir: pasta de cemento-áridos, pasta de cemento-armaduras, pasta de cemento-fibras, etc. Las reacciones químicas que tienen lugar en la zona interfacial, el desarrollo y morfología de dicha zona y su resistencia (las interfases se consideran como uno de los puntos débiles del hormigón son los aspectos que con cierto detalle se tratan en el trabajo.

  14. Assessing Electromyographic Interfaces

    Directory of Open Access Journals (Sweden)

    Joaquim Armando Pires Jorge

    2009-01-01

    Full Text Available Electronic apppliances are increasingly a part of our everyday lives. In particular, mobile devices, with their reduced dimensions with power rivaling desktop computers, have substantially augmented our communication abilities offering instant availability, anywhere, to everyone. These devices have become essential for human communication but also include a more comprehensive tool set to support productivity and leisure applications.However, the many applications commonly available are not adapted to people with special needs. Rather, most popular devices are targeted at teenagers or young adults with excellent eyesight and coordination. What is worse, most of the commonly used assistive control interfaces are not available in a mobile environment where user's position, accommodation and capacities can vary even widely.To try and address people with special needs new approaches and techniques are sorely needed. This paper presents a control interface to allow tetraplegic users to interact with electronic devices. Our method uses myographic information (Electromyography or EMG collected from residually controlled body areas. User evaluations validate electromyography as a daily wearable interface. In particular our results show that EMG can be used even in mobility contexts.

  15. Vibrational spectroscopy at electrified interfaces

    CERN Document Server

    Wieckowski, Andrzej; Braunschweig, Björn

    2013-01-01

    Reviews the latest theory, techniques, and applications Surface vibrational spectroscopy techniques probe the structure and composition of interfaces at the molecular level. Their versatility, coupled with their non-destructive nature, enables in-situ measurements of operating devices and the monitoring of interface-controlled processes under reactive conditions. Vibrational Spectroscopy at Electrified Interfaces explores new and emerging applications of Raman, infrared, and non-linear optical spectroscopy for the study of charged interfaces. The book draws from hu

  16. Instructional skills evaluation in nuclear industry training

    International Nuclear Information System (INIS)

    This report provides information to nuclear power plant training managers and their staffs concerning the job performance requirements of instructional personnel to implement prformance-based training programs (also referred to as the Systems Approach Training). The information presented in this report is a compilation of information and lessons learned in the nuclear power industry and in other industries using performance-based training programs. The job performance requirements in this report are presented as instructional skills objectives. The process used to develop the instructional skills objectives is described. Each objective includes an Instructional Skills Statement describing the behavior that is expected and an Instructional Skills Standard describing the skills/knowledge that the individual should possess in order to have achieved mastery. The instructional skills objectives are organized according to the essential elements of the Systems Approach to Training and are cross-referenced to three categories of instructional personnel: developers of instruction, instructors, and instructional managers/supervisors. Use of the instructional skills objectives is demonstrated for reviewing instructional staff training and qualification programs, developing criterion-tests, and reviewing the performance and work products of individual staff members. 22 refs

  17. Interface Input/Output Automata

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Nyman, Ulrik; Wasowski, Andrzej

    2006-01-01

    Building on the theory of interface automata by de Alfaro and Henzinger we design an interface language for Lynch’s I/O, a popular formalism used in the development of distributed asynchronous systems, not addressed by previous interface research. We introduce an explicit separation of assumption...

  18. Inclusive Design in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    Gabriel ZAMFIR

    2008-01-01

    Full Text Available Much instruction starts with abstract representations for which learners have insufficient foundation [1]. The British Standard, BS 7000-6:2005 Guide to Managing Inclusive Design, provides a comprehensive framework that can help all private enterprises, public sector and not-for-profit organizations, build a consistent approach to inclusive design into organizational culture as well as processes [2]. While courses, technology, and student services are typically designed for the narrow range of characteristics of the average student, the practice of universal design in education (UDE considers people with a broad range of characteristics in the design of all educational products and environments [3]. This paper has been designed to provide an overview about the curriculum paradigm consisting in the fusion of the technology and the classroom instruction in economic higher education.

  19. Collaboration systems for classroom instruction

    Science.gov (United States)

    Chen, C. Y. Roger; Meliksetian, Dikran S.; Chang, Martin C.

    1996-01-01

    In this paper we discuss how classroom instruction can benefit from state-of-the-art technologies in networks, worldwide web access through Internet, multimedia, databases, and computing. Functional requirements for establishing such a high-tech classroom are identified, followed by descriptions of our current experimental implementations. The focus of the paper is on the capabilities of distributed collaboration, which supports both synchronous multimedia information sharing as well as a shared work environment for distributed teamwork and group decision making. Our ultimate goal is to achieve the concept of 'living world in a classroom' such that live and dynamic up-to-date information and material from all over the world can be integrated into classroom instruction on a real-time basis. We describe how we incorporate application developments in a geography study tool, worldwide web information retrievals, databases, and programming environments into the collaborative system.

  20. Automated illustration of patients instructions.

    Science.gov (United States)

    Bui, Duy; Nakamura, Carlos; Bray, Bruce E; Zeng-Treitler, Qing

    2012-01-01

    A picture can be a powerful communication tool. However, creating pictures to illustrate patient instructions can be a costly and time-consuming task. Building on our prior research in this area, we developed a computer application that automatically converts text to pictures using natural language processing and computer graphics techniques. After iterative testing, the automated illustration system was evaluated using 49 previously unseen cardiology discharge instructions. The completeness of the system-generated illustrations was assessed by three raters using a three-level scale. The average inter-rater agreement for text correctly represented in the pictograph was about 66 percent. Since illustration in this context is intended to enhance rather than replace text, these results support the feasibility of conducting automated illustration.

  1. SAFETY INSTRUCTION AND SAFETY NOTE

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the SAFETY INSTRUCTION N0 49 (IS 49) and the SAFETY NOTE N0 28 (NS 28) entitled respectively 'AVOIDING CHEMICAL POLLUTION OF WATER' and 'CERN EXHIBITIONS - FIRE PRECAUTIONS' are available on the web at the following urls: http://edms.cern.ch/document/335814 and http://edms.cern.ch/document/335861 Paper copies can also be obtained from the TIS Divisional Secretariat, email: TIS.Secretariat@cern.ch

  2. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.

    Science.gov (United States)

    Kwon, Ki Yong; Sirowatka, Brenton; Weber, Arthur; Li, Wen

    2013-10-01

    Electrocorticogram (ECoG) recordings, taken from electrodes placed on the surface of the cortex, have been successfully implemented for control of brain machine interfaces (BMIs). Optogenetics, direct optical stimulation of neurons in brain tissue genetically modified to express channelrhodopsin-2 (ChR2), enables targeting of specific types of neurons with sub-millisecond temporal precision. In this work, we developed a BMI device, called an Opto- μECoG array, which combines ECoG recording and optogenetics-based stimulation to enable multichannel, bi-directional interactions with neurons. The Opto- μECoG array comprises two sub-arrays, each containing a 4 × 4 distribution of micro-epidural transparent electrodes ( ∼ 200 μm diameter) and embedded light-emitting diodes (LEDs) for optical neural stimulation on a 2.5 × 2.5 mm² footprint to match the bilateral hemispherical area of the visual cortex in a rat. The transparent electrodes were fabricated with indium tin oxide (ITO). Parylene-C served as the main structural and packaging material for flexibility and biocompatibility. Optical, electrical, and thermal characteristics of the fabricated device were investigated and in vivo experiments were performed to evaluate the efficacy of the device.

  3. The instructional media: an overview.

    Science.gov (United States)

    Koch, H B

    1975-01-01

    The advantages of using audiovisual instructional techniques in training programs for nurses were noted and administrative strategies for encouraging the effective use of educational technology were provided. Audiovisual instructional techniques can enhance classroom learning, create opportunity for individualized learning programs, and can serve as an effective tool for monitoring and supervising clinical training. In the classroom situation, audiovisual techniques should be incorporated as a basic instructional tool and not simply used to occasionally supplement traditional learning techniques. The use of these tools can free the teacher for more personalized teaching tasks. Educational technology permits instructors to develop individualized learning programs for their students. Students can progress at their own pace and students can learn to manage their own learning process. Audiovisual tools can be used to monitor student-patient interactions. Supervisors can monitor the work of a larger number of students with these devices. These devices also permit students to reexamine and to judge their own performance. Administrations should not view educational technology as a way to reduce costs. Costs will not decline and may, at least initially, increase. Administrators should purchase equipment to fit the needs of the faculty and the students instead of expecting the faculty to develop programs suited to particular types of equipment. The faculty should be provided with assistance to learn how to operate the new equipment. PMID:45869

  4. Individualizing student instruction precisely: effects of Child x Instruction interactions on first graders' literacy development.

    Science.gov (United States)

    Connor, Carol McDonald; Piasta, Shayne B; Fishman, Barry; Glasney, Stephanie; Schatschneider, Christopher; Crowe, Elizabeth; Underwood, Phyllis; Morrison, Frederick J

    2009-01-01

    Recent findings demonstrate that the most effective reading instruction may vary with children's language and literacy skills. These Child x Instruction interactions imply that individualizing instruction would be a potent strategy for improving students' literacy. A cluster-randomized control field trial, conducted in 10 high-moderate poverty schools, examined effects of individualizing literacy instruction. The instruction each first grader received (n = 461 in 47 classrooms, mean age = 6.7 years) during fall, winter, and spring was recorded. Comparing intervention-recommended amounts of instruction with observed amounts revealed that intervention teachers individualized instruction more precisely than did comparison teachers. Importantly, the more precisely the children received recommended amounts of instruction, the stronger was their literacy skill growth. Results provide strong evidence of Child x Instruction interaction effects on literacy outcomes. PMID:19236394

  5. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

    Science.gov (United States)

    Klahr, David; Li, Junlei

    2005-06-01

    Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and transfer of the "Control of Variables Strategy" in elementary school science. Beginning with investigations motivated by basic theoretical questions, we situate subsequent inquiries within authentic educational debates—contrasting hands-on manipulation of physical and virtual materials, evaluating direct instruction and discovery learning, replicating training methods in classroom, and narrowing science achievement gaps. We urge research programs to integrate basic research in "pure" laboratories with field work in "messy" classrooms. Finally, we suggest that those engaged in discussions about implications and applications of educational research focus on clearly defined instructional methods and procedures, rather than vague labels and outmoded "-isms."

  6. Conceptual Framework for Aquatic Interfaces

    Science.gov (United States)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  7. Brain-computer interface

    DEFF Research Database (Denmark)

    2014-01-01

    A computer-implemented method of providing an interface between a user and a processing unit, the method comprising : presenting one or more stimuli to a user, each stimulus varying at a respective stimulation frequency, each stimulation frequency being associated with a respective user......-selectable input; receiving at least one signal indicative of brain activity of the user; and determining, from the received signal, which of the one or more stimuli the user attends to and selecting the user-selectable input associated with the stimulation frequency of the determined stimuli as being a user...

  8. Interfacing with the Night

    OpenAIRE

    McLean, Alex; Parkinson, Adam

    2014-01-01

    In  this  paper,  the  authors  consider  the  interfaces  between academia and dance music. Dance music and club culture are, we argue, important to computer music and the live performance of electronic music, but there are many different difficulties encountered when trying to present electronic dance music within academic contexts. The authors draw upon their experiences as promoters, performers, researchers and audience members to discuss these difficulties and how and why we might negoti...

  9. Sistema Brain Computer Interface

    OpenAIRE

    Martín Barraza, Juan Ignacio

    2015-01-01

    En este trabajo de final de grado se realizará una aplicación de un sistema Brain Computer Interface en el cual, a partir del dipositivo Mind Wave de la compañía Neurosky, se pretenderá controlar el prototipo de una mano humana. Esta será controlada a partir de las ondas cerebrales medidas por el sensor que el dispositivo dispone. A continuación, la información captada por nuestro medidor de señales de electroencefalográficas será enviada por radiofrecuencia a un stick USB que viene incorpora...

  10. REAL- ESTATE INTERFACE

    OpenAIRE

    Jawad, Mohamad

    2016-01-01

    The purpose of the thesis was to implement the most efficient user interface (UI) for Real-estate in Finland for client companies due to their desire of having this feature in their system. The prototype was supposed to show the clients how the feature works to get needed data for real-estate properties in Finland in their map system. National Land Survey MML of Finland was chosen for tracking the real-estate properties data in the system. The real-estate prototype was developed by Micros...

  11. User interface concerns

    Science.gov (United States)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  12. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  13. MAN – MACHINE INTERFACE

    Directory of Open Access Journals (Sweden)

    S.Bhuvaneswari

    2012-02-01

    Full Text Available Agents trained by learning techniques provide a powerful approximation of state spaces in games that aretoo large for naive approaches. In the study Genetic Algorithms and Manual Interface was implementedand used to train agents for the board game LUDO. The state space of LUDO is generalized to a small setand encoded to suit the different techniques. The impact of variables and tactics applied in training aredetermined. Agents based on the techniques performed satisfactory against a baseline finite agent, and aGenetic Algorithm based agent performed satisfactory against competitors from the course. Better statespace representations will improve the success of learning based agents.

  14. Music Perception of Cochlear Implant Recipients with Implications for Music Instruction: A Review of Literature

    OpenAIRE

    Hsiao, Feilin; Gfeller, Kate

    2012-01-01

    This review of literature presents a systematic analysis of the capabilities and limitations of cochlear implant recipients regarding music perception. Specifically, it a) analyzes individual components of music (e.g., rhythm, timbre, and pitch) as they interface with the technical characteristics of cochlear implants and the perceptual abilities of cochlear implant recipients; and b) describes accommodations for music instruction that support successful participation of children with cochlea...

  15. Engineering graded tissue interfaces.

    Science.gov (United States)

    Phillips, Jennifer E; Burns, Kellie L; Le Doux, Joseph M; Guldberg, Robert E; García, Andrés J

    2008-08-26

    Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.

  16. Library Instruction and Academic Success: A Mixed-Methods Assessment of a Library Instruction Program

    Directory of Open Access Journals (Sweden)

    Melissa Bowles-Terry

    2012-03-01

    Full Text Available Objectives – This study examines the connection between student academic success and information literacy instruction. Locally, it allowed librarians to ascertain the institution’s saturation rate for information literacy instruction and identify academic programs not utilizing library instruction services. In a broader application, it provides an argument for a tiered program of information literacy instruction and offers student perspectives on improving a library instruction program.Methods – Focus groups with 15 graduating seniors, all of whom had attended at least one library instruction session, discussed student experiences and preferences regarding library instruction. An analysis of 4,489 academic transcripts of graduating seniors identified differences in grade point average (GPA between students with different levels of library instruction.Results – Students value library instruction for orientation purposes as beginning students, and specialized, discipline-specific library instruction in upper-level courses. There is a statistically significant difference in GPA between graduating seniors who had library instruction in upper-level courses (defined in this study as post-freshman-level and those who did not.Conclusions – Library instruction seems to make the most difference to student success when it is repeated at different levels in the university curriculum, especially when it is offered in upper-level courses. Instruction librarians should differentiate between lower-division and upper-division learning objectives for students in order to create a more cohesive and non-repetitive information literacy curriculum.

  17. Development of MATLAB-Based Digital Signal Processing Teaching Module with Graphical User Interface Environment for Nigerian University

    OpenAIRE

    Oyetunji Samson Ade'; Daniel Ale

    2013-01-01

    The development of a teaching aid module for digital Signal processing (DSP) in Nigeria Universities was undertaken to address the problem associated with non-availability instructional module. This paper annexes the potential of Peripheral Interface Controllers (PICs) with MATLAB resources to develop a PIC-based system with graphic user interface environment suitable for data acquisition and signal processing. The module accepts data from three different sources: real time acquisition, pre-r...

  18. Learning procedures from interactive natural language instructions

    Science.gov (United States)

    Huffman, Scott B.; Laird, John E.

    1994-01-01

    Despite its ubiquity in human learning, very little work has been done in artificial intelligence on agents that learn from interactive natural language instructions. In this paper, the problem of learning procedures from interactive, situated instruction is examined in which the student is attempting to perform tasks within the instructional domain, and asks for instruction when it is needed. Presented is Instructo-Soar, a system that behaves and learns in response to interactive natural language instructions. Instructo-Soar learns completely new procedures from sequences of instruction, and also learns how to extend its knowledge of previously known procedures to new situations. These learning tasks require both inductive and analytic learning. Instructo-Soar exhibits a multiple execution learning process in which initial learning has a rote, episodic flavor, and later executions allow the initially learned knowledge to be generalized properly.

  19. Motivational Measure Of The Instruction Compared: 
Instruction Based On The Arcs Motivation Theory 
V.S. Traditional Instruction In Blended Courses

    OpenAIRE

    COLAKOGLU, Ozgur M.; Omur AKDEMIR

    2010-01-01

    The ARCS Motivation Theory was proposed to guide instructional designers and teachers who develop their own instruction to integrate motivational design strategies into the instruction. There is a lack of literature supporting the idea that instruction for blended courses if designed based on the ARCS Motivation Theory provides different experiences for learners in terms of motivation than instruction developed following the standard instructional design procedure for blended courses. Thi...

  20. Flexible DCP interface. [environmental sensor and signal conditioning interface

    Science.gov (United States)

    Kanemasu, E. T.; Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system (DCS) must supply the sensors and signal-conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform. A universal signal-conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  1. Instructions

    OpenAIRE

    Production, Co-Action Publishing

    2005-01-01

    Scope and purpose. The International Journal of Circumpolar Health is published by the International Union for Circumpolar Health, the Nordic Society of Arctic Medicine, the University of Oulu, the University of Alaska, Anchorage, and the University of Manitoba. The journal follows the tradition initiated by its predecessor, Arctic Medical Research. The journal specializes in Arctic and Antarctic health issues. It provides a forum for many disciplines, including the biomedical sciences, socia...

  2. THE INSTRUCTIONAL DESIGN MODEL FOR MATHEMATICS EDUCATION

    OpenAIRE

    Özdemir, Emine; UYANGÖR, Sevinç MERT

    2011-01-01

    In this study, to present an instructional model by considering the existing models of instructional design (Addie, ARCS Motivation, Dick and Carey, ASSURE, Seels and Glasgow, Smith and Ragan, Universal, with the elaboration theory of Gerlach and Ely design models) with the nature of mathematics education and to reveal analysis, design, development, implementation, evaluation, and to revise levels with lower levels of the instructional design model were aimed. In this study, the qualitative c...

  3. Fluency Instruction in Contemporary Core Reading Programs

    OpenAIRE

    Donaldson, Brady E.

    2011-01-01

    Core reading programs (CRPs) provide the curriculum and guide reading instruction for many classroom teachers. The purpose of this study was to conduct a content analysis of reading fluency instruction in current (2008-2011 copyright) grade 2 and 3 top-selling core reading program lessons to answer the following two research questions: (1) How do core reading programs recommend that fluency skills be taught? (2) How do reading fluency instructional practices in core programs compare to eviden...

  4. Differential reinforcement with and without instructional fading.

    OpenAIRE

    Ringdahl, Joel E; Kitsukawa, Kana; Andelman, Marc S; Call, Nathan; Winborn, Lisa; Barretto, Anjali; Reed, Gregory K

    2002-01-01

    We evaluated a differential-reinforcement-based treatment package for the reduction of problem behavior during instructional situations. Differential reinforcement of alternative behavior (DRA; compliance) was implemented across two conditions. During one condition, instructions were presented approximately once every other minute. This condition was considered the terminal goal for treatment. During the second condition, the rate of instructions was gradually increased (beginning at zero and...

  5. Explicit Comprehension Instruction: A Review of Research and a New Conceptualization of Instruction.

    Science.gov (United States)

    Pearson, P. David; Dole, Janice A.

    1987-01-01

    Reviews representative instructional studies of inference training, reciprocal teaching, and process training. Discusses both the concept of explicit comprehension instruction and potential difficulties in classroom implementation. Raises two important curricular concerns. (NH)

  6. The Multimodal Possibilities of Online Instructions

    DEFF Research Database (Denmark)

    Kampf, Constance

    2006-01-01

    The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi-modal analy......The WWW simplifies the process of delivering online instructions through multimodal channels because of the ease of use for voice, video, pictures, and text modes of communication built into it.  Given that instructions are being produced in multimodal format for the WWW, how do multi...

  7. Oscars and Interfaces

    Directory of Open Access Journals (Sweden)

    Antony Unwin

    2012-06-01

    Full Text Available Graphical user interfaces (GUIs are gradually becoming more powerful and more accepted. They are the standard way of interacting with the web and play an increasing role in many software applications. Nevertheless, they have not been generally adopted, and critics point to particular weaknesses and disadvantages. Many of these are due more to flaws in design and implementation than to the basic concepts of GUIs. More attention could be paid to what users want to do and how a GUI might be developed to support these goals. Using a dataset about Oscar nominees and winners, this paper considers what analyses statisticians might carry out and what kind of GUI would be appropriate for these tasks. (It also offers some insights into the Oscars dataset.

  8. Human-computer interface

    Science.gov (United States)

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  9. Porphyrins at interfaces

    Science.gov (United States)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  10. Ions at hydrophobic interfaces

    International Nuclear Information System (INIS)

    We review the present understanding of the behavior of ions at the air–water and oil–water interfaces. We argue that while the alkali metal cations remain strongly hydrated and are repelled from the hydrophobic surfaces, the anions must be classified into kosmotropes and chaotropes. The kosmotropes remain strongly hydrated in the vicinity of a hydrophobic surface, while the chaotropes lose their hydration shell and can become adsorbed to the interface. The mechanism of adsorption is still a subject of debate. Here, we argue that there are two driving forces for anionic adsorption: the hydrophobic cavitational energy and the interfacial electrostatic surface potential of water. While the cavitational contribution to ionic adsorption is now well accepted, the role of the electrostatic surface potential is much less clear. The difficulty is that even the sign of this potential is a subject of debate, with the ab initio and the classical force field simulations predicting electrostatic surface potentials of opposite sign. In this paper, we will argue that the strong anionic adsorption found in the polarizable force field simulations is the result of the artificial electrostatic surface potential present in the classical water models. We will show that if the adsorption of anions were as large as predicted by the polarizable force field simulations, the excess surface tension of the NaI solution would be strongly negative, contrary to the experimental measurements. While the large polarizability of heavy halides is a fundamental property and must be included in realistic modeling of the electrolyte solutions, we argue that the point charge water models, studied so far, are incompatible with the polarizable ionic force fields when the translational symmetry is broken. The goal for the future should be the development of water models with very low electrostatic surface potential. We believe that such water models will be compatible with the polarizable force fields

  11. Detonation interaction with an interface

    OpenAIRE

    Lieberman, D. H.; Shepherd, J. E.

    2007-01-01

    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental...

  12. Audio Interfaces for Improved Accessibility

    OpenAIRE

    Duarte, Carlos; Carrico, Lu&#;s

    2008-01-01

    This chapter focused on how endowing interfaces with audio interaction capabilities can improve their accessibility. To exemplify this outcome the development of several versions of a Digital Talking Book player was presented. This allowed us to show it is possible to maintain the same set of features while stripping the interface of visual components, and still keep it usable for the visually impaired population. The interface development concerns focused on both ends of the interaction spec...

  13. Intelligent interface design and evaluation

    Science.gov (United States)

    Greitzer, Frank L.

    1988-01-01

    Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.

  14. Program algebra with a jump-shift instruction

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2008-01-01

    We study sequential programs that are instruction sequences with jump-shift instructions in the setting of PGA (ProGram Algebra). Jump-shift instructions preceding a jump instruction increase the position to jump to. The jump-shift instruction is not found in programming practice. Its merit is that

  15. Individualizing Student Instruction Precisely: Effects of Child x Instruction Interactions on First Graders' Literacy Development

    Science.gov (United States)

    Connor, Carol McDonald; Piasta, Shayne B.; Fishman, Barry; Glasney, Stephanie; Schatschneider, Christopher; Crowe, Elizabeth; Underwood, Phyllis; Morrison, Frederick J.

    2009-01-01

    Recent findings demonstrate that the most effective reading instruction may vary with children's language and literacy skills. These Child x Instruction interactions imply that individualizing instruction would be a potent strategy for improving students' literacy. A cluster-randomized control field trial, conducted in 10 high-moderate poverty…

  16. Participatory instructional redesign by students and teachers in secondary education: effects on perceptions of instruction

    NARCIS (Netherlands)

    Könings, Karen; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen

    2011-01-01

    Könings, K. D., Brand-Gruwel, S., & Van Merriënboer, J. J. G. (2011). Participatory instructional redesign by students and teachers in secondary education: effects on perceptions of instruction. Instructional Science, 39(5), 737–762.

  17. Instructed Pragmatics at a Glance: Where Instructional Studies Were, Are, and Should Be Going

    Science.gov (United States)

    Taguchi, Naoko

    2015-01-01

    This paper brings together the research and developments of instructed pragmatics over the past three decades by reporting the synthesis findings of instructional intervention studies in interlanguage pragmatics. Two questions have guided this investigation: (1) is instruction effective in learning pragmatics?; and (2) what methods are most…

  18. Do Instructional Practices Contribute to Inequality in Achievement?: The Case of Mathematics Instruction in Kindergarten

    Science.gov (United States)

    Bodovski, Katerina; Farkas, George

    2007-01-01

    We use multilevel modeling of ECLS-K data (a nationally representative sample of American kindergartners) to describe the process and content of kindergarten mathematics instruction, as well as the associations of such instruction with achievement gaps by social class and race/ethnicity. Where instructional effectiveness is concerned, time spent…

  19. Addressing the Missing Instructional Data Problem: Using a Teacher Log to Document Tier 1 Instruction

    Science.gov (United States)

    Kurz, Alexander; Elliott, Stephen N.; Roach, Andrew T.

    2015-01-01

    Response-to-intervention (RTI) systems posit that Tier 1 consists of high-quality general classroom instruction using evidence-based methods to address the needs of most students. However, data on the extent to which general education teachers provide such instruction are rarely collected. This missing instructional data problem may result in RTI…

  20. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  1. Evidence-Based Instruction Is Not Enough: Strategies for Increasing Instructional Efficiency

    Science.gov (United States)

    Konrad, Moira; Helf, Shawnna; Joseph, Laurice M.

    2011-01-01

    Even evidence-based instructional methods may not be sufficient for closing achievement gaps. If teachers are not maximizing instructional time, achievement gaps are likely to widen over time; therefore, instruction need not only be effective but efficient as well. The purposes of this article are to (a) provide practitioners with a broad…

  2. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  3. Capillary flows with forming interfaces

    CERN Document Server

    Shikhmurzaev, Yulii D

    2007-01-01

    PREFACEINTRODUCTION Free-surface flows in nature and industryScope of the bookFUNDAMENTALS OF FLUID MECHANICS Main concepts Governing equations Elements of thermodynamics Classical boundary conditions Physically meaningful solutions and paradoxes of modelingMOVING CONTACT LINES: AN OVERVIEW Essence of the problem Experimental observations Molecular dynamics simulations Review of theoriesThe key to the moving contact-line problemBOUNDARY CONDITIONS ON FORMING INTERFACES Modeling of interfacesConservation lawsLiquid-gas and liquid-solid interfacesLiquid-liquid interfaces SummaryOpen questions an

  4. Instructable autonomous agents. Ph.D. Thesis

    Science.gov (United States)

    Huffman, Scott Bradley

    1994-01-01

    In contrast to current intelligent systems, which must be laboriously programmed for each task they are meant to perform, instructable agents can be taught new tasks and associated knowledge. This thesis presents a general theory of learning from tutorial instruction and its use to produce an instructable agent. Tutorial instruction is a particularly powerful form of instruction, because it allows the instructor to communicate whatever kind of knowledge a student needs at whatever point it is needed. To exploit this broad flexibility, however, a tutorable agent must support a full range of interaction with its instructor to learn a full range of knowledge. Thus, unlike most machine learning tasks, which target deep learning of a single kind of knowledge from a single kind of input, tutorability requires a breadth of learning from a broad range of instructional interactions. The theory of learning from tutorial instruction presented here has two parts. First, a computational model of an intelligent agent, the problem space computational model, indicates the types of knowledge that determine an agent's performance, and thus, that should be acquirable via instruction. Second, a learning technique, called situated explanation specifies how the agent learns general knowledge from instruction. The theory is embodied by an implemented agent, Instructo-Soar, built within the Soar architecture. Instructo-Soar is able to learn hierarchies of completely new tasks, to extend task knowledge to apply in new situations, and in fact to acquire every type of knowledge it uses during task performance - control knowledge, knowledge of operators' effects, state inferences, etc. - from interactive natural language instructions. This variety of learning occurs by applying the situated explanation technique to a variety of instructional interactions involving a variety of types of instructions (commands, statements, conditionals, etc.). By taking seriously the requirements of flexible

  5. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface

    NARCIS (Netherlands)

    Horschig, J.M.; Oosterheert, W.; Oostenveld, R.; Jensen, O.

    2014-01-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direct

  6. Basketball: Special Olympics Sports Skills Instructional Program.

    Science.gov (United States)

    Special Olympics, Inc., Washington, DC.

    One of a series of coaching guides for Special Olympics Sports Skills Instructional Programs, this booklet focuses on basketball instruction for mentally retarded persons. An initial section introduces the sport and discusses general coaching ideas. Goals, objectives, and benefits are listed along with information on clothing and court…

  7. Are Individual Differences Undertreated in Instructional Design?

    Science.gov (United States)

    Gropper, George L.

    2015-01-01

    Instructional design can be more effective if it is as fixedly dedicated to the accommodation of individual differences as it currently is to the accommodation of subject matters. That is the hypothesis. A menu of accommodation options is provided that is applicable at each of three stages of instructional development or administration: before,…

  8. English Instruction in English-Language Colleges.

    Science.gov (United States)

    Conseil des Colleges, Quebec (Quebec).

    Developed to promote the consistency and quality of English instruction and to support the English-language colleges of Quebec in this direction, the report presents an overview of English instruction at the college level and presents recommendations to the Minister of Higher Education and Science (MHES) and the English-language colleges. Part I…

  9. Analysis of Research Data Management Instruction Materials

    OpenAIRE

    Dressel, Willow

    2015-01-01

    Poster given at the 2015 SLA - All Sciences Poster Session. Many academic libraries are developing research data management instruction programs including online guides and workshops. A wealth of materials are available to draw from. However, the quantity and variety can be overwhelming to someone just starting out. This poster examines and compares 17 publicly available research data management instruction materials.

  10. The Practice of Eclectic Instructional Design

    Science.gov (United States)

    Honebein, Peter C.; Sink, Darryl L.

    2012-01-01

    Eclectic instructional design is the process whereby a designer blends ideas from multiple learning theories to construct a learning experience that works better than a course designed from only one theoretical influence. Eclectic instructional designers are those who do not get hung up or rely consistently on any one theory for their designs.…

  11. Instructional Design Processes and Traditional Colleges

    Science.gov (United States)

    Vasser, Nichole

    2010-01-01

    Traditional colleges who have implemented distance education programs would benefit from using instructional design processes to develop their courses. Instructional design processes provide the framework for designing and delivering quality online learning programs in a highly-competitive educational market. Traditional college leaders play a…

  12. Using Blogs to Improve Differentiated Instruction

    Science.gov (United States)

    Colombo, Michaela W.; Colombo, Paul D.

    2007-01-01

    The authors discuss how the instructional impact of science teachers can be extended by using blogs, a technology popular among students that allows teachers to differentiate their instruction for students with diverse needs. Software now makes it easy for teachers to establish class blogs, Web sites that contain text, audio, and video postings on…

  13. Instructional Models Effective in Distance Education.

    Science.gov (United States)

    Jackman, Diane H.; Swan, Michael K.

    The purpose of this study was to identify which instructional models based on the framework of Joyce, Weil, and Showers, could be used effectively in distance education over the Interactive Video Network (IVN) system in North Dakota. Instructional models have been organized into families such as Information Processing, Social, Personal, and…

  14. Motivational Design in Information Literacy Instruction

    Science.gov (United States)

    Hess, Amanda Nichols

    2015-01-01

    Motivational design theory complements instructional design theory and, when used together, both principles can affect learning, knowledge acquisition, and knowledge retention. In information literacy instruction, motivational design exists throughout the appropriate standards documents. However, there is limited current research on the best…

  15. Putting the Fun Back into Fluency Instruction

    Science.gov (United States)

    Cahill, Mary Ann; Gregory, Anne E.

    2011-01-01

    Based on recent research in fluency instruction, the authors present a scenario in which a teacher focuses her fluency instruction on authentic fluency tasks based in performance. Beginning with establishing a student-friendly definition of fluency and culminating with student engagement in fun fluency activities, this article explores the…

  16. Rule Difficulty and the Usefulness of Instruction

    Science.gov (United States)

    Scheffler, Pawel

    2009-01-01

    It is now generally agreed that some form of focus on the target code is necessary in adult L2 instruction. One question that remains to be answered is whether all aspects of L2 grammar are equally amenable to pedagogic intervention. A number of researchers have examined the effectiveness of instruction with regard to simple vs. difficult grammar…

  17. Instructional Computing in Wyoming: Status and Recommendations.

    Science.gov (United States)

    Kansky, Bob

    The status of instructional computing in Wyoming's public schols as of April 1980 is reported. Specifically the document indicates the nature and extent of computer usage in grades K-12, summarizes teachers' opinions regarding the potential instructional uses of computers in the schools, and presents the recommendations of a select committee of…

  18. Instructional Computing. An Action Guide for Educators.

    Science.gov (United States)

    Dennis, J. Richard; Kansky, Robert J.

    This book is directed to any educator who is interested in the use of the computer to improve classroom instruction. It is a book about the materials, human factors, and decision-making procedures that make up the instructional application of computers. This document's single goal is to promote educators' thoughtful selection and use of both…

  19. International Instructional Systems: How England Measures Up

    Science.gov (United States)

    Creese, Brian; Isaacs, Tina

    2016-01-01

    Although England was not included in the International Instructional Systems Study because it was not a high-performing jurisdiction by the Study's definition, contributors largely were England-based. Analysing the Study's nine overall aspects of instructional systems, this paper finds that England is out of step with many of the high-performing…

  20. Advancing Instructional Communication: Integrating a Biosocial Approach

    Science.gov (United States)

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  1. A Self-Instructional System in Plastics.

    Science.gov (United States)

    Greene, Mark M.; And Others

    The purpose of this system is to teach rural high school students the process of forming objects with expandable polystyrene plastic beads. Instruction in the system generally follows a three-step sequence in which the student: 1) views one of the four demonstration films; 2) progresses through a corresponding programed instruction book; and 3)…

  2. Augmenting the ADDIE Paradigm for Instructional Design

    Science.gov (United States)

    Ni, Xiaopeng; Branch, Robert Maribe

    2008-01-01

    The authors discuss topics appropriate for augmenting the ADDIE paradigm for instructional design. The topics selected are based on data from a study of working professionals who successfully completed an instructional design and technology certificate program and who identified related topics that they regarded as beneficial. The participants…

  3. Instructional Podcasting with Undergraduate Digital Natives

    Science.gov (United States)

    Thomas, Kevin M.; Willis, Dottie

    2013-01-01

    This paper analyzes the use of instructional podcasts with students in introductory computer application classes at a small, independent, private university. Participants were all undergraduates in the school of education. In an effort to model effective use of instructional technology for preservice teachers and to "meet digital native…

  4. Bowling: Special Olympics Sports Skills Instructional Program.

    Science.gov (United States)

    Special Olympics, Inc., Washington, DC.

    The manual, part of a series on Special Olympics Sports Skills Instructional Programs, presents ideas for coaching and teaching bowling skills to mentally retarded persons. An overview introduces the sport and lists long-term goals, short-term objectives, and benefits. Warm up exercises are followed by two levels of skill instruction for rolling,…

  5. Softball: Special Olympics Sports Skills Instructional Program.

    Science.gov (United States)

    Special Olympics, Inc., Washington, DC.

    One of seven instructional units on Special Olympics Sports Skills Instructional Programs, this guide presents suggestions for coaching softball for mentally retarded persons. An overview section provides information on teaching suggestions, followed by a list of program goals, objectives, and benefits. Sports skill assessments measure athletes'…

  6. Guidelines for Language Classroom Instruction1(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Craig Chaudron; Graham Crookes

    2008-01-01

    @@ In"Guidelines for Language Classroom Instruction,"Crookes and Chaudron review research and practice in both second and foreign language contexts.The main areas of classroom instruction described are:presentational modes and focus on form,types of activities and parameters of tasks and interaction,classroom organization,teacher control of interaction,and corrective feedback.

  7. Analysis of near-optimal evacuation instructions

    NARCIS (Netherlands)

    Huibregtse, O.L.; Bliemer, M.C.J.; Hoogendoorn, S.P.

    2010-01-01

    In this paper, approximations of optimal evacuation instructions are analyzed. The instructions, consisting of a departure time, a destination, and a route, are for the evacuation by car of a population of a region threatened by a hazard. An optimization method presented in earlier research is appli

  8. Robust Vocabulary Instruction in a Readers' Workshop

    Science.gov (United States)

    Feezell, Greg

    2012-01-01

    This article presents strategies for integrating explicit vocabulary instruction within a reading workshop. The author begins by describing a process for involving students in word selection. The author then provides a weeklong instructional sequence using student-selected words. Finally, the author briefly examines the role of vocabulary…

  9. Vocabulary Instruction for Second Language Readers

    Science.gov (United States)

    Nisbet, Deanna L.

    2010-01-01

    Over the past 20 years, research has consistently affirmed the importance of explicit vocabulary instruction for adult learners of English as a second language (ESL). Given the significant vocabulary demands faced by adult second language readers, ESL teachers must carefully target their instruction for maximum impact and to foster meaningful…

  10. Preparing Instructional Objectives: Agony or Ecstasy?

    Science.gov (United States)

    Roberts, Wesley K.

    This paper 1) discusses the problems encountered in preparing objectives for instructional programs; 2) describes an informal research project in which seven instructional designers working on the same project attempted to determine agreement on an objective; and 3) suggests how to prepare objectives so that difficulties can be minimized. One…

  11. Implicit and explicit instruction of spelling rules

    NARCIS (Netherlands)

    Kemper, M.J.; Verhoeven, L.T.W.; Bosman, A.M.T.

    2012-01-01

    The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-interventio

  12. Implicit and Explicit Instruction of Spelling Rules

    Science.gov (United States)

    Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.

    2012-01-01

    The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…

  13. How Instructional Systems Will Manage Learning

    Science.gov (United States)

    Flanagan, John C.

    1970-01-01

    Discusses trends toward the systems approach in education including the development of effective instructional systems in government and industry; the introduction of teaching machines, programed learning, and computer- assisted instruction; and the increase in both the amount and sophistication of educational research and development. (JF)

  14. Rethinking Monolingual Instructional Strategies in Multilingual Classrooms

    Science.gov (United States)

    Cummins, Jim

    2007-01-01

    Three inter-related assumptions regarding best practice in second/foreign language teaching and bilingual/immersion education continue to dominate classroom instruction. These assumptions are that: (a) the target language (TL) should be used exclusively for instructional purposes without recourse to students' first language (L1); (b) translation…

  15. Sources of Information for Instructional Technology.

    Science.gov (United States)

    Wiley, Ann L., Comp.

    This booklet is designed to help instructional technologists, students of instructional technology, faculty, and researchers in the field locate information quickly and easily. Information services described are libraries, the ERIC system, online information services, state education departments, regional education centers, and information…

  16. Instructional Leadership: Are Women Principals Better?

    Science.gov (United States)

    Andrews, Richard L.; Basom, Margaret R.

    1990-01-01

    A 1984 study found that female elementary school principals spent 38.4 percent of their time on instructional leadership activities, while their male counterparts spent only 21.8 percent. A 1989 follow-up study found that women principals were more likely to be seen by their staffs as instructional leaders. A sidebar examines sex discrimination in…

  17. Self-Paced Instruction: Hello, Education

    Science.gov (United States)

    Leuba, Richard J.; Flammer, Gordon H.

    1975-01-01

    Answers criticisms of self-paced instruction (SPI) by citing advantages of SPI over lecture methods. Concludes that criticisms of SPI are useful since they indicate in which areas further research should be conducted to improve this method of instruction. (MLH)

  18. The Future of Instructional Teacher Leader Roles

    Science.gov (United States)

    Mangin, Melinda M.; Stoelinga, Sara Ray

    2010-01-01

    In response to increased performance expectations, schools and districts are turning to nonsupervisory, school-based, instructional teacher leader roles to help improve teachers' instruction and enhance student learning. Increased opportunities to learn about teacher leadership may facilitate the implementation and institutionalization of…

  19. Planning for Instructional Technology in the Classroom

    Science.gov (United States)

    Garza Mitchell, Regina L.

    2011-01-01

    Community colleges are known for keeping abreast of the latest instructional technologies, but the constant and rapid growth of available technology also presents challenges. This chapter reviews the current literature regarding instructional technology usage, with a focus on beneficial applications of technology for teaching and learning, and…

  20. Instructional Alignment under No Child Left Behind

    Science.gov (United States)

    Polikoff, Morgan S.

    2012-01-01

    The alignment of instruction with the content of standards and assessments is the key mediating variable separating the policy of standards-based reform (SBR) from the outcome of improved student achievement. Few studies have investigated SBR's effects on instructional alignment, and most have serious methodological limitations. This research uses…

  1. Instructional or Managerial Leadership: The Principal Role!

    Science.gov (United States)

    Jazzar, Michael

    2004-01-01

    "Instructional Or Managerial Leadership: The Principal Role" is a case study written to challenge the beliefs of graduate students preparing for educational leadership roles and educational leaders already in these positions as to the importance of the principal as an instructional leader. This case explores communication between superintendents…

  2. Scientific Writing: A Blended Instructional Model

    Science.gov (United States)

    Clark, MaryAnn; Olson, Valerie

    2010-01-01

    Scientific writing is composed of a unique skill set and corresponding instructional strategies are critical to foster learning. In an age of technology, the blended instructional model provides the instrumental format for student mastery of the scientific writing competencies. In addition, the course management program affords opportunities for…

  3. Keyboard Instruction in the Music Classroom.

    Science.gov (United States)

    Appell, Claudia J.

    1993-01-01

    Asserts that the use of electronic keyboards enables music educators to incorporate technological advances into instruction and take advantage of the popularity of electronic and computerized keyboards. Discusses advantages of electronic keyboard instruction related to student motivation and behavior. Describes methods of incorporating…

  4. 7 CFR 1210.603 - Instructions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Instructions. 1210.603 Section 1210.603 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Referendum Procedures § 1210.603 Instructions. The referendum agent shall conduct the...

  5. An Economic Analysis of Instructional Language

    Science.gov (United States)

    Lien, Donald; Wang, Yaqin

    2013-01-01

    This paper constructs a simple two-tier education framework to analyze the effectiveness of multiple language instruction. Suppose that the government attempts to maximize the average post-education productivity. It is shown that the optimal education policy requires different languages of instruction be adopted in the education system. The…

  6. Authentic Interdisciplinary Instruction: Raising the Bar

    Science.gov (United States)

    Mohnsen, Bonnie

    2011-01-01

    This article addressed the need for authentic interdisciplinary instruction. Authentic interdisciplinary instruction is defined as a learning activity that simultaneously improves student performance related to grade-level standards in two or more disciplines (e.g., science and physical education). The process described for creating authentic…

  7. Instructional Development--Proactive or Reactive?

    Science.gov (United States)

    Tosti, Donald T.; Carleton, J. Robert

    1980-01-01

    Identifies five basic assumptions of the "proactive approach" to instructional development and argues for the use of that approach by instructional technologists in training developed for business organizations. Four tactics for moving an organization in a proactive direction are described, and guidelines followed by a large California bank are…

  8. Yuk! Peanut Butter Again: Avoiding Instructional Monotony.

    Science.gov (United States)

    Gunter, Mary Alice; Hotchkiss, Phyllis Riley

    1985-01-01

    This article presents a rationale for instructional variety based on the differences in the learning style of the students and on the objectives of the curriculum. A models of teaching approach for planning is described. A long-term professional development plan to implement teaching models for instructional variety is presented. (MT)

  9. Instructional Coaching in One Middle School

    Science.gov (United States)

    Krohn, Cheryl Ann

    2013-01-01

    This qualitative study examines a model of instructional coaching in a middle school using interviews and observations of both teachers and their coaches. During the 2012-2013 school year, Creekside Middle School implemented a new model of instructional coaching that differed from the traditional model of coaching; it focused on student learning…

  10. MICA at Sherman School (An Application of Computer Managed Instruction)

    Science.gov (United States)

    Anglin, Leo

    1974-01-01

    The perpetual problem of being overwhelmed by instructional paper work resulting from an individualized instructional program led to the development of Managed Instruction with Computer Assistance (MICA) for use by the Sherman Elementary School staff in Madison, Wisconsin. (Author)

  11. GRAPHIC INTERFACES FOR ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ion PANA,

    2012-05-01

    Full Text Available Using effective the method of calculating Fitness for Service requires the achievement of graphical interfaces. This paper presents an example of such interfaces, made with Visual Basic program and used in the evaluation of pipelines in a research contract [4

  12. Playful Interfaces: Introduction and History

    NARCIS (Netherlands)

    Nijholt, Anton; Nijholt, Anton

    2014-01-01

    In this short survey we have some historical notes about human-computer interface development with an emphasis on interface technology that has allowed us to design playful interactions with applications. The applications do not necessarily have to be entertainment applications. We can have playful

  13. Online Remote Sensing Interface

    Science.gov (United States)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  14. Reflectometry on curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Früh, Johannes, E-mail: johannes.frueh@hit.edu.cn [Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Centre, Yikuang Street 2, Harbin 150080 (China); Rühm, Adrian [Max-Planck Institute for Intelligent Systems (formerly Max-Planck Institute for Metals Research), ZWE FRM II, Heisenbergstr. 3, 70569 Stuttgart (Germany); Möhwald, Helmuth [Max-Planck Institute of Colloids and Interfaces, Department of Interfaces, Am Mühlenberg 1, 14424 Golm/Potsdam (Germany); Krastev, Rumen [Natural and Medical Sciences Institute at the University of Tuebingen, Marktwiesenstr. 55, 72770 Reutlingen (Germany); Köhler, Ralf, E-mail: ralf.koehler@helmholtz-berlin.de [University of Technology Berlin, Stranski-Laboratorium, Straße des 17. Juni 124, 10623 Berlin (Germany); Helmholtz-Centre Berlin for Materials and Energy, Institute for Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2015-01-15

    Reflectometry is known since long as an interferometric method which can be used to characterize surfaces and thin films regarding their structure and, to a certain degree, composition as well. Properties like layer structures, layer thickness, density, and interface roughness can be determined by fitting the obtained reflectivity data with an appropriate model using a recursive fitting routine. However, one major drawback of the reflectometric method is its restriction to planar surfaces. In this article we demonstrate an approach to apply X-ray and neutron reflectometry to curved surfaces by means of the example of bent bare and coated glass slides. We prove the possibility to observe all features like Fresnel decay, Kiessig fringes, Bragg peaks and off-specular scattering and are able to interpret the data using common fitting software and to derive quantitative results about roughness, layer thickness and internal structure. The proposed method has become practical due to the availability of high quality 2D-detectors. It opens up the option to explore many kinds and shapes of samples, which, due to their geometry, have not been in the focus of reflectometry techniques until now.

  15. Next Generation Search Interfaces

    Science.gov (United States)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2015-09-01

    Astronomers are constantly looking for easier ways to access multiple data sets. While much effort is spent on VO, little thought is given to the types of User Interfaces we need to effectively search this sort of data. For instance, an astronomer might need to search Spitzer, WISE, and 2MASS catalogs and images then see the results presented together in one UI. Moving seamlessly between data sets is key to presenting integrated results. Results need to be viewed using first class, web based, integrated FITS viewers, XY Plots, and advanced table display tools. These components should be able to handle very large datasets. To make a powerful Web based UI that can manage and present multiple searches to the user requires taking advantage of many HTML5 features. AJAX is used to start searches and present results. Push notifications (Server Sent Events) monitor background jobs. Canvas is required for advanced result displays. Lesser known CSS3 technologies makes it all flow seamlessly together. At IPAC, we have been developing our Firefly toolkit for several years. We are now using it to solve this multiple data set, multiple queries, and integrated presentation problem to create a powerful research experience. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). Firefly is the core for applications serving many project archives, including Spitzer, Planck, WISE, PTF, LSST and others. It is also used in IRSA's new Finder Chart and catalog and image displays.

  16. ATLAS Detector Interface Group

    CERN Document Server

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  17. Computer-aided instruction system

    International Nuclear Information System (INIS)

    This research thesis addresses the use of teleprocessing and time sharing by the RAX IBM system and the possibility to introduce a dialog with the machine to develop an application in which the computer plays the role of a teacher for different pupils at the same time. Two operating modes are thus exploited: a teacher-mode and a pupil-mode. The developed CAI (computer-aided instruction) system comprises a checker to check the course syntax in teacher-mode, a translator to trans-code the course written in teacher-mode into a form which can be processes by the execution programme, and the execution programme which presents the course in pupil-mode

  18. Kinaesthetic activities in physics instruction

    DEFF Research Database (Denmark)

    Bruun, Jesper; Christiansen, Frederik V

    2016-01-01

    One of the major difficulties in learning physics is for students to develop a conceptual understanding of the core concepts of physics. Many authors argue that students’ conceptions of basic physical phenomena are rooted in basic schemas, originating in fundamental kinaesthetic experiences...... of being. We argue that this idea should be utilized in physics instruction, that kinaesthetic activities will provide useful entry point for students’ acquisition of the basic conceptions of physics, and that they can overcome the phenomenological gap between experiential and conceptual understanding. We...... discuss the nature of image schemas and focus particularly on one: effort-resistance-flow. This schema is fundamental not only in our everyday experience, but also in most of school physics. We show how enactment of a particular kinaesthetic model can support student understanding and intuition...

  19. Discussion on Form Focused Instruction

    Institute of Scientific and Technical Information of China (English)

    冯滢

    2007-01-01

    The pedagogy of language teaching has moved from one extreme-Grammar Translation Method to the other-Communicative Language Teaching.Today Form Focused Instruction(FFI)has emerged,intending to bring language forms instructionback to the communicative language classroom.Despite of the approval of this new approach,there is a hot dispute on its two types of application:Focus on Form or Focus on FormS.This article briefly analyzes FFI in recent research studies with focus on the choice between the two types of application.The tentative conclusion is FFI does show some explicit and reliable effects on accuracy and error elimination in language teaching;however,the investigation into its application is not simply either Focus on Form Or Focus on FormS,but focuses on the optimal combination of the two in teaching.

  20. Cockpit Interfaces, Displays, and Alerting Messages for the Interval Management Alternative Clearances (IMAC) Experiment

    Science.gov (United States)

    Baxley, Brian T.; Palmer, Michael T.; Swieringa, Kurt A.

    2015-01-01

    This document describes the IM cockpit interfaces, displays, and alerting capabilities that were developed for and used in the IMAC experiment, which was conducted at NASA Langley in the summer of 2015. Specifically, this document includes: (1) screen layouts for each page of the interface; (2) step-by-step instructions for data entry, data verification and input error correction; (3) algorithm state messages and error condition alerting messages; (4) aircraft speed guidance and deviation indications; and (5) graphical display of the spatial relationships between the Ownship aircraft and the Target aircraft. The controller displays for IM will be described in a separate document.

  1. A comparison of video modeling, text-based instruction, and no instruction for creating multiple baseline graphs in Microsoft Excel.

    Science.gov (United States)

    Tyner, Bryan C; Fienup, Daniel M

    2015-09-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed.

  2. Multimodal Neuroelectric Interface Development

    Science.gov (United States)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  3. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  4. Playful user interfaces interfaces that invite social and physical interaction

    CERN Document Server

    2014-01-01

    The book is about user interfaces to applications that have been designed for social and physical interaction. The interfaces are ‘playful’, that is, users feel challenged to engage in social and physical interaction because that will be fun. The topics that will be present in this book are interactive playgrounds, urban games using mobiles, sensor-equipped environments for playing, child-computer interaction, tangible game interfaces, interactive tabletop technology and applications, full-body interaction, exertion games, persuasion, engagement, evaluation, and user experience. Readers of the book will not only get a survey of state-of-the-art research in these areas, but the chapters in this book will also provide a vision of the future where playful interfaces will be ubiquitous, that is, present and integrated in home, office, recreational, sports and urban environments, emphasizing that in the future in these environments game elements will be integrated and welcomed.

  5. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  6. Search-User Interface Design

    CERN Document Server

    Wilson, Max

    2011-01-01

    Search User Interfaces (SUIs) represent the gateway between people who have a task to complete, and the repositories of information and data stored around the world. Not surprisingly, therefore, there are many communities who have a vested interest in the way SUIs are designed. There are people who study how humans search for information, and people who study how humans use computers. There are people who study good user interface design, and people who design aesthetically pleasing user interfaces. There are also people who curate and manage valuable information resources, and people who desi

  7. Practical speech user interface design

    CERN Document Server

    Lewis, James R

    2010-01-01

    Although speech is the most natural form of communication between humans, most people find using speech to communicate with machines anything but natural. Drawing from psychology, human-computer interaction, linguistics, and communication theory, Practical Speech User Interface Design provides a comprehensive yet concise survey of practical speech user interface (SUI) design. It offers practice-based and research-based guidance on how to design effective, efficient, and pleasant speech applications that people can really use. Focusing on the design of speech user interfaces for IVR application

  8. Designing end-user interfaces

    CERN Document Server

    Heaton, N

    1988-01-01

    Designing End-User Interfaces: State of the Art Report focuses on the field of human/computer interaction (HCI) that reviews the design of end-user interfaces.This compilation is divided into two parts. Part I examines specific aspects of the problem in HCI that range from basic definitions of the problem, evaluation of how to look at the problem domain, and fundamental work aimed at introducing human factors into all aspects of the design cycle. Part II consists of six main topics-definition of the problem, psychological and social factors, principles of interface design, computer intelligenc

  9. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described

  10. Automated Fluid Interface System (AFIS)

    Science.gov (United States)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  11. The molecule-metal interface

    CERN Document Server

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  12. A Helping Hand: Individually Prescribed Instruction (IPI

    Directory of Open Access Journals (Sweden)

    Bernard W. Andrews

    2014-10-01

    Full Text Available Individually Prescribed Instruction (IPI is an approach to teaching that emphasizes the diagnosis of learning problems and the provision of prescriptive assignments to assist individual students overcome their difficulties.  When this strategy is employed effectively, the teaching environment is highly adaptive.  The teacher matches the students' abilities to alternate ways of learning, and also provides remedial assistance and positive reinforcement.  Individually Prescribed Instruction has been shown to be effective across the school curriculum.  This writer reviews the success of this strategy for assisting students overcome learning problems, and proposes a model for its implementation in music instruction.

  13. Teaching Experience and Need for Instructional skills

    Directory of Open Access Journals (Sweden)

    Hoda Rezaeian

    2012-07-01

    Full Text Available The relationship between working experience and need for instructional skills is of major importance for the teaching and learning process. It seems teachers need to develop their teaching methods inside the class in order to activate students to learn more effectively. The researchers decided to find out if there is any relationship between working experience and need for instructional skills. The data was obtained from more than 31 randomly chosen lecturers through questionnaire from the Faculty of Educational Studies at University Putra Malaysia. From the results, it was concluded that there is no relationship between years of working experience and need for instructional skills.

  14. An evaluation of the use of microcomputer-based laboratory instruction on middle school students' concept attainment and attitudes towards computer-based instruction

    Science.gov (United States)

    Osio, Sergio Albina

    The advent of instructional technology has become an integral part of the learning process, thought by many to be a vital component in the reform of science instruction. Microcomputer-Based Laboratory (MBL) is an instructional technology environment in which a computer is connected through its Universal Serial Box (USB) port or an interface (for older models) with sensors to control the experiment, collect data, and generate and interpret graphs. In this study, MBL tools and instructions were used to design an instructional program that integrated ideas in teaching thinking skills so that middle school students from varying levels of differentiated achievement could categorize and create concepts grounded on the Concept Attainment Model of teaching. Data were collected and analyzed based on the procedures of a one-group pretest-posttest experimental design and two research questions. The study provided a quantitative correlation of variables such as MBL to students' pretest-posttest total scores; pretest-posttest total scores to the levels of differentiated achievement and treatment groups. Likewise, a modified student-computer-attitude survey was administered to evaluate students' attitude toward the use of computer technologies. The research findings revealed a 9.1% increase in test scores in the three concepts of investigation; multiple increases in test scores in the three levels of differentiated achievement (22.2% for regular science group, 6.2% for accelerated science group students, and 1% for sheltered science group); and 11.1% mean difference between the MHL group and traditional laboratory group. Simultaneously, participants showed a positive significance of 77% feeling of comfort and confidence towards the use of computer technologies. Eventually, the great potential of MBL technology could play an important role in the reform of science education in the schools of the second largest Unified School District in the country today.

  15. Dispersive transport across interfaces

    Science.gov (United States)

    Berkowitz, Brian; Adler, Pierre

    2015-04-01

    Experiments demonstrating asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials have recently been performed. Here, this phenomenon is studied numerically on the pore scale. The flow field is derived by solving the Stokes equation. The dispersive transport is simulated by a large number of particles undergoing random walks under the simultaneous action of convection and diffusion. Two main two-dimensional configurations are studied; each consists of two segments (called coarse and fine) with the same structure, porosity, and length along the main flow, but different characteristic solid/pore sizes. One structure consists of two channels containing cavities of different sizes, and the second of square "grains" of different sizes. At time t=0, a large number of particles is injected (as a pulse) around a given cross-section. The corresponding breakthrough curves (BTCs) are registered as functions of time at six different cross sections. Calculations are made twice; in the first case (CtoF), particles are injected in the coarse side and are transported towards the fine one; in the second one (FtoC), the opposite case is studied. These calculations are performed for various Péclet numbers (Pe). Comparison of the resulting BTCs shows features that are similar to experimental observations, but with qualitative and quantitative differences. The influences of the medium, of the injection and observation planes, and of Pe are detailed and discussed. A BTC for pulse injection can be characterized by its maximum M(t_M) and the time tM at which it occurs. The observed differences for channels bounded by cavities are very small. However for the granular structures, M(t_M) is always larger for FtoC than for CtoF ; tM depends on all the parameters, namely Pe, the size ratio between the large and small grains, the injection and the observation planes. The numerical results are systematically compared with solutions of one

  16. Interface engineering in organic transistors

    Directory of Open Access Journals (Sweden)

    Yeong Don Park

    2007-03-01

    Full Text Available Recent technological advances in organic field-effect transistors (OFETs have triggered intensive research into the molecular and mesoscale structures of organic semiconductor films that determine their charge-transport characteristics. Since the molecular structure and morphology of an organic semiconductor are largely determined by the properties of the interface between the organic film and the insulator, a great deal of research has focused on interface engineering. We review recent progress in interface engineering for the fabrication of high-performance OFETs and, in particular, engineering of the interfaces between semiconductors and insulators. The effects of interfacial characteristics on the molecular and mesoscale structures of π-conjugated molecules and the performance of OFET devices are discussed.

  17. REXIB: Remote Experiments Interface Builder

    Directory of Open Access Journals (Sweden)

    Jose M. Ferreira

    2006-08-01

    Full Text Available Remote Experimentation is an educational resource that allows teachers to strengthen the practical contents of science & engineering courses. However, building up the interfaces to remote experiments is not a trivial task. Although teachers normally master the practical contents addressed by a particular remote experiment they usually lack the programming skills required to quickly build up the corresponding web interface. This paper describes the automatic generation of experiment interfaces through a web-accessible Java application. The application displays a list of existent modules and once the requested modules have been selected, it generates the code that enables the browser to display the experiment interface. The tools’ main advantage is enabling non-tech teachers to create their own remote experiments.

  18. The Simple Publishing Interface (SPI)

    NARCIS (Netherlands)

    Ternier, Stefaan; Massart, David; Totschnig, Michael; Klerkx, Joris; Duval, Erik

    2010-01-01

    Ternier, S., Massart, D., Totschnig, M., Klerkx, J., & Duval, E. (2010). The Simple Publishing Interface (SPI). D-Lib Magazine, September/October 2010, Volume 16 Number 9/10, doi:10.1045/september2010-ternier

  19. Generating and executing programs for a floating point single instruction multiple data instruction set architecture

    Science.gov (United States)

    Gschwind, Michael K

    2013-04-16

    Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

  20. MICROSOURCE INTERFACE FOR A MICROGRID

    OpenAIRE

    Binduhewa, Prabath Janaka

    2010-01-01

    A MicroGrid is typically a small power system, which consists of several microsources and energy storage units, providing heat and electricity to local loads. The MicroGrid has the capability to island and operate autonomously from the main utility network. MicroGrids potentially enable a greater integration of small-scale renewable energy sources. The objective of this thesis is to develop a single-phase microsource interface with energy storage unit embedded into the interface. An integrate...

  1. Coal-shale interface detection

    Science.gov (United States)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  2. Coal-shale interface detector

    Science.gov (United States)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  3. Interfacing Coq + SSReflect with GAP

    OpenAIRE

    Komendantsky, Vladimir; Konovalov, Alexander; Linton, Stephen Alexander

    2012-01-01

    Presentation slides and preprint both provided by author. Preprint published in Electronic Notes in Theoretical Computer Science: Proceedings of the 9th International Workshop On User Interfaces for Theorem Provers (UITP10). We report on an extendable implementation of the communication interface connecting Coq proof assistant to the computational algebra system GAP using the Symbolic Computation Software Composability Protocol (SCSCP). It allows Coq to issue OpenMath requests to a local o...

  4. A Geospatial Online Instruction Model

    Directory of Open Access Journals (Sweden)

    Athena OWEN-NAGEL

    2012-04-01

    Full Text Available The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model’s effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based teaching effectiveness has not yet been clearly demonstrated for geospatial courses. The pedagogical model implemented in this study heavily utilizes virtual classroom software. Short lecture video segments coupled with lecture presentation files and textbook readings are effective tools for teaching geospatial theory. Detailed laboratory instructions, video clips and screen captures of important laboratory exercise steps, and discussion board posts about laboratory steps can substitute face-to-face interactions that occur in an on-campus geospatial course laboratory environment and can help the online student understand complex geospatial analyses. Analysis of student tracking on the virtual classroom suggests that the proposed pedagogical model is an effective, satisfying, and rewarding learning strategy. The distance learning model is disadvantageous to the instructor because more work is needed up front. However, once the course has begun the instructor benefits by having a more flexible teaching schedule.

  5. Active matter clusters at interfaces.

    Science.gov (United States)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  6. Hydrophobic effect at aqueous interfaces

    Science.gov (United States)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  7. Active matter clusters at interfaces.

    Directory of Open Access Journals (Sweden)

    Katherine eCopenhagen

    2016-03-01

    Full Text Available Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped, where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  8. Turning Contemporary Reading Research into Instructional Practice.

    Science.gov (United States)

    Frager, Alan; Hahn, Amos

    1988-01-01

    Highlights contemporary reading research as well as some implied instructional practices in four areas, including direct teacher explanation, reading-writing connection, top-level text structure, and main idea identification. (ARH)

  9. An Optical Crystallography Instructional Package on Videocassettes.

    Science.gov (United States)

    Birnie, Richard W.

    1980-01-01

    Describes a self-teaching instructional package on color videocassettes, supplemented with audio descriptions, prepared from original super-8mm cinephotomicrographs for use in optical crystallography courses. Production techniques are also reviewed. (Author/JN)

  10. Formal education of curriculum and instructional designers

    NARCIS (Netherlands)

    McKenney, Susan; Visscher-Voerman, Irene

    2013-01-01

    McKenney, S., & Visscher-Voerman, I. (2013). Formal education of curriculum and instructional designers. Educational Designer, 2(6). Available online: http://www.educationaldesigner.org/ed/volume2/issue6/article20/index.htm

  11. Exploring listening strategy instruction through action research

    CERN Document Server

    Siegel, Joseph

    2015-01-01

    Listening in a second language is challenge for students and teachers alike. This book provides a personal account of an action research intervention involving listening strategy instruction that investigated the viability of this innovative pedagogy in the Japanese university context.

  12. Discourse Analysis in Stylistics and Literature Instruction.

    Science.gov (United States)

    Short, Mick

    1990-01-01

    A review of research regarding discourse analysis in stylistics and literature instruction covers studies of text, systematic analysis, meaning, style, literature pedagogy, and applied linguistics. A 10-citation annotated bibliography and a larger unannotated bibliography are included. (CB)

  13. Innovations in Curriculum and Instructional Materials Development.

    Science.gov (United States)

    Population Education in Asia and the Pacific Newsletter, 1983

    1983-01-01

    Presents a sample population education lesson plan from China. Included with the lesson, which focuses on quality of life and socialist modernization, are objectives, instructional strategies, list of materials needed, evaluation methods, and sample test items. (JN)

  14. Visual expertise: characteristics and instructional attempts

    NARCIS (Netherlands)

    Jarodzka, Halszka

    2012-01-01

    Jarodzka, H. (2012, 27 April). Visual expertise: characteristics and instructional attempts. Presentation during the ‘Symposium 4C-ID: Hoe implementer je de blauwdruk?’, Studiecentrum Open Universiteit, Utrecht, The Netherlands.

  15. Medium of Instruction in Thai Science Learning

    Science.gov (United States)

    Chanjavanakul, Natpat

    The goal of this study is to compare classroom discourse in Thai 9th grade science lessons with English or Thai as a medium of instruction. This is a cross-sectional study of video recordings from five lessons in an English-medium instruction class and five lessons in a Thai- medium instruction class from a Thai secondary school. The study involved two teachers and two groups of students. The findings show the use of both English and Thai in English-medium lessons. Students tend to be more responsive to teacher questions in Thai than in English. The findings suggest the use of students' native language during English-medium lessons to help facilitate learning in certain situations. Additionally, the study provides implications for research, practice and policy for using English as a medium of instruction.

  16. CPR Instruction in a Human Anatomy Class.

    Science.gov (United States)

    Lutton, Lewis M.

    1978-01-01

    Describes how cardiopulmonary resuscitation (CPR) instruction can be included in a college anatomy and physiology course. Equipment and instructors are provided locally by the Red Cross or American Heart Association. (MA)

  17. Sources of Information on Computer Assisted Instruction

    Science.gov (United States)

    Dick, Walter; And Others

    1970-01-01

    A directory of projects dealing with computer-assisted instruction, primarily at the college level, based on a survey intended to uncover fugitive sources of information in this field (e.g., unpublished project progress reports). (LS)

  18. Attentional Focusing Instructions and Force Production

    Directory of Open Access Journals (Sweden)

    David C Marchant

    2011-01-01

    Full Text Available Research progress assessing the role of attentional focusing instructions on skill acquisition and performance has lead researchers to apply this approach to force production tasks. Initial converging evidence indicates that force production tasks are sensitive to verbal instruction; externally focused instructions (onto movement outcomes, or onto the object force is being exerted against are shown to be more beneficial than internally focused instructions (focusing attention onto the movements being executed. These benefits are observed for maximal and accurate force production, as well as the maintenance of force production in prolonged tasks. A range of mechanisms are identified supporting the proposal that an external focus promotes movement efficiency in line with energy and effort conservation. Future research is required to assess how this developing body of work interacts with the broader understanding of psychological and physiological factors implicated in the effective production, maintenance and limitation of maximal or sub-maximal forces.

  19. Science at the interface

    International Nuclear Information System (INIS)

    the stakes against those who might want to enter. Laboratory sciences interface nature in a peculiar way: by barring real natural objects from entering the lab and by substituting for them reconfigured versions of these objects to work with in research. These supplemental versions of natural objects do refer back to natural processes or conditions, but at the same time they are also autonomous new objects and processes with differential qualities and reproductive powers within laboratory contexts. Laboratory sciences have the disadvantage that their products must be freshly contextualized when they leave the lab to reenter natural environments. In the natural sciences, re-contextualization is often accomplished by transferring some of the conditions that obtained in the lab onto the natural environment. Re-contextualization in the natural sciences may also just be a metaphor for a long chain of processes, involving specialized disciplines, by which some natural scientific results are used to create technologies which are then used in practice - a process that often fails, involves political strategies of persuasion and other complications. Contextualization involves adaptation not only to new laboratory external physical environments but also to the social world. One direction of social science research maintains that a form of (re) contextualization of a much larger scope and impact is evident today in contemporary societies, affecting in tendency all sciences and technological fields. This assessment is encapsulated in the idea that we have progressed from Mode 1 science and technology to a Mode 2 situation where knowledge is generated in the context of application and implication. (author)

  20. Instructional Design Cases and Why We Need Them

    Science.gov (United States)

    Howard, Craig D.; Boling, Elizabeth; Rowland, Gordon; Smith, Kennon M.

    2012-01-01

    The field of instructional design does not collect and share actual completed instructional designs and designers' reflections on the creation of those designs as an integral, widespread aspect of its practice. This article defines the instructional design case as a means of knowledge building. It lays out the components of instructional design…